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Lattice gas model of coherent strained epitaxy
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The harmonic Frenkel-Kontorova model is used to illustrate with an exactly solvable example a general
technique of mapping a coherently strained epitaxial system with continuous atomic displacements onto a
lattice gas model~LGM! with only discrete variables. The misfit strain of the original model is transformed
into cluster interatomic interactions of the LGM. In the case of rectangular geometry the clusters are contigu-
ous atomic chains of all lengths, but the interaction strength for long chains is exponentially small. This makes
possible the application of efficient Monte Carlo techniques for discrete variables both in kinetic and equilib-
rium studies. The formalism developed can be applied to one- and two-dimensional systems but as an illus-
trative example, we consider only the problem of self-assembly of one-dimensional size calibrated clusters on
the steps of vicinal surfaces. In this case the model can be solved exactly. Besides the size calibration at zero
temperature, the solution exhibits a new phenomenon of transient self-assembly. The latter consists in the
appearance at intermediate temperatures of self-assembled clusters with their mean size growing at lowering
temperature. The phenomenon is caused by the forces due to the entropy of atomic displacements.

DOI: 10.1103/PhysRevB.68.195419 PACS number~s!: 68.65.2k, 81.07.2b, 81.16.Dn
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I. INTRODUCTION

The phenomena of self-assembly and self-organizatio
coherent ~i.e., dislocation-free! size calibrated nano- an
atomic-scale structures observed during the heteroepita
growth in some systems1,2 are considered to be promisin
tools for fabrication of microelectronic devices.3

A major factor influencing the phenomenon of se
assembly is the lattice size misfit between the substrate
the growing overlayer which is usually encountered in h
eroepitaxial systems.4 The misfit strain is believed to be th
driving force behind the size calibration.4,5 So its adequate
description should lie at the basis of any theory of strain
epitaxy. Because strained systems exhibit complicated ki
ics and morphologies, analytical approach is difficult in m
cases, so a major technique in theoretical studies of stra
epitaxy is the kinetic Monte Carlo simulation. The applic
tion of this technique, however, is severely hampered by
necessity to simulate the continuous atomic displacem
which is much more difficult a task than simulation of di
crete variables.6 Therefore, atomistic models in such simul
tions are currently restricted to rather small systems con
ing of only a few thousand atoms7 while experimentally
observed three-dimensional~3D! quantum dots sometime
consist of several tens of thousand atoms each.2

The present study is based on the observation that as
as we are interested only incoherentstructures, there is a
possibility to map the system onto a purely lattice mod
Irrespective of how strongly a coherent structure is
formed, in the absence of dislocations there always exis
lattice site of a regular lattice to which each atom can
ascribed. So our first goal is to develop a formalism wh
would allow to map a coherent heteroepitaxial system w
continuous variables onto a lattice gas model with only d
crete variables. This will be done in Secs. II–IV. The tec
niques proposed are rather general and in principle can
applied to any coherent system in any number of dimensio
0163-1829/2003/68~19!/195419~12!/$20.00 68 1954
of

ial

nd
-

d
t-
t
ed
-
e
ts

t-

ng

l.
-
a

e
h
h
-
-
be
s.

But in order to simplify explanation of basic ideas, in th
present paper we restrict ourselves to the simplest case o
systems.

Besides their simplicity and convenience for theoreti
studies, 1D heteroepitaxial systems are also of great prac
value. One of the important goals of the heteroepitaxial st
ies is the development of techniques of growing 1D quant
wires which can be used, e.g., for experimental investiga
of the Luttinger model of interacting 1D electrons.8 Further-
more, the quantum wires may find application in microele
tronics circuitry3 and in magnetic memory devices.9 The lat-
ter applications would require the 1D structures of finite a
equal length. This requirement can be satisfied by s
assembled size calibrated structures similar to quantum
of the 2D epitaxy.2

A phenomenological theory explaining the mechanism
formation of quantum dots was proposed in Ref. 5. T
theory is quite general and can be applied to objects in
number of dimensions. So to illustrate the techniques de
oped in the present paper we will study the conditions
formation of the 1D size calibrated monatomic chains in t
heteroepitaxial systems in Sec. III E. Besides, in Sec. IV C
new phenomenon of transient self-assembly at finite te
perature will be discussed and the exact cluster size distr
tions for the model with parameters corresponding to
Pt/Co system will be calculated. In conclusion we w
briefly discuss the possibility of experimental verification
the 1D self-assembly.

II. THE MODEL

Let us consider a 1D ‘‘surface’’ with a coherent atom
structure deposited on it. Considering the atoms as class
objects we can write the energy of the system as a func
of atomic coordinates

Etot5U~$Ri ,ui%!, ~1!
©2003 The American Physical Society19-1
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where Ri are the coordinates of the lattice sites which a
filled with atoms andui is the displacement of the atom from
its ideal position atRi . The lattice is considered to be per
odic, so in 1D case

Ri5ai, ~2!

wherea is the lattice constant andi is an integer.
At zero temperature, the state of the system can be

haustively characterized by its atomic configuration which
described by the set of the occupation numbers$ni

A50,1% of
the lattice sites$Ri%, where the superscriptA differentiate
atoms of different kinds~for example, those of the substra
and of the adlayer!. This is because the atomic displaceme
can be found by minimization ofU($Ri ,ui%) with respect to
$ui%. Thus, the total energy~1! can be considered as a fun
tion of the variables$ni

A50,1% only. In practical calculations
this function can be expanded into a series over the comp
set of independent polynomials of variables$ni

A50,1%, as
explained in Ref. 10. The lattice gas model thus obtain
may be used to study the ground-state structures of the o
nal model~1! with the use of techniques developed for su
models~see Ref. 10 for details!.

