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Semiclassical quantization rule for the bound-state spectrum in quantum dots:
Scattering phase approximation
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We study the quantum propagator in the semiclassical limit with sharp confining potentials. Including the
energy-dependent scattering phase due to sharp confining potential, the modified Van Vleck formula is derived.
We also discuss the close relations among quantum statistics, discrete gauge symmetry, and hard-wall con-
straints. Most of all, we formulate a quantization rule that applielsatt smooth and sharp boundary poten-
tials. It provides an easy way to compute quantized energies in the semiclassical limit and is extremely useful
for many physical systems.
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[. INTRODUCTION considered as quadratic fluctuations around a given trajectory
from x’ to x in time T, has as many negative eigenvalues as
The most straightforward method to obtain the bound-there are conjugatéturning points along the trajectory.

state spectrum for a quantum system is to solve the 'Schra’hese conjugate points give rise to a phase correactiof2
dinger equation. However, if the potential profile is smoothfor the trajectory,® wherew is the total number of conjugate
compared to the wavelength of the particle, the energy spegoints along the trajectory, or sometimes referred to as the
trum can be obtained by the semiclassical Wentzel-Kramersavaslov or Morse index?
Brillouin (WKB) approximation. The semiclassical approach Not only elucidating the crossover between classical and
reduces the task of solving the differential equation into aguantum mechanics, the semiclassical limit also provides a
simple integral. While the great simplification is attractive, it convenient way to calculate the bound state energy. Instead
does not work all the time. In quantum dots, the confiningof solving the Schrdinger equation directly, the bound state
potential is usually sharp and leads to strong quantum inteispectrum can also be computed by the WKB
ferences which invalidate the semiclassical approach. Onapproximation! In order to account for the interference ef-
notices that the semiclassical approximation only break$ects among classical trajectories correctly, we rederive Van
down near the sharp confining potential. This motivated us t&/leck’s formula with an extra scattering phase correction due
generalize the conventional semiclassical approach by into sharp confining potentials.
cluding the quantum interferences exactly near the turning Following the standard stationary phase approximation
points where the semiclassical approximation is not approand making a Legendre transformation of the time variable
priate. We were rather nicely able to capture the complicateth the quantum propagator to the energy variable, we are able
qguantum interference effects by a simple energy-dependeitd generalize the Einstein-Brillouin-KelldEBK) quantiza-

scattering phase correction. tion rule'*~**with an additional phase correction term
To elucidate this point, it is convenient to adapt the path

integral formulism. Path integral provides an alternative ap- \/7 B

proach to formulate quantum mechantésThe quantum 2m[E—V(x)]dx—2n7r+§S: ¢s(E), @

propagatorG(x,x’;T) that is the key quantity in quantum

mechanics is shown to equal the summation over all possiblehere ¢ (E) is the energy-dependent scattering phase due to
paths with the same end points. In the semiclassical limit, theollisions with the confining potential. The usual WKB ap-
dominant contribution comes from classical trajectories angbroximation is the special case where the scattering phase at
fluctuations around thef> Within the stationary phase ap- each turning point is assume to take on the energy-
proximation including fluctuations up to quadratic order, theindependent valuebs(E)= w/2. On the other hand, if the
quantum propagator can be approximated by the Van Vleckonfining potential becomes infinitely shar(hard-wall
formula® In general, there would be many classical trajecto-imit), the scattering phase rises ta The modified EBK

ries that satisfy the same boundary conditions, and the phasgiantization rule in Eq(1) relaxes the requirement of the
interferences between them are important, as pointed out hyotential smoothness in the WKB approximation. This is a
Gutzwiller”=® By Morse’s theorem, the second variation, great advantage because many physical systems including
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guantum dots, quantum wells, Hall bars, electronic wave
guides, etc., have both hard-wall-like potentialom
sample edgesas well as smooth potentialby applying ex- X
ternal fieldg at the same time.
The paper is organized in the following way. In Sec. I, X
we introduce the Van Vleck formula and apply it to simple
systems. We explicitly show that the Van Vleck approxima-
tion is incorrect in the presence of hard walls and the scat-
tering phase correction is crucial. In Sec. Ill, we compute the | * X
energy dependence of the scattering phase at each turnir
point and derive the modified Van Vleck formula. In Sec. IV,
we derive the key result of this paper—the modified EBK  F|G. 1. Classical trajectories in the presence of two hard walls.
quantization rule. We apply it to physical systems with bothon the left is a trajectory with even reflection points 2, while the
smooth and hard confinement potentials and show that theght with odd reflection points=3.
modified term is necessary to obtain the correct energy lev-
els. Finally, in Sec. V, we relate the connection between the=x’ andx(T)=x. The total(route distance of each classical
quantum statistics, discrete gauge symmetry to the scatteringhjectory isd,=x—x’+nL, wheren is an integer. The ac-
phase approach. Then a brief conclusion follows. tion for each trajectory is

