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Self-consistent linear-optical response of thin metal films

A. V. Andreev* and A. B. Kozlov
Physics Department and International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119899, Russia

~Received 3 June 2003; revised manuscript received 9 September 2003; published 11 November 2003!

The linear-optical properties of unbacked thin metal films are studied within the jellium model and the
time-dependent density-functional approach. Unlike most previous calculations, the present ones treat both
longitudinal and transverse components of electromagnetic fields microscopically and results are performed in
terms of strictly calculated reflection, transmission, and absorption coefficients. Dependences of the collective
mode frequencies on metal film thickness are discussed. It is shown that in thin metal film there are collective
modes which can be interpreted as standing plasma waves. Also it is demonstrated that in thin metal films there
exists a couple of surface modes which are related to the so-called multipole surface-plasmon mode. Spectral
and angular dependences of optical response are discussed in detail. A few specific features of optical response
under conditions of collective mode excitations have been found. In particular, metal film cannot absorb more
than a half of energy flux of incident wave. At the angle of incidence, when absorption reaches the absolute
maximum the reflection and transmission coefficients are equal to one-fourth. These and some other features
appear in the same manner for different collective mode excitations. Also, we consider how the spectrum of
collective mode excitations is transformed under the transition from two- to three-dimensional electron sys-
tems.

DOI: 10.1103/PhysRevB.68.195405 PACS number~s!: 78.67.De, 73.21.Fg, 71.15.Mb, 78.20.Bh
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I. INTRODUCTION

In the present work we study the linear-optical respo
of unbacked thin metal films to the applied field of pla
electromagnetic wave. We consider thin metal films wh
represent so-called two-dimensional~2D! electron systems
In such systems the motion of electrons is quantized in
direction and free in two others. 2D electron systems h
been studied for many years1 and they are also realized in
for example, semiconductor quantum wells, inversion laye
heterostructures, and on the surface of liquid helium.

When we treat the optical response of thin metal films i
necessary to keep in mind the following two things. First,
optical response of thin metal films is substantially nonlo
and cannot be adequately described in terms of a diele
permittivity or multipole expansion of electronic respons
Second, electrons in thin metal film interact with each ot
and the motion of any electron depends on the state of
whole electron system. The latter means that the optica
sponse of thin metal films can be described only within
framework of self-consistent theory.

Electron excitations in 2D systems are of particular int
est because they promise a great deal of possible app
tions. Traditionally, they are decomposed into two distin
categories:2 single-particle and collective excitations. Th
single-particle excitations arise from transitions of an el
tron to the states that lie above the Fermi surface. In
electron systems there are intrasubband and intersub
single-particle excitations. The energies of these excitati
are determined by the energy difference between the fi
and initial states of an electron. The concept of sing
particle excitations is very important in solid-state plas
physics but it is rather an abstract concept because in re
it is impossible to excite one electron independently of o
ers. In fact electrons interact with each other and as a re
the collective excitations become dominant. The collect
0163-1829/2003/68~19!/195405~13!/$20.00 68 1954
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excitations arise from the coupling of the single-particle e
citations. This coupling is due to the interaction of electro
with the self-consistent electromagnetic field produced
the whole electron system. The single-particle excitatio
can be coupled via the three different electric field comp
nents. If a 2D electron system interacts with an electric fi
perpendicular~parallel! to the surface of the 2D system, the
we can speak about the longitudinal~transverse! collective
excitations as in this limiting case the electric field is long
tudinal ~transverse!. The longitudinal field is a gradient of a
scalar function and divergence of the transverse field is eq
to zero.

It is known that the coupling of the single-particle inte
subband excitations via the electromagnetic field compon
parallel to the surface of 2D electron gas is extremely wea3

As a result the frequencies of transverse collective mo
almost coincide with the single-particle intersubband tran
tion frequencies. For thin metal film the difference betwe
these frequencies is only about 1025 eV, which is much
smaller than the characteristic absorption linewidth. And
the transverse collective excitations are usually associ
with the single-particle excitations. On the contrary, the lo
gitudinal collective mode frequencies can be significan
shifted from the single-particle intersubband transiti
frequencies.4–6 The shift between these frequencies aris
from two contributions. The direct Coulomb interaction r
sults in the depolarization shift and the exchange-correla
interaction gives the excitonic correction. Recently, bo
contributions have been extensively studied in semicond
tors quantum wells.7 The transverse and longitudinal colle
tive modes can be considered separately only in the limit
cases, when the electric field is parallel or perpendicula
the surface of 2D electron gas. However, in the general c
they are coupled. There are a number of different mo
coupling effects. The coupling between the intrasubband
intersubband collective modes was studied in Refs. 8 an
©2003 The American Physical Society05-1
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The resonant coupling between the single-particle and
lective modes was considered in Ref. 2.

In this paper we use the jellium model to describe elect
properties of thin metal films. Within the framework of th
model the discrete charges of ions are replaced by a unif
positively charged background. Then the valence electr
are treated within the density-functional formalism.10,11 The
electron response of jellium films is usually calculated un
the assumption that the transverse component of the e
tronic response is negligible.12,13This approximation consid
erably simplifies the procedure of calculation of the ele
tronic response as the electromagnetic field can
characterized by only the scalar potential. One of the lim
tions of this approximation is that results of calculations
performed in terms of auxiliary quantities which cannot
directly measured in experiment. In the present work, b
longitudinal and transverse components of the electrom
netic field are treated rigorously within the density-function
approach and results are presented in terms of the str
calculated reflection, transmission, and absorption coe
cients of thin metal film.

The outline of this paper is as follows: In Sec. II w
discuss basic equations which determine the linear-op
response of thin metal films within the time-depende
density-functional theory. A method of their solution in
particular case ofs-polarized incident wave is specified. I
Sec. III we consider excitations of the longitudinal collecti
modes. Dependences of the collective mode frequencie
film thickness are discussed in detail. Reflection, transm
sion, and absorption spectra of thin metal film are conside
in Sec. IV. The field distribution in thin metal film is dis
cussed in Sec. V. The dependence of the optical respons
thin metal film on the angle of incidence of the electroma
netic wave is analyzed in Sec. VI. In Sec. VII we consid
the important question how 2D collective modes transfo
into 3D plasmons. Conclusions are given in Sec. VIII.

