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Semiclassical quantization rule for the bound-state spectrum in quantum dots:
Scattering phase approximation
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We study the quantum propagator in the semiclassical limit with sharp confining potentials. Including the
energy-dependent scattering phase due to sharp confining potential, the modified Van Vleck formula is derived.
We also discuss the close relations among quantum statistics, discrete gauge symmetry, and hard-wall con-
straints. Most of all, we formulate a quantization rule that applies toboth smooth and sharp boundary poten-
tials. It provides an easy way to compute quantized energies in the semiclassical limit and is extremely useful
for many physical systems.
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I. INTRODUCTION

The most straightforward method to obtain the boun
state spectrum for a quantum system is to solve the Sc¨-
dinger equation. However, if the potential profile is smoo
compared to the wavelength of the particle, the energy sp
trum can be obtained by the semiclassical Wentzel-Kram
Brillouin ~WKB! approximation. The semiclassical approa
reduces the task of solving the differential equation into
simple integral. While the great simplification is attractive
does not work all the time. In quantum dots, the confin
potential is usually sharp and leads to strong quantum in
ferences which invalidate the semiclassical approach.
notices that the semiclassical approximation only bre
down near the sharp confining potential. This motivated u
generalize the conventional semiclassical approach by
cluding the quantum interferences exactly near the turn
points where the semiclassical approximation is not app
priate. We were rather nicely able to capture the complica
quantum interference effects by a simple energy-depen
scattering phase correction.

To elucidate this point, it is convenient to adapt the p
integral formulism. Path integral provides an alternative
proach to formulate quantum mechanics.1,2 The quantum
propagatorG(x,x8;T) that is the key quantity in quantum
mechanics is shown to equal the summation over all poss
paths with the same end points. In the semiclassical limit,
dominant contribution comes from classical trajectories a
fluctuations around them.3–5 Within the stationary phase ap
proximation including fluctuations up to quadratic order, t
quantum propagator can be approximated by the Van Vl
formula.6 In general, there would be many classical trajec
ries that satisfy the same boundary conditions, and the p
interferences between them are important, as pointed ou
Gutzwiller.7–9 By Morse’s theorem, the second variatio
0163-1829/2003/68~20!/205104~6!/$20.00 68 2051
-
o

c-
s-

a

r-
ne
s

to
n-
g
-
d
nt

h
-

le
e
d

k
-
se
by

considered as quadratic fluctuations around a given trajec
from x8 to x in time T, has as many negative eigenvalues
there are conjugate~turning! points along the trajectory
These conjugate points give rise to a phase correctionnp/2
for the trajectory,7,8 wheren is the total number of conjugat
points along the trajectory, or sometimes referred to as
Maslov or Morse index.10

Not only elucidating the crossover between classical a
quantum mechanics, the semiclassical limit also provide
convenient way to calculate the bound state energy. Ins
of solving the Schro¨dinger equation directly, the bound sta
spectrum can also be computed by the WK
approximation.11 In order to account for the interference e
fects among classical trajectories correctly, we rederive V
Vleck’s formula with an extra scattering phase correction d
to sharp confining potentials.

Following the standard stationary phase approximat
and making a Legendre transformation of the time varia
in the quantum propagator to the energy variable, we are
to generalize the Einstein-Brillouin-Keller~EBK! quantiza-
tion rule12–14 with an additional phase correction term

R A2m@E2V~x!#dx52np1(
s

fs~E!, ~1!

wherefs(E) is the energy-dependent scattering phase du
collisions with the confining potential. The usual WKB a
proximation is the special case where the scattering phas
each turning point is assume to take on the ener
independent valuefs(E)5p/2. On the other hand, if the
confining potential becomes infinitely sharp~hard-wall
limit !, the scattering phase rises top. The modified EBK
quantization rule in Eq.~1! relaxes the requirement of th
potential smoothness in the WKB approximation. This is
great advantage because many physical systems inclu
©2003 The American Physical Society04-1
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quantum dots, quantum wells, Hall bars, electronic wa
guides, etc., have both hard-wall-like potentials~from
sample edges! as well as smooth potentials~by applying ex-
ternal fields! at the same time.

