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Self-consistent linear-optical response of thin metal films
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The linear-optical properties of unbacked thin metal films are studied within the jellium model and the
time-dependent density-functional approach. Unlike most previous calculations, the present ones treat both
longitudinal and transverse components of electromagnetic fields microscopically and results are performed in
terms of strictly calculated reflection, transmission, and absorption coefficients. Dependences of the collective
mode frequencies on metal film thickness are discussed. It is shown that in thin metal film there are collective
modes which can be interpreted as standing plasma waves. Also it is demonstrated that in thin metal films there
exists a couple of surface modes which are related to the so-called multipole surface-plasmon mode. Spectral
and angular dependences of optical response are discussed in detail. A few specific features of optical response
under conditions of collective mode excitations have been found. In particular, metal film cannot absorb more
than a half of energy flux of incident wave. At the angle of incidence, when absorption reaches the absolute
maximum the reflection and transmission coefficients are equal to one-fourth. These and some other features
appear in the same manner for different collective mode excitations. Also, we consider how the spectrum of
collective mode excitations is transformed under the transition from two- to three-dimensional electron sys-
tems.
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[. INTRODUCTION excitations arise from the coupling of the single-particle ex-
citations. This coupling is due to the interaction of electrons
In the present work we study the linear-optical responsevith the self-consistent electromagnetic field produced by
of unbacked thin metal films to the applied field of planethe whole electron system. The single-particle excitations
electromagnetic wave. We consider thin metal films whichcan be coupled via the three different electric field compo-
represent so-called two-dimensior@D) electron systems. nents. If a 2D electron system interacts with an electric field
In such systems the motion of electrons is quantized in onperpendiculafparalle) to the surface of the 2D system, then
direction and free in two others. 2D electron systems havave can speak about the longitudin@ansversg collective
been studied for many yedrand they are also realized in, excitations as in this limiting case the electric field is longi-
for example, semiconductor quantum wells, inversion layerstudinal (transversg The longitudinal field is a gradient of a
heterostructures, and on the surface of liquid helium. scalar function and divergence of the transverse field is equal
When we treat the optical response of thin metal films it isto zero.
necessary to keep in mind the following two things. First, the It is known that the coupling of the single-particle inter-
optical response of thin metal films is substantially nonlocalsubband excitations via the electromagnetic field component
and cannot be adequately described in terms of a dielectrigarallel to the surface of 2D electron gas is extremely weak.
permittivity or multipole expansion of electronic response.As a result the frequencies of transverse collective modes
Second, electrons in thin metal film interact with each othemlmost coincide with the single-particle intersubband transi-
and the motion of any electron depends on the state of thon frequencies. For thin metal film the difference between
whole electron system. The latter means that the optical rehese frequencies is only about F0eV, which is much
sponse of thin metal films can be described only within thesmaller than the characteristic absorption linewidth. And so
framework of self-consistent theory. the transverse collective excitations are usually associated
Electron excitations in 2D systems are of particular inter-with the single-particle excitations. On the contrary, the lon-
est because they promise a great deal of possible applicgitudinal collective mode frequencies can be significantly
tions. Traditionally, they are decomposed into two distinctshifted from the single-particle intersubband transition
categorie$: single-particle and collective excitations. The frequencie$® The shift between these frequencies arises
single-particle excitations arise from transitions of an elecfrom two contributions. The direct Coulomb interaction re-
tron to the states that lie above the Fermi surface. In 2Bsults in the depolarization shift and the exchange-correlation
electron systems there are intrasubband and intersubbamteraction gives the excitonic correction. Recently, both
single-particle excitations. The energies of these excitationsontributions have been extensively studied in semiconduc-
are determined by the energy difference between the findbrs quantum well$.The transverse and longitudinal collec-
and initial states of an electron. The concept of singletive modes can be considered separately only in the limiting
particle excitations is very important in solid-state plasmacases, when the electric field is parallel or perpendicular to
physics but it is rather an abstract concept because in realityie surface of 2D electron gas. However, in the general case,
it is impossible to excite one electron independently of oth-they are coupled. There are a number of different mode-
ers. In fact electrons interact with each other and as a resutioupling effects. The coupling between the intrasubband and
the collective excitations become dominant. The collectiventersubband collective modes was studied in Refs. 8 and 9.
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The resonant coupling between the single-particle and colkthe vector potential? 16 Nevertheless, we use the scalar po-

lective modes was considered in Ref. 2. tential vV because we will mainly discuss the situations when
In this paper we use the jellium model to describe electrorthe longitudinal part of electromagnetic field in the jellium

properties of thin metal films. Within the framework of this film is significantly larger than the transverse part.

model the discrete charges of ions are replaced by a uniform We consider the solution of E@l) within the perturba-

positively charged background. Then the valence electronson theory, assuming that the external field is much smaller

are treated within the density-functional formalisft! The  than the internal field in the film. The wave function can be

electron response of jellium films is usually calculated undeexpanded into series

the assumption that the transverse component of the elec-

tronic response is negligibié:** This approximation consid- Vi=Wo+ Wyt -, @)

erably simplifies the procedure of calculation of the eleC-yherew; is the wave function in the absence of external

tronic response as the electromagnetic field can bge|q which can be written in the form

characterized by only the scalar potential. One of the limita-

tions of this approximation is that results of calculations are . . 1 i .
performed in terms of auxiliary quantities which cannot be \I’Oj(r,t)—ﬂlfoﬂ,lzt(r,t): —exp — gEn’gtHiktr)CI)n(z).
directly measured in experiment. In the present work, both Vs

longitudinal and transverse components of the electromag- 3

netic field are treated rigorously within the density-functionalHere, we assume that the state of jlie electron is charac-
approach and results are presented in terms of the strictherized by the quantum numbarand the tangential compo-
calculated reflection, transmission, and absorption coeffinent of wave vectok,, zis the normal coordinate, ar@lis
cients of thin metal film. the area of film surface. The eigenvalugg; is the sum of