At finite temperature the above technique does not ap
because all variables become fluctuating quantities and
their average values can be calculated and/or measure
low temperatures, however, the atomic dynamics also ad
description in terms of variables$ni

A% only because in this
case the deviation variables can be integrated out in
course of statistical averaging as follows. The dominant p
cesses of atomic kinetics at surfaces are activated hops
the energy barriers separating lattice sites.11 Because the
probability of the hops is subject to the Arrhenius law, t
hop frequency at low temperatures can be arbitrarily sm
or, equivalently, the residence time can be arbitrarily lar
The dynamics of the variables$ui%, on the other hand, do no
have any energy barriers. So at sufficiently low temperat
these variables are capable of reaching their thermal equ
rium distribution during the time intervals between t
atomic hops, i.e., with the atomic configuration remaini
unchanged. Averaging overui will leave us with an effective
nonequilibrium free energy functionFe f f of variables$ni

A%
only:

exp~2Fe f f /kBT!5CE )
$ni

A
51%

dui exp~2U/kBT!, ~3!

where integration is carried over the atomic coordinates
filled sites andC denotes a constant of dimension@ length#2N

(N is the number of atoms! to make the integral dimension
less. This purely lattice model can be further used in b
equilibrium and kinetic studies.

To illustrate this general approach with an explicitly so
able example we consider a simple 1D model by assum
that the deposited atoms are of the same kind and tha
substrate is rigid and does not participate in the dynam
We will work in the formalism of the canonical ensembl
i.e., by considering the number of atomsN to be constant in
all processes. Therefore, we will not be interested in exp
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expressions of the quantities which depend only on the t
number of atoms—like the constantC in Eq. ~3!—because
both in kinetic6 and equilibrium problems only relative
weights of configurations are important, so the factors wh
remain constant under configuration changes cancel out

A. Pair potential interatomic interaction

The cluster expansion formalism10 is a universal tech-
nique and can be applied to any energy functional of the t
of Eq. ~1!. But in order to illustrate the essence of our a
proach in the most elementary way we assume simple
potential interaction between the atoms and write the ene
functional as

U5 (
filled i

Vs~Ri1ui !1
1

2 (
filled i j

Vp~ui1Ri2uj2Rj !,

~4!

whereVs is the potential binding of the deposited atom to t
substrate,Vp is the pair potential of interaction between th
deposited atoms, and the summations are carried only
the sites filled with adatoms. The pair potential interacti
between the adatoms and the atoms belonging to the
strate reduces to the one-body potentialVs(r ) when summed
over the substrate atoms whose positions are fixed accor
to our assumption of passive substrate.

The main difficulty in going from the energy functiona
~4! to the effective free energyFeff consists in the necessit
to calculate the multiple integral in Eq.~3! which in the
thermodynamic limit is of infinite dimension. To overcom
this difficulty we first neglect pair interatomic interactionVp
between the atoms which are not nearest neighbors~NN!. In
this case the adatoms which are separated by at least
empty site do not interact, so the energy functional~4! takes
the form of the sum over contiguous chains of atoms

U5 (
chains

F(
i 51

l

Vs~Ri1ui !1(
i 51

l 21

Vp~a1ui 112ui !G
[ (

chains
Ul , ~5!

where we used Eq.~2! to simplify the argument ofVp . The
first summation on the right-hand side~rhs! is over the
atomic chains of various lengthsl ,l 51 –N. Here and below
the summation is supposed to amount to zero if its up
limit is smaller than the lower one, as is the case in
second term of Eq.~5! for l 51.

Correspondingly, the integral in Eq.~3! transforms into
the product of integrals as

exp~2Feff /kBT!5C )
chains

E S )
i 51

l

dui D exp@2Ul /kBT#.

~6!

Thus, the problem is reduced to the calculation of the m
tiple integral over the displacement variables belonging
one atomic chain. This question is discussed below in de
9-2
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B. Harmonic approximation and misfit

The multiple integration in Eq.~6! still remains hardly
feasible in the case of generalVs(r ) andVp(r ). To make the
task tractable we further simplify the integrand with the u
of the harmonic approximation which is a standard tool
dealing with atomic displacements.12 Thus, expanding the
potentials up to the second order in the displacement v
ables we get

Vs~Ri1ui !'Vs01
ks

2
ui

2 ,

Vp~a1ui 112ui !'VNN1V8~a!~ui 112ui !

1
kp

2
~ui 112ui !

2,

5VNN1
kp

2
@~ui 112ui2 f !22 f 2#, ~7!

whereVs05Vs(Ri50) ~and is independent ofRi because of
the periodicity! andVNN5V(a) are the zeroth order terms o
the expansion.ks5Vs9(0) andkp5Vp9(a) are the second de
rivatives of potentialsVs and Vp , respectively. In the har
monic approximation they play the role of the stiffness co
stants of the springs binding the atoms to the substrateks)
and to each other (kp). The linear term is absent in the ca
of Vs because of the left/right symmetry of the substr
potential. In the last line of Eq.~7! we represented the ha
monic interatomic interaction in the form familiar from th
Frenkel-Kontorova model. The latter is frequently being us
in qualitative13–15 and semiquantitative studies16,17 of
strained epitaxy. The misfit parameter in our case is

f 52Vp8~a!/kp .

In our opinion, this definition is quite reasonable from
physical point of view because it defines the misfit throu
the ratio of the restoring force exerted by an atom on
neighbor (2Vp8) to the stiffness of the spring which bind
these atoms. Thus, the misfit would correspond to the e
gation of the spring under the influence of the force appli

We note that the ranges of validity of the power-ser
expansions in Eq.~7! are different forVs andVp . In the case
of Vs the expansion is in powers ofui , while in the case of
Vp it is in powers ofui 112ui . So in the second case th
deviations themselves can be large but it is the differenc
deviations of neighboring atoms which should be small. T
observation will be important in assessing the range of
lidity of the solutions of the equations below.

