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Lattice gas model of coherent strained epitaxy
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The harmonic Frenkel-Kontorova model is used to illustrate with an exactly solvable example a general
technique of mapping a coherently strained epitaxial system with continuous atomic displacements onto a
lattice gas mode(LGM) with only discrete variables. The misfit strain of the original model is transformed
into cluster interatomic interactions of the LGM. In the case of rectangular geometry the clusters are contigu-
ous atomic chains of all lengths, but the interaction strength for long chains is exponentially small. This makes
possible the application of efficient Monte Carlo techniques for discrete variables both in kinetic and equilib-
rium studies. The formalism developed can be applied to one- and two-dimensional systems but as an illus-
trative example, we consider only the problem of self-assembly of one-dimensional size calibrated clusters on
the steps of vicinal surfaces. In this case the model can be solved exactly. Besides the size calibration at zero
temperature, the solution exhibits a new phenomenon of transient self-assembly. The latter consists in the
appearance at intermediate temperatures of self-assembled clusters with their mean size growing at lowering
temperature. The phenomenon is caused by the forces due to the entropy of atomic displacements.
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[. INTRODUCTION But in order to simplify explanation of basic ideas, in the
present paper we restrict ourselves to the simplest case of 1D
The phenomena of self-assembly and self-organization ofystems.
coherent(i.e., dislocation-free size calibrated nano- and  Besides their simplicity and convenience for theoretical
atomic-scale structures observed during the heteroepitaxigfudies, 1D heteroepitaxial systems are also of great practical
growth in some systenlivg are Considered to be promising value. One of the important goals of the heteroepitaxial stud-
tools for fabrication of microelectronic devicgs. ies is the development of techniques of growing 1D quantum
A major factor influencing the phenomenon of self- Wires which can be used, e.g., for experimental investigation
assembly is the lattice size misfit between the substrate ar®f the Luttinger model of interacting 1D electrohgurther-
the growing overlayer which is usually encountered in hetmore, the quantum wires may find application in microelec-
eroepitaxial systerfsThe misfit strain is believed to be the tronics circuitry and in magnetic memory devicJhe lat-
driving force behind the size calibratidi.So its adequate ter applications would require the 1D structures of finite and
description should lie at the basis of any theory of strainedual length. This requirement can be satisfied by self-
epitaxy. Because strained systems exhibit complicated kineSsembled size calibrated structures similar to quantum dots
ics and morphologies, analytical approach is difficult in mostof the 2D epitaxy’
cases, so a major technique in theoretical studies of strained A Phenomenological theory explaining the mechanism of
epitaxy is the kinetic Monte Carlo simulation. The applica-formation of quantum dots was proposed in Ref. 5. The
tion of this technique, however, is severely hampered by théheory is quite general and can be applied to objects in any
necessity to simulate the continuous atomic displacemenfdumber of dimensions. So to illustrate the techniques devel-
which is much more difficult a task than simulation of dis- OPed in the present paper we will study the conditions of
crete variable§ . Therefore, atomistic models in such simula- formation of the 1D size calibrated monatomic chains in two
tions are currently restricted to rather small systems consisheteroepitaxial systems in Sec. Ill E. Besides, in Sec. IV C a
ing of only a few thousand atorhawhile experimentally New phenomenon of transient self-assembly at finite tem-
observed three_dimensionéBD) quantum dots sometimes perature will be discussed and the exact cluster size distribu-
consist of several tens of thousand atoms &ach. tions for the model with parameters corresponding to the
The present study is based on the observation that as lorfgf/Co system will be calculated. In conclusion we will
as we are interested Only mherentstructureS, there is a br|eﬂy discuss the pOSS|b|I|ty of eXperimental verification of
possibility to map the system onto a purely lattice model.the 1D self-assembly.
Irrespective of how strongly a coherent structure is de-
formed, in the absence of dislocations there always exists a Il. THE MODEL
lattice site of a regular lattice to which each atom can be
ascribed. So our first goal is to develop a formalism which Let us consider a 1D “surface” with a coherent atomic
would allow to map a coherent heteroepitaxial system withstructure deposited on it. Considering the atoms as classical
continuous variables onto a lattice gas model with only disObjects we can write the energy of the system as a function
crete variables. This will be done in Secs. II-IV. The tech-of atomic coordinates
niques proposed are rather general and in principle can be
applied to any coherent system in any number of dimensions. Eioi=U({R;,u;}), (D)
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whereR; are the coordinates of the lattice sites which areexpressions of the quantities which depend only on the total
filled with atoms andy; is the displacement of the atom from number of atoms—Iike the consta@tin Eq. (3)—because
its ideal position aR; . The lattice is considered to be peri- both in kinetié and equilibrium problems only relative
odic, so in 1D case weights of configurations are important, so the factors which

remain constant under configuration changes cancel out.
Ri=ali, 2

wherea is the lattice constant aridis an integer. A. Pair potential interatomic interaction

At zero temperature, the state of the system can be ex- The cluster expansion formalisfhis a universal tech-
haustively characterized by its atomic configuration which iSnique and can be applied to any energy functional of the type
described by the set of the occupation numl{efy 0,1} of  of Eq. (1). But in order to illustrate the essence of our ap-
the lattice siteR;}, where the superscripA differentiate  proach in the most elementary way we assume simple pair
atoms of different kindgfor example, those of the substrate potential interaction between the atoms and write the energy
and of the adlayer This is because the atomic displacementsfunctional as
can be found by minimization df ({R; ,u;}) with respect to
{u;}. Thus, the total energfl) can be considered as a func- 1
tion of the variablegn/=0,1} only. In practical calculations U :ﬁ%i Vs(Ri+u)+ 3 m%:ij Vp(ui+Ri—u—=Ry),
this function can be expanded into a series over the complete (4)
set of independent polynomials of variabl@ﬁ“zo,l}, as
explained in Ref. 10. The lattice gas model thus obtainedvhereVs is the potential binding of the deposited atom to the
may be used to study the ground-state structures of the origsubstrateV, is the pair potential of interaction between the
nal model(1) with the use of techniques developed for suchdeposited atoms, and the summations are carried only over
models(see Ref. 10 for details the sites filled with adatoms. The pair potential interaction

