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Unified treatment of bound, scattering, and resonant states in one-dimensional
semiconductor nanostructures
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An exact and unified method is developed for finding a complete solution of the one-dimensional Schro¨-
dinger equation at any complex energy and for an arbitrary potential profile. This includes obtaining the
binding energies, resonance energies and widths, transmission and reflection amplitudes, as well as the corre-
sponding wave functions. In addition to finding the total widths of resonances, a simple but exact procedure is
proposed for calculating their partial widths that determine relative probabilities of resonance decaying into~or
exiting from! the left and right channels. The method is based on a direct calculation of the Jost matrix together
with the Jost solutions of the Schro¨dinger equation. A combination of the variable-constant method with the
complex coordinate rotation is used to replace this equation with an equivalent system of linear first-order
differential equations whose solutions, taken at long distances from the interaction region, form the Jost matrix.
The effectiveness and accuracy of the method are demonstrated by several numerical examples where the
motion of particles through quantum-well semiconductor heterostructures as well as in a potential with infinite
tails is considered.
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I. INTRODUCTION

Thanks to advances in epitaxial growth technology, it h
become possible in the last two decades to make cry
structures called superlattices, nanostructures, nanodev
mesoscopic devices, and semiconductor heterostruct
~see, for example, Ref. 1!. These artificially grown crystals
are composed of alternating layers of different semicond
tor materials with nanometer thickness. The materials use
them have different energy gaps between the valence
conduction bands. As a result, for the electrons and holes
layers represent a one-dimensional alternating sequenc
potential wells and barriers.

By adjusting the chemical composition and thickness
the layers, it is possible, in principle, to construct a dev
with a given potential profile. This is why some authors~e.g.,
Ref. 2! use the term ‘‘wave function engineering’’ to emph
size the possibility of altering at will the shape of the wa
function describing motion of the charge carriers in semic
ductor devices, to suit specific applications.

The most ubiquitous example of a nanostructure is
sequence of GaAs and AlxGa12xAs layers, wherex is the
aluminum mole fraction~usuallyx,0.45). When an electron
moves through such a structure, it ‘‘feels’’ that inside t
Al xGa12xAs layers the potential energy is approximate
944x meV higher than in the GaAs layers.3 Therefore, for
the electrons, the GaAs regions represent potential w
separated by the barriers that are formed by the AlxGa12xAs
layers. The GaAs/AlGaAs heterostructures are used in m
electronic devices such as quantum-well infrar
photodetectors,4 tunneling diodes, and midinfrared lasers,5 to
name just a few.

The ‘‘wave function engineering’’ mentioned above, r
quires not only the sophisticated technology of crystal gro
ing but also reliable methods for setting targets for su
growing, i.e., methods for optimizing the potential profi
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that generates desired spectrum of bound states and
nances of the charge carriers in the conduction band. The
a complicated technique of the inverse scattering prob
that, in principle, enables one to reconstruct the poten
profile from a given set of bound states and scatter
characteristics.6 In practice, however, the modeling is usual
done by solving the direct problem, i.e., by locating t
bound and resonant states for a given potential. In such
approach, the optimization is achieved by repeated solvin
the direct problem for different potential profiles and choo
ing the optimal solution.

This ‘‘direct modeling’’ requires, of course, an efficien
and accurate method for locating the bound states and r
nances generated by one-dimensional potentials. Sev
methods of this kind have been developed over the past
cades. Among them are the Numerov and finite element te
niques, the transfer matrix and Green’s function approac
the density of states, argument principle, perturbed w
vector, quantum reflection pole methods, and others~for ref-
erences and review of the existing methods, see Ref. 7!.

Bound states can be easily and accurately located by
of these methods, but when it comes to locating resonan
they show notable differences. By their approach to re
nances, these methods can be divided into two catego
that cover the real and complex energy calculations, resp
tively.

Using the real energy methods that are considered to
simple ~although this is not always true!, one can locate the
position of relatively narrow resonances with a sufficien
high accuracy, but there are many difficulties in determin
their widths and the methods usually fail for broad and ov
lapping resonances. The complex methods have the ad
tage that the calculations are based on a rigorous defin
of resonances, namely, as singularities of theS matrix, and
therefore the widths and resonant energies are obtaine
multaneously.

Most of the existing real- as well as complex-ener
©2003 The American Physical Society20-1
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methods are based on discretization of the potential pro
by a sequence of thin elements of rectangular shape
constant potential energy. For each of these elements,
wave function is a superposition of the right and left trav
ing plane waves. The superposition coefficients in two ad
cent elements are related via the so-called transfer ma
that is constructed to satisfy the continuity condition. Th
the total transfer matrix for the whole physical structure i
product of the elementary matrices.