Il. QUANTUM PROPAGATOR AND CLASSICAL yo M , 2
TRAJECTORIES An(X, X" T) = o (x=x"+nL)% ®)

In the path integral formalisfrjn,the quantum propagator Taking the derivative of the action, the strength of fluctua-
eq_uals the sum over all possible paths with the same enghns around each trajecto,=m/T is independent of the
points end points and the choice of trajectories. Since the particle

« - moves at constant velocity, it is obvious that there is no
G(x,x’;T)s(xle“HT|x’>=f D[x]ex%if L(x,k,t)dt), conjugate point along any classical trajectory and thys

x! 0 =0. In addition, because the fluctuations of the classical

) trajectory of a free particle are exactly quadratic, we expect

where the measurB[ x] denotes all possible paths with end the Van Vieck formula to be exact for this system,
pointsx(0)=x" andx(T)=x. In the semiclassical limit, the

phase inside the path integral oscillates rapidly except in the
neighborhood of the classical trajectories. Within the station-
ary phase approximation including fluctuations up to qua-
dratic order, the propagator is approximated by the Vanrhis infinite sum can be rewritten in terms of its Fourier
Vleck formula function with the use of Poisson summation formula in the

Appendix® Notice that

. (6

GXX'iT)= \/ o= exgin "+nL)?
(x,x";T)= T4 ex |2T(x x"+nL)

)

1 ) T
G(X,x ’T):\/ﬁ% \/C—pexr{lAp—lva

— gialy+p)? :\/ﬁ —ik?/4a+ikp
f(y)=¢€ —~F(p) ae . )
where A,(x,x";T) is the action of the classical trajectory

starting fromx(0)=x’ and ending ak(T)=x, and the sub- Choosinga=L, the summation over coordinaje=na can
script p denotes all classical paths with the desired end€ turned into the summation over momentkgs=2na/L.
points. The strength of the quadratic fluctuatfbasmund the ~ The propagator is then

classical trajectory is

1
G(x,x’;T)zEE exdik,(x—x")—iE,T], (8)

: (4)

I°A
IXIX’

where k,=2n#/L is the quantized momentum anéd,
Finally, the total number of conjugat@r turning points =k§/2m is the quantized energy. It is obvious that the propa-
along the classical trajectory is denoted:byNotice that, for  gatorG(x,x’;T) calculated by the Van Vleck formula is ex-
each conjugate point, there ismd2 phase correction associ- act in this case.
ated with it. Van Vleck’s formula provides a completely clas-  Let us now apply the Van Vleck formula to another physi-
sical approximation of the quantum propagator, in the senseal system—a free particle bouncing back and forth between
that all relevant elements can be computed from the classicéivo hard walls. We calculate the propagator explicitly and
trajectories. show that the Van Vleck formula leads to incorrect results.
A straightforward example of the Van Vleck formula is a  The trajectories in this problem can be classified by the
free particle moving on the a finite ring with lengthThere  number of collisions with the hard walls, as seen in Fig. 1.
are infinite classical paths which satisfy the conditiafi8) For those trajectories that collide with the hard walls even
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times, the route distance & =x—x’+2nL, while the dis- lll. SCATTERING PHASE DUE TO HARD WALL
tance isdﬁ:_x+ x"+2nL fc_)r trajectories th_at collide with the Consider a particle moving under the influence of a regu-
walls odd times. The action for each trajectory can be comyy, potential V(x) and a hard-wall potentiaV(x). The

puted straightforwardly Hamiltonian is

2

p

m _
AS(x,x";T)= ﬁ(x—x’+2nL)2, (9) H=5, V) +Ve(X), (13
whereV(x) is the hard-wall potential at=0,
m
A%(x,X";T)= == (x+X' +2nL)2. (10) [0, x>0,
n 2T V(x)= o X<O. (14)

Here A®°(x,x’;T) denotes the action for trajectories with The regular potential is treated in the ordinary way while the
even/odd reflection points. The fluctuations along all trajechard-wall one is viewed as the depletion of Hilbert space.
tories contribute the sam@,=m/T as in the previous ex- The complete set of the Hilbert space is now reduced,
ample. It is tempting to assign the phase correction for each "

trajectoryn, /2, wheren, is the number of reflection points. J dr|ry(r|=1, (15)
This is actually incorrect. The reversal of momentum does 0

not necessarily imply the existence of the conjugate point.