At finite temperature the above technique does not applpetween the adatoms and the atoms belonging to the sub-
because all variables become fluctuating quantities and onltrate reduces to the one-body potentiglr) when summed
their average values can be calculated and/or measured. Aver the substrate atoms whose positions are fixed according
low temperatures, however, the atomic dynamics also admit® our assumption of passive substrate. _
description in terms of variables”} only because in this The main difficulty in going from the energy functional
case the deviation variables can be integrated out in théd to the effective free energl . consists in the necessity
course of statistical averaging as follows. The dominant prot0 calculate the multiple integral in Eq3) which in the
cesses of atomic kinetics at surfaces are activated hops ovérermodynamic limit is of infinite dimension. To overcome
the energy barriers separating lattice sife®ecause the this difficulty we first neglect pair interatomic interactivf
probability of the hops is subject to the Arrhenius law, thebetween the atoms which are not nearest neighdi. In
hop frequency at low temperatures can be arbitrarily smalthis case the adatoms which are separated by at least one
or, equivalently, the residence time can be arbitrarily large€Mpty site do not interact, so the energy functiodaltakes
The dynamics of the variablds;}, on the other hand, do not the form of the sum over contiguous chains of atoms
have any energy barriers. So at sufficiently low temperature
these variables are capable of reaching their thermal equilib-
rium distribution during the time intervals between the U :ChEains ;1 Vsl Ri+ui)+i§1 Vp(@tuis g —uj)
atomic hops, i.e., with the atomic configuration remaining

I -1

unchanged. Averaging ovet will leave us with an effective _ 2
nonequilibrium free energy functioR; of variables{n;'} =chainsU| ’ ®)
only:

where we used Ed2) to simplify the argument o¥/,. The
first summation on the right-hand sidehs) is over the
atomic chains of various lengthhd =1-N. Here and below
the summation is supposed to amount to zero if its upper
where integration is carried over the atomic coordinates ofimit is smaller than the lower one, as is the case in the
filled sites andC denotes a constant of dimensidangti] N~ second term of Eq(5) for | =1.
(N is the number of atomgo make the integral dimension-  Correspondingly, the integral in E¢3) transforms into
less. This purely lattice model can be further used in bottfhe product of integrals as
equilibrium and kinetic studies. |

To illustrate this general approach with an explicitly solv-
able example we consider a simple 1D model by assuming &P~ Feit/kgT)=C 11 ( X dui) exd —U, /kgT].

exp(—Fer/kgT)=C | [ du exp(—U/kgT), (3)
nf=1)

hai =
that the deposited atoms are of the same kind and that the erame ' (6)

substrate is rigid and does not participate in the dynamics.

We will work in the formalism of the canonical ensemble, Thus, the problem is reduced to the calculation of the mul-
i.e., by considering the number of atoNgo be constant in tiple integral over the displacement variables belonging to
all processes. Therefore, we will not be interested in explicibne atomic chain. This question is discussed below in detail.
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B. Harmonic approximation and misfit 100 b ' i ]

The multiple integration in Eq(6) still remains hardly
feasible in the case of geneNal(r) andV,(r). To make the

task tractable we further simplify the integrand with the use A e ]
of the harmonic approximation which is a standard tool in E L ’ / _
dealing with atomic displacements.Thus, expanding the = P
potentials up to the second order in the displacement vari- S L i
ables we get VN
-500 b i
Ks ,
Vs(Ri+uj)=Vg+ S up, [ , , ]
0.5 “py 15

Vp(@a+Uuip1—Up)=Vyn+ V' (@) (U 1—Up)
FIG. 1. Morse potential fitted to the interatomic interaction of
Ag atoms taken from Ref. 1@&olid line) together with the harmonic
fit according to Eq.7) (dashed parabolaThe length unit is the
lattice constant of P111) substrate surfaceap,=2.77 A. Vyy is
=Vt kp[(u,+1— uj— f)2—£2], @) ]Eihnee(lj\lil\rl] itr;teertztxotmic interaction arfdis the misfit parameter as de-

+Ep(ui+1_ui)21

whereV4=V(R;=0) (and is independent d® because of Ill. SELF-ASSEMBLY AND SIZE CALIBRATION AT ZERO
the periodicity andVyy=V(a) are the zeroth order terms of TEMPERATURE

the expansionks=V¢(0) andk,=V(a) are the second de-
rivatives of potentialsVs andV,, respectively. In the har-
monic approximation they play the role of the stiffness con-
stants of the springs binding the atoms to the substiafe (
and to each otherk(). The linear term is absent in the case
of Vg because of the left/right symmetry of the substrate
potentlal In the last line of Eq.7) we represented the har-
monic interatomic interaction in the form familiar from the
Frenkel-Kontorova model. The latter is frequently being use
in qualitative®'® and semiquantitative stud®és’ of
strained epitaxy. The misfit parameter in our case is min E;q= mln(

As we pointed out in the Introduction, one of the most
interesting topics in strained epitaxy is the size calibration of
self-assembled clusters. In this section we consider the con-
ditions of the size calibration in our 1D model. To begin
with, let us assume that olN-atoms system has separated
€into N/I clusters of lengthl. In order to be energetically
favorable such a configuration should minimize the total en-
dargy of the system:

N
E

I =Nmin(Eg /1), (8)