II. THEORY OF THE LINEAR-OPTICAL RESPONSE

A. Charge and current densities

In this subsection we derive expressions for the cha
and current densities induced in the jellium film by an ext
nal field. The motion of electrons in the jellium film can b
described by the Schro¨dinger-type equation

i\
]C j

]t
52

\2

2me
¹W 2C j1ewC j1VC j

1
i\e

2mec
~¹W AW 1AW ¹W !C j1

e2

2mec
2
AW 2C j , ~1!

wherew and AW are the field potentials,V is the exchange-
correlation potential, andC j is the wave function of thej th
electron. In the steady-state case Eq.~1! transforms into the
Kohn-Sham equation.11 We describe the exchange and cor
lation interaction between electrons by the scalar potentiaV.
Strictly speaking, it is justified only if the jellium film inter
acts with the longitudinal electric field, while in general ca
the exchange and correlation effects must be described
19540
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the vector potential.14–16Nevertheless, we use the scalar p
tentialV because we will mainly discuss the situations wh
the longitudinal part of electromagnetic field in the jelliu
film is significantly larger than the transverse part.

We consider the solution of Eq.~1! within the perturba-
tion theory, assuming that the external field is much sma
than the internal field in the film. The wave function can
expanded into series

C j5C0 j1C1 j1•••, ~2!

whereC0 j is the wave function in the absence of extern
field, which can be written in the form

C0 j~rW,t !→C0n,kW t
~rW,t !5

1

AS
expS 2

i

\
En,kW t

t1 ikW trW DFn~z!.

~3!

Here, we assume that the state of thej th electron is charac-
terized by the quantum numbern and the tangential compo
nent of wave vectorkW t , z is the normal coordinate, andS is
the area of film surface. The eigenvaluesEn,kW t

is the sum of
the energies of free longitudinal and quantized transve
motions,

En,kW t
5

\2kW t
2

2me
1«n , ~4!

and the eigenfunctionsFn satisfy the one-dimensiona
Kohn-Sham equation

d2Fn

dz2
1

2me

\2
~«n2ew02V0!Fn50, ~5!

where ew0 and V0 are the Hartree and local exchang
correlation potentials, respectively. To evaluateV0 we use
Wigner’s formula for the exchange and correlation ene
per particle of homogeneous electron gas.17

If the metal film interacts with a plane, monochroma
wave, then the potentials can be written in the form

w~rW,t !5w0~z!1w1~z!exp~ iqW trW2 ivt !1•••, ~6a!

AW ~rW,t !5AW 1~z!exp~ iqW trW2 ivt !1•••, ~6b!

V~rW,t !5V0~z!1V1~z!exp~ iqW trW2 ivt !1•••, ~6c!

wherev is the field frequency andqW t is the tangential com-
ponent of wave vector. The complex amplitudes of potent
denoted by subscript 1 are assumed to be linear in ampli
of the incident wave and the complex amplitude for t
charge and current densities,

r5e(
j

uC j u2, ~7a!

JW52
e

mec
AW r1

i\e

2me
(

j
~C j¹W C j* 2C j* ¹W C j !, ~7b!

can be introduced in the same way.
5-2
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Substitution of Eqs.~2! and ~6! into Eq. ~1! with subse-
quent linearization gives an equation forC1n , which can be
solved in the usual way—namely, by expandingC1n over
the Kohn-Sham eigenfunctionsFn . In this expansion we
take into account only the bound states; i.e., we neglect t
sitions of electrons from the states of discrete spectrum to
states of continuous spectrum. It should be noted that
approximation is justified only for analysis of the electr
excitations with the energies that lie below the continu
threshold. The excitations with higher energies can be in
enced by the electron transitions to the continuum states.
the sake of definiteness, let us choose a coordinate syste
that ŷ-ẑ is the plane of incidence. Straightforward calculati
gives the following expressions for the complex amplitud
of charge and current densities:

J1x52
e

mec
r0A1x2

\e2kF0
4

8pme
2c

(
n,m

FnFm* @A1x#nm

R1,nm

Dnm
,

~8a!

J1y52
e

mec
r0A1y2

ekF0
3

4pme
(
n,m

FnFm* S @H i#nm

R2,nm

Dnm

2@ew11V11H'#nm

R3,nm

Dnm
D , ~8b!

J1z52
e

mec
r0A1z1

iekF0
2

4pme
(
n,m

~Fn¹zFm* 2Fm* ¹zFn!

3S @ew11V11H'#nm

R4,nm

Dnm
2@H i#nm

R3,nm

Dnm
D , ~8c!

r15
ekF0

2

2p\ (
n,m

FnFm* S @ew11V11H'#nm

R4,nm

Dnm

2@H i#nm

R3,nm

Dnm
D , ~8d!

where

H i5
\ekF0

2mec
A1y , H'5

i\e

2mec
~¹zA1z1A1z¹z!, ~9!

kF05(3p2n̄)1/3, n̄ is the density of the positive backgroun
Dnm5vnm2v2 ignm , \vnm5(«n2«m) is the energy dif-
ference between thenth andmth eigenstates, andgnm is the
phenomenologically introduced transverse relaxation r
For the sake of simplicity we will assume further that t
relaxation rategnm does not depend on the initial and fin
statesnth andmth—namely,gnm5t21 wheret is the trans-
verse relaxation time. The square brackets in Eqs.~8! are
used to denote the matrix elements—i.e.,@F#nm

5*Fn* FFmdz, where F is an arbitrary operator. Expres
sions~8! contain the dimensionless quantities
19540
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Rp,nm5QnS «F2«n

«F0
D l p

I pS \qykF0

meDnm
A«F2«n

«F0
,

2
qy

2kF0
A «F0

«F2«n
D 2QmS «F2«m

«F0
D l p

I p

3S \qykF0

meDnm
A«F2«m

«F0
,

qy

2kF0
A «F0

«F2«m
D , ~10!

where p51,2,3,4; l 15 l 252, l 353/2, l 451; Qn[Q(«F

2«n) is the Heaviside unit step function,«F05\2kF0
2 /2me ,

and «F is the Fermi energy. In its turn expression~10! in-
cludes the following integrals:

I 1~a,b!5
8

3pE21

1

dx
~12x2!3/2

11a~x1b!
, ~11a!