The paper is organized in the following way. In Sec.
we introduce the Van Vleck formula and apply it to simp
systems. We explicitly show that the Van Vleck approxim
tion is incorrect in the presence of hard walls and the s
tering phase correction is crucial. In Sec. III, we compute
energy dependence of the scattering phase at each tu
point and derive the modified Van Vleck formula. In Sec. I
we derive the key result of this paper—the modified EB
quantization rule. We apply it to physical systems with bo
smooth and hard confinement potentials and show that
modified term is necessary to obtain the correct energy
els. Finally, in Sec. V, we relate the connection between
quantum statistics, discrete gauge symmetry to the scatte
phase approach. Then a brief conclusion follows.

II. QUANTUM PROPAGATOR AND CLASSICAL
TRAJECTORIES

In the path integral formalism,1 the quantum propagato
equals the sum over all possible paths with the same
points

G~x,x8;T![^xue2 iHTux8&5E
x8

x

D@x#expS i E
0

T

L~x,ẋ,t !dtD ,

~2!

where the measureD@x# denotes all possible paths with en
pointsx(0)5x8 andx(T)5x. In the semiclassical limit, the
phase inside the path integral oscillates rapidly except in
neighborhood of the classical trajectories. Within the stati
ary phase approximation including fluctuations up to q
dratic order, the propagator is approximated by the V
Vleck formula

G~x,x8;T!.
1

A2p i
(

p
ACp expF iAp2 inp

p

2 G , ~3!

where Ap(x,x8;T) is the action of the classical trajector
starting fromx(0)5x8 and ending atx(T)5x, and the sub-
script p denotes all classical paths with the desired e
points. The strength of the quadratic fluctuations8 around the
classical trajectory is

Cp5U2
]2A

]x]x8
U . ~4!

Finally, the total number of conjugate~or turning! points
along the classical trajectory is denoted byn. Notice that, for
each conjugate point, there is ap/2 phase correction assoc
ated with it. Van Vleck’s formula provides a completely cla
sical approximation of the quantum propagator, in the se
that all relevant elements can be computed from the class
trajectories.

A straightforward example of the Van Vleck formula is
free particle moving on the a finite ring with lengthL. There
are infinite classical paths which satisfy the conditionsx(0)
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5x8 andx(T)5x. The total~route! distance of each classica
trajectory isdn5x2x81nL, wheren is an integer. The ac-
tion for each trajectory is

An~x,x8;T!5
m

2T
~x2x81nL!2. ~5!

Taking the derivative of the action, the strength of fluctu
tions around each trajectoryCn5m/T is independent of the
end points and the choice of trajectories. Since the part
moves at constant velocity, it is obvious that there is
conjugate point along any classical trajectory and thusnn
50. In addition, because the fluctuations of the class
trajectory of a free particle are exactly quadratic, we exp
the Van Vleck formula to be exact for this system,

G~x,x8;T!5A m

2p iT(
n

expF i
m

2T
~x2x81nL!2G . ~6!

This infinite sum can be rewritten in terms of its Fouri
function with the use of Poisson summation formula in t
Appendix.15 Notice that

f ~y!5eia(y1b)2↔F~p!5Aip

a
e2 ik2/4a1 ikb. ~7!

Choosinga5L, the summation over coordinatey5na can
be turned into the summation over momentumkn52np/L.
The propagator is then

G~x,x8;T!5
1

L (
n

exp@ ikn~x2x8!2 iEnT#, ~8!

where kn52np/L is the quantized momentum andEn

5kn
2/2m is the quantized energy. It is obvious that the prop

gatorG(x,x8;T) calculated by the Van Vleck formula is ex
act in this case.