The outline of this paper is as follows: In Sec. Il Wet e energies of free longitudinal and quantized transversal
discuss basic equations which determine the Iinear-optica’1 9 9 q

response of thin metal films within the time—dependentmouons’

density-functional theory. A method of their solution in a 2k2

particular case o&-polarized incident wave is specified. In Eni= —t+8n, (4)
Sec. lll we consider excitations of the longitudinal collective Tt 2me

modes. Dependences of the collective mode frequencies ofhg the eigenfunctionsb,, satisfy the one-dimensional
film thickness are discussed in detail. Reflection, transmisg ohn-Sham equation

sion, and absorption spectra of thin metal film are considered

in Sec. IV. The field distribution in thin metal film is dis- d2d, 2m,
cussed in Sec. V. The dependence of the optical response of t— (en—e@p— Vo) ®,=0, (5)
thin metal film on the angle of incidence of the electromag- dz’ h

netiC wave iS analyzed in Sec. VI. In Sec. VIl we Considerwhere e(PO and VO are the Hartree and |0ca| exchange_
the important question how 2D collective modes transformggrrelation potentials, respectively. To evaluitg we use

into 3D plasmons. Conclusions are given in Sec. VIIl. Wigner's formula for the exchange and correlation energy
per particle of homogeneous electron ¢4s.
Il. THEORY OF THE LINEAR-OPTICAL RESPONSE If the metal film interacts with a plane, monochromatic

A. Charge and current densities wave, then the potentials can be written in the form

In this subsection we derive expressions for the charge o(r,1)=@o(2)+ ey (2)expligs —iwt)+---, (63
and current densities induced in the jellium film by an exter-
nal field. The motion of electrons in the jellium film can be A(r,t)=A(z)explig —iwt)+ - -, (6h)
described by the Schdinger-type equation
P 52 V(r,t)=Vo(z)+Vy(z)explig —iwt)+---, (60
ih—L=— —V2U +epV + VI, , _ . ,
at 2mg ! ! ! wherew is the field frequency and, is the tangential com-

ponent of wave vector. The complex amplitudes of potentials
1) denoted by subscript 1 are assumed to be linear in amplitude
of the incident wave and the complex amplitude for the
R charge and current densities,
where ¢ and A are the field potentialsy is the exchange-
correlation potential, an®¥; is the wave function of th¢th p=e2 W |2
electron. In the steady-state case Eq.transforms into the f e
Kohn-Sham equatioh- We describe the exchange and corre-
lation interaction between electrons by the scalar pote¥tial -
Strictly speaking, it is justified only if the jellium film inter- J=-
acts with the longitudinal electric field, while in general case
the exchange and correlation effects must be described lgan be introduced in the same way.

ihe .. .. e’
+ (VA+AV)¥,+ ——A?Y
2mgc 2m,c?

j
e

(7a)

e
MeC

. ihe - -
Ap—l—mzj: (V,V¥F =¥V ¥)), (7h
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Substitution of Eqs(2) and (6) into Eq. (1) with subse- ep—en|'p fiqkeo [er—en
guent linearization gives an equation f&r,,, which can be Rp,nm=®n( ) Ip( m.D \/ ,
solved in the usual way—namely, by expandiy, over EFo eZnm T €F0
the Kohn-Sham eigenfunction®,,. In this expansion we ay ero ep—em| '
take into account only the bound states; i.e., we neglect tran- ~ oK ) - @m( ) |
sitions of electrons from the states of discrete spectrum to the Fo
states of continuous spectrum. It should be noted that this ﬁqkuO —em Gy
approximation is justified only for analysis of the electron ( 2keo Ver— sm) (10

excitations with the energies that lie below the continuum
threshold. The excitations with higher energies can be influynere p=1,23,4: 1,=1,=2, 13=3/2, 1,=1; 0,=0(sp
enced by the electron transitions to the continuum states. For ¢,) is the Heaviside unit step functionpy=#2 kpo/zme,
the sake of definiteness, let us choose a coordinate system §ﬂds is the Fermi energy. In its turn expressi6to) in-

thaty-z is the plane of incidence. Straightforward calculation cludes the following integrals:
gives the following expressions for the complex amplitudes

of charge and current densities: 8 1 (1—x2)372
l,(a,b)= 3_j_1dx—1+a(x+b)’ (11a
€ e’k éo R1nm
Jix=— m_eCpOAlx Z N\ (Dm[Alx]nm Do 8 (1—X2)1/2(X+b)2
(8a) IZ(a’b):;ﬁldX 1+a(x+b) ' (119
e kilo 20m (1-X)"(x+b)
Jiy =~ o Pofay T Z Pn0y <[H]an ls(@b)=2 f > raxep) 0 19
R3nm 1 y2)1i2
_[e¢l+V1+HL]nm D (8b) (a b f dx ( X ) (110)
4 1+a(x+b)’
e |ekF0 which can be calculated analytically. For example, in the
J1,=— m_Cp0A12+ amm > (D VD5 - DEV,D,) particular case@,=0 we havel;=1,=1,=1 and|;=0.
Me n.m The obtained expressions for current dené&#yconsist of
Ranm two terms. The first term defines the local response of an

X|[ee1+Vi+H,| lam=— Do

—[Hylams— D3nm) (80  electron subsystem and the second term defines the nonlocal
one. The local response at some point depends on the
strength of the field at the same point whereas the nonlocal

ek, 4nm response depends on the field distribution inside the film.

. R
PI=5 07 4 2 O, Pr [ee1+Vi+H, Jpm=— D
B. Self-consistent equations

(8d) Equations(8) determine the functional dependence of the
charge and current densities on the field and exchange-
correlation potentials. Now, in order to get set of the self-

where consistent equations it is necessary to supplement Bys.

with equations for the field and exchange-correlation poten-
hekso i% tials. We use the following gauge condition on field poten-

e
Zm(VzAlerAlez), (9 tials:

R nm
[HH]nm D3 )

keo=(372n)3, n is the density of the positive background, ¢~ ¢0=0, 12

Dnm= 0nm— @ =1 ¥nm, hwnm=(en—en) is the energy dif-  whereg, is the unperturbed scalar potential. In other words
ference between theth andmth eigenstates, angl,, is the  the scalar potentiap does not depend on time and the linear
phenomenologically introduced transverse relaxation rateesponse of the jellium film is fully determined by the vector