To check the quality of our approximations of the pote
tial Vp we applied them to the Ag-Ag Morse potential pr
posed in Ref. 16 for the Ag atoms deposited on Pt substr
From Fig. 1 one can see that the quality of the fit is satisf
tory for uui 112ui u, f . In the case of the Ag/Pt systemf is
positive. The misfit is also positive in the majority of th
systems exhibiting self-assembly.15 Therefore, for simplicity
we will assumef .0 throughout the present paper.
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III. SELF-ASSEMBLY AND SIZE CALIBRATION AT ZERO
TEMPERATURE

As we pointed out in the Introduction, one of the mo
interesting topics in strained epitaxy is the size calibration
self-assembled clusters. In this section we consider the c
ditions of the size calibration in our 1D model. To beg
with, let us assume that ourN-atoms system has separat
into N/ l clusters of lengthl. In order to be energetically
favorable such a configuration should minimize the total
ergy of the system:

minEtot5minS N

l
El D5N min~El / l !, ~8!

whereEl is the energy of thel-atom cluster~or chain!. In the
last equality we made use of the conditionN5const. Thus,
the system will separate intoN/ l min clusters providedEl / l
has a minimum at some finite value ofl 5 l min . The energy
of a chain of lengthl in the harmonic approximation can b
found as the minimum of the functional

Ul5
ks

2 (
j 51

l

uj
21

kp

2 (
j 51

l 21

@~uj 112uj2 f !22 f 2#1~ l 21!VNN

5
ks

2 (
j 51

l

uj
21

kp

2 (
j 51

l 21

~uj 112uj !
2

1kpf ~u12ul !1~ l 21!VNN , ~9!

which is obtained as the sum of the expansions, Eq.~7!, from
every atom and for every pair of atoms entering the cha
The term proportional toVs0 is omitted because whe
summed over all chains it is proportional toN and thus is
configuration independent. The last line in Eq.~9! was ob-
tained by expanding the Frenkel-Kontorova term in t
square brackets. We see that if the chain fills all the surf
and periodic boundary conditionu15ul is being used then
the chain energy, Eq.~9!, does not depend onf. This is be-

FIG. 1. Morse potential fitted to the interatomic interaction
Ag atoms taken from Ref. 16~solid line! together with the harmonic
fit according to Eq.~7! ~dashed parabola!. The length unit is the
lattice constant of Pt~111! substrate surface:aPt52.77 Å. VNN is
the NN interatomic interaction andf is the misfit parameter as de
fined in the text.
9-3
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V. I. TOKAR AND H. DREYSSÉ PHYSICAL REVIEW B 68, 195419 ~2003!
cause the linear terms of the expansion drop as the sy
becomes left-right symmetric, as in the case ofVs . This does
not mean, however, that the misfit becomes irrelevant.
strain energy enters implicitly throughVNN , as can be seen
from Fig. 1. The linear inf terms, however, are responsib
for the strain relaxation,as we will see below.

A. The atomic relaxation

To find the chain energyEl we have to minimizeUl with
respect to the atomic displacementsui :

]Ul /]uj50, j 51, . . . ,l ~10!

or explicitly

~11a!u12u252 f ,

A

2uj 211~21a!uj2uj 1150, ~11!

A

~11a!ul2ul 215 f ,

where we divided both sides of Eq.~10! by kp to show that
the equations~hence, their solutions! depend on the spring
constantsks and kp only through their dimensionless rati
a5ks /kp . Because of the cancellation of linear terms in E
~9! mentioned above, the equations forj 52, . . . ,l 21 ~de-
noted above by dots! are all homogeneous. We note that th
are a discrete version of the linear differential equation of
second order

2d2u/dx21au50.

So their solution should be sought in the form of a line
combination of two independent solutions of the form e
(6lj). It is straightforward to check that in the discrete ca

e6l511
a

2
6AaS 11

a

4 D , ~12!

where the signs were chosen so thatl was positive. The
coefficientsC1 andC2 in the general solution

uj5C1el j1C2e2l j ~13!

are found by substituting it into the first and the last~inho-
mogeneous! equations of the set~11!:

el~11a2el!C11e2l~11a2e2l!C252 f ,

el l~11a2e2l!C11e2l l~11a2el!C25 f .

With two substitutions~one for the upper and for the lowe
signs!

11a2e7l56Aae6f,

where
19541
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the equations can be written in more compact form

el2fC12e2l1fC25 f /Aa,

el l 1fC12e2l l 2fC25 f /Aa.

From these equations the coefficientsC1 and C2 are easily
found by standard means and being substituted into the
eral solution~13! lead to the following explicit expression
for the atomic displacements

uj52
f

Aa

sinh@l~ l 22 j 11!/2#

cosh@l~ l 21!/21f#
. ~14!

The displacements are antisymmetric with respect to
middle of the chain

ul 2 j 1152uj ~15!

as it should be from symmetry considerations. In particu

ul52u1 .

The displacementsuj monotonously grow towards the cha
ends and the larger they are the bigger is the chain length
the limit of infinite chain the displacements are

uj
`52

f

Aa
e2l( j 21)2f ~16!

~where by the superscript̀ we denoted the chain length!
which means that atomic relaxation exponentially dies ou
the chain interior and only;1/l external atoms exhibit ap
preciable deviations from their pseudomorphic positio
The largest deviations exhibit the end atoms

u1
`52ul

`52
f

Aa
e2f52 f SA1

a
1

1

4
2

1

2D . ~17!

B. Validity checks

The above expressions can be used to establish the r
of validity of the solutions obtained in terms of restriction
on the microscopic parameters.

The power-series expansion in$ui% in the first line of Eq.
~7! should be consistent with the largest atomic displacem
Eq. ~17!. To verify this we note that the periodic substra
potential in the Frenkel-Kontorova model is conventiona
modeled by the cosine function

Vs~u!}cos~2pu/a!.

It is straightforward to check that the harmonic approxim
tion of Eq. ~7! reproduces theu-dependent partVs(u)2Vs0
of the exact potential with the accuracy better then 25% fou
as large asu.a/4 ~half way to the cell boundary!. This gives
a restriction on the parameters
9-4
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f

a SA1

a
1

1

4
2

1

2D &
1

4
.