I 2~a,b!5
8

pE21

1

dx
~12x2!1/2~x1b!2

11a~x1b!
, ~11b!

I 3~a,b!5
4

pE21

1

dx
~12x2!1/2~x1b!

11a~x1b!
, ~11c!

I 4~a,b!5
2

pE21

1

dx
~12x2!1/2

11a~x1b!
, ~11d!

which can be calculated analytically. For example, in t
particular caseqy50 we haveI 15I 25I 451 andI 350.

The obtained expressions for current density~8! consist of
two terms. The first term defines the local response of
electron subsystem and the second term defines the non
one. The local response at some point depends on
strength of the field at the same point whereas the nonlo
response depends on the field distribution inside the film

B. Self-consistent equations

Equations~8! determine the functional dependence of t
charge and current densities on the field and exchan
correlation potentials. Now, in order to get set of the se
consistent equations it is necessary to supplement Eqs~8!
with equations for the field and exchange-correlation pot
tials. We use the following gauge condition on field pote
tials:

w2w050, ~12!

wherew0 is the unperturbed scalar potential. In other wor
the scalar potentialw does not depend on time and the line
response of the jellium film is fully determined by the vect
potentialAW . It can be shown that the equations for compl
amplitudes of tangential and normal components of vec
potential can be written in the form

d2AW 1t

dz2
1qz

2AW 1t52
4p

c
jW1t1

4pc

v
qW tr1 , ~13a!
5-3
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d2A1z

dz2
1qz

2A1z52
4p

c
j 1z1

4pc

iv

dr1

dz
, ~13b!

where jW is defined as

jW5
e

mec
r0AW 1JW ~14!

and

qz
2~z!5

v2

c2
«~z!2qy

2 , ~15!

«~z!512
4per0~z!

mev
2

. ~16!

The quantitiesqz and « should not be interpreted as th
normal component of the wave vector and dielectric perm
tivity, respectively. In our calculations we use the adiaba
local-density approximation18,19 for the induced exchange
correlation potential:

V15
dV0

dr0
r1 . ~17!

Here it should be noted that it is the simplest possible
proximation. More sophisticated approximations have b
extensively discussed recently.15,16,20

So we get the self-consistent equations~8!, ~13!, and~17!,
which fully determine linear-optical response of thin me
films.

C. s-polarized incident wave

In this subsection we discuss the equation for the ve
potential which describes the interaction of the jellium fi
with s-polarized incident wave. Substitution of Eq.~8a! into
Eq. ~13a! yields

d2A1x

dz2
1qz

2A1x5
\e2kF0

4

2me
2c2 (

n,m
FnFm*

R1,nm

Dnm
@A1x#nm .

~18!

The solution of this equation can be performed with the h
of the Green function. Letu and v be linear-independen
solutions of the homogeneous equation

d2A1x

dz2
1qz

2A1x50, ~19!

which correspond to two waves with unit amplitudes that
incident on metal film from opposite sides. Then the solut
of Eq. ~18! can be written as
19540
t-
c

-
n

l

r

p

e
n

A1x~z!5A0u~z!1
\e2kF0

4

2me
2c2w

3(
n,m

R1,nm

Dnm
@A1x#nmS u~z!E

2`

z

dz8v~z8!

1v~z!E
z

1`

dz8u~z8! DFn~z8!Fm* ~z8!, ~20!

whereA0 is the amplitude of vector potential of the incide
wave andw is the Wronskian. The solution~20! contains the
matrix elements@A1x#nm , which can be determined from th
set of linear algebraic equations

@A1x#kl2
\e2kF0

4

2me
2c2w

(
n,m

R1,nm

Dnm
@A1x#nmF S u~z!E

2`

z

dz8v~z8!

1v~z!E
z

1`

dz8u~z8! DFn~z8!Fm* ~z8!G
kl

5A0@u#kl .

~21!

Finally, we note that the interaction of the metal film wi
p-polarized incident waves is described by three equatio
for the tangential and normal components of the vector
tential and for the induced exchange-correlation potent
These equations can be easily obtained as a result of su
tution of Eqs.~8! into Eqs.~13! and~17!. We do not discuss
here these equations in detail, as their analysis is comple
similar to that for the case ofs-polarized incident waves.

III. LONGITUDINAL COLLECTIVE MODES

Before we proceed to a discussion of the linear-opti
properties of thin metal films, we consider the solution of t
self-consistent equations~8!, ~13!, and~17! in the particular
case of interactions of metal film with the longitudinal ele
tric field. In order to keep this paper self-consistent we p
in Fig. 1 the dependences of eigenvalues«n and Fermi en-
ergy «F on jellium film thicknessL. These dependences a
calculated for the background densityn̄ characterized by the
Wigner-Seitz radiusr s(n̄)54 and they are needed for furthe
analysis. We choose zero energy so that the electrostatic
tential vanishes far from the metal film. In this case the wo
function is simply equal to the absolute value of the Fer
energy. It is seen from Fig. 1 that the Fermi energy exhib
oscillations. The period of these oscillations is very close
lF/2'0.35 nm, wherelF is the Fermi wavelength. Thes
oscillations are connected with the appearance of new o
pied subbands with increasing film thickness.

Let only the normal component of the vector potential
nonzero and depend only on the normal coordinatez. In this
case the self-consistent equations~8!, ~13!, and ~17! can be
solved.5,6 For example, the solution for the vector potential

A1z52 i
4ec

\v (
n.m

~Fn¹zFm2Fm¹zFn!
Rnm

(L)

\vnm
Xnm ,

~22!
5-4
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where

Rnm
(L)5Qn~«F2«n!2Qm~«F2«m! ~23!

and

Xnm5
vnm@V1#nm1v@H'#nm

vnm
2 2v2

. ~24!