For the sake of simplicity we will assume further that the potential,&. It can be shown that the equations for complex

relaxation rateynm does not depend on the initial and final 5 yjitydes of tangential and normal components of vector
statesnth andmth—namely,y,m,= 7~ ! wherer is the trans- potential can be written in the form

verse relaxation time. The square brackets in E§s.are

used to denote the matrix elements—i.e[F],n $2A 4 4

=[®*Fd,dz, whereF is an arbitrary operator. Expres- U, 2A ___Tr* L ames 13
. . . . - + ;A1 Jaet ——Qtp1, (139
sions(8) contain the dimensionless quantities dz? w
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d’A;, 4w 4mc dp, fe?ke,
072 T A=~ et T (13b) Aix(2)=Aou(z) + m
. _ Rinm z
wherej is defined as % D] [Alx]nm(u(z)J dz'v(z')
n,m nm —®
N e - > +oo
j= eCpoAH (14 +v(2) L dz’u(z’))d)n(z’)CI)’r;(z’), (20)
and whereA, is the amplitude of vector potential of the incident
wave andw is the Wronskian. The solutiof20) contains the
2 matrix element$ A, ]nm, Which can be determined from the
0(2)= w_zs(z)_‘ﬁ' (15  setof linear algebraic equations
c
fe’k? R z
[Andk= > 55 2 5 [Andum (u(z) f dz'v(2')
darepy(z) 2mge“w nm Ynm —o
8(2)21——2. (16)
Mew +o0
+v(2)f dZ’U(Z’))Cbn(Z’)@&(Z’) =Aol Ui -
The quantitiesq, and & should not be interpreted as the z Kl
normal component of the wave vector and dielectric permit- (22)
tivity, respectively. In our calculations we use the adiabatic
local-density approximatidfi'® for the induced exchange- Finally, we note that the interaction of the metal film with
correlation potential: p-polarized incident waves is described by three equations:
for the tangential and normal components of the vector po-
dV, tential and for the induced exchange-correlation potential.
Vl:d_popl' (17)  These equations can be easily obtained as a result of substi-

tution of Egs.(8) into Egs.(13) and(17). We do not discuss

. . . ) here these equations in detail, as their analysis is completely
Here it should be noted that it is the simplest possible apgim;jar 1o that for the case afpolarized incident waves.
proximation. More sophisticated approximations have been

extensively discussed recent/!®-2°

So we get the self-consistent equatiéd) (13), and(17),
which fully determine linear-optical response of thin metal Before we proceed to a discussion of the linear-optical
films. properties of thin metal films, we consider the solution of the

self-consistent equatior(8), (13), and(17) in the particular
C. s-polarized incident wave case of interactions of metal film with the longitudinal elec-
i ) i . tric field. In order to keep this paper self-consistent we plot

In this subsection we discuss the equation for the vectof, kg 1 the dependences of eigenvalsgsand Fermi en-
potential which describes the interaction of the jellium film ergy e on jellium film thickness_. These dependences are

with s-polarized incident wave. Substitution of E@a) into calculated for the background densitycharacterized by the

Eq. (133 yields . ) i
Wigner-Seitz radius¢(n) =4 and they are needed for further
5 o4 analysis. We choose zero energy so that the electrostatic po-
d A1X+ 20 Keo E . Pp* M A tential vanishes far from the metal film. In this case the work
FERRCS 2m%c2 am " " Dnm[ xlnm: function is simply equal to the absolute value of the Fermi
(18) energy. It is seen from Fig. 1 that the Fermi energy exhibits
oscillations. The period of these oscillations is very close to

The solution of this equation can be performed with the helptr/2~0.35 nm, where\g is the Fermi wavelength. These
of the Green function. Leti and v be linear-independent ©scillations are connected with the appearance of new occu-

Let only the normal component of the vector potential be
nonzero and depend only on the normal coordizata this
case the self-consistent equatidgg, (13), and(17) can be
solved>® For example, the solution for the vector potential is

IIl. LONGITUDINAL COLLECTIVE MODES

+92A.,=0, (19)

(L)
which correspond to two waves with unit amplitudes that are — dec S (D, VD, — DV, )ﬂx
n'z m mYz n nm?-

incident on metal film from opposite sides. Then the solution 1z ho f=m h®wpm
of Eq. (18) can be written as (22
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0 : : : : wnm- The expression foGy nm, EQ.(26), consists of two
™ \\ & terms. They describe the so-called depolarization and exci-
ol tonic shifts, respectively/®
J % The system of equation®5) determine the longitudinal
:“ ol 4 collective mode frequencies of the 2D electron gas confined
> in an arbitrary one-dimensional potential well. If the poten-
k3 5 tial well is symmetrical, then the system of equatid2s)
£ 3 Y & splits into two independent systems. It is due to the fact that
= : Gy nm=0 if kK+1+n+m is an odd number. These two sys-
oA \ tems describe the coupling of single-particle intersubband
8 \\\ % excitations between the states with different and the same
g -5t \ \\ 5 parities and the conditions of the existence of their nontrivial
S \¥/ N ~— |, solutions gives the equations for odd and even collective
w 5l \/\_/t\ s: mode frequencies, respectively.
& Figure 2 shows the dependences of odd and even longitu-

0.0 0.5 1.0 1.5 2.0

dinal collective mode frequencies on the film thickness, cal-
Film thickness L (nm)

culated forrs(ﬁ) =4. At first we note that the number of the
FIG. 1. Eigenvalues, and Fermi energy vs metal film thick-  collective modes at some film thickness is equal to the num-
nessL for r¢(n)=4. The dashed lines denote the film thicknesses aber of different single-particle intersubband excitations with

which new occupied subbands appear. energieshw, . In the linear-optical regime such excitations
are possible between the subbands from which at least one is
where occupied in the ground state. Therefore the number of col-
lective modes stepwise increases at film thicknesses where
REA=0On(er—2n) —On(er—2m) (23 new occupied subbands or new empty subbands at the top of

the potential well appear. The former thicknesses are denoted

in Figs. 1 and 2 by the vertical dashed lines and the latter

0n Vil t o[H, ] thickpesses can bg easily extracted from Fig. 1. In our cal-

Xy = — 1 ;m L-nm (24)  culations we take into account a new empty subband at the
i — 0 top of the potential well when its bottom energy becomes