= —Vl’)(a)/kp. whereE;, is the energy of th&-atom clusteror chair. In the
last equality we made use of the conditibir=const. Thus,

In our opinion, this definition is quite reasonable from athe system will separate intN/I ,;, clusters provided, /I
physical point of view because it defines the misfit throughhas a minimum at some finite value £ ,;,. The energy

the ratio of the restoring force exerted by an atom on itsof a chain of lengtH in the harmonic approximation can be
neighbor (—V,;) to the stiffness of the spring which binds found as the minimum of the functional
these atoms. Thus, the misfit would correspond to the elon-

gation of the spring under the influence of the force applied. Ke ! Kp -1
We note that the ranges of validity of the power-series U|—§ Z to Z [(Uj 1= uj—F) 2= 2]+ (1= 1)Vyy
expansions in Eq.7) are different foVg andV, . In the case B B
of Vg the expansion is in powers of , while in the case of Ke
V,, it is in powers ofu;,;—U;. So in the second case the =5 Z Jz ?p 2 Ujy1—

deviations themselves can be large but it is the difference of

deviations of neighboring atoms which should be small. This +k f(up—u)+(1-1)V )
observation will be important in assessing the range of va- P NN
lidity of the solutions of the equations below. which is obtained as the sum of the expansions,(Bgfrom

To check the quality of our approximations of the poten-every atom and for every pair of atoms entering the chain.
tial V, we applied them to the Ag-Ag Morse potential pro- The term proportional toVg, is omitted because when
posed in Ref. 16 for the Ag atoms deposited on Pt substrataummed over all chains it is proportional kb and thus is
From Fig. 1 one can see that the quality of the fit is satisfaceonfiguration independent. The last line in Ef) was ob-
tory for |u; ;1 —u;|<f. In the case of the Ag/Pt systefris  tained by expanding the Frenkel-Kontorova term in the
positive. The misfit is also positive in the majority of the square brackets. We see that if the chain fills all the surface
systems exhibiting self-assemBR/Therefore, for simplicity ~and periodic boundary conditiom,=u, is being used then
we will assumef >0 throughout the present paper. the chain energy, Eq9), does not depend oi This is be-
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cause the linear terms of the expansion drop as the system a Ja
becomes left-right symmetric, as in the cas&/gf This does e lP=\/1+——*+—

D . 4= 2
not mean, however, that the misfit becomes irrelevant. The

strain energy enters implicitly throug¥yy, as can be seen the equations can be written in more compact form
from Fig. 1. The linear irf terms, however, are responsible

for the strain relaxation,as we will see below. e ?C,—e M 9C,=f/\a,
A. The atomic relaxation eMtéc,—e M4C,= f/\a.
To find the chain energf, we have to minimize&J, with  From these equations the coefficiefts and C, are easily
respect to the atomic displacements found by standard means and being substituted into the gen-

eral solution(13) lead to the following explicit expression

U /ouj=0, j=1,...]| (10 for the atomic displacements
or explicitly
f sinN(1-2j+1)/2] 14
(1+a@)u;—u,=—f, U= Ja COslin(I—1)/2+¢] (14
The displacements are antisymmetric with respect to the
middle of the chain
_Uj_1+(2+a)Uj_Uj+1:0, (11)
Uj—j+1= — U (15
as it should be from symmetry considerations. In particular,
(1+Q)U|_U|_1=f, U|:_U1.

where we divided both sides of EQLO) by k;, to show that  The displacements; monotonously grow towards the chain

the equationghence, their solutionsdepend on the spring ends and the larger they are the bigger is the chain length. In
constantsks and k, only through their dimensionless ratio the [imit of infinite chain the displacements are

a=Kks/k,. Because of the cancellation of linear terms in Eq.

(9) mentioned above, the equations for2,...|—1 (de- f _
noted above by dotsare all homogeneous. We note that they uji=-— —e Mimh=e (16)
are a discrete version of the linear differential equation of the a

second order (where by the superscript we denoted the chain length

which means that atomic relaxation exponentially dies out in
the chain interior and only-1/A external atoms exhibit ap-
So their solution should be sought in the form of a linearpreciable deviations from their pseudomorphic positions.
combination of two independent solutions of the form expThe largest deviations exhibit the end atoms

(£\]). It is straightforward to check that in the discrete case

f 1 11
o p u‘f=—u,°°=——e‘¢=—f( _+Z_§)' (17
et =1+ 5=\ a| 1+ 7], (12) Va “

where the signs were chosen so thatvas positive. The B. Validity checks
coefficientsC, andC, in the general solution

—d?u/dx®+ au=0.

The above expressions can be used to establish the range
of validity of the solutions obtained in terms of restrictions

—C. N —Aj . ;
uj=C.e"+Cye 13 on the microscopic parameters.
are found by substituting it into the first and the léstho- The power-series expansion{in;} in the first line of Eq.
mogeneousequations of the setl1): (7) should be consistent with the largest atomic displacement
Eq. (17). To verify this we note that the periodic substrate
eMl+a—eMCi+te Ml+a—e M)Cyh=—T, potential in the Frenkel-Kontorova model is conventionally

modeled by the cosine function
eM1l+a—e MCi+te M(1+a—eM)C,=f.