From this inequality it follows that even for the misfit a
large as 5%, the value ofa can be as small as 1/30.

From Eq.~16! it is easily seen that the relative displac
ment of neighbor atoms is also the biggest near the ch
ends. So we may check the validity of the second-order
pansion ofVp in Eq. ~7! in the most unfavorable case of th
infinite chain using the relative displacement of the first t
atoms near its end. From the first equation of Eq.~11! we
find

u12u252~ f 1au1!. ~18!

Applying this equation to the chain of infinite length with th
use of Eqs.~16! and ~12! we find

uu1
`2u2

`u5 f e2l, f ,

which means that our solution is compatible with the h
monic approximation forVp for all values of the paramete
a, including small values. Below we will see that small va
ues ofa are favorable for the size calibration, so the valid
of the harmonic approximation at small values of this para
eter means that our formalism is adequate for the descrip
of the self-assembly phenomena.

C. The relaxation energy

In the chain energy functional Eq.~9! it is natural to sepa-
rate the terms which depend on the atomic displacemen

Wl~$ui%!5Ul~$ui%!2Ul~$ui50%!. ~19!

For obvious reasons we will call this part ofUl the relaxation
energy. The remainder is just the pair interaction energyl
21)VNN .

Next we want to simplify the expression forWl @which is
just Eq. ~9! without the last term# with the use of the sum
mation by parts formula derived in Appendix A. With the u
of Eq. ~A1! and the symmetry relationul52u1, the expres-
sion for the relaxation energy Eq.~19! reduces to

Wl5ksu1
21

kp

2
~u12u2!212kpf u11

kp

2
~u1

22u2
2!,

where the first three terms come from Eq.~9! and the last
term is from Eq.~A1!. This equality can be further simplifie
with the use of Eq.~18! multiplied by kp

kp~u12u2!52~kpf 1ksu1!.

With its help the above expression forWl after a little alge-
bra takes a particularly simple form

Wl5kpf u152Vp8~a!u1'Vp~a2u1!2Vp~a!, ~20!

which means that the relaxation energy is approxima
equal to the pair interaction energy gained by the end a
due to relaxation. According to Eq.~14!
19541
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Aa

sinh@l~ l 21!/2#

cosh@l~ l 21!/21f#
.

In Fig. 2~b! the relaxation energy is plotted for three valu
of the parametera. As follows from Eq.~20! these curves
are also~up to a constant factor! the plots of the dependenc
of the chain elongation on the chain length.

D. Size calibration criteria

According to Eq.~8! and Ref. 5, the size calibration take
place in the case when the functionEl / l has a minimum at
some finite value ofl. This can be used to express the co
ditions of the size calibration in terms of the model para
eters. To this end we first observe that if some function ol
has a minimum at some finite value ofl 5 l min then for l
. l min this function is growing asl→`. Let us consider the
large-l behavior of the reduced chain energy

El5Wl1~ l 21!VNN ~21!

at zero temperature

El

l
5

Wl1~ l 21!VNN

l
. l→`VNN1

W`2VNN

l
. ~22!

Because the approach ofWl to its l→` limiting value is
exponentially quick, the asymptotic behavior is dominat
by the slow 1/l dependence, so we replaced the relaxat
energy byW` . Thus, the reduced energy in Eq.~22! is a
growing function ofl at large values of chain lengths if th
following inequality holds,

W`2VNN,0.

Assuming thatVNN is negative and taking into account th
W` is also negative@see, e.g., Fig. 2~b!#, it is convenient to
rewrite the above inequality in terms of the absolute valu

FIG. 2. Relaxation entropy in units ofkB ~a! and relaxation
energy in units ofkpf 2 ~b! for chains of lengthl. At both figures the
first curve from the horizontal zero axis corresponds toa52, the
second toa50.5, and the third one toa50.2 ~note difference in
scale!.
9-5
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V. I. TOKAR AND H. DREYSSÉ PHYSICAL REVIEW B 68, 195419 ~2003!
uVNNu,uW`u. ~23!

The meaning of this condition is simple. The left-hand s
~lhs! is the loss in the binding energy because of the sep
tion of a long chain into two pieces. The rhs is the ene
gain due to the relaxation of the two free ends that app
Thus, if the gain is larger than the loss the chain is unsta
with respect to decomposition into smaller parts. The proc
of decomposition will end when all pieces acquire the op
mum lengthl min .

Substituting the explicit expression forW` from Eqs.~20!
and~16! into Eq. ~23!, one can express the calibration crit
rion in terms of the microscopic parameters as

kpf 2SA1

a
1

1

4
2

1

2D .uVNNu. ~24!

From this inequality we see that the self-assembly into s
calibrated clusters requires that the binding of atoms thro
VNN was not too strong. Also, the stiffness of the spri
binding of the atom to the substrate should be small co
pared tokp ~i.e.,a5ks /kp should be small!. Large misfit and
the stiffnesskp of the interatomic ‘‘spring’’ are also favorabl
for the clustering. From Fig. 1 one can see that with o
definition of f 52Vp8/Vp9 the misfit would have been zero fo
the substrate lattice constanta near the minimum ofVp .
uVNNu in this case would have had the largest value, so
inequality ~24! would have been strongly violated. Wit
diminution of a all the conditions favorable for the sel
assembly start to improve:uVNNu diminishes,f andkp grow
because of the growing steepness of theVp(r ) curve, and
evena is most probably diminishing because in its definiti
kp is in the denominator while on physical grounds one m
expect thatks depends weakly ona because in the cell cente
atomic potentials are much less steep than in the near-
region. This is confirmed by calculations of the next sect
~see the third column of Table I!. Thus, we conclude that b
compressing the substrate one can considerably improve
conditions for the self-assembly of size calibration cluste
This will be illustrated with concrete calculations in the fo
lowing section.