L less than—0.05 eV. The dependences of the collective mode
Here, for the sake of simplicity, we assume thaf are the  fequencies shown in Fig. 2 have discontinuities at film

real functions and_we neglect the relaxatiqn processes. In E¢icknesses where new subbands appear at the top of the
(22) we have omitted terms corresponding to the extemayyiential well. These discontinuities arise from our approxi-

field. The matrix elementX,, can be found from the solu- ation: we neglect electron transitions to the states of the
tion of the set of algebraic equations continuous spectrum. It is seen that the discontinuities are
absent for the collective modes with energies that lie below

and

E Gt nXnm= (@?— wil)xkl , (25) the continuum threshold. The inset in FigaRshows that the
n>m collective modes are nondegenerate; i.e., there are no odd or
Where even collective modes with the same energy.
The horizontal dashed lines in Fig. 2 mark two character-
R [ 02 istic frequ_encies. One of them is the bulk plasma frequency
Guinm=— 7 bt (—f (P\V, D, — DV, D) (P, V, D, wp=(47rne2/m)1’2. It is seen that there are no collective
Wnm\ Me modes with frequencies that lie far above the bulk plasma
frequency. Also it is seen that a group of collective modes
—®,V,d,)dz+ 2Me®y) Dnm with frequencies neamw, is formed with increasing film
wh2 thickness. The frequencies of the collective modes from this
group depend weakly on film thickness and the number of
dVy collective modes in this group increases with increasing film
XJ (Dk(bld_%q)nq)mdz)' (26)  thickness. These collective modes can be interpreted as the

standing plasma waves in thin metal stdf! Another fre-

The homogeneous system of coupled equati@i has a quency marked in Fig. 2 corresponds to the so-called multi-
nontrivial solution if its determinant is equal to zero. The pole surface plasmon. The existence of the multipole plas-
frequencies of the longitudinal collective modes can be demon at metal surfaces was demonstrated both experimentally
termined from this condition. The quantiti& ., in Eq.  and theoretically? The frequency of the multipole surface
(25) determine the coupling between the single-particle inflasmon is close to O3,. However, here we use the value
tersubband excitations. If we neglect such coupling, then w@.85w,, that was given in the recent work of Barmanal 23

get that the eigenfrequencies of the electron system are equahd which is somewhat higher than the generally accepted
to the single-particle intersubband transition frequencievalue 0.8, . Itis seen from Fig. 2 that almost everywhere in
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6L @ | -—-—~—-—ﬁ

) \
4t i \-\
o

Odd collective mode frequencies (eV)
w

Even collective mode frequencies (eV)
w

30
115 120 125 i weeco

0.0 05 1.0 15 20 0.0 05 10 15 2,
Film thickness L (nm) Film thickness L (nm)

of

FIG. 2. Frequencies of od@) and ever(b) longitudinal collective modes vs metal film thicknessfgin) =4. The vertical dashed lines
denote the film thicknesses at which new occupied subbands appear. Two horizontal dashed lines mark the bulk plasmecfgesuncy
the frequency of the multipole surface plasmon, @85 The inset shows the region of two closely spaced collective mode frequencies in
an expanded scale.

the range of film thickness from 0.5 to 2 nm there are botlsingle-particle excitations with energidso,,,, such thatn
odd and even collective modes with frequencies which are-m=1. In this simulation the other single-particle excita-
close to 0.8m,,. tions are considered derbidden i.e., we assume that the
The odd(even longitudinal collective modes denoted by matrix elementsX,,=0 if n—m=#1. It is clear that in this
the open circles and stars in Fig. 2 arise from the coupling otase the number of collective modes at some film thickness
the single-particle excitations with energig&,,, such that is equal to the number of occupied subbanis,in the
n—m=1 (n—m=2) and n—m=3 (n—m=4), respec- ground state. It is seen from Fig. 3 that the couplingNof
tively. In order to illustrate it we plot in Fig. 3 the results of single-particle excitations with energieg, ;— ¢, yields (i)
the model calculation in which we take into account only theN—1 collective modes with frequencies that almost coincide
with the frequencies of collective modes denoted by the open
circle in Fig. 2a) and (ii) one collective mode with fre-

1 SR SOOI quency that tends to the bulk plasma frequengywith in-
__— creasing film thickness. The latter result will be discussed in
sl / ] detail in Sec. VII.

al ] IV. REFLECTION, TRANSMISSION, AND ABSORPTION
f SPECTRA

We will further discuss the linear-optical properties of thin
metal films and illustrate them in an example of metal film

with thicknessL=1 nm and mean electron densﬁychar—

acterized by Wigner-Seitz radiug(n)=4. In order to give

an idea of the metal film with such parameters we plot in Fig.
4 the self-consistent potentials, eigenenergies, and density
distributions. It is seen from Fig.(d) that the effective po-
tential epy+Vy is formed mainly by the exchange-
correlation potentiaV,. Figure 4b) shows that in such film
there are six energy subbands and three of them are occu-

FIG. 3. Frequencies of odd longitudinal collective modes vs film Pi€d. ThedelleCtro'rl]l density, indFig_-I 4ij) eXf:ibi_tS C?arﬁCter-”
thickness forr (n) =4. The vertical dashed lines denote film thick- istic Friedel oscillations. A detailed analysis of the self-

nesses at which new occupied subbands appear. The horizonﬁﬁmSiStent potentials and density distributions as functions of
dashed line marks the bulk plasma frequemgy. The collective L andn was done by S_ChU”@- . _ .

mode frequencies are calculated on the model assumption that the We start the analysis of the linear-optical properties of
intersubband transitions are allowed only between adjacent suihin metal films from the discussion of absorption spectra.
bands. Figure 5 shows the spectral dependence of the absorption