V¢(u)eccog2mu/a).
With two substitutiongone for the upper and for the lower . ) .
signsg IF is straightforward to check that the harmonic approxima-
tion of Eq.(7) reproduces the-dependent pat/s(u) — Vg
1+a—e =+ Jae*?, of the exact potential with the accuracy better then 25%ifor
as large asi=a/4 (half way to the cell boundajyThis gives
where a restriction on the parameters
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f ( \/ﬁ 1) 1 L
R R i) P @)
a a 4 2] 4 0 |
From this inequality it follows that even for the misfit as -Sy
large as 5%, the value af can be as small as 1/30. 50 ]

From Eq.(16) it is easily seen that the relative displace- /
0. f t + t + t t

ment of neighbor atoms is also the biggest near the chain
ends. So we may check the validity of the second-order ex-

pansion ofV, in Eq. (7) in the most unfavorable case of the 031 ¥

infinite chain using the relative displacement of the first two Wi ot

atoms near its end. From the first equation of Ed) we

find 15t B i
Up—U,=—(f+auy). (18) 2 4 6 8§ 1012 14

Applying this equation to the chain of infinite length with the

use of Eqs(16) and (12) we find FIG. 2. Relaxation entropy in units dfg (a) and relaxation

energy in units okpf2 (b) for chains of length. At both figures the

|uj —uy|=fe *<f, first curve from the horizontal zero axis correspondsyte2, the

. o ) ) second toa=0.5, and the third one ta=0.2 (note difference in
which means that our solution is compatible with the har-scalg.

monic approximation fol/, for all values of the parameter

a, including small values. Below we will see that small val- f sinf A (1 - 1)/2]
ues ofa are favorable for the size calibration, so the validity Uj=—— )
of the harmonic approximation at small values of this param- Vo CostiN(l—1)/2+ ¢]

eter means that our formalism is adequate for the descriptio

of the self-assembly phenomena Pn Fig. 2(b) the relaxation energy is plotted for three values

of the parameterr. As follows from Eq.(20) these curves
_ are also(up to a constant factpthe plots of the dependence
C. The relaxation energy of the chain elongation on the chain length.
In the chain energy functional E¢P) it is natural to sepa-

rate the terms which depend on the atomic displacements: D. Size calibration criteria

W, ({uD) =U,({uh) — U, ({u; = 0}). (19) According to Eq(8) and Ref. 5, the size calibration takes
place in the case when the functi&p/l has a minimum at

For obvious reasons we will call this partdf the relaxation =~ some finite value of. This can be used to express the con-
energy. The remainder is just the pair interaction enetgy (ditions of the size calibration in terms of the model param-
—1)Vun- eters. To this end we first observe that if some functioh of

Next we want to simplify the expression f@#v, [whichis  has a minimum at some finite value bfl,;, then forl
just Eqg.(9) without the last terrhwith the use of the sum- >, this function is growing a$—o. Let us consider the
mation by parts formula derived in Appendix A. With the uselarged behavior of the reduced chain energy
of Eq. (A1) and the symmetry relation,= —u,, the expres-
sion for the relaxation energy E¢L9) reduces to Ei=W,+(I-1)Vyn (21

k k at zero temperature
W, =keuZ+ =2 (uy— Up) 2+ 2k, fuy + 7"(1@— u3),

2 E Wi+ (-1)Vyy W~V
) == _ Vynt———. (22
where the first three terms come from E§) and the last I I I
term is from Eq(A1). This equality can be further simplified ) o )
with the use of Eq(18) multiplied by k Because the approach ¥, to its |- limiting value is
P exponentially quick, the asymptotic behavior is dominated
Kp(U—Ug) = — (Ko f +Ksuy). by the slow 1/ dependence, so we replaced the relaxation

energy byW,,. Thus, the reduced energy in E®R2) is a
With its help the above expression fd, after a little alge- growing function ofl at large values of chain lengths if the
bra takes a particularly simple form following inequality holds,

Wi=kyfu;=—Vy(@u=Vy(a—u)—Vy(a), (20 W, — Vyn<O.
which means that the relaxation energy is approximatelAssuming thatvyy is negative and taking into account that

equal to the pair interaction energy gained by the end atoriV,, is also negativésee, e.g., Fig. ®)], it is convenient to
due to relaxation. According to E¢14) rewrite the above inequality in terms of the absolute values
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TABLE |. Parameters corresponding to the Pt/Co heteroepitaxial
system.

€ f/aCO o kpf2 (eV) VNN (e\/)

Ei/l
0% 3.5% 0.32 0.049 —0.218 i
2% 4.4% 0.25 0.100 -0.179
3% 4.8% 0.22 0.136 —0.152

0.1 0.2 0.3 0.4 0.5
[Vl <|We|. (23 1t

The meaning of this condition is simple. The left-hand side FIG. 3. Length dependence of the reduced energy at zero tem-
(Ihs) is the loss in the binding energy because of the separgerature of the Pt monatomic chains for different values of com-
tion of a long chain into two pieces. The rhs is the energypressione of the Co substrate.
gain due to the relaxation of the two free ends that appear. ] - .
Thus, if the gain is larger than the loss the chain is unstabl¥icinal surfaces was studied. The position of a deposited
with respect to decomposition into smaller parts. The proces8!om was relaxed to its equilibrium value in order to find the
of decomposition will end when all pieces acquire the opti-valueks as the second derivative of the potential near equi-
mum lengthl ;. librium. The many-body “potentials” and corresponding pa-
Substituting the explicit expression fav,, from Eqs.(20) ~ rameters were taken from Ref. 23 for the Ag/Pt system and
and (16) into Eq. (23), one can express the calibration crite- from Ref. 22 for the Pt/Co system. These potentials were

rion in terms of the microscopic parameters as devised specifically for application in the heteroepitaxy and
for the close-packed surfac¢€ll1l) in the Ag/Pt case and
1 1 1 (000)) in the Pt/Co systefnso we expect our results below

kpfz( VZ+ - 5) > |Vl (24)  are quite reliable. Although interatomic interactions in Refs.