E. Examples from metallic heteroepitaxial systems

To illustrate the above formalism with realistic exampl
of strained epitaxy we consider two metallic heteroepitax
systems—Ag/Pt and Pt/Co—which currently are being
tively studied both experimentally18–20and theoretically.21–23

For simplicity we consider 1D case and use the geometr
Ref. 23, where the growth on the steps of the close-pac

TABLE I. Parameters corresponding to the Pt/Co heteroepita
system.

e f /aCo a kpf 2 ~eV! VNN ~eV!

0% 3.5% 0.32 0.049 20.218
2% 4.4% 0.25 0.100 20.179
3% 4.8% 0.22 0.136 20.152
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vicinal surfaces was studied. The position of a deposi
atom was relaxed to its equilibrium value in order to find t
valueks as the second derivative of the potential near eq
librium. The many-body ‘‘potentials’’ and corresponding p
rameters were taken from Ref. 23 for the Ag/Pt system a
from Ref. 22 for the Pt/Co system. These potentials w
devised specifically for application in the heteroepitaxy a
for the close-packed surfaces@~111! in the Ag/Pt case and
~0001! in the Pt/Co system# so we expect our results below
are quite reliable. Although interatomic interactions in Re
21–23 do not have the pair potential form~4! but include
nonlinear many-body corrections due to the band-struc
effects, we hope that the few parameters entering our s
tion can be reliably calculated with the use of this formalis
In this respect our approach is similar to Ref. 17 where
parameters of the Frenkel-Kontorova model were fitted
rectly to the band-structure calculations.

The parameters listed in Table I were calculated for
atomic pairs relaxed only in vertical position because in o
approach we need the first and second derivatives@see dis-
cussion after Eq.~7!# calculated for the pseudomorphic po
sitions of the deposited atoms.

According to our calculations, the Ag/Pt system has
following parameters23 ~the energy unit is eV and the lengt
unit Å!: VNN

p '20.57, VNNN
p '28.831023, kpf 2'0.72,

and a'3.7. HereVNNN
p is the next NN~NNN! interatomic

interaction. Its smallness in comparison withVNN
p justifies

our NN approximation. The large value ofa means that the
relaxation of the strain is very weak~see Fig. 2! so there is
no size calibration with the above parameters. The cru
parametera, however, can strongly vary in different sys
tems. For example, according to our estimates based on
potentials of Ref. 22, in Pt/Co this parameter is an order
magnitude smaller,a.0.32. Because of this the system
quite close to the self-assembly but the misfit strain is s
too small. To enhance the misfit in our model calculations
assumed that the Co underlayer is further compressed~e.g.,
by means of deposition on an appropriate substrate! by the
factor 1-e. ~see Table I and Fig. 3!. From the figure it is seen
that for e53% the curveEl / l does have a minimum in
which case the qualitative analysis of Ref. 5 applies. T
exact solution of Ref. 24 confirms the major qualitative co
clusion of the above paper about the size calibration at lo
ering temperature. Besides, it was shown that in the prese

al

FIG. 3. Length dependence of the reduced energy at zero
perature of the Pt monatomic chains for different values of co
pressione of the Co substrate.
9-6
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of a NNN attraction the clusters will self-organize into reg
lar arrays. This phenomenon may be of importance in
technological applications mentioned in the Introduction.

IV. EXACT SOLUTION AT FINITE TEMPERATURE

In this section we will consider a finite temperature so
tion of the harmonic Frenkel-Kontorova model which w
defined in Sec. II and solved at zero temperature in Sec.
To this end we first integrate out the continuous displacem
variables ~following section!. In Sec. IV B the model is
solved exactly at thermal equilibrium. In Sec. IV C, this s
lution is used to predict a new phenomenon of transient s
assembly which cannot be predicted neither from the ze
temperature solution of the preceding section, nor from
finite-temperature theory of Ref. 5. Finally, in Sec. IV D w
conclude our present study by mapping the system on
he

n
le

an
pe

th
s
e

qu
s
he
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lattice-gas Hamiltonian which can be used in dealing w
2D systems and/or in kinetic Monte Carlo simulations.

A. Averaging over atomic displacements

As was pointed out in Sec. II, at finite temperature t
lattice-gas model can be obtained by means of statistical
eraging over the displacement variables with atomic confi
ration $ni

A% being kept fixed. The harmonic approximation
this case makes it possible to perform the multiple integ
tion in Eq. ~6! with the use of the known formula for multi
dimensional Gaussian integral which is presented in App
dix B. To apply formulas derived the Appendix to th
multiple integral in Eq.~6! we first setM5Dl /kBT, where
Dl is the dynamical matrix corresponding to the quadratic
$ui% form in Eqs.~9! or ~19!:
~25!
cor-

y.

ts

na-

de-

We
al
con-
In Appendix B we have shown that the exponent of t
Gaussian integral Eq.~B1! is equal to the minimum of the
exponent of the integrand, so we can immediately write

E S )
i 51

l

dui D expS 2
Ul

kBTD
5expF2

1

2
lnS det

Dl

2pkBTD2
El

kBTG ~26!

because the minimum of the quadratic form inUl was al-
ready calculated in Sec. III C to be equal toWl and El ap-
pears because of Eq.~21!. Further, because the determina
of a matrix is a homogeneous function of the matrix e
ments of the order of the matrix size~which is l in our case!,
the constant multipliers of the matrix under the determin
sign in Eq.~26! can be separated out into a term of the ty
l ln(2pkBT/c)/2 with some arbitrary constantc. When
summed over all chains these factors will accumulate
configuration independent factorN and so may be dropped a
long as we are interested only in configuration depend
quantities. It is convenient to choose this constant to be e
to D15ks , the dynamical matrix of an isolated atom becau
with this choice the logarithmic term vanishes when t
t
-

t

e

nt
al
e

atomic displacements became unrestricted. This would
respond tokp50 in which case the dynamical matrix~25!
would be proportional to the unit matrix:Dl5ksI and when
divided byD15ks would have its determinant equal to unit
By analogy with Eq.~3! we will write the exponential func-
tion on the rhs of Eq.~26! as exp(2Fl /kBT)[exp(Sl /kB
2El /kBT) with the entropy due to the atomic displacemen

Sl52
kB

2
ln detS D̄ l

D̄1
D , ~27!

where we additionally divided the numerator and denomi
tor under the sign of the determinant bykp to make the
matrices dimensionless:

D̄ l5Dl /kp, D̄15ks /kp5a.