Qdd collective mode frequencies (eV)
w

0 , L L ,
0.0 0.5 1.0 1.5 2.0
Film thickness L (nm)
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egy> ¥, (V)
r s 4 S © = © dd s868 ¥< 8
107 ¢ l | \ 1
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10%} (@ ]
10°F .
10°} 1
107} 1
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10°F J J 1
0 10} ~ 1
10™ : : :
2t ) 1 2 3 4 5 6 w(eV)
R 4 s <& o N © o IS0 86
6} (b) 4 10°¢ ' | q‘ 3
X : : X X .
15 -1.0 0.5 0.0 0.5 1.0 2 (nm) 107 F
. -2
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10l ~ Pay i 10°}
10™* 1
05} y 10°F
-6
j \ © |
0%% 10 05 00 0.5 1.0 107 ' ' : ' ' :
-1 -1 Y. . . Y z(nm) 0 1 2 3 4 5 6 w(eV)
FIG. 4. (a) Electrostaticep, and exchange-correlatiov, po- FIG. 5. Absorption spectrum for normal inciden@ and inci-

tentials,(b) effective potentiabeg+V,, Kohn-Sham eigenenergies dence ofp-polarized waves at the angle=30° (b). The vertical
e, (solid lineg and Fermi energyr (dashed ling and(c) back-  arrows denote the transverge) and longitudinal(b) collective
groundn, and electrom, densities for metal film with the thick- mode frequencies. The relaxation time 1 ps.

nessL=1 nm andrs(ﬁ) =4.

normal incidence does not result in any qualitative changes
coefficientA for two different cases of incident waves. The of the absorption spectrum. On the contrary, in the case of
absorption coefficient is defined #&=1—-R—T, whereR  p-polarized incident waves the absorption spectrum contains
and T are the intensity reflection and transmission coeffi-resonant peaks corresponding to excitations of both trans-
cients. We assume here that the relaxation tini@ equal to  verse and longitudinal collective modes. Here, it should be
1 ps unless otherwise specified. noted thatp-polarized incident waves cannot excite purely

In the case of normal incidence of light waves on thejongitudinal or transverse collective modes. Strictly speaking

metal film the absorption spectrum is shown in Fig@)5It . polarized incident waves can excite the longitudinal-
contains the resonant peaks corresponding to the transverggsverse collective modes. Nevertheless, we will refer to
collective mode excitations. The frequencies of ransversgiterent excitations as longitudinal or transverse collective
collective modes are shc_)wr_1 n F.|g(85 by the vertical ar- .mode excitations because there are a number of features
rows and the_y almost comc_lde with the mtersubb_and transig, i -h allow us to discern them.
tion frquenmesunm. .The shift betweeg the coII_ect|ye ”T‘Ode Figure §b) shows the absorption spectrum for the case of
fr.e.quenues andyr, is only about 10° eV, .W.h'Ch IS SIg~ p-polarized incident waves at the angle- 30°. The vertical
nificantly smaller than the characteristic absorption I . .
linewidth3 The absorption peaks in Fig(@ differ in their arrows Qenote the longitudinal collectl\{e mode frequencies.

Here, it is necessary to note that there is a weak dependence

amplitudes. One of the reasons for this difference is con : . .
nected with the parity of the collective modes. The ampli—Of the collective mode frequencies on the angle of incidence,

tudes of peaks corresponding to excitations of odd modeé: Below we will discuss these dependences in detail. In
(for example, the first three low-frequency resonances order to avoid confusion we arrange to refer to collective
significantly larger than those corresponding to excitations offodes by values of their frequencies in the lidit 0. It is
even modegfor example, the second three low-frequencyseen from Fig. f) that the amplitudes of some absorption
resonances The frequencies of odd and even transverse colpeaks corresponding to excitations of the longitudinal modes
lective modes are close to the transition frequencigs,  (for example, peaks at frequencies 3.57 eV or 4.961 &'¥
between the Kohn-Sham eigenstates with different and  significantly larger than those corresponding to excitations of
the same parity, respectively. the transverse modes. The maximum collective mode fre-
In the case of-polarized incident waves the absorption quency is 5.995 eV and it is only slightly larger than the bulk
spectrum also contains resonant peaks corresponding fdasma frequencyw,=5.891 eV, which characterizes the
transverse collective mode excitations. The deviation frontollective excitation(volume plasmoh in infinite electron
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FIG. 6. Spectral dependence of reflectRria), transmissionl
(b), and absorptior (c) coefficients as well as nonresonant reflec-
tion R,, (@ and transmissio,, (b) coefficients for the case of
normal incidence. The field frequenayvaries in the vicinity of the
intersubband transition frequeneys;,=1.1963 eV; the relaxation
time 7=10 ps.

FIG. 7. Spectral dependence of reflectier{a), transmissionT
(b), and absorptior (c) coefficients forp-polarized incident waves
at 6=30°. ReflectionR, (a) and transmissio, (b) coefficients
are calculated with the help of the Fresnel formulas. The field fre-
guencyw Vvaries in the vicinity of two closely spaced longitudinal
) . ) o ) collective mode frequencies 5.893 eV and 5.995 eV. The bulk
gas of a given density. This result is in agreement with prepjasma frequency,=5.891 eV; the relaxation time=1 ps.
vious calculationg?

For the case of normal incidence, Fig. 6 shows depenof two closely spaced longitudinal collective mode frequen-
dences of reflectiolR, transmissiorT, and absorptiol co-  cies 5.893 eV and 5.995 eV. It is seen that the reflection,
efficients on field frequency varying in the vicinity of the transmission, and absorption coefficients change greatly near
intersubband transition frequenas,=1.1963 eV. In Fig. 6  the collective mode frequencies. For comparison, in Fig. 7
we also plot nonresonant reflecti®y, and transmissiofi,,  we also plot reflectiorR, and transmissiofT, coefficients,
coefficients that are calculated in an approximation of theyhich are calculated using the Fresnel formulas for metal
local response. This approximation does not take into acfilm with the dielectric permittivity that is given by E16).
count the nonlocal resonant response of the valence eleg-is known that the dependences of the reflectiRpand
trons; namely, it neglects the right-hand part of Ekf). Itis  transmissiori, coefficients on the field frequency have only
seen from Fig. &) that the amplitude of the absorption reso- two specific points. One of them takes place at a frequency
nance corresponding to excitation of the transverse collectivghen the angle of incidence becomes equal to Brewster’s
mode is quite small, even for the relatively large relaxationgngle (in our case this frequency is 7.215 eVhe other

time 7=10 ps that is used here. The resonant deviations odpecific point that is just shown in Fig. 7 appears at the bulk
the reflection and transmission coefficients from the nonresgpjasma frequency,=5.891 eV.