21-23 do not have the pair potential for@) but include
From this inequality we see that the self-assembly into sizefOnlinear many-body corrections due to the band-structure

calibrated clusters requires that the binding of atoms througfTects, we hope that the few parameters entering our solu-
Vy Was not too strong. Also, the stiffness of the springt'on can be reliably calculated with the use of this formalism.

binding of the atom to the substrate should be small comln this respect our approach is similar to Ref. 17 where the
pared tok,, (i.e., «=k./k, should be small Large misfit and parameters of the Frenkel-Kontorova model were fitted di-
p - s'®p

the stiffnessk, of the interatomic “spring” are also favorable rectly to the band-structurg calculations.
for the clustering. From Fig. 1 one can see that with our The parameters listed in Table | were calculated for the

- NI g atomic pairs relaxed only in vertical position because in our
definition off = —V/V the misfit would have been zero for

the substrate lattice constaatnear the minimum ot/ . approach we need the first and second derivafjges dis-

|[Vnnl in this case would have had the largest value, so thé:uSSion after Eq(7)] calculated for the pseudomorphic po-

! . . . sitions of the deposited atoms.
'”.equa'!‘y (24) would have pgen strongly violated. With According to our calculations, the Ag/Pt system has the
diminution of a all the conditions favorable for the self-

assembly start to improvéVyy| diminishes.f and ko grow following parameterS (the energy unit is eV and the length

=R _ 7 -3 2.
because of the growing steepness of Yhgr) curve, and unit A): Vi~ 0‘,)57’ .VaN'W 8.8x10 %, k.pf ~0'72.’
evena is most probably diminishing because in its definition _and “”_3‘7' HereViyyy Is the next NN(NNN) mte_rat(_)r_mc

k, is in the denominator while on physical grounds one maynteéraction. Its smaliness in comparison Wity justifies
expect thak, depends weakly oa because in the cell center ©Ur NN approximation. The large value afmeans that the
atomic potentials are much less steep than in the near-cof§laxation of the strain is very wedkee Fig. 2 so there is
region. This is confirmed by calculations of the next section© Size calibration with the above parameters. The crucial
(see the third column of Table.IThus, we conclude that by Parametera, however, can strongly vary in different sys-
compressing the substrate one can considerably improve th@mSs. For example, according to our estimates based on the
conditions for the self-assembly of size calibration clustersPotentials of Ref. 22, in Pt/Co this parameter is an order of

This will be illustrated with concrete calculations in the fol- Magnitude smallera=0.32. Because of this the system is
lowing section. quite close to the self-assembly but the misfit strain is still

too small. To enhance the misfit in our model calculations we
assumed that the Co underlayer is further compreéseq,
by means of deposition on an appropriate substiayethe

To illustrate the above formalism with realistic examplesfactor 1<. (see Table | and Fig.)3From the figure it is seen
of strained epitaxy we consider two metallic heteroepitaxiakhat for e=3% the curveE,;/l does have a minimum in
systems—Ag/Pt and Pt/Co—which currently are being acwhich case the qualitative analysis of Ref. 5 applies. The
tively studied both experimentalf2°and theoreticallj*~?*  exact solution of Ref. 24 confirms the major qualitative con-
For simplicity we consider 1D case and use the geometry oflusion of the above paper about the size calibration at low-
Ref. 23, where the growth on the steps of the close-packedring temperature. Besides, it was shown that in the presence

E. Examples from metallic heteroepitaxial systems
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of a NNN attraction the clusters will self-organize into regu- lattice-gas Hamiltonian which can be used in dealing with
lar arrays. This phenomenon may be of importance in th@D systems and/or in kinetic Monte Carlo simulations.
technological applications mentioned in the Introduction.

IV. EXACT SOLUTION AT FINITE TEMPERATURE A. Averaging over atomic displacements

In this section we will consider a finite temperature solu- AS was pointed out in Sec. II, at finite temperature the
tion of the harmonic Frenkel-Kontorova model which we lattice-gas model can be obtained by means of statistical av-
defined in Sec. Il and solved at zero temperature in Sec. llleraging over the displacement variables with atomic configu-
To this end we first integrate out the continuous displacemertation{n/’} being kept fixed. The harmonic approximation in
variables (following section. In Sec. IV B the model is this case makes it possible to perform the multiple integra-
solved exactly at thermal equilibrium. In Sec. IV C, this so-tion in Eq. (6) with the use of the known formula for multi-
lution is used to predict a new phenomenon of transient selfdimensional Gaussian integral which is presented in Appen-
assembly which cannot be predicted neither from the zerodix B. To apply formulas derived the Appendix to the
temperature solution of the preceding section, nor from thenultiple integral in Eq.(6) we first setM =D, /kgT, where
finite-temperature theory of Ref. 5. Finally, in Sec. IV D we D, is the dynamical matrix corresponding to the quadratic in
conclude our present study by mapping the system onto fu;} form in Egs.(9) or (19):

k,+k, — —k, 0 0 0 0
—k, 2k, ¥k, —k, O 0
0 —k, 2k, 4k, —k, O 0
D= : : : : . (25
0  —k, 2k,+k, —k, 0
0  —k, 2k, +k, —k,
0 0 —k,  k,tk,

In Appendix B we have shown that the exponent of theatomic displacements became unrestricted. This would cor-
Gaussian integral E¢B1) is equal to the minimum of the respond tok,=0 in which case the dynamical matrig5)
exponent of the integrand, so we can immediately write  would be proportional to the unit matrid,=kgl and when
divided byD ;= kg would have its determinant equal to unity.
! U, By analogy with Eq(3) we will write the exponential func-
J iﬂl dy ex’{_kB_T) tion on the rhs of Eq.(26) as exp(F,/kgT)=exp@S /ks

—E, /kgT) with the entropy due to the atomic displacements

1 D, I
—on gl se | i @ G, (D
Sl——?l def —|, (27)
because the minimum of the quadratic formUn was al- Dy

ready calculated in Sec. Ill C to be equal\Wg andE, ap-
pears because of E(R1). Further, because the determinan
of a matrix is a homogeneous function of the matrix ele-
ments of the order of the matrix sizerhich isl in our casg

the constant multipliers of the matrix under the determinant _ o

sign in EQ.(26) can be separated out into a term of the type Di=D,/kp, Di=ks/ky=a.