Let us now apply the Van Vleck formula to another phy
cal system—a free particle bouncing back and forth betw
two hard walls. We calculate the propagator explicitly a
show that the Van Vleck formula leads to incorrect result

The trajectories in this problem can be classified by
number of collisions with the hard walls, as seen in Fig.
For those trajectories that collide with the hard walls ev

FIG. 1. Classical trajectories in the presence of two hard wa
On the left is a trajectory with even reflection pointsr 52, while the
right with odd reflection pointsr 53.
4-2
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times, the route distance isdn
e5x2x812nL, while the dis-

tance isdn
o5x1x812nL for trajectories that collide with the

walls odd times. The action for each trajectory can be co
puted straightforwardly

An
e~x,x8;T!5

m

2T
~x2x812nL!2, ~9!

An
o~x,x8;T!5

m

2T
~x1x812nL!2. ~10!

Here Ae/o(x,x8;T) denotes the action for trajectories wi
even/odd reflection points. The fluctuations along all traj
tories contribute the sameCn5m/T as in the previous ex
ample. It is tempting to assign the phase correction for e
trajectorynrp/2, wherenr is the number of reflection points
This is actually incorrect. The reversal of momentum do
not necessarily imply the existence of the conjugate po
For an one-dimensional motion, a conjugate point is ide
fied as the position where the velocity vanishes. Howe
for a free particle bouncing back and forth between two h
walls, the velocity is constant up to a minus sign and d
not vanish at any point along the classical trajectory. Th
the number of conjugate points is zero,n50. That is to say,
there is no phase correction for each trajectory.

The propagator without any phase correction is

GVV~x,x8;T!5A m

2p iT(
n

H expF i
m

2T
~x2x812nL!2G

1expF i
m

2T
~x1x812nL!2G J . ~11!

Both infinite sums can be turned into summations over d
crete momentum again by means of the Poisson summa
formula. The prefactors cancel as in the previous exam
and we are left with the simple result

GVV~x,x8;T!5
1

L (
n50

`

exp@2 iEnt#$cos@kn~x2x8!#

1cos@kn~x1x8!#%, ~12!

where kn5np/L is the quantized momentum andEn

5kn
2/2m is the quantized energy. Combining two cosin

would leads to cos(knx)cos(knx8), while the correct form
should be sin(knx)sin(knx8). In fact, one can recover the exa
answer~with all prefactors right! if we change the sign of the
second term in Eq.~12!. That is, only if we assign an extr
phasep to trajectories withodd reflection points will the
modified Van Vleck formula become correct. In the follow
ing section, we study the path integral formalism in the pr
ence of a single hard-wall boundary and show that an e
phase correction arises naturally due to collisions with
confining potential.
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III. SCATTERING PHASE DUE TO HARD WALL

Consider a particle moving under the influence of a re
lar potential V(x) and a hard-wall potentialVc(x). The
Hamiltonian is

H5
p2

2m
1V~x!1Vc~x!, ~13!

whereVc(x) is the hard-wall potential atx50,

Vc~x!5H 0, x.0,

`, x,0.
~14!

The regular potential is treated in the ordinary way while t
hard-wall one is viewed as the depletion of Hilbert spa
The complete set of the Hilbert space is now reduced,

E
0

`

drur &^r u51, ~15!

(
f50,p

E dp

2p
eifup&^eifpu51. ~16!