nant background are also small. In other words the resonant
part of the field response of the metal film is significantly
smaller than the nonresonant part. But it does not mean that
in the case under consideration the resonant part of the cur- In this section we discuss the field and induced charge
rent density is also significantly smaller than the nonresonartiensity distributions for the case ofpapolarized wave that
part. In fact, they are comparable, but at the same time theiis incident on the metal film at the angke=30°. Figure 8
is an important distinction between them. The sign of theshows moduli of the complex amplitudes of the tangential
resonant current density changes 3 times across the mewhd normal components of the vector potential as well as
film while the sign of the nonresonant current density doesnduced charge density for three different values of field fre-
not change. guency. The first case is shown in Fig&a)8-8(c) and it is an
Figure 7 shows reflectioR, transmissioril, and absorp- example of a nonresonant interaction of electromagnetic
tion A coefficients ofp-polarized incident waves at the angle waves with the metal film. The field frequency is equal to 0.5
0=30° as functions of field frequency varying in the vicinity eV and it does not coincide with any collective mode fre-

V. FIELD DISTRIBUTION
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FIG. 8. Moduli of complex amplitudes of the tangental, (d), < ‘ . . )
(g) and normal(b), (e), (h) components of the vector potential as 0 20 40 60 80 g (deg)
well as induced charge density), (f), (i) as functions of transversal
coordinatez for the case ofp-polarized incident wave af#=30°. FIG. 9. Angular dependence of the full width at half heigét
The field frequency is equal to 0.5 ea)—(c), 5.995 eV(d)—(f), and heightb) of the absorption peak at the frequency 0.738 eV. The
and 3.57 eMg)—(i). The relaxation timer=1 ps. incident wave iss polarized(solid curve$ andp polarized(dashed

curves. The relaxation time- is equal to 0.5 p$l1), 1 ps(2), and 10
qguency. In two other cases the field frequency is equal tes(3).

longitudinal collective mode frequencies 5.995 eV and 3.57

eV and these cases are shown in Figsl)88(f) and 89)—  charge density distributions undergo drastic changes under
8(i), respectively. _ conditions of the longitudinal collective excitations. The am-
In the nonresonant case the tangential component of thgjityde of the normal component of the field inside the metal
vector potential varies slightly within the metal film. The fjim significantly increases and can be two orders of magni-
electromagnetic field on the left side of the metal film, wherey,qe larger than the amplitude of the incident wave. The
the electron density vanishes, is a superposition of the inCiyquced charge density also increases and can significantly

dent and reflected waves. Its amplitude is an oscillating funcaytend beyond the nominal boundaries of the metal film at
tion of the transverse coordinate The frequency of these ,_ | /2.

oscillations is equal to the double normal component of the
wave vector of the incident wave. Certainly, we cannot see
these oscillations on the nanometer scale, but we see in Fig. VI. ANGULAR DEPENDENCES OF THE OPTICAL
8(a) that the amplitude changes on the left of the metal film. RESPONSE
The amplitude of field on the right side of the metal film is
constant and equal to the amplitude of the transmitted wave.
It is seen from Fig. &) that the normal component of the ~ We now discuss the angular dependence of the optical
vector potential varies significantly within the metal film as response of thin metal films under the conditions of trans-
opposed to the tangential component. The variation of th&@erse collective mode excitations. As an example, we con-
normal component of the field can be qualitatively under-sider the absorption peak at the frequency 0.738se¢ Fig.
stood with the help of the well-known boundary conditions5). In general, every absorption peak can be characterized by
for macroscopic field quantities. The normal component ofits position, width, and height. We determine the width of the
the electric displacement vector is continuous at the boundabsorption peaks at half height. The positions of the absorp-
ary of the media. The dielectric permittivity of free electron tion peaks corresponding to the transverse collective mode
gas at the considered field frequency can be evaluated &xcitations are almost constant. The difference between po-
10%. Hence, the amplitude of the normal component of thesitions of these peaks and intersubband transition frequencies
vector potential inside the metal film has to decrease ape,, amounts to about I® eV, which is much smaller than
proximately by a factor of 10 Such decreasing and oscilla- the characteristic width of absorption peaks. Figure 9 shows
tions of the normal component of the field are seen in Figthe width and height of the absorption peak at the frequency
8(b). Also we note here that in the nonresonant case th®.738 eV as functions of the angle of inciden@ewhich are
induced charge density is maximized approximately at thealculated for three different relaxation timesnd two mu-
boundaries of the metal film. tually orthogonal polarizations of the incident wave. In the
As is seen from Figs. (@)—8(i) the field and induced case of normal incidencé=0, the broadening of the ab-

A. Transverse collective excitations
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FIG. 11. Angular dependence of heights of the absorption peaks
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1.0 — : . — modes. Frequencies of the collective modes tend to 5.9981gV
5 ; © 5.893 eV/(2), 4.961 eV(3), 3.853 eV(4), and 3.57 eV(5) in the
08F i R ! \ limit 6=0. The incident wave ip polarized; the relaxation time
~ osf i i 7=1 ps.
B~ : ;
= 04 4 ] In Fig. 10 two vertical dashed lines denote positions of
02t ! i extrema of the absorption coefficieft The optical response
00 _ T__ ) : at these two points has a few specific features. The absorp-
"o 20 40 60 80 g (deg) tion coefficient at the angle of incidencgés=71.74°, has the

local minimum and the reflection and transmission coeffi-

FIG. 10. Angular dependence of positi, full width at half  cients equal to each other and the width of the absorption

height (b), and height(c) of the absorption peak corresponding to peak reaches the maximum. The absorption coefficient at the
excitation of one of the longitudinal collective modes. The height ofang|e of incidencep=14.57°, reaches the absolute maxi-
the absorption peak is determined by the absorption coeffiéient mum and is equal to 0.5. At the latter point the reflection and
In addition to the absorption coefficie® the related reflectiofR transmission coefficients are equal to 0.25. Also, we notice
and transmissiofT” coefficients R+T+A=1) are also plotted in here without illustration that at the latter point the width of
the bottom panel. The incident wave pspolarized. The vertical  the apsorption peak is exactly 2 times larger than in the limit
dashed lines denote the positions of extrema of the absorption cq;_n \\e have found similar points with the mentioned