Undoubtedly, the transfer-matrix approach is relative
simple and rather universal although it is not suitable
some cases. For example, it is difficult to use the tran
matrix when the potential has slowly decaying tails outs
the physical structure~for instance, when charge is accum
lated on the surfaces! and one has to go too far to achiev
convergence of the results. The rectangular discretizatio
also not satisfactory when the potential profile has segm
of fast variations~near impurities, for instance! or is biased
by strong electric field8 ~Stark effect!.

In the present work a method is developed for solv
one-dimensional Schro¨dinger equation on an infinite line
with an arbitrary potential profile. This method overcom
the abovementioned and some other drawbacks of the e
ing methods. It belongs to the category of complex-ene
approaches and is based on exact differential equations
we derived~see Refs. 9–14! for functions closely related to
the so-called Jost solutions well known in quantum scat
ing theory. At large distances these functions coincide w
the elements of the Jost matrix. The zeros of the determin
of this matrix in the complex-energy plane correspond to
spectral points~bound and resonant states! of the Hamil-
tonian.

Unlike in the existing methods where the bound, scat
ing, and resonant states are treated differently, with the
posed equations one can obtain full solution of the prob
for any chosen point in the complex-energy plane. In pra
cal terms this means that with the same computer prog
that solves the same equations, one can obtain binding
resonant energies and widths as well as the transmission
reflection coefficients together with the corresponding wa
functions by simply considering an appropriate domain
the complex-energy plane. A procedure is also developed
calculating the partial widths that determine relative pro
abilities that a resonance decays into~or excited from! the
left and right moving waves~these probabilities are differen
when the potential is not symmetric!.

The proposed method is simple in application and
though it exploits the idea of the complex rotation of t
coordinate~which is only needed for potentials with lon
tails!, it is different than the traditionally used complex dil
tion methods~such as in Ref. 15, for example! in that it does
not employ any expansion or variational procedures. Inste
the Jost matrix at a complex energy is obtained directly fr
exact equations equivalent to the effective-mass Schro¨dinger
equation. The effectiveness and accuracy of the approach
demonstrated by several numerical examples where the
tion of particles through quantum-well semiconductor h
erostructures as well as in a potential with infinite tails
considered.
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II. BASIC EQUATIONS

Consider a particle of massm moving on the linexP
(2`,1`) where the potential energyV(x) becomes con-
stant at both ends

VL ←
2`←x

V~x! →
x→1`

VR ~1!

faster thanuxu21, i.e.,

lim
x→6`

x@V~x!2VR,L#50. ~2!

When VLÞVR the potentialV(x) is called biased. Without
losing the generality, we can always assume that one of th
limit values VL or VR ~whichever is lower! is zero. This
simply means that the energy is counted from this value
the bound states~if any! have negative energies as is usu
when quantum mechanical systems are considered.

Wave functionC(E,x) describing the motion of this par
ticle with the energyE obeys the Schro¨dinger equation

@]x
21k22V~x!#C~E,x!50, ~3!

where

V~x!5
2m

\2
V~x!

and

k25
2m

\2
E.

There are three different types of possible states of a qu
tum particle: bound, resonant, and scattering states. With
abovementioned choice of the origin of the energy scale,
corresponding wave functions are solutions of the sa
equation~3! at different complexE’s as shown in Fig. 1 and

FIG. 1. Typical distribution of the bound states and resonan
i.e. spectral points~open circles! in the complex energy plane. It is
assumed thatVL,VR and the energy is measured relative toVL .
The resonances that can decay in the both directions, are denot
QB-I ~quasibound states of the first type!, and those that decay onl
to the left, as QB-II. The unitary cuts going from the branchi
points to infinity are also shown. Because of the complex rotat
~33! these cuts are turned into the unphysical sheet by the angleu.
0-2
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with different boundary conditions.
For bound states the energy is real and negative while

wave function is square integrable. Corresponding soluti
of Eq. ~3!, if they exist, have exponentially decayin
asymptotic tails at the both ends of thex line

NE
(2)eukLux ←

2`←x
C~E,x! →

x→1`
NE

(1)e2ukRux, ~4!

where

kL,R5Ak22VL,R ~5!

are the asymptotic values of the momentum~channel mo-
menta! andNE

(6) are the asymptotic normalization constan
The resonances are described by the wave functions

have only outgoing waves at large distances

ME
(2)e2 ikLx ←

2`←x
C~E,x! →

x→1`
ME

(1)eikRx, ~6!

where ME
(6) are also asymptotic normalization constan

The solutions of this kind exist at complex energiesE
5Eres2 iG/2 (Eres.0, G.0).