The termentropywas used because due to temperature in
pendence of bothEl andSl we haveSl52]Fl /]T, which is
an expression for the entropy in the canonical ensemble.
note that this quantity is, in fact, only a part of the tot
entropy due to displacements because we neglected the
tribution proportional toN.
9-7
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V. I. TOKAR AND H. DREYSSÉ PHYSICAL REVIEW B 68, 195419 ~2003!
Explicit expression for the chain entropy can be obtain
by exploiting the tridiagonality of the dynamical matrix~25!.
Such matrices satisfy the recurrence relations presente
Appendix C. BecauseD̄15a, the chain entropy Eq.~27!
with the use of Eq.~C8! takes the form

Sl52
kB

2 F lnSA a

11a/4
sinh@l~ l 21/2!1f# D 2 l ln aG .

~28!

Sl calculated with this formula is shown in Fig. 2~a!. The
entropic contribution is negative because in our formali
we discarded the entropy term corresponding tokp50, as
explained above. Whenkp is not equal to zero, the atomi
displacements became restricted by its neighbors, so
entropy diminishes. For large chains the interior atoms
practically in translationally invariant environment, so f
long chains the entropy loss is proportional tol. The above
restrictions on the atomic displacements are more string
for larger kp . This is reflected in the slope ofSl which is
larger for smallera5ks /kp @see Fig. 2~a!#.

B. Configurational averaging

Thus, for an individual chain we completely disposed
the continuous variables$ui% both at zero and at finite tem
perature. Our results can be summarized in the expressio
the effective free energy of the chain of lengthl as

Fl5El2TSl , ~29!

where El and Sl are given by Eqs.~21! and ~28!, respec-
tively. Thus, Eq.~6! takes the form

exp~2Feff /kBT!5C expS 2 (
chains

Fl /kBTD . ~30!

Here in constantC we gathered all configuration independe
factors which are irrelevant for the current study.

The partition function of the system under considerat
can be found by summing Eq.~30! over all possible atomic
configurations. We note that the weight factor in Eq.~30!
looks formally as the canonical Boltzmann weight exce
that instead of the energy of the chain configuration we h
the sum ofFl . This means that in the canonical express
for the equilibrium free energy

Feq5E2TS, ~31!

we should interpretE as the sum ofFl with appropriate
weights. Physically this can be understood as follows. In
configurations consisting of chains of different length t
chains itself can be considered as linear molecules with t
own internal structure which includes, in particular, the
ternal atomic displacements which are not influenced
their permutations and different placements on the subs
as long as these chains remain separated. In the case
two or more chains become nearest neighbors they
treated as a new ‘‘molecule’’ of longer length, the intern
free energy of which should be computed according to
~29!. Thus,
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E5(
l

mlFl ,

whereml is the number of chains of lengthl. To compute the
entropyS in Eq. ~31! we have to count all possible configu
rations corresponding to a fixed chain length distributi
$ml%. The number of inequivalent permutations of the cha
are

Vchains5
mtot!

m1!m2! . . . mN
, ~32!

wheremtot5( l 51
N ml . Besides the permutations, the chai

with a fixed relative order can be differently spaced.26 So
Vchains should be multiplied by the number of different po
sible placements of a given chain sequence on the subst
We will denote this factor byVv . Assuming that the sub
strate consists ofK deposition sites, we use the property
the 1D system that the number of contiguous intervals
vacant sites separating the atomic chains is equal tomtot with
a possible difference in61 interval due to the substrat
boundaries. We neglect this difference in the thermodyna
limit and calculateVchains as the number of ways to divid
K2N vacant sites intomtot clusters. This is equal to the
number of ways to chosemtot21 cuts out ofK2N21 pos-
sibilities. The latter quantity is given by the binomia
coefficient26

Vv5S K2N21

mtot21 D .
~K2N!!

mtot! ~K2N2mtot!!
.

So the entropy per sites5S/K5kBln(VchainsVv). Assuming
K→`, with the use of Eq.~32! and the Stirling formula the
entropy density is calculated as

s5kBF ~12u!ln~12u!2~12u2c!

3 ln~12u2c!2(
l

cl ln cl G ,
whereu5N/K is the total coverage,cl5ml /K is the con-
centration of clusters of lengthl, and c5( lcl is the total
cluster concentration. The concentrationscl should minimize
the functional

v5(
l

clFl2kBTs2mS (
l

lc l2u D ,

which consists of the free-energy densityFeq /K @cf. Eq.
~31!# and the constraintN5const expressed in terms of clu
ter variables multiplied by the Lagrange multiplierm. From
the minimality conditiondv/dcl50, we obtain an expres
sion for the equilibrium cluster concentrations

cl5~12u2c!exp@~m l 2Fl !/kBT#. ~33!

This expression withm adjusted to satisfy the requireme
( l lc l5u gives the exact equilibrium distribution of cluste
lengths in our 1D model. Qualitative behavior of the so
tions of Eq.~33! in the case when the size calibration criter
9-8
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LATTICE GAS MODEL OF COHERENT STRAINED EPITAXY PHYSICAL REVIEW B68, 195419 ~2003!
are fulfilled is discussed in detail in Ref. 24. In the follown
section we consider a solution of this equation in the c
when the parameters of the system do not exhibit the
calibration behavior atT50 but the system is close to th
regime.