efficientA. The relaxation timer=1 ps. properties for a number of other collective excitations.
sorption peak is absent, the width of the absorption peak is Fi9ure 11 shows the angular dependence of the absorption

equal to 2+, and the height of the absorption peak is propor_coefficient under the conditions of resonant excitations of
tional to thla relaxation time. With increasing angle of inci- Qdd Ionglyu_dlnal collective modes. It is seen that the absorp-
dence there is a broadening of the absorption peak, which fion coefficient does not exceed the value 0.5. It means that

more pronounced for longer relaxation time. The broadening?“e.taI film cannot absorb more t_han half of t_he energy ﬂux_ of
for mutually orthogonal polarizations of incident waves al- heident waves under the mentioned conditions. The height

most coincides but at the same time there is a quite obser rf thebabls?rptlon_peak ?e_ar ﬂ:e frequerlmy 5.893 evtreaiaets
able difference. Also, it is seen from Fig(9 that the de- € absolute maximum twice. In generai, oneé can notice tha

pendences of the height of the absorption peak on the angf@e height of the absorpt_ion peaks a_t smaller frequencies
of incidence in the cases sf andp-polarized incident waves reaches the absolute maximum later with increasing angle of

are significantly different. incidence. . . . .
g y Now we consider the question why the absorption coeffi-

cient cannot be greater than 0.5 under the conditions of odd
collective mode excitations. At first we note that under these
In this subsection we discuss the angular dependence aebnditions the optical response of the metal film is mainly
the optical response of thin metal films under the conditiongormed by the normal component of the current density and
of longitudinal collective mode excitations. At first, we con- induced charge density. These quantities significantly in-
sider the absorption peak corresponding to excitation of onerease and they are even and odd functions of the transversal
of the longitudinal collective modes. Figure 10 shows thecoordinatez, respectively. Using only this fact it is easy to
position, full width at half height, and height of the absorp- show that the reflection and transmission coefficients can be
tion peak as functions of the angle of inciden@e]t is seen represented as
that the position of the absorption peak shifts with increasing
angle of incidence. This shift amounts to about i@V. R=|r|%, T=|1-r1|? 27
Most of the absorption peaks have ultraviolet shifts as is seen
in Fig. 10@). An infrared shift may occur in the cases whenwhere the complex number=r;+ir, characterizes the
there are two or more closely spaced absorption peaks. linear-optical response of the metal film. By substituting

B. Longitudinal collective excitations

195405-10



SELF-CONSISTENT LINEAR-OPTICAL RESPONSER] . . PHYSICAL REVIEW B 68, 195405 (2003

[
o

0 VIl. TRANSITION FROM 2D TO 3D SYSTEMS
o A,=0.603 meV

s o o
- (=1
e e o
w o~ ~
T
§

: (@ In the rest of this paper we consider the solution of Eq.
N S . Ao T 8A (25) in the asymptotic limil.—cc. Our aim is to obtain from
gﬁ T e 4a Eqg. (25 the dispersion relation for longitudinal plasma
2 |2 i+ == : s ° waves in an infinite electron gas. For the sake of simplicity
“E; 10° 1: £ =0.25ps Ao we consider this problem in the random phase approxima-
R e 7 R ol I tion, neglecting exchange and correlation effects. At first
£ el A b 4 r=2ps 1105, among all possible intersubband transitions we select such
é _____ L Soe=dps | 0254 transitions from them to n subbands thah—m=p. The
it ' ] ' . 0

integer numbep will be defined later. We consider all other,
nonselected by us, intersubband transitiongoalsidden In
accordance with it we can introduce the quantifigs and
Gy in the following way:

4
100

~

g Xm, N=m+p,

= Xnm= 29
&g "M 10, n#m+p, 9
g

8

% G B Gm, k=l+pNnn=m+np, 30
< klnm™1 o, k#l+puUn#m+p.

0 s 10 520 B g (dey The selection of a certain group of intersubband transitions
FIG. 12. Angular dependence of the full width at half heigdt from a.” p.O.SSIble o_nes IS .an apprOXImat_lon if the fl_lm th.ICk'

: . . e nesd. is finite. But in the limitL — < the given selection will
and heightb) of the absorption peak corresponding to excitation of . .
the longitudinal collective mode. The dependences are calculate$e served automatlcallly by the momentum conservatlon law.
for five different relaxation times. The frequency of the collective 0 Qvaluate the m_atrlx elemenG,,, we take the single-
mode tends to 4.961 eV in the limit=0. The incident wave ip  Particle wave functions
polarized. The vertical dashed lines denote the positions of extrema

of the absorption coefficierh. B 2  [mnz
(I)n— Esm T

these expressions into the energy conservation equ&ion \yhich describe the motion of electrons in the rectangular
+T+A=1 we get potential well with infinitely high barriers. The longitudinal
collective excitations in such a potential well were studied in
Ref. 25. Substitution of Eq(31) into Eq. (26) with subse-
quent integration gives

, n=1.2,..., (31

1
I’l—z

It is seen that a solution of ER8) exists only if the absorp-
tion coefficient is less than or equal to 0.5. Moreover, if thewhere d,, is the Kronecker symbol,

absorption coefficient is equal to 0.5, then the reflection and

transmission coefficients are equal to 0.25. 1, m<N-p,

Finally we discuss how the resonant response of thin rm=4 N2—m? (33
metal films depends on the transverse relaxation tmas p(2m+p)’
an example we consider the absorption peak near the fre-
quency 4.961 eV. Figure 12 shows the angular dependence 8ndN is the number of occupied subbands. Using E28),
the full width at half height and height of the absorption peak(30), and(32), we can rewrite Eq(25) in the matrix form
for different values of the relaxation time It is seen that
the full width at half height is inversely proportional to the (A+B)X=w?X, (34)
relaxation time only in the limit=0. We have already men-
tioned that the width of the absorption peak at the angle o
incidence where the absorption coefficient reaches the maxi-