At this point it should be noted that the motion of a pa
ticle on an infinite line is inherently a multichannel proble
that has at least two channels involved. These two chan
are the motion on the left and right halves of the line. The
channels open at the corresponding thresholdsE5VL and
E5VR . If the resonance energyEres is above both these
thresholds, the resonant state can decay into both chan
~both directions!, otherwise it can decay only into one o
them.

Sometimes these two types of resonances are called
sibound states of the first and second type, respectively~see,
for example, Ref. 7!, although they have essentially the sam
nature since both correspond to theS-matrix poles in the
complex energy plane. The boundary conditions are also
same, given by Eq.~6!, for both ‘‘types’’ of resonances. In
deed, if, for example, the particle cannot go to2` ~when the
physical energyEres,VL) then (k22VL),0 and the left-
moving plane wave exp(2ikLx) in Eq. ~6! automatically be-
comes exponentially attenuating, provided that, for a clo
channel, we choose ImkL.0 from the two possible sign
when calculating the square root in Eq.~5!.

When the potential is not symmetric and both chann
are open, it is natural to expect that the probabilities of
caying of a resonance into~or its exciting from! the left and
right channels may be different~as is usual in multichanne
problems!. The corresponding widthsGL andGR in this case
sum up to the total widthG5GL1GR . In Appendix B, a
procedure for determining the partial widthsGL and GR is
given.

The scattering happens at real positive energies. At la
distances the corresponding wave function is a superpos
of the incident and scattered waves, viz.

A~E!eikLx1A8~E!e2 ikLx ←
2`←x

C~E,x!

→
x→1`

B8~E!eikRx1B~E!e2 ikRx,

~7!
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whereA andB are the amplitudes of the incoming waves~in
the general case bothA andB are nonzero, which means tha
the waves come from both the left and right channels! while
A8 andB8 are the amplitudes of the scattered waves. Wh
solving the scattering problems, we determineA8 andB8.

As is seen, all these boundary conditions look quite d
ferent which necessitates the use of different mathema
methods for solving bound, resonance, and scattering p
lems. We can avoid this, however, if we find a convenie
way to obtain the fundamental system of solutions of Eq.~3!
at any complexE, and a unified way to construct the physic
solutions obeying the boundary conditions~4!, ~6!, and ~7!
out of it.

Since Eq.~3! is of the second order, its fundamental sy
tem of solutions consists of any two linearly independe
functions obeying this equation~see, for example, Ref. 16!.
The choice of them is not unique like a choice of the basis
any space. To make our choice, we define two different
lutions f1(E,x) andf2(E,x) of Eq. ~3! by fixing values of
them and their derivatives atx50 as follows:

f1~E,0!50, ]xf1~E,0!51, ~8!

f2~E,0!51, ]xf2~E,0!50. ~9!

Since the Wronskian of any two solutions of Eq.~3! is inde-
pendent ofx, we can calculate it atx50. Hence

W~f1 ,f2![21

for all points of the interval (2`,1`), which means that
the conditions~8! and~9! guarantee the linear independen
of the solutionsf1 and f2. Hereafter they are called bas
solutions.

At large distances the potential becomes constant and
general solutionF of Eq. ~3! has the form

a~E!eikLx1a8~E!e2 ikLx ←
2`←x

F~E,x! →
x→1`

b8~E!eikRx

1b~E!e2 ikRx, ~10!

similar to Eq.~7! with any choice of~complex! E. Any so-
lution of Eq.~3! is a linear combination of its basic solution
f1 andf2,

F~E,x!5C1f1~E,x!1C2f2~E,x!.

Therefore, in constructing the physical solutions from t
basic ones, we have to find such coefficientsC1 andC2 that
the asymptotics~10! takes the form of Eq.~4!, ~6!, or ~7!. In
order to facilitate this, we look forf1 andf2 in the follow-
ing special form:

fn~E,x!

[H eikLxFnL
(1)~E,x!1e2 ikLxFnL

(2)~E,x!, x<0,

eikRxFnR
(1)~E,x!1e2 ikRxFnR

(2)~E,x!, x>0, n51,2,

~11!

where FnL
(6)(E,x) and FnR

(6)(E,x) are new unknown func-
tions. Since for each interval (2`,0# and@0,1`) instead of
one unknown functionfn ~for eachn), we have introduced
0-3
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two functions, they must be subjected to an additional c
strain condition. The most convenient is the Lagrange c
dition

eikLx]xFnL
(1)~E,x!1e2 ikLx]xFnL

(2)~E,x!50, x<0,

eikRx]xFnR
(1)~E,x!1e2 ikRx]xFnR

(2)~E,x!50, x>0, n51,2,
~12!

which is standard in the variable-constant method for solv
differential equations.17

Substituting the ansatz~11! into Eq. ~3! and using the
condition ~12!, we derive the following coupled differentia
equations of the first order:

]xFnl
(1)~E,x!5

e2 ikl x

2ik l
@V~x!2Vl #@eiklxFnl

(1)~E,x!