Here, for the sake of simplicity, we assume thatFn are the
real functions and we neglect the relaxation processes. In
~22! we have omitted terms corresponding to the exter
field. The matrix elementsXnm can be found from the solu
tion of the set of algebraic equations

(
n.m

Gkl,nmXnm5~v22vkl
2 !Xkl , ~25!

where

Gkl,nm52
Rnm

(L)

\vnm
S 2e2

me
E ~Fk¹zF l2F l¹zFk!~Fn¹zFm

2Fm¹zFn!dz1
2mevklvnm

p\2

3E FkF l

dV0

dn0
FnFmdzD . ~26!

The homogeneous system of coupled equations~25! has a
nontrivial solution if its determinant is equal to zero. Th
frequencies of the longitudinal collective modes can be
termined from this condition. The quantitiesGkl,nm in Eq.
~25! determine the coupling between the single-particle
tersubband excitations. If we neglect such coupling, then
get that the eigenfrequencies of the electron system are e
to the single-particle intersubband transition frequenc

FIG. 1. Eigenvalues«n and Fermi energy«F vs metal film thick-

nessL for r s(n̄)54. The dashed lines denote the film thicknesse
which new occupied subbands appear.
19540
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vnm . The expression forGkl,nm , Eq. ~26!, consists of two
terms. They describe the so-called depolarization and e
tonic shifts, respectively.5,6

The system of equations~25! determine the longitudina
collective mode frequencies of the 2D electron gas confi
in an arbitrary one-dimensional potential well. If the pote
tial well is symmetrical, then the system of equations~25!
splits into two independent systems. It is due to the fact t
Gkl,nm50 if k1 l 1n1m is an odd number. These two sy
tems describe the coupling of single-particle intersubba
excitations between the states with different and the sa
parities and the conditions of the existence of their nontriv
solutions gives the equations for odd and even collec
mode frequencies, respectively.

Figure 2 shows the dependences of odd and even long
dinal collective mode frequencies on the film thickness, c

culated forr s(n̄)54. At first we note that the number of th
collective modes at some film thickness is equal to the nu
ber of different single-particle intersubband excitations w
energies\vnm . In the linear-optical regime such excitation
are possible between the subbands from which at least o
occupied in the ground state. Therefore the number of c
lective modes stepwise increases at film thicknesses w
new occupied subbands or new empty subbands at the to
the potential well appear. The former thicknesses are den
in Figs. 1 and 2 by the vertical dashed lines and the la
thicknesses can be easily extracted from Fig. 1. In our
culations we take into account a new empty subband at
top of the potential well when its bottom energy«n becomes
less than20.05 eV. The dependences of the collective mo
frequencies shown in Fig. 2 have discontinuities at fi
thicknesses where new subbands appear at the top o
potential well. These discontinuities arise from our appro
mation; we neglect electron transitions to the states of
continuous spectrum. It is seen that the discontinuities
absent for the collective modes with energies that lie be
the continuum threshold. The inset in Fig. 2~a! shows that the
collective modes are nondegenerate; i.e., there are no od
even collective modes with the same energy.

The horizontal dashed lines in Fig. 2 mark two charact
istic frequencies. One of them is the bulk plasma freque
vp5(4pn̄e2/m)1/2. It is seen that there are no collectiv
modes with frequencies that lie far above the bulk plas
frequency. Also it is seen that a group of collective mod
with frequencies nearvp is formed with increasing film
thickness. The frequencies of the collective modes from
group depend weakly on film thickness and the number
collective modes in this group increases with increasing fi
thickness. These collective modes can be interpreted as
standing plasma waves in thin metal slab.13,21 Another fre-
quency marked in Fig. 2 corresponds to the so-called mu
pole surface plasmon. The existence of the multipole p
mon at metal surfaces was demonstrated both experimen
and theoretically.22 The frequency of the multipole surfac
plasmon is close to 0.8vp . However, here we use the valu
0.85vp that was given in the recent work of Barmanet al.23

and which is somewhat higher than the generally accep
value 0.8vp . It is seen from Fig. 2 that almost everywhere

t

5-5
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FIG. 2. Frequencies of odd~a! and even~b! longitudinal collective modes vs metal film thickness forr s(n̄)54. The vertical dashed lines
denote the film thicknesses at which new occupied subbands appear. Two horizontal dashed lines mark the bulk plasma frequenvp and
the frequency of the multipole surface plasmon, 0.85vp . The inset shows the region of two closely spaced collective mode frequenc
an expanded scale.
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the range of film thickness from 0.5 to 2 nm there are b
odd and even collective modes with frequencies which
close to 0.85vp .

The odd~even! longitudinal collective modes denoted b
the open circles and stars in Fig. 2 arise from the coupling
the single-particle excitations with energies\vnm such that
n2m51 (n2m52) and n2m53 (n2m54), respec-
tively. In order to illustrate it we plot in Fig. 3 the results o
the model calculation in which we take into account only t

FIG. 3. Frequencies of odd longitudinal collective modes vs fi

thickness forr s(n̄)54. The vertical dashed lines denote film thic
nesses at which new occupied subbands appear. The horiz
dashed line marks the bulk plasma frequencyvp . The collective
mode frequencies are calculated on the model assumption tha
intersubband transitions are allowed only between adjacent
bands.
19540
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single-particle excitations with energies\vnm such thatn
2m51. In this simulation the other single-particle excit
tions are considered asforbidden; i.e., we assume that th
matrix elementsXnm50 if n2mÞ1. It is clear that in this
case the number of collective modes at some film thickn
is equal to the number of occupied subbands,N, in the
ground state. It is seen from Fig. 3 that the coupling ofN
single-particle excitations with energies«n112«n yields ~i!
N21 collective modes with frequencies that almost coinc
with the frequencies of collective modes denoted by the o
circle in Fig. 2~a! and ~ii ! one collective mode with fre-
quency that tends to the bulk plasma frequencyvp with in-
creasing film thickness. The latter result will be discussed
detail in Sec. VII.