[In(27kgT/c)/2 with some arbitrary constant. When

summed over all chains these factors will accumulate thé&he termentropywas used because due to temperature inde-
configuration independent factlrand so may be dropped as pendence of botk, andS, we haveS = — dF,/dT, which is

long as we are interested only in configuration dependenan expression for the entropy in the canonical ensemble. We
guantities. It is convenient to choose this constant to be equalote that this quantity is, in fact, only a part of the total
to D,=ks, the dynamical matrix of an isolated atom becauseentropy due to displacements because we neglected the con-
with this choice the logarithmic term vanishes when thetribution proportional toN.

t Where we additionally divided the numerator and denomina-
tor under the sign of the determinant Iy to make the
matrices dimensionless:
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Explicit expression for the chain entropy can be obtained
by exploiting the tridiagonality of the dynamical mat(i5). E= Z miFy,
Such matrices satisfy the recurrence relations presented in
Appendix C. Becaus®;=«, the chain entropy Eq(27)  Wherem, is the number of chains of lengthTo compute the

with the use of Eq(C8) takes the form entropySin Eq. (31) we have to count all possible configu-
rations corresponding to a fixed chain length distribution

Kg [ a {m}. The number of inequivalent permutations of the chains
SI——? In 1+a/4smr[)\(l—1/2)+¢] —lna|. are
(28) B Mot!
S calculated with this formula is shown in Fig(é2. The Qcnains= mm,! ... my’ (32)

entropic contribution is negative because in our formalism N ) ) )

we discarded the entropy term correspondingkfe=0, as ~ Wheremio=2_,m;. Besides the permutations, the chains
explained above. Whek,, is not equal to zero, the atomic With a fixed relative order can be differently spacédso
displacements became restricted by its neighbors, so the§}chains Should be multiplied by the number of different pos-
entropy diminishes. For large chains the interior atoms aréible placements of a given chain sequence on the substrate.
practically in translationally invariant environment, so for e will denote this factor by}, . Assuming that the sub-
long chains the entropy loss is proportionalltarhe above Strate consists oK deposition sites, we use the property of
restrictions on the atomic displacements are more stringerife 1D system that the number of contiguous intervals of

for largerk,. This is reflected in the slope & which is ~ vacant sites separating the atomic chains is equaljpwith
larger for smallera=ks/k, [see Fig. 23)]. a possible difference int1 interval due to the substrate

boundaries. We neglect this difference in the thermodynamic
limit and calculateQ) .,.ins @S the number of ways to divide
S _ . K—N vacant sites intan,, clusters. This is equal to the
ThUS, for an individual chain we Completely d|3p033d Ofnumber of ways to Choge]tot— 1 cuts out oK —N—1 pos-

the continuous variableigl;} both at zero and at finite tem- sipilities. The latter quantity is given by the binomial
perature. Our results can be summarized in the expression fegefficient®

the effective free energy of the chain of lengths

B. Configurational averaging

K—N-1 (K—N)!
FI=E-TS3, (29 Qv:< )

Moy — 1 N Mior! (K=N—=mg)!
whereE; and S are given by Eqs(21) and (28), respec-

tively. Thus, Eq.(6) takes the form So the entropy per site= S/K=KgIn(Q¢paind,). ASsuming

K—oo, with the use of Eq(32) and the Stirling formula the
entropy density is calculated as
exp( — Fet/kgT)=C exp( - F /kBT> . (30
ns

chai

s=kg| (1—-0)In(1—0)—(1—6—c)

Here in constan€ we gathered all configuration independent
factors which are irrelevant for the current study.

The partition function of the system under consideration XIn(1— 0—c)—2 ¢nc
can be found by summing E30) over all possible atomic '
configurations. We note that the weight factor in E80) where 6=N/K is the total coverageg,=m, /K is the con-
looks formally as the canonical Boltzmann weight excePtuantration of clusters of length andc=3¢, is the total
that instead of the energy of the chain configuration we h""V%Iuster concentration. The concentrati@pnshould minimize
the sum ofF,. This means that in the canonical expressionthe functional

for the equilibrium free energy

Fee=E-TS, (31) w=§|‘, c\F —kgTs—u

2 |C|_ 0),
[
we should interpree as the sum ofF, with appropriate hich consists of the free-energy densfiy,/K [cf. Eq.

weights. Physically this can be understood as follows. In th 31 dth trair = i dint fol
configurations consisting of chains of different length the )] and the constrairli = const expressed in terms of clus-

chains itself can be considered as linear molecules with thefE" Vaf'?b'es. multlph_e_d by the Lagrange mulltlpll,er From
own internal structure which includes, in particular, the in-1"e minimality conditiondw/éc, =0, we obtain an expres-
ternal atomic displacements which are not influenced by'°" for the equilibrium cluster concentrations

their permutations and different placements on the substrate

as Ioer)g as these chains remainpseparated. In the case when C=(1=0-c)ex(ul=FiksT]. (339
two or more chains become nearest neighbors they ar€his expression withu adjusted to satisfy the requirement
treated as a new “molecule” of longer length, the internal Z,lc,= 6 gives the exact equilibrium distribution of cluster
free energy of which should be computed according to Eqglengths in our 1D model. Qualitative behavior of the solu-
(29). Thus, tions of EQ.(33) in the case when the size calibration criteria
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observation of such a behavior means that the system is close

8 = 1000& to the size calibration ai=0.
= 500K
2 g = 300K
< = 200K ) .
= — 100K D. Mapping onto lattice-gas models
4 = 50K