2
+r§=£(E—A>. (28)
2

3
Glmzw_%(g) [(21+p)(2m+p)+ p25lm]rmv (32

here X is the N-dimensional vector with elemenis,,; A
ndB are the square matrixes with elements

mum is 2 times larger than that in the lingit=0. This fact is e? 3

shown in Fig. 12a) with the help of the horizontal dashed Am= (f (2l +p)(2m+p)ry, (35
lines. As far as the absorption coefficient is concerned, the TMe

longer the relaxation time, the smaller the angle of incidence 5 3 )

where the absorption coefficient reaches the absolute maxi- _ & T T3 2
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whereag is the Bohr radius. The nontrivial solution of Eq. metal film change greatly near the frequencies of the longi-

(34) exists on condition that tudinal collective excitations.
The analysis of the field distribution has shown that under
defA+B—w?]=0, (37)  the conditions of longitudinal collective mode excitations the

: . . . . . amplitude of the normal component of the field inside the
wherel is the identity matrix. The solution of E37) gives metal film significantly increases and can be more than two

the eigenvalues;. If we neglect the matrB in Eq. (37),  4gers of magnitude larger than the amplitude of the incident
then we get that all elgenvaluaiﬁ are equal to zero except \yqye.

for one eigenvalue which is equal to the trace of the makrix We have shown that the linear-optical response of thin
(see the Appendix Let us denote this eigenvalue &’.  metal films under the conditions of longitudinal collective
Taking into account the matriB in Eq. (37) gives correc-  mode excitations has a few specific features. For example,
tions to Q2. In the limit L— these corrections are small metal film cannot absorb more than a half of energy flux of
and describe the effects of the nonlocal interaction of thghe incident wave. At the angle of incidence, where absorp-
electromagnetic field with the homogeneous electron gagjon reaches the absolute maximum, the reflection and trans-
They can be considered within the perturbation theory. In thenjssion coefficients are equal to one-fourth and the width of
Appendix we obtain the first-order correction € due to  the absorption peak is 2 times larger than that in the limit

the matrixB and the result is 6=0. These features are reproduced in the same way for
different collective mode excitations.

O2=Tr(A)+ Tr(AB) I (39) We_have analyzed the_: dependences of_ the I_ongitudinal

Tr(A) collective mode frequencies on the metal film thickness. It

was shown thati) with increasing film thickness a group of
collective modes with frequencies neag appears and these
modes can be interpreted as the standing plasma waves in a
3hin slab.(ii) In a thin slab there exists a couple of collective
modes which correspond to the multipole surface-plasmon

In the limit L—o we have to setwN/L=kg and mp/L
=(, whereq is the wave vector of the electromagnetic field.
The latter equality is due to momentum conservation. As
result we get the dispersion relation

P mode. (iii) Some collective excitations can arise from the
9’7TaBk|: q . . . . .
02=w? 1+ - o (39 effective coupling between the single-particle intersubband
P 20 \ke excitations belonging to a certain group. Also, we have

which exactly coincides, up to second orderdfk , with shown analytically how the longitudinal collective excita-
[} F

that for longitudinal plasma waves in an infinite electront'f)ns trfinsform under the "a”S'“OT‘ from two- t(.) three-
gas?® dimensional electron systems. Starting from the eigenvalue

problem(25) which determines the frequencies of the longi-
tudinal collective mode in 2D electron systems, we have ob-
tained in the limitL—< the well-known dispersion relation

The linear-optical properties of unbacked thin metal films(39) for longitudinal plasma waves in an infinite electron
have been studied within the jellium model and the time-9as- For the sake of S|mpI|C|'ty th.IS problem was considered
dependent density-functional approach. Most previous work¥ the random phase approximation.
consider the interaction of thin metal fil(2D electron gas
with an electric field perpendicular to the surface of the film. ACKNOWLEDGMENTS
rhe clectic el comperen parael [ e SUce o 1S 14 s supprted n part by the ussian Founda

treated both perpendicular and parallel components of thon for Basic ResearclGrant No. 02-02-17138 “Univer-
g : . Sities of Russia” Program{Grant No. UR.01.03.0Q1 and
electromagnetic field microscopically and the results are PeSTC Proi
. : . . ject No. 2651.
formed in terms of strictly calculated reflection, transmis-
sion, and absorption coefficients.

We have analyzed the absorption spectra of thin metal
films. In the case of-polarized incident waves the absorp- | et us have alNx N matrix C that can be performed as a
tion spectrum contains resonant peaks corresponding to eXym of two matrices,
citations of the transverse collective modes. The frequencies
of the transverse collective modes almost coincide with the C=A+uB, (A1)
single-particle intersubband transition frequendigs,. In .
the case ofp-polarized incident waves the absorption spec-W'th elements
trum contains resonant peaks corresponding to excitations of _ _
both transverse and Iongitudinal collgctive r%odes. The most Anm=1(MG(M). Bom=h(N) S, (A2)
intense absorption resonances correspond to excitations wfheref(n), g(n), h(n) are arbitrary functions angd is the
odd longitudinal collective modes. It has been shown thascalar parameter. One can show that all eigenvalues of the
there are no collective modes with frequencies that lie famatrix A are equal to zero except for one and this eigenvalue
above the bulk plasma frequenay,. Also, it has been is equal to the trace of the matrix. Eigenvalues of the matrix
shown that the reflection and transmission coefficients of th®& are simply equal to its diagonal elememht&). The sub-

VIIl. CONCLUSIONS

APPENDIX
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ject of our interest is the eigenvaluks of the matrixC. If u

is a small parameter, then the eigenvaligscan be calcu-

PHYSICAL REVIEW B 68, 195405 (2003

Within the perturbation theory the eigenvalg can be ex-
panded into a power series

lated within the perturbation theory. Below we obtain the o

first-order correction to the eigenvalug, which is only
nonzero in the limitu=0. The eigenvalues,, of the matrix
C are roots of the characteristic equation

N
)\N_ngl (Ann_":"LBnn))\’\I_1

N
1
+5 E 1 ﬂBmm(ZAnn+ﬂBnn))\N72+ --=0. (A3)

m,n=
m#n

N =Tr(A)+ E_l WX (A4)

By substituting Eq(A4) into Eq. (A3) and collecting terms
with the same powers g, one can get

Tr(A)x;=Tr(AB). (A5)
So the final result is
Tr(AB)
N =Tr(A)+ u THA) SR (AB)
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