It would become clear later that the phasef is associated
with the scattering phase in the path integral. Slicing the ti
interval T into infinitesimal pieces and inserting comple
sets of the coordinate space, the propagator is

G~r ,r 8;T!5^r ue2 iHTur 8&5E
0

`

drn )
n50

N21

^r n11ue2 i eHur n&,

~17!

wherer N5r andr 05r 8 are all positive. Each matrix elemen
in the product is computed by inserting the complete se
momentum space into Eq.~16!,

^r n11ue2 i eHur n&5E dpn

2p
exp@2 i eHn#

3 (
xn56r n

eipn(r n112xn)2 ifn, ~18!

where the phasef50 for xn5r n , and f5p when xn5
2r n . Sincexn56r n , the two terms can be combined an
lead to the unconstraint integral overxn . After changing the
constrained variabler n to xn , it is convenient to write the
phase correctionfn in the following way:

fn5p@Q~xn11!2Q~xn!#. ~19!

Notice that the phase is zero if the path does not pass thro
x50 in the infinitesimal time intervaldtn andp if the path
passes through. The integral over momentum can be ca
out easily and the propagator is

G~r ,r 8;T!5 (
x856r 8

eifsE
x8

r

D@x#exp@ iA~r ,x8;T!#.

~20!

The total phasefs5p@Q(r )2Q(x8)# is a boundary term
and can be pulled out of the path integral.2 The paths are
4-3
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divided into two topologically distinct classes. For all po
sible paths starting fromr to r 8, the scattering phase is zer
while for those starting fromr to 2r 8, the scattering phase i
p that causes a minus sign.

The classical trajectories among the paths can be
classified in the same way. Furthermore, trajectories with
pointsr andr 8 can be identified as trajectories~in the physi-
cal half plane! with even reflection points and those with en
points r and2r 8 are trajectories with odd reflection point
Therefore, in the semiclassical limit, the Van Vleck formu
is modified with an extra phase term

G~r ,r 8;T!.
1

A2p i
(

p
ACp exp@ iAp2 ifp#. ~21!

The proof for more than one turning point is straightforwa
and the scattering phase just add up. It would become c
in the following section that the scattering phase correctio
crucially important in determine the energy spectrum.

IV. MODIFIED EBK QUANTIZATION RULE

The most powerful use of Van Vleck’s formula is that
leads to the EBK quantization rule in the semiclassical lim
One notices that, if we setx5x8 in the propagator and inte
grate over all possiblex, it results in the quantum partition
function Z(T)5(nexp@2iEnT#. The energy levels can the
be identified as the singularities ofZ(v) which is the Fourier
transformation of the partition function. Within stationa
phase approximation, it can be shown that the total ph
rpdq2 inp/2 ~in the absence of sharp boundaries! is
quantized2 and leads to the EBK quantization rule

R pdq52np1n
p

2
, ~22!

wheren is the number of turning points along the period
orbit. The usual WKB approximation is the special case w
two conjugate pointsn52. The presence of the sharp boun
aries changes the scattering phase at each turning point
p/2 to p and leads to the modified EBK quantization rule.
is interesting to see that the scattering due to sharp confi
potential modified the spectrum only through the scatter
phasefs .

Now we are ready to consider the confining potential
more general form

Vc~x!5Q~2x!@V01V1uxu#, ~23!

whereV0[k0
2/2m is the potential height andV15k1

3/2m is
the slope of the confining potential. The scattering due
Vc(x) can be solved exactly and the eigenstates are

uc~k!&5uk&1e2 ifs(k)u2k&. ~24!

The scattering phase is apparently energy-dependen
shown in Fig. 2. For the hard-wall potential (k/k050,k/k1
50), the scattering phase isp, while for the smooth poten
tial (k/k0!1,k/k1@1) the phase becomesp/2 as in the
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WKB approximation. Following a similar calculation as i
the previous section, we arrive at the modified EBK quan
zation integral in Eq.~1!.

We apply the modified EBK quantization rule to a fini
potential well of lengthL and with heightV05k0

2/2m. After
some algebra, the scattering phase is shown to bef(k)
52 cos21@(k/k0)

221#. The quantized energyEn5kn
2/2m sat-

isfies

2knL52np1f~kn!. ~25!