IV. REFLECTION, TRANSMISSION, AND ABSORPTION
SPECTRA

We will further discuss the linear-optical properties of th
metal films and illustrate them in an example of metal fi
with thicknessL51 nm and mean electron densityn̄ char-
acterized by Wigner-Seitz radiusr s(n̄)54. In order to give
an idea of the metal film with such parameters we plot in F
4 the self-consistent potentials, eigenenergies, and den
distributions. It is seen from Fig. 4~a! that the effective po-
tential ew01V0 is formed mainly by the exchange
correlation potentialV0. Figure 4~b! shows that in such film
there are six energy subbands and three of them are o
pied. The electron densityn0 in Fig. 4~c! exhibits character-
istic Friedel oscillations. A detailed analysis of the se
consistent potentials and density distributions as function
L and n̄ was done by Schulte.24

We start the analysis of the linear-optical properties
thin metal films from the discussion of absorption spect
Figure 5 shows the spectral dependence of the absorp

tal

the
b-
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SELF-CONSISTENT LINEAR-OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 68, 195405 ~2003!
coefficientA for two different cases of incident waves. Th
absorption coefficient is defined asA512R2T, whereR
and T are the intensity reflection and transmission coe
cients. We assume here that the relaxation timet is equal to
1 ps unless otherwise specified.

In the case of normal incidence of light waves on t
metal film the absorption spectrum is shown in Fig. 5~a!. It
contains the resonant peaks corresponding to the transv
collective mode excitations. The frequencies of transve
collective modes are shown in Fig. 5~a! by the vertical ar-
rows and they almost coincide with the intersubband tra
tion frequenciesvnm . The shift between the collective mod
frequencies andvnm is only about 1025 eV, which is sig-
nificantly smaller than the characteristic absorpti
linewidth.3 The absorption peaks in Fig. 5~a! differ in their
amplitudes. One of the reasons for this difference is c
nected with the parity of the collective modes. The amp
tudes of peaks corresponding to excitations of odd mo
~for example, the first three low-frequency resonances! are
significantly larger than those corresponding to excitations
even modes~for example, the second three low-frequen
resonances!. The frequencies of odd and even transverse c
lective modes are close to the transition frequenciesvnm
between the Kohn-Sham eigenstatesFn with different and
the same parity, respectively.

In the case ofs-polarized incident waves the absorptio
spectrum also contains resonant peaks correspondin
transverse collective mode excitations. The deviation fr

FIG. 4. ~a! Electrostaticew0 and exchange-correlationV0 po-
tentials,~b! effective potentialew01V0, Kohn-Sham eigenenergie
«n ~solid lines! and Fermi energy«F ~dashed line!, and ~c! back-
groundn1 and electronn0 densities for metal film with the thick-

nessL51 nm andr s(n̄)54.
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normal incidence does not result in any qualitative chan
of the absorption spectrum. On the contrary, in the case
p-polarized incident waves the absorption spectrum conta
resonant peaks corresponding to excitations of both tra
verse and longitudinal collective modes. Here, it should
noted thatp-polarized incident waves cannot excite pure
longitudinal or transverse collective modes. Strictly speak
p-polarized incident waves can excite the longitudin
transverse collective modes. Nevertheless, we will refer
different excitations as longitudinal or transverse collect
mode excitations because there are a number of feat
which allow us to discern them.

Figure 5~b! shows the absorption spectrum for the case
p-polarized incident waves at the angleu530°. The vertical
arrows denote the longitudinal collective mode frequenc
Here, it is necessary to note that there is a weak depend
of the collective mode frequencies on the angle of inciden
u. Below we will discuss these dependences in detail.
order to avoid confusion we arrange to refer to collect
modes by values of their frequencies in the limitu50. It is
seen from Fig. 5~b! that the amplitudes of some absorptio
peaks corresponding to excitations of the longitudinal mo
~for example, peaks at frequencies 3.57 eV or 4.961 eV! are
significantly larger than those corresponding to excitations
the transverse modes. The maximum collective mode
quency is 5.995 eV and it is only slightly larger than the bu
plasma frequencyvp55.891 eV, which characterizes th
collective excitation~volume plasmon! in infinite electron

FIG. 5. Absorption spectrum for normal incidence~a! and inci-
dence ofp-polarized waves at the angleu530° ~b!. The vertical
arrows denote the transverse~a! and longitudinal~b! collective
mode frequencies. The relaxation timet51 ps.
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A. V. ANDREEV AND A. B. KOZLOV PHYSICAL REVIEW B 68, 195405 ~2003!
gas of a given density. This result is in agreement with p
vious calculations.13

For the case of normal incidence, Fig. 6 shows dep
dences of reflectionR, transmissionT, and absorptionA co-
efficients on field frequency varying in the vicinity of th
intersubband transition frequencyv3251.1963 eV. In Fig. 6
we also plot nonresonant reflectionRnr and transmissionTnr
coefficients that are calculated in an approximation of
local response. This approximation does not take into
count the nonlocal resonant response of the valence e
trons; namely, it neglects the right-hand part of Eq.~18!. It is
seen from Fig. 6~c! that the amplitude of the absorption res
nance corresponding to excitation of the transverse collec
mode is quite small, even for the relatively large relaxat
time t510 ps that is used here. The resonant deviation
the reflection and transmission coefficients from the nonre
nant background are also small. In other words the reso
part of the field response of the metal film is significan
smaller than the nonresonant part. But it does not mean
in the case under consideration the resonant part of the
rent density is also significantly smaller than the nonreson
part. In fact, they are comparable, but at the same time th
is an important distinction between them. The sign of
resonant current density changes 3 times across the m
film while the sign of the nonresonant current density do
not change.