In an out of equilibrium system or in higher dimensions
exact solutions are difficult to obtain, so approximate or nu-
merical techniques should be used. To apply such techniques

5 10 15 20 75 one would like to have the Hamiltonian of the system under
I study to be expressed in terms of familiar occupation num-
bers{n;}. With the chain free energy, being known for all

FIG. 4. Model calculation of the transient self-assembly of Ptchain lengths, exact form of the Hamiltonian in 1D can be
chains at the steps of the 2% compressed Co substrate at the cayasily constructed as follow8.Taking into account the fact
erage#=0.3, ¢, is the concentration of chains of lengthThe  that the chains separated by at least one empty site are not
points are connected by splines for better readabifivy further interacting, we assume the Hamiltonian to consist exclu-
details see the text sively of the products of the occupation numbers within con-

tiguous atomic chains
are fulfilled is discussed in detail in Ref. 24. In the followng
section we consider a solution of this equation in the case
when the parameters of the system do not exhibit the size Hz_Z UINiNj 11+ Ni(1-1y- (39
calibration behavior aT=0 but the system is close to this =2
regime.

The parameters, can be found from the free energiEsas
follows. If an atom is added to a chain of lendththe free

C. Transient self-assembly energy of the new chain according to Eg§4) is
In the Pt/Co system considered in Sec. Il E, &obelow
the critical valuee;~2%, there is no self-assembly @&t FiI=F _1tv+v_1tv_p+---+vy.

=0 because there is no minimum at finite E, /| (see Fig.
3). This means that the interatomic attraction is too StrO”gWriting down similar equation for the chain of length 1

However, because the entropic contribut@risee Fig. 28] 504 comparing it with the above equation one easily fihds
is practically linear inl, it can be unified with the pair inter-

action term (—1)Vyy and thus can be considered as a
temperature-dependengpulsive contribution into the pair vi=F—=2F_1tF_3, (35
interaction. At physically acceptable temperatures it will not
be too large in comparison witty because in temperature which is valid for alll=1 if we formally setFo=F _,=0.
units Vyny=4000 K(see Fig. 1 while experimental tempera- This expresses parametersthrough the discrete second de-
tures are usually considerably smaller. Neverthelessefor rivative of F,. Because the latter according to E¢&1) and
slightly below e, the curveF(T)/I will have aT-dependent (28) is asymptotically linear td, the approach to asymptotics
minimum at some reasonably high temperatures because being exponential, the Hamiltonian parametersre expo-
the entropic contribution which will disappear at somenentially small for largé. This makes possible to restrict the
smaller temperature. sum overl in Eg. (34) to a desirable level of accuracy. In
In Ref. 24 it was shown that at nonzero temperature theparticular, the entropic terrf28) essentially contributes only
position of the maximum of the cluster size distribution doesinto the pair interactiow,, the multiatom contributions be-
not coincide with the minimum of the,(T)/I curve, so the ing =10%. This confirms the qualitative conclusion made in
position and even the very existence of the size calibratioprevious section that the relaxation entropy formally
can be seen only from the solution of the statistical problemamounts to effective NN interatomic repulsion which grows
at the temperature of interest. linearly with temperature. The entropic forces of this kind
In Fig. 4 the size distribution of self-assembled clusterswere earlier discovered in alloysee Appendix E of Ref. 25
calculated with the use of E33) is shown. From this figure and references to earlier literature thejein
one can see that our model predicts a new phenomenon: the In two dimensions and with a rectangular geometry
entropy driven transient self-assembly. It has two salient feaatomic relaxations along two orthogonal directions are
tures which differ from known phenomena. First, the behavindependent>!*so Eq.(34) can be straightforwardly gener-
ior seen in Fig. 4—the appearance and diminution of selfalized to 2D case. In the anisotropic case the parameters
assembled clusters at growing temperature—is opposite tcan be different along two orthogonal directions but their
what is usually seen in the kinetically controlled grofh. expression through the microscopic parameters in both cases
Second, in contrast to the nontransient self-assembly, thare the same. In Ref. 27, we applied Monte Carlo technique
width of the size distribution is broadening at lowering tem-to a simple isotropic 2D Hamiltonian of the above type to
perature. Because this behavior is explained by the relativelijlustrate the size calibration of self-assembled square
weak entropic contribution into the pair interaction energy,“plaquettes” of the type predicted in Ref. 5.
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V. CONCLUSION A(vju))=v;, ;AU +u;Av;.

In this paper we considered a simple model of strained 108y summing up this identity fromi=2 tol—1 we get
epitaxy and have rigorously shown that the mechanism of

self-assembly and size calibration proposed in Ref. 5is es- -1 -1
sentl_ally (_:o_rrect at least for the su_bmonola_yer_ growth._ Whlle Z A(UjUj)ZU|U|—sz2=Z (v} +1AU;+U;Av)).
the simplicity of the model makes its quantitative predictions =2 j=2

to be of limited accuracy, we believe that the qualitativeB identifying u; with the atomic displacements and assum-
picture of the self-assembly of size calibrated clusters is cap—y 9 Ui P . X
=Au; one can rearrange the above identity as

tured by this model correctly. An additional advantage of thed Vi+1
model is that all calculations can be performed analytically,
so all pertinent questions can be answered in a rigorous and
unambiguous manner. Zz (Ujr1—up)?=— 22 Uj(Uj 41— 25+ Uj 1) +Uf— 3,

As we noted in the Introduction, despite its simplicity, the ' =
Frenkel-Kontorova model has been successfully used imwhere due to the antisymmetry of the displacemése® Eq.
semi-quantitative analyses of ground-state properties of redl5)] u;u,_;=u,u;. Now adding to both sides of the latter
systemgsee, e.g., Refs. 17 and)1&o it may be hoped that equality the termaE};%ujz we note that the summation on
the finite temperature generalization of the model given inthe rhs amounts to zero because of the homogeneous part of
the present paper can be used to make semiquantitative prgg. (11). Multiplying the resulting equality bk,/2 and re-
dictions of some temperature-dependent phenomena copalling thata=ks/k, we finally get
cerningcoherentstructures, such as the self-assembly.