C. Transient self-assembly

In the Pt/Co system considered in Sec. III E, fore below
the critical valueec'2%, there is no self-assembly atT
50 because there is no minimum at finitel in El / l ~see Fig.
3!. This means that the interatomic attraction is too stro
However, because the entropic contributionSl @see Fig. 2~a!#
is practically linear inl, it can be unified with the pair inter
action term (l 21)VNN and thus can be considered as
temperature-dependentrepulsive contribution into the pair
interaction. At physically acceptable temperatures it will n
be too large in comparison withVNN because in temperatur
unitsVNN*4000 K ~see Fig. 1! while experimental tempera
tures are usually considerably smaller. Nevertheless, foe
slightly belowec the curveFl(T)/ l will have aT-dependent
minimum at some reasonably high temperatures becaus
the entropic contribution which will disappear at som
smaller temperature.

In Ref. 24 it was shown that at nonzero temperature
position of the maximum of the cluster size distribution do
not coincide with the minimum of theFl(T)/ l curve, so the
position and even the very existence of the size calibra
can be seen only from the solution of the statistical probl
at the temperature of interest.

In Fig. 4 the size distribution of self-assembled clust
calculated with the use of Eq.~33! is shown. From this figure
one can see that our model predicts a new phenomenon
entropy driven transient self-assembly. It has two salient f
tures which differ from known phenomena. First, the beh
ior seen in Fig. 4—the appearance and diminution of s
assembled clusters at growing temperature—is opposit
what is usually seen in the kinetically controlled growth28

Second, in contrast to the nontransient self-assembly,
width of the size distribution is broadening at lowering te
perature. Because this behavior is explained by the relati
weak entropic contribution into the pair interaction ener

FIG. 4. Model calculation of the transient self-assembly of
chains at the steps of the 2% compressed Co substrate at the
erageu50.3, cl is the concentration of chains of lengthl. The
points are connected by splines for better readability~for further
details see the text!.
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observation of such a behavior means that the system is c
to the size calibration atT50.

D. Mapping onto lattice-gas models

In an out of equilibrium system or in higher dimensio
exact solutions are difficult to obtain, so approximate or n
merical techniques should be used. To apply such techniq
one would like to have the Hamiltonian of the system und
study to be expressed in terms of familiar occupation nu
bers$ni%. With the chain free energyFl being known for all
chain lengths, exact form of the Hamiltonian in 1D can
easily constructed as follows.24 Taking into account the fac
that the chains separated by at least one empty site are
interacting, we assume the Hamiltonian to consist exc
sively of the products of the occupation numbers within co
tiguous atomic chains

H5 (
i ; l>2

v lnini 11•••ni 1( l 21) . ~34!

The parametersv l can be found from the free energiesFl as
follows. If an atom is added to a chain of lengthl, the free
energy of the new chain according to Eq.~34! is

Fl5Fl 211v l1v l 211v l 221•••1v2 .

Writing down similar equation for the chain of lengthl 21
and comparing it with the above equation one easily find24

v l5Fl22Fl 211Fl 22 , ~35!

which is valid for all l>1 if we formally setF05F2150.
This expresses parametersv l through the discrete second d
rivative of Fl . Because the latter according to Eqs.~21! and
~28! is asymptotically linear tol, the approach to asymptotic
being exponential, the Hamiltonian parametersv l are expo-
nentially small for largel. This makes possible to restrict th
sum overl in Eq. ~34! to a desirable level of accuracy. I
particular, the entropic term~28! essentially contributes only
into the pair interactionv2, the multiatom contributions be
ing &10%. This confirms the qualitative conclusion made
previous section that the relaxation entropy forma
amounts to effective NN interatomic repulsion which grow
linearly with temperature. The entropic forces of this kin
were earlier discovered in alloys~see Appendix E of Ref. 25
and references to earlier literature therein!.

In two dimensions and with a rectangular geome
atomic relaxations along two orthogonal directions a
independent,13,14 so Eq.~34! can be straightforwardly gener
alized to 2D case. In the anisotropic case the parameterv l
can be different along two orthogonal directions but th
expression through the microscopic parameters in both c
are the same. In Ref. 27, we applied Monte Carlo techni
to a simple isotropic 2D Hamiltonian of the above type
illustrate the size calibration of self-assembled squ
‘‘plaquettes’’ of the type predicted in Ref. 5.

t
ov-
9-9
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V. CONCLUSION

In this paper we considered a simple model of strained
epitaxy and have rigorously shown that the mechanism
self-assembly and size calibration proposed in Ref. 5 is
sentially correct at least for the submonolayer growth. Wh
the simplicity of the model makes its quantitative predictio
to be of limited accuracy, we believe that the qualitati
picture of the self-assembly of size calibrated clusters is c
tured by this model correctly. An additional advantage of
model is that all calculations can be performed analytica
so all pertinent questions can be answered in a rigorous
unambiguous manner.

As we noted in the Introduction, despite its simplicity, t
Frenkel-Kontorova model has been successfully used
semi-quantitative analyses of ground-state properties of
systems~see, e.g., Refs. 17 and 16!. So it may be hoped tha
the finite temperature generalization of the model given
the present paper can be used to make semiquantitative
dictions of some temperature-dependent phenomena
cerningcoherentstructures, such as the self-assembly.