Figure 7 shows reflectionR, transmissionT, and absorp-
tion A coefficients ofp-polarized incident waves at the ang
u530° as functions of field frequency varying in the vicini

FIG. 6. Spectral dependence of reflectionR ~a!, transmissionT
~b!, and absorptionA ~c! coefficients as well as nonresonant refle
tion Rnr ~a! and transmissionTnr ~b! coefficients for the case o
normal incidence. The field frequencyv varies in the vicinity of the
intersubband transition frequencyv3251.1963 eV; the relaxation
time t510 ps.
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of two closely spaced longitudinal collective mode freque
cies 5.893 eV and 5.995 eV. It is seen that the reflecti
transmission, and absorption coefficients change greatly
the collective mode frequencies. For comparison, in Fig
we also plot reflectionR0 and transmissionT0 coefficients,
which are calculated using the Fresnel formulas for me
film with the dielectric permittivity that is given by Eq.~16!.
It is known that the dependences of the reflectionR0 and
transmissionT0 coefficients on the field frequency have on
two specific points. One of them takes place at a freque
when the angle of incidenceu becomes equal to Brewster
angle ~in our case this frequency is 7.215 eV!. The other
specific point that is just shown in Fig. 7 appears at the b
plasma frequencyvp55.891 eV.

V. FIELD DISTRIBUTION

In this section we discuss the field and induced cha
density distributions for the case of ap-polarized wave that
is incident on the metal film at the angleu530°. Figure 8
shows moduli of the complex amplitudes of the tangen
and normal components of the vector potential as well
induced charge density for three different values of field f
quency. The first case is shown in Figs. 8~a!–8~c! and it is an
example of a nonresonant interaction of electromagn
waves with the metal film. The field frequency is equal to 0
eV and it does not coincide with any collective mode fr

FIG. 7. Spectral dependence of reflectionR ~a!, transmissionT
~b!, and absorptionA ~c! coefficients forp-polarized incident waves
at u530°. ReflectionR0 ~a! and transmissionT0 ~b! coefficients
are calculated with the help of the Fresnel formulas. The field
quencyv varies in the vicinity of two closely spaced longitudin
collective mode frequencies 5.893 eV and 5.995 eV. The b
plasma frequencyvp55.891 eV; the relaxation timet51 ps.
5-8
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SELF-CONSISTENT LINEAR-OPTICAL RESPONSE OF . . . PHYSICAL REVIEW B 68, 195405 ~2003!
quency. In two other cases the field frequency is equa
longitudinal collective mode frequencies 5.995 eV and 3
eV and these cases are shown in Figs. 8~d!–8~f! and 8~g!–
8~i!, respectively.

In the nonresonant case the tangential component of
vector potential varies slightly within the metal film. Th
electromagnetic field on the left side of the metal film, whe
the electron density vanishes, is a superposition of the i
dent and reflected waves. Its amplitude is an oscillating fu
tion of the transverse coordinatez. The frequency of these
oscillations is equal to the double normal component of
wave vector of the incident wave. Certainly, we cannot
these oscillations on the nanometer scale, but we see in
8~a! that the amplitude changes on the left of the metal fi
The amplitude of field on the right side of the metal film
constant and equal to the amplitude of the transmitted wa
It is seen from Fig. 8~b! that the normal component of th
vector potential varies significantly within the metal film
opposed to the tangential component. The variation of
normal component of the field can be qualitatively und
stood with the help of the well-known boundary conditio
for macroscopic field quantities. The normal component
the electric displacement vector is continuous at the bou
ary of the media. The dielectric permittivity of free electro
gas at the considered field frequency can be evaluate
102. Hence, the amplitude of the normal component of
vector potential inside the metal film has to decrease
proximately by a factor of 102. Such decreasing and oscilla
tions of the normal component of the field are seen in F
8~b!. Also we note here that in the nonresonant case
induced charge density is maximized approximately at
boundaries of the metal film.

As is seen from Figs. 8~d!–8~i! the field and induced

FIG. 8. Moduli of complex amplitudes of the tangential~a!, ~d!,
~g! and normal~b!, ~e!, ~h! components of the vector potential a
well as induced charge density~c!, ~f!, ~i! as functions of transversa
coordinatez for the case ofp-polarized incident wave atu530°.
The field frequencyv is equal to 0.5 eV~a!–~c!, 5.995 eV~d!–~f!,
and 3.57 eV~g!–~i!. The relaxation timet51 ps.
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charge density distributions undergo drastic changes un
conditions of the longitudinal collective excitations. The am
plitude of the normal component of the field inside the me
film significantly increases and can be two orders of mag
tude larger than the amplitude of the incident wave. T
induced charge density also increases and can significa
extend beyond the nominal boundaries of the metal film
z56L/2.

VI. ANGULAR DEPENDENCES OF THE OPTICAL
RESPONSE

A. Transverse collective excitations

We now discuss the angular dependence of the opt
response of thin metal films under the conditions of tra
verse collective mode excitations. As an example, we c
sider the absorption peak at the frequency 0.738 eV~see Fig.
5!. In general, every absorption peak can be characterize
its position, width, and height. We determine the width of t
absorption peaks at half height. The positions of the abso
tion peaks corresponding to the transverse collective m
excitations are almost constant. The difference between
sitions of these peaks and intersubband transition frequen
vnm amounts to about 1025 eV, which is much smaller than
the characteristic width of absorption peaks. Figure 9 sho
the width and height of the absorption peak at the freque
0.738 eV as functions of the angle of incidence,u, which are
calculated for three different relaxation timest and two mu-
tually orthogonal polarizations of the incident wave. In t
case of normal incidenceu50, the broadening of the ab

FIG. 9. Angular dependence of the full width at half height~a!
and height~b! of the absorption peak at the frequency 0.738 eV. T
incident wave iss polarized~solid curves! andp polarized~dashed
curves!. The relaxation timet is equal to 0.5 ps~1!, 1 ps~2!, and 10
ps ~3!.
5-9
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A. V. ANDREEV AND A. B. KOZLOV PHYSICAL REVIEW B 68, 195405 ~2003!
sorption peak is absent, the width of the absorption pea
equal to 2/t, and the height of the absorption peak is prop
tional to the relaxation time. With increasing angle of inc
dence there is a broadening of the absorption peak, whic
more pronounced for longer relaxation time. The broaden
for mutually orthogonal polarizations of incident waves
most coincides but at the same time there is a quite obs
able difference. Also, it is seen from Fig. 9~b! that the de-
pendences of the height of the absorption peak on the a
of incidence in the cases ofs- andp-polarized incident waves
are significantly different.