For an one-dimensional motion, a conjugate point is identi- 2 f @e“ﬂ op|=1
fied as the position where the velocity vanishes. However, 60 ) 27 P)(ep|=1.
for a free particle bouncing back and forth between two hard

walls, the velocity is constant up to a minus sign and doedt would become clear later that the phageis associated
not vanish at any point along the classical trajectory. ThusWith the scattering phase in the path integral. Slicing the time
the number of conjugate points is zetoz 0. That is to say, Interval T into infinitesimal pieces and inserting complete

(16)

there is no phase correction for each trajectory. sets of the coordinate space, the propagator is
The propagator without any phase correction is N—1
G(r,r':T)=<r|e““T|r'>=J dro [T (roeale”*ry),
m m 0 n=0
Gu(X,X';T)=\/=2—=2, | exfi==(x—x'+2nL)2 17
wherery=r andro=r" are all positive. Each matrix element
. m , 5 in the product is computed by inserting the complete set in
+expi o (x+x'+2nL)? . (1D momentum space into E€L6),
o . : : i+ [9Pn :
Both infinite sums can be turned into summations over dis- (rns1le [rn)y= Eexp{—leHn]
crete momentum again by means of the Poisson summation
formula. The prefactors cancel as in the previous example , o
and we are left with the simple result X Zﬂ ePn(fn+17%)=1%n  (18)
n——'n
1.7 where the phase=0 for x,=r,, and ¢=m when x,=
Guy(X,x";T)= = E exy] —iEt]{cogk,(x—x")] -r,. Sincex,= *r,, the two terms can be combined and
L 7=0 lead to the unconstraint integral over. After changing the
, constrained variable, to x,, it is convenient to write the
+cogka(x+x)1}, (12 phase correctior,, in the following way:
where k,=nx/L is the quantized momentum anH, Gn=7[O(Xn11) — O(X,)]. (19

=kﬁ/2m is the quantized energy. Combining two cosines
would leads to cog{x)cosk.x'), while the correct form
should be sirkx)sin(.x’). In fact, one can recover the exact
answer(with all prefactors rightif we change the sign of the
second term in Eq12). That is, only if we assign an extra
phase to trajectories withodd reflection points will the Y
modified Van Vleck formula become correct. In the follow- G(rr;T)= > e"ﬁsf DIx]exdiA(r,x";T)].

ing section, we study the path integral formalism in the pres- x'=zxr' X (20)
ence of a single hard-wall boundary and show that an extra

phase correction arises naturally due to collisions with theThe total phaseps=#[0O(r)—0O(x’)] is a boundary term
confining potential. and can be pulled out of the path integtalhe paths are

Notice that the phase is zero if the path does not pass through
x=0 in the infinitesimal time intervadlt, and 7 if the path
passes through. The integral over momentum can be carried
out easily and the propagator is
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divided into two topologically distinct classes. For all pos-
sible paths starting fromtor’, the scattering phase is zero,

while for those starting fromto —r’, the scattering phase is n
7 that causes a minus sign.

The classical trajectories among the paths can be then /2
classified in the same way. Furthermore, trajectories with end
pointsr andr’ can be identified as trajectoriés the physi- 0.2 SR 0.5
cal half plang with even reflection points and those with end 0.4 ‘3’:’:‘:%;%;%?‘3;:‘3&‘“\\ 1
pointsr and —r' are trajectories with odd reflection points. k/k, :i:i;;‘ ““‘ ) 1.5
Therefore, in the semiclassical limit, the Van Vleck formula p \‘ Kk,
is modified with an extra phase term

1
1
G(rr';T)y=— 2 \/C_pexr[iAp— igpl. (2D FIG. 2. Scattering phase for different potential heigh
V2 p =k3/2m and slopeV,;=k3/2m.