We considered two explicit examples of heteroepitaxial K
systems for which there exist in literature reliable inter- _s
atomic potentials adjusted to treat heteroepitaxial problems 2
of the type considered by d4:2% With these potential we
found the size calibration for stressed substrate in Pt/Co sys- APPENDIX B
tem. In our opinion, this shows that the above phenomena
should be as common in 1D as they are in 2D heteroepitaxy. The multidimensional Gaussian integral is calculated with
Further argument in favor of this conclusion is that for thethe known formula as
size calibration to be plausible, the crucial parameter
=ks/kp should be as small as possible. This favors small ' 1 '
values ofks. The geometry of Ref. 23 considered by us is f (H dui)exp( - > uiMijuj+2 uivi)
not quite favorable because of the high coordination of the =1 2= =1
atoms deposited at the steps of the vicinal surfaces. The de- M | - 172 [
posited atoms interact with five NN of the substregee Ref. = ( detz_) exp( - > UiMi_'lvj) , (B1)
23) which enhancek;. It may be hoped that with lower ™ 2i7=1 .
coordination(as in the case of 1D structures of Ref, the
conditions for the size calibration will be more favorable.
Furthermore, the metal/metal systems with strong mutu
binding considered in this paper are not very suitable for the
search of the size calibration. It seems that the heteroepi- L |
taxial pairs with differing types of bonding are more plau-
sible candidates. In our opinion, more promising in this re- ~ E{UH="7% ijzzl ui'\”iiuj’Lg1 Uivi
spect are metal/oxide systems where the binding of the metal '

-1 -1

-1
k
2 (uaa—up?= S (uf-ud). (A1

-1
k
2, Ko
2, Uity 2

=2

whereM is a positive-definite symmetric matrix amd—an
rbitrary constant vector. The exponent on the rhs is obtained
y completing the square on the lhs as

atoms to the substrate were found to be particularly viéak. 1 . B
722 (Ui = Mjj ")) Mij (u; = My o)
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APPENDIX A

| 1 |
The summation by parts formula which we need to sim- f ([Il dui)ex ) iJE:l UiMijui)- (B3)
plify the expression for the relaxation energy is derived as ’
follows. First we introduce the finite difference operator It is calculated by means of diagonalization of matvixwith
Avj=vj,—v; and apply it to the produat;u;: the use of an orthogonal transformation the Jacobian of
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24a -1 0 0
-1 24+a -1 0
0 -1 24+a —1 0

which is equal to unity. Eq(B3) then reduces to the product
of the textbook Gaussian integrals

e aiX2
f dxexp — 5
o 0 -1 2+a -1

The constantg; in the above product of integrals are the 0 0 0 -1 1+«
eigenvalues of matriM and their product is equal to the
determinant in Eq(B1).

A remarkable property of the Gaussian integration which =1
is important for our study is that the argument of the expo-
nential function on the rhs is equal to the minimal value of
the Ihs exponent. Indeed, by setting partial derivatives with
respect tqu;} of the lhs exponenE({u;}) in Eq.(B2) tobe  andd,_,,d,_3, ... are obtained from the previous determi-
equal to zero one arrives at the matrix equation nant in the same way. Now, expanding determinant(E®)
with respect to the elements of the first row we get the fol-
lowing three term recurrence relation

2w d; =

ai.

(C2

Mu=v,

whose solution isu=M ~y. Substituting this into the Ihs

d-1=(2+a@)d;_»—d,_3,
exponent one gets

(C3

which is valid for all smaller values of the lower indéx
1 exceptl=1 and 2. Recurrence relation EG3) initialized
_— (Mﬁ(lvk)Mij(MﬂlmHE (Mi}lvk)vi by two first determinants following from EqC2)

25Kk 3

1 _ d1=1+a
:E Iz UiM ij lUj y

) and
i.e., the rhs exponent.
d,=1+3a+a? (C9

APPENDIX C —
can be used to calculate a] and deD, through Eq.(C1).

With the use of Eq(C3) expressionC1) for det5| can be
somewhat simplified as

According to Eq.(25) and the definition oD,=D, /k,

1+ -1 0 0 0 _
-1 24 o -1 0 0 detD|:d|_d|_1, (C5)
0 -1 24+a -1 0 0 where determinantd; for i>2 satisfy homogeneous equa-
_ tion
D]:
0 0 -1 24+a -1 0
0 0 -1 24a -1 di+1—(2+a)di+d;;1,=0
0 0 0 1 l1+a [see Eq.(C3)]. This equation coincides with the homoge-

li

neous equation in Eq11) and so its general solution should
be sought in the same form as the solutiondprEq. (13)

wherec_v=ks/kp. Because matrice§| are tridie_\gonal, their di=c,eM+ceM (C6)
determinants satisfy recurrence relations which can be used
to calculate them. Expanding d2f with respect to the first but with different boundary conditions
row we get
elc;+e Me,=1+a,
detD;=(1+ a)d;_,—d|_». (C1)
erc;+e c,=1+3a+a?, (C7)

whered, _, is the determinant of the matrix obtained fr@n

by crossing out its first row and the first column:

which are obtained by equating general soluti@b) to
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known determinantsl; andd, [see Eq.(C4)]. Solving Eq.  Substituting this into Eq(C5) we obtain an analytic expres-

(C7) from Eqg. (C6) we get sion for the determinant of the dynamical matrix
d_cosm\i+¢) o ' _
i \/1+—a/4 . detD,= msmt{)x(l —1/2)+ ¢]. (C8
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