Quite surprisingly, the spectrum obtained by the semicla
cal approach is identical to the exact solution. This sho
that the quantum interference effects arose from the sh
confining potential can be captured by the scattering ph
rather well.

The modified EBK quantization rule can also be appli
to physical systems in higher dimensions. Let us conside
spherical or hemispherical quantum dot. We can either ap
the modified EBK formula directly to the true three
dimensional trajectories18 or apply the formula after reducing
the system to one dimension. Here we adapt the second
proach. After separation of variables, the radial effect
Hamiltonian of the three-dimensional spherical~hemispheri-
cal! quantum dot becomes one-dimensional with the eff
tive potential

V5H l ~ l 11!

2mr2
, r ,a,

`, r .a,

~26!

wherel is the quantized angular momentum. For the sph
cal quantum dot,l takes on all integer values, while for th
hemispherical dot, only odd integers are allowed due to
flat boundary.

The classical trajectory of the electron is confined b
tween the hard-wall boundary at the surface and the cent
gal potential near the origin. Thus, there are one reflec
point fs5p and one conjugate pointfs5p/2. Applying the
modified EBK quantization rule, the approximate energy s
isfies the algebraic equation

FIG. 2. Scattering phase for different potential heightV0

5k0
2/2m and slopeV15k1

3/2m.
4-4



s
l

d

he
ire
er
In
p-

ls

e
n
i

n
c-
rin
ifi
th
la

ar
t
-

tio

n

y
ha

-

s
on-
or

tor
d as

al

ete
nd.
par-
im-
or

o

im-
a
ard

s—
we
in-

les.
ct-
ns
rd

he

um

ich
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A~a/r E!2212sec21~a/r E!5

2pS n1
3

4D
Al ~ l 11!

, ~27!

wherer E5Al ( l 11)/(2mE) is the conjugate point anda is
the radius of the dot. Instead of solving the Schro¨dinger
equation directly, the energy levels can be determined ea
by the algebraic equation in Eq.~27!. In the semiclassica
limit, the conjugate point is close to the origin, i.e.,a/r E
@1. The approximate expression can be further simplifie

En,l'
p2

2ma2 S n1
3

4
1

l 8

2 D 2

, ~28!

wherel 85Al ( l 11).
Notice that this problem can be solved exactly by t

spherical Bessel functions. The hard-wall boundary requ
the wave function vanishes at the surface of the sph
j l(A2mEa)50, which leads to quantized energy levels.
the same limita/r E@1, the spherical Bessel function is a
proximated by the asymptotic expansion that leads to

En,l
ex '

p2

2ma2 Fn1
l

2G2

. ~29!

The above exact result does not seem to agree with Eq.~28!
at first glance. However, if the angular momentum is a
semiclassical (l @1), the last term in Eq.~28! is l 8/2. l /2
11/4 up toO(1/l ) corrections. It is then clear that both giv
the same result. We emphasize again that the agreeme
only possible when the appropriate scattering phase is
cluded.

Another way to obtain the modified EBK quantizatio
rule for the 1/r potential is the conventional Langer corre
tion approach. Instead of including the appropriate scatte
phase, one can obtain the same energy spectrum by mod
the potential appropriately. While both approaches give
same spectrum, it is known that the wave functions calcu
tion in scattering phase approximation is more accurate.16,17

V. MIRROR PROJECTION

In the previous section, we treat the hard-wall bound
as depletion of the Hilbert space. An alternative way is
view it as a discreteZ2 gauge symmetry of the wave func
tion

c~x!52c~2x!. ~30!