The proof for more than one turning point is straightforward L . - . .
and the scattering phase just add up. It would become cle KB ap.prOX|mat|_on. Follow_mg a similar 96!'0“'3“0” as in
in the following section that the scattering phase correction j{he previous section, we arrive at the modified EBK quanti-

crucially important in determine the ener ectrum. zation integral in Eq(;)_. . .
ucially imp I ! gy spectru We apply the modified EBK quantization rule to a finite

potential well of length_ and with heightv,=k2/2m. After
some algebra, the scattering phase is shown togbe)

The most powerful use of Van Vleck’s formula is that it =2 cos [(K/kg)>~1]. The quantized energf,=k7/2m sat-
leads to the EBK quantization rule in the semiclassical limit.isfies
One notices that, if we set=x" in the propagator and inte-
grate over all possible, it results in the quantum partition 2k,L=2nm+ ¢(k,). (25)
function Z(T)=2,exd —IE, T]. The energy levels can then

be identified as the singularities Bf ) which is the Fourier Quite surprisingly, the spectrum obtained by the semiclassi-
transformation of _the partition function. Within stationary 5 approach is identical to the exact solution. This shows
phase approximation, it can be shown that the total phasga; the quantum interference effects arose from the sharp
$pdg—ivm/2 (in the absence of sharp boundajies  confining potential can be captured by the scattering phase
quantized and leads to the EBK quantization rule rather well.
The modified EBK quantization rule can also be applied
_ E to physical systems in higher dimensions. Let us consider a
fﬁ pdg=2nm+v 2’ (22 spherical or hemispherical quantum dot. We can either apply
] ) ) ~_ the modified EBK formula directly to the true three-
where v is the number of turning points along the periodic dimensional trajectorié&or apply the formula after reducing
orbit. The usual WKB apprOXimation is the SpeCiaI case W|ththe System to one dimension. Here we adapt the second ap-
two conjugate pointg=2. The presence of the sharp bound-proach. After separation of variables, the radial effective
aries changes the scattering phase at each turning point froplamiltonian of the three-dimensional spheri¢iaémispheri-

/2 to 7w and leads to the modified EBK quantization rule. It Ca[) quantum dot becomes one-dimensional with the effec-
is interesting to see that the scattering due to sharp confiningve potential

potential modified the spectrum only through the scattering

IV. MODIFIED EBK QUANTIZATION RULE

phasegs.
Now we are ready to consider the confining potential in I(1+1)
more general form v=1{ 2mr?’ ' (26)

V(X)=0(—x)[Vo+Vy|x]], (23 o, r>a,

whereV,=k3/2m is the potential height antf;=k3/2m is  wherel is the quantized angular momentum. For the spheri-
the slope of the confining potential. The scattering due tecal quantum dot| takes on all integer values, while for the

V.(x) can be solved exactly and the eigenstates are hemispherical dot, only odd integers are allowed due to the
flat boundary.
|z,b(k)>=|k)+e*i‘/’s(k)|—k). (24) The classical trajectory of the electron is confined be-

tween the hard-wall boundary at the surface and the centrifu-
The scattering phase is apparently energy-dependent agal potential near the origin. Thus, there are one reflection
shown in Fig. 2. For the hard-wall potentidk/ko=0k/k;  point ;= and one conjugate poiris= 7/2. Applying the
=0), the scattering phase 1s, while for the smooth poten- modified EBK quantization rule, the approximate energy sat-
tial (k/kp<1k/k,;>1) the phase becomes/2 as in the isfies the algebraic equation
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N
g

J(@alrg)?—1—-sec Yalrg)= —,
(alrg) (alrg) D
whererg=I(1+1)/(2mE) is the conjugate point and is /

2 =
xl xZ

> =

2

(27)

the radius of the dot. Instead of solving the Schinger
equation directly, the energy levels can be determined easily
by the algebraic equation in E¢27). In the semiclassical > X
limit, the conjugate point is close to the origin, i.e/rg

>1. The approximate expression can be further simplified, (a) (b)

71_2

Eni= 2ma?

n+ Z+ 2 (28) statistics is replaced by the equivalent hard walkatx, in the
configuration space(a) Direct trajectory and(b) the shown re-

wherel’ = I(1+1). flected trajectory is equivalent to exchanging two particles which

Notice that this problem can be solved exactly by theresults in an extra phase.

spherical Bessel functions. The hard-wall boundary requires N

the wave function vanishes at the surface of the spherdyow choose botlx=r andx’=r’ to be positive, the propa-

j|(V2mEa) =0, which leads to quantized energy levels. In9ator can also be viewed as the wave funct®(r,r’;T)

the same limia/rc>1, the spherical Bessel function is ap- = ¥r(1.t) that satisfies the Schidinger equation with a

3 I’)Z FIG. 3. Classical trajectories of two particles whose quantum

proximated by the asymptotic expansion that leads to delta function source atx(t)=(r’,0). The propagator
Go(r,r’;T) without the hard-wall boundary exactly satisfies
2 112 the same differential equation except that the boundary con-
ﬁf,w ﬁ n+§ (29 dition atx=0 is not met. Notice that the mirrored propagator
ma

go(r,r’;T)zGo(r,—r’;T) satisfies the Schdinger equa-
The above exact result does not seem to agree witl{Z8y.  tion without the source term since the delta functiégr

at first glance. However, if the angular momentum is alsot+r’)=0 for positive coordinates. Therefore, the propagator
semiclassical I&1), the last term in Eq(28) is |'/2=1/2  that satisfies the correct boundary condition is constructed as