We considered two explicit examples of heteroepitax
systems for which there exist in literature reliable inte
atomic potentials adjusted to treat heteroepitaxial proble
of the type considered by us.21–23 With these potential we
found the size calibration for stressed substrate in Pt/Co
tem. In our opinion, this shows that the above phenom
should be as common in 1D as they are in 2D heteroepit
Further argument in favor of this conclusion is that for t
size calibration to be plausible, the crucial parametera
5ks /kp should be as small as possible. This favors sm
values ofks . The geometry of Ref. 23 considered by us
not quite favorable because of the high coordination of
atoms deposited at the steps of the vicinal surfaces. The
posited atoms interact with five NN of the substrate~see Ref.
23! which enhancesks . It may be hoped that with lowe
coordination~as in the case of 1D structures of Ref. 8!, the
conditions for the size calibration will be more favorab
Furthermore, the metal/metal systems with strong mu
binding considered in this paper are not very suitable for
search of the size calibration. It seems that the hetero
taxial pairs with differing types of bonding are more pla
sible candidates. In our opinion, more promising in this
spect are metal/oxide systems where the binding of the m
atoms to the substrate were found to be particularly wea29
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APPENDIX A

The summation by parts formula which we need to si
plify the expression for the relaxation energy is derived
follows. First we introduce the finite difference operat
Dv j[v j 112v j and apply it to the productv juj :
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D~v juj !5v j 11Duj1ujDv j .

By summing up this identity fromj 52 to l 21 we get

(
j 52

l 21

D~v juj !5v lul2v2u25(
j 52

l 21

~v j 11Duj1ujDv j !.

By identifying ui with the atomic displacements and assu
ing v j 115Duj one can rearrange the above identity as

(
j 52

l 21

~uj 112uj !
252(

j 52

l 21

uj~uj 1122uj1uj 21!1ul
22u2

2 ,

where due to the antisymmetry of the displacements@see Eq.
~15!# ulul 215u2u1. Now adding to both sides of the latte
equality the terma( j 52

l 21uj
2 we note that the summation o

the rhs amounts to zero because of the homogeneous pa
Eq. ~11!. Multiplying the resulting equality bykp/2 and re-
calling thata5ks /kp we finally get

ks

2 (
j 52

l 21

uj
21

kp

2 (
j 52

l 21

~uj 112uj !
25

kp

2
~ul

22u2
2!. ~A1!

APPENDIX B

The multidimensional Gaussian integral is calculated w
the known formula as

E S )
i 51

l

dui D expS 2
1

2 (
i , j 51

l

uiM i j uj1(
i 51

l

uiv i D
5S det

M

2p D 21/2

expS 1

2 (
i , j 51

l

v iM i j
21v j D , ~B1!

whereM is a positive-definite symmetric matrix andv—an
arbitrary constant vector. The exponent on the rhs is obtai
by completing the square on the lhs as

E~$ui%![2
1

2 (
i , j 51

l

uiM i j uj1(
i 51

l

uiv i

52
1

2 (
i , j 51

l

~ui2Mi j
21v j !Mi j ~uj2M jk

21vk!

1
1

2 (
i , j 51

l

v iM i j
21v j . ~B2!

The preexponential factor in Eq.~B1! with the change of
variablesui→ui2Mi j

21v j reduces to the multidimensiona
integral

E S )
i 51

l

dui D expS 2
1

2 (
i , j 51

l

uiM i j uj D . ~B3!

It is calculated by means of diagonalization of matrixM with
the use of an orthogonal transformation the Jacobian
9-10
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which is equal to unity. Eq.~B3! then reduces to the produc
of the textbook Gaussian integrals

E
2`

`

dx expS 2
aix

2

2 D5A2p

ai
.

The constantsai in the above product of integrals are th
eigenvalues of matrixM and their product is equal to th
determinant in Eq.~B1!.

A remarkable property of the Gaussian integration wh
is important for our study is that the argument of the exp
nential function on the rhs is equal to the minimal value
the lhs exponent. Indeed, by setting partial derivatives w
respect to$ui% of the lhs exponentE($ui%) in Eq. ~B2! to be
equal to zero one arrives at the matrix equation

Mu5v,

whose solution isu5M 21v. Substituting this into the lhs
exponent one gets

2
1

2 (
i , j ,k,l

~Mik
21vk!Mi j ~M jl

21v l !1(
ik

~Mik
21vk!v i

5
1

2 (
i , j

v iM i j
21v j ,

i.e., the rhs exponent.

APPENDIX C

According to Eq.~25! and the definition ofD̄ l5Dl /kp

wherea5ks /kp . Because matricesD̄ l are tridiagonal, their
determinants satisfy recurrence relations which can be u
to calculate them. Expanding detD̄ l with respect to the first
row we get

detD̄ l5~11a!dl 212dl 22 . ~C1!

wheredl 21 is the determinant of the matrix obtained fromD̄ l
by crossing out its first row and the first column:
19541
h
-
f
h

ed

~C2!

anddl 22 ,dl 23 , . . . are obtained from the previous determ
nant in the same way. Now, expanding determinant Eq.~C2!
with respect to the elements of the first row we get the f
lowing three term recurrence relation

dl 215~21a!dl 222dl 23 , ~C3!

which is valid for all smaller values of the lower indexl
exceptl 51 and 2. Recurrence relation Eq.~C3! initialized
by two first determinants following from Eq.~C2!

d1511a

and

d25113a1a2 ~C4!

can be used to calculate alldi and detD̄ l through Eq.~C1!.
With the use of Eq.~C3! expression~C1! for detD̄ l can be
somewhat simplified as

detD̄ l5dl2dl 21 , ~C5!

where determinantsdi for i .2 satisfy homogeneous equa
tion

di 112~21a!di1di 1150

@see Eq.~C3!#. This equation coincides with the homog
neous equation in Eq.~11! and so its general solution shou
be sought in the same form as the solution foruj Eq. ~13!

di5c1el i1c2e2l i ~C6!

but with different boundary conditions

elc11e2lc2511a,

e2lc11e22lc25113a1a2, ~C7!

which are obtained by equating general solution~C6! to
9-11
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known determinantsd1 and d2 @see Eq.~C4!#. Solving Eq.
~C7! from Eq. ~C6! we get

di5
cosh~l i 1f!

A11a/4
.

lly
-

i.

tu

l-

19541
Substituting this into Eq.~C5! we obtain an analytic expres
sion for the determinant of the dynamical matrix

detD̄ l5A a

11a/4
sinh@l~ l 21/2!1f#. ~C8!
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