The minus sign is chosen here to make the wave func
vanishes atx50 so that the boundary conditionc(0)50 is
always satisfied. Since the propagator can be written dow
the summation of eigenfunctions G(x,x8;T)
5(ncn(x)cn* (x8)exp@2iEnT#, where cn(x) is the eigen-
function with eigenenergyEn . The discrete gauge symmetr
of the wave function implies that the quantum propagator
the symmetry

G~x,x8;T!52G~x,2x8;T!. ~31!
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Now choose bothx5r andx85r 8 to be positive, the propa
gator can also be viewed as the wave functionG(r ,r 8;T)
5c r 8(r ,t) that satisfies the Schro¨dinger equation with a
delta function source at (x,t)5(r 8,0). The propagator
G0(r ,r 8;T) without the hard-wall boundary exactly satisfie
the same differential equation except that the boundary c
dition atx50 is not met. Notice that the mirrored propagat
Ḡ0(r ,r 8;T)5G0(r ,2r 8;T) satisfies the Schro¨dinger equa-
tion without the source term since the delta functiond(r
1r 8)50 for positive coordinates. Therefore, the propaga
that satisfies the correct boundary condition is constructe

G~x,x8;T!5G0~x,x8;T!2Ḡ0~x,x8;T!. ~32!

The above result is equivalent to Eq.~20!. It is obvious that
the discrete gauge symmetry in Eq.~31! is satisfied. This
method is just the familiar mirror charge trick in the classic
electromagnetism.

Since we can solve the hard-wall boundary by discr
gauge symmetry, we might as well go the other way arou
It is possible to replace the quantum statistics between
ticles by the hard-wall boundaries. Let us consider the s
plest case—two interacting particles with either bosonic
fermionic statistics. The discrete gauge redundancy is

c~x!5eifc~2x!, ~33!

where x[x12x2 is the relative displacement between tw
particles. The phase correction isf50 for bosons andp for
fermions. The discrete gauge symmetry is removed by
posing a hard wallx15x2 in the configuration space, and
phasef accumulates upon each reflection due to the h
wall.

Classical trajectories are classified into two categorie
the direct path and the reflected one as shown in Fig. 3. If
extend the reflected trajectory into the unphysical regime
side the hard wall, as shown in Fig. 3~b!, the reflected tra-
jectory is equivalent to an exchange between two partic
This approach would be useful when studying few intera
ing quantum particles, e.g., two strongly interacting boso
or fermions bouncing back and forth between two ha
walls. In the semiclassical limit, we can safely ignore t

FIG. 3. Classical trajectories of two particles whose quant
statistics is replaced by the equivalent hard wall atx15x2 in the
configuration space.~a! Direct trajectory and~b! the shown re-
flected trajectory is equivalent to exchanging two particles wh
results in an extra phase.
4-5
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quantum statistics by solving all classical trajectories insid
specific triangle in the two-dimensional configuration spa

VI. CONCLUSIONS

In this paper, we study the scattering phase of class
trajectories due to sharp confining potentials. Inclusion of
energy-dependent scattering phase, the modified EBK q
tization rule is derived. We also relate the hard wall bound
approach to the quantum statistics and the discrete ga
symmetry. Unlike the WKB approximation that is only a
plicable to smooth potential profiles, the new quantizat
rule provides us with an easy way to estimate the ene
levels in the presence of both smooth and sharp confinem
potentials.
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Poisson summation formula provides a convenient wa
related two infinite summations together. Let us conside
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physical system on a finite ring with lengthL and lattice
constanta. The total number of sites isN5L/a. The discrete
version of the usual delta function is

(
x5na

eikx5S L

aD (
G52np/a

dk,G , ~A1!

whereG is the reciprocal lattice vector. Consider the follow
ing summation:

(
n

f ~na!5E dk

2p
F~k! (

x5na
eikx, ~A2!

where xn5na and F(k) is the Fourier transformation o
f (x). With the help of the identity in Eq.~A1!, the summa-
tion over coordinates is turned into another summation o
reciprocal momenta. Taking the thermodynamical limitL
→`, the discreted functions are related to the continuou
ones byLdk,G52pd(k2G). Finally, we arrive at the usefu
Poisson summation formula

(
n

f ~na!5
1

a (
n

FS 2np

a D . ~A3!
d
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