B. Longitudinal collective excitations

In this subsection we discuss the angular dependenc
the optical response of thin metal films under the conditio
of longitudinal collective mode excitations. At first, we co
sider the absorption peak corresponding to excitation of
of the longitudinal collective modes. Figure 10 shows t
position, full width at half height, and height of the absor
tion peak as functions of the angle of incidence,u. It is seen
that the position of the absorption peak shifts with increas
angle of incidence. This shift amounts to about 1022 eV.
Most of the absorption peaks have ultraviolet shifts as is s
in Fig. 10~a!. An infrared shift may occur in the cases whe
there are two or more closely spaced absorption peaks.

FIG. 10. Angular dependence of position~a!, full width at half
height ~b!, and height~c! of the absorption peak corresponding
excitation of one of the longitudinal collective modes. The heigh
the absorption peak is determined by the absorption coefficienA.
In addition to the absorption coefficientA, the related reflectionR
and transmissionT coefficients (R1T1A51) are also plotted in
the bottom panel. The incident wave isp polarized. The vertical
dashed lines denote the positions of extrema of the absorption
efficient A. The relaxation timet51 ps.
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In Fig. 10 two vertical dashed lines denote positions
extrema of the absorption coefficientA. The optical response
at these two points has a few specific features. The abs
tion coefficient at the angle of incidence,u571.74°, has the
local minimum and the reflection and transmission coe
cients equal to each other and the width of the absorp
peak reaches the maximum. The absorption coefficient at
angle of incidence,u514.57°, reaches the absolute max
mum and is equal to 0.5. At the latter point the reflection a
transmission coefficients are equal to 0.25. Also, we no
here without illustration that at the latter point the width
the absorption peak is exactly 2 times larger than in the li
u50. We have found similar points with the mentione
properties for a number of other collective excitations.

Figure 11 shows the angular dependence of the absorp
coefficient under the conditions of resonant excitations
odd longitudinal collective modes. It is seen that the abso
tion coefficient does not exceed the value 0.5. It means
metal film cannot absorb more than half of the energy flux
incident waves under the mentioned conditions. The he
of the absorption peak near the frequency 5.893 eV reac
the absolute maximum twice. In general, one can notice
the height of the absorption peaks at smaller frequen
reaches the absolute maximum later with increasing angl
incidence.

Now we consider the question why the absorption coe
cient cannot be greater than 0.5 under the conditions of
collective mode excitations. At first we note that under the
conditions the optical response of the metal film is main
formed by the normal component of the current density a
induced charge density. These quantities significantly
crease and they are even and odd functions of the transv
coordinatez, respectively. Using only this fact it is easy t
show that the reflection and transmission coefficients can
represented as

R5ur u2, T5u12r u2, ~27!

where the complex numberr 5r 11 ir 2 characterizes the
linear-optical response of the metal film. By substituti

f

o-

FIG. 11. Angular dependence of heights of the absorption pe
corresponding to the excitations of the longitudinal collecti
modes. Frequencies of the collective modes tend to 5.995 eV~1!,
5.893 eV~2!, 4.961 eV~3!, 3.853 eV~4!, and 3.57 eV~5! in the
limit u50. The incident wave isp polarized; the relaxation time
t51 ps.
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these expressions into the energy conservation equatioR
1T1A51 we get

S r 12
1

2D 2

1r 2
25

1

2 S 1

2
2AD . ~28!

It is seen that a solution of Eq.~28! exists only if the absorp-
tion coefficient is less than or equal to 0.5. Moreover, if t
absorption coefficient is equal to 0.5, then the reflection
transmission coefficients are equal to 0.25.

Finally we discuss how the resonant response of t
metal films depends on the transverse relaxation timet. As
an example we consider the absorption peak near the
quency 4.961 eV. Figure 12 shows the angular dependenc
the full width at half height and height of the absorption pe
for different values of the relaxation timet. It is seen that
the full width at half height is inversely proportional to th
relaxation time only in the limitu50. We have already men
tioned that the width of the absorption peak at the angle
incidence where the absorption coefficient reaches the m
mum is 2 times larger than that in the limitu50. This fact is
shown in Fig. 12~a! with the help of the horizontal dashe
lines. As far as the absorption coefficient is concerned,
longer the relaxation time, the smaller the angle of incide
where the absorption coefficient reaches the absolute m
mum.

FIG. 12. Angular dependence of the full width at half height~a!
and height~b! of the absorption peak corresponding to excitation
the longitudinal collective mode. The dependences are calcul
for five different relaxation timest. The frequency of the collective
mode tends to 4.961 eV in the limitu50. The incident wave isp
polarized. The vertical dashed lines denote the positions of extr
of the absorption coefficientA.
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VII. TRANSITION FROM 2D TO 3D SYSTEMS

In the rest of this paper we consider the solution of E
~25! in the asymptotic limitL→`. Our aim is to obtain from
Eq. ~25! the dispersion relation for longitudinal plasm
waves in an infinite electron gas. For the sake of simplic
we consider this problem in the random phase approxim
tion, neglecting exchange and correlation effects. At fi
among all possible intersubband transitions we select s
transitions from them to n subbands thatn2m5p. The
integer numberp will be defined later. We consider all othe
nonselected by us, intersubband transitions asforbidden. In
accordance with it we can introduce the quantitiesXm and
Glm in the following way:

Xnm5H Xm , n5m1p,

0, nÞm1p,
~29!

Gkl,nm5H Glm , k5 l 1pùn5m1p,

0, kÞ l 1pønÞm1p.
~30!

The selection of a certain group of intersubband transiti
from all possible ones is an approximation if the film thic
nessL is finite. But in the limitL→` the given selection will
be served automatically by the momentum conservation l
To evaluate the matrix elementsGlm we take the single-
particle wave functions

Fn5A2

L
sinS pnz

L D , n51,2, . . . , ~31!

which describe the motion of electrons in the rectangu
potential well with infinitely high barriers. The longitudina
collective excitations in such a potential well were studied
Ref. 25. Substitution of Eq.~31! into Eq. ~26! with subse-
quent integration gives

Glm5
e2

pme
S p

L D 3

@~2l 1p!~2m1p!1p2d lm#r m , ~32!

whered lm is the Kronecker symbol,

r m5H 1, m,N2p,

N22m2

p~2m1p!
, N2p<m<N,

~33!

andN is the number of occupied subbands. Using Eqs.~29!,
~30!, and~32!, we can rewrite Eq.~25! in the matrix form

~A1B!X5v2X, ~34!

whereX is the N-dimensional vector with elementsXm ; A
andB are the square matrixes with elements

Alm5
e2

pme
S p

L D 3

~2l 1p!~2m1p!r m , ~35!