+1/4 up toO(1/1) corrections. It is then clear that both give

the same result. We emphasize again that the agreement is G(x,x’;T)=Go(x,x’;T)—Eo(x,x’;T). (32
only possible when the appropriate scattering phase is in- _ _ _ )
cluded. The above result is equivalent to HQO). It is obvious that

Another way to obtain the modified EBK quantization the discrete gauge symmetry in EQ1) is satisfied. This
rule for the 1¢ potential is the conventional Langer correc- method is just the familiar mirror charge trick in the classical

tion approach. Instead of including the appropriate scatterin§/€ctromagnetism. ,
phase, one can obtain the same energy spectrum by modified SiNce€ we can solve the hard-wall boundary by discrete

the potential appropriately. While both approaches give thg2uge symmetry, we might as well go the other way around.

same spectrum, it is known that the wave functions calculall IS POssible to replace the quantum statistics between par-

tion in scattering phase approximation is more accufété. ticles by the hard-wall boundaries. Let us consider the sim-
plest case—two interacting particles with either bosonic or

fermioni istics. The discr redundancy i
V. MIRROR PROJECTION ermionic statistics. The discrete gauge redundancy is

In the previous section, we treat the hard-wall boundary P(x)=e"Py(—x), (33

as depletion of the Hilbert space. An alternative way is to _ : . .
A ; wherex=x;—X, is the relative displacement between two
view it as a discreteZ, gauge symmetry of the wave func-

: particles. The phase correctionds=0 for bosons andr for
tion ) . : .
fermions. The discrete gauge symmetry is removed by im-
(X)) =—h(—X). (30) posing a hard walk,;=X, in the configuration space, and a
phase¢ accumulates upon each reflection due to the hard
The minus sign is chosen here to make the wave functiomvall.
vanishes ak=0 so that the boundary conditio(0)=0 is Classical trajectories are classified into two categories—
always satisfied. Since the propagator can be written down ake direct path and the reflected one as shown in Fig. 3. If we
the summation of eigenfunctions G(x,x’;T) extend the reflected trajectory into the unphysical regime in-
=3 n(X) ¥k (X" )exd —iE,T], where ,(X) is the eigen- side the hard wall, as shown in Fig(b3, the reflected tra-
function with eigenenergi,. The discrete gauge symmetry jectory is equivalent to an exchange between two particles.
of the wave function implies that the quantum propagator had his approach would be useful when studying few interact-

the symmetry ing quantum particles, e.g., two strongly interacting bosons
or fermions bouncing back and forth between two hard
G(x,x";T)=—=G(x,—x";T). (31) walls. In the semiclassical limit, we can safely ignore the
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guantum statistics by solving all classical trajectories inside g@hysical system on a finite ring with length and lattice
specific triangle in the two-dimensional configuration spaceconstant. The total number of sites I=L/a. The discrete
version of the usual delta function is
VI. CONCLUSIONS

In this paper, we study the scattering phase of classical E aikx—
trajectories due to sharp confining potentials. Inclusion of the Sha
energy-dependent scattering phase, the modified EBK quan-
tization rule is derived. We also relate the hard wall boundary, v . is the reciprocal lattice vector. Consider the follow-
approach to the quantum statistics and the discrete gaugﬁg summation:
symmetry. Unlike the WKB approximation that is only ap-
plicable to smooth potential profiles, the new quantization

a

Y e (A1)

G=2nw/a

rule provides us with an easy way to estimate the energy ([ dk "
levels in the presence of both smooth and sharp confinement En: f(na)= EF(k)X;]a e, (A2)
potentials.

where x,=na and F(k) is the Fourier transformation of
f(x). With the help of the identity in EqAl), the summa-

We thank Darwin Chang for fruitful discussions, espe-tion over coordinates is turned into another summation over
cially on the mirror projection and the discrete gauge symJeciprocal momenta. Taking the thermodynamical lirhit
metry. This work was supported by the National Science—, the discretes functions are related to the continuous
Council of Taiwan, R.O.C. ones byl 6y =27 d(k—G). Finally, we arrive at the useful
Poisson summation formula
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Poisson summation formula provides a convenient way to > f(na)= 1 >F (A3)
n a a

related two infinite summations together. Let us consider a
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