Blm5
e2

pme
S p

L D 3

p2S r m1
p2aB

4L
~2m1p!2D d lm , ~36!
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whereaB is the Bohr radius. The nontrivial solution of Eq
~34! exists on condition that

det@A1B2v2I #50, ~37!

whereI is the identity matrix. The solution of Eq.~37! gives
the eigenvaluesvn

2 . If we neglect the matrixB in Eq. ~37!,
then we get that all eigenvaluesvn

2 are equal to zero excep
for one eigenvalue which is equal to the trace of the matrixA
~see the Appendix!. Let us denote this eigenvalue asV2.
Taking into account the matrixB in Eq. ~37! gives correc-
tions to V2. In the limit L→` these corrections are sma
and describe the effects of the nonlocal interaction of
electromagnetic field with the homogeneous electron g
They can be considered within the perturbation theory. In
Appendix we obtain the first-order correction toV2 due to
the matrixB and the result is

V25Tr~A!1
Tr~AB!

Tr~A!
1•••. ~38!

In the limit L→` we have to setpN/L5kF and pp/L
5q, whereq is the wave vector of the electromagnetic fie
The latter equality is due to momentum conservation. A
result we get the dispersion relation

V25vp
2S 11

9paBkF

20 S q

kF
D 2

1••• D , ~39!

which exactly coincides, up to second order inq/kF , with
that for longitudinal plasma waves in an infinite electr
gas.26

VIII. CONCLUSIONS

The linear-optical properties of unbacked thin metal film
have been studied within the jellium model and the tim
dependent density-functional approach. Most previous wo
consider the interaction of thin metal film~2D electron gas!
with an electric field perpendicular to the surface of the fil
The electric field component parallel to the surface of
film is usually neglected. In the present work, we ha
treated both perpendicular and parallel components of
electromagnetic field microscopically and the results are p
formed in terms of strictly calculated reflection, transm
sion, and absorption coefficients.

We have analyzed the absorption spectra of thin m
films. In the case ofs-polarized incident waves the absor
tion spectrum contains resonant peaks corresponding to
citations of the transverse collective modes. The frequen
of the transverse collective modes almost coincide with
single-particle intersubband transition frequenciesvnm . In
the case ofp-polarized incident waves the absorption spe
trum contains resonant peaks corresponding to excitation
both transverse and longitudinal collective modes. The m
intense absorption resonances correspond to excitation
odd longitudinal collective modes. It has been shown t
there are no collective modes with frequencies that lie
above the bulk plasma frequencyvp . Also, it has been
shown that the reflection and transmission coefficients of
19540
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metal film change greatly near the frequencies of the lon
tudinal collective excitations.

The analysis of the field distribution has shown that un
the conditions of longitudinal collective mode excitations t
amplitude of the normal component of the field inside t
metal film significantly increases and can be more than
orders of magnitude larger than the amplitude of the incid
wave.

We have shown that the linear-optical response of t
metal films under the conditions of longitudinal collectiv
mode excitations has a few specific features. For exam
metal film cannot absorb more than a half of energy flux
the incident wave. At the angle of incidence, where abso
tion reaches the absolute maximum, the reflection and tra
mission coefficients are equal to one-fourth and the width
the absorption peak is 2 times larger than that in the li
u50. These features are reproduced in the same way
different collective mode excitations.

We have analyzed the dependences of the longitud
collective mode frequencies on the metal film thickness
was shown that~i! with increasing film thickness a group o
collective modes with frequencies nearvp appears and thes
modes can be interpreted as the standing plasma waves
thin slab.~ii ! In a thin slab there exists a couple of collectiv
modes which correspond to the multipole surface-plasm
mode. ~iii ! Some collective excitations can arise from t
effective coupling between the single-particle intersubba
excitations belonging to a certain group. Also, we ha
shown analytically how the longitudinal collective excit
tions transform under the transition from two- to thre
dimensional electron systems. Starting from the eigenva
problem~25! which determines the frequencies of the long
tudinal collective mode in 2D electron systems, we have
tained in the limitL→` the well-known dispersion relation
~39! for longitudinal plasma waves in an infinite electro
gas. For the sake of simplicity this problem was conside
in the random phase approximation.
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APPENDIX

Let us have anN3N matrix C that can be performed as
sum of two matrices,

C5A1mB, ~A1!

with elements

Anm5 f ~n!g~m!, Bnm5h~n!dnm , ~A2!

where f (n), g(n), h(n) are arbitrary functions andm is the
scalar parameter. One can show that all eigenvalues of
matrix A are equal to zero except for one and this eigenva
is equal to the trace of the matrix. Eigenvalues of the ma
B are simply equal to its diagonal elementsh(n). The sub-
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ject of our interest is the eigenvaluesln of the matrixC. If m
is a small parameter, then the eigenvaluesln can be calcu-
lated within the perturbation theory. Below we obtain t
first-order correction to the eigenvaluel1, which is only
nonzero in the limitm50. The eigenvaluesln of the matrix
C are roots of the characteristic equation

lN2 (
n51

N

~Ann1mBnn!l
N21

1
1

2 (
m,n51
mÞn

N

mBmm~2Ann1mBnn!l
N221•••50. ~A3!
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Within the perturbation theory the eigenvaluel1 can be ex-
panded into a power series

l15Tr~A!1 (
m51

`

mmxm . ~A4!

By substituting Eq.~A4! into Eq. ~A3! and collecting terms
with the same powers ofm, one can get

Tr~A!x15Tr~AB!. ~A5!

So the final result is

l15Tr~A!1m
Tr~AB!

Tr~A!
1•••. ~A6!
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