1e2 ikl xFnl
(2)~E,x!#,

]xFnl
(2)~E,x!52

eiklx

2ik l
@V~x!2Vl #@eiklxFnl

(1)~E,x!

1e2 ikl xFnl
(2)~E,x!#, ~13!

where the subscriptl 5L,R assumes the valuesL andR when
x is on the left and right half linesxP(2`,0# and xP@0,
1`), respectively.

To derive the boundary conditions for the functionsFnl
(6) ,

that correspond to the conditions~8!, ~9!, we make use of
Eqs.~11!, ~12! and obtain

F1l
(1)~E,0!1F1l

(2)~E,0!50,

ik lF1l
(1)~E,0!2 ik lF1l

(2)~E,0!51

and

F2l
(1)~E,0!1F2l

(2)~E,0!51,

ik lF2l
(1)~E,0!2 ik lF2l

(2)~E,0!50.

Hence the boundary values of the functionsFnl
(6) , that guar-

antee the linear independence of the corresponding basi
lutions fn(E,x), are (l 5L,R)

F1l
(1)~E,0!5

1

2ik l
, F1l

(2)~E,0!52
1

2ik l
, ~14!

F2l
(1)~E,0!5

1

2
, F2l

(2)~E,0!5
1

2
. ~15!

As can be easily checked, these conditions also guarante
continuity of fn(E,x) and its first derivative atx50. Equa-
tion ~13! together with the boundary conditions~14!, ~15!
define the fundamental system of solutionsfn(E,x) of Eq.
~3! via Eq.~11!. The functionsFnl

(6)(E,x) are closely related
to the so-called Jost solutions well known in quantum sc
tering theory where they are defined as the solutions of
Schrödinger equation that at large distances converge
exp(6ikr).18
19532
-
-

g

so-

the

t-
e

to

III. JOST MATRIX AND S MATRIX

Any physical solutionC(E,x) is a linear combination of
the basic solutions

C~E,x!5C1f1~E,x!1C2f2~E,x!, ~16!

where the coefficientsC1 and C2 are determined by the
boundary conditions~4!, ~6!, or ~7! at large distances. To
find appropriate coefficients in Eq.~16!, we therefore need
to know the behavior off1(E,x) and f2(E,x) when
x→6`, which in turn requires the knowledge of the beha
ior of Fn

(6)(E,x) at the both ends of the interval (2`,
1`) for various complex values of the energyE.

Comparing Eq.~11! with Eq. ~10!, we may expect that a
large distances the functionsFnl

(6)(E,x) become constants
And indeed, if the difference@V(x)2Vl # vanishes fast
enough whenuxu→` or becomes zero at finiteuxu, then the
right-hand sides of Eqs.~13! disappear, i.e.,

]xFnl
(6)~E,x!50, uxu.xmax,

which means thatFnl
(6)(E,x)5const for largeuxu.

In Appendix A it is shown that indeed, under the conditio
~2!, in certain domains of theE plane these functions hav
finite limits Fnl

(6)(E,6`). This question is discussed in Se
IV, while here we describe how the physical solutions can
constructed if the necessary limiting valuesFnl

(6)(E,6`) do
exist. We show that these values can be combined in
32 matrix which has the same properties as the Jost ma
of the three-dimensional theory, namely, its zeros corresp
to bound and resonant states, and it relates to theSmatrix in
the same way.

A. Bound states

When we usef1(E,x) and f2(E,x) to construct the
wave function of a bound state, the coefficientsC1 and C2
should be chosen in such a way that the resulting phys
wave functionC(E,x) is exponentially decaying at largeuxu
in both directions as is given by Eq.~4!. Of course, such a
choice ofC1 andC2 is possible only at certain points on th
negative real axis of theE plane corresponding to the ene
gies of bound states if they exist. Conversely, if we found
pair of numbersC1 and C2 such that the combination~16!
obeys the conditions~4!, then the energy at which this take
place is the bound state energy.

Substituting Eq.~11! into Eq. ~16! we can rewrite the
conditions ~4! in terms of the functionsFnl

(6)(E,x) as fol-
lows:

C1F1L
(1)~E,2`!1C2F2L

(1)~E,2`!50,

C1F1R
(2)~E,1`!1C2F2R

(2)~E,1`!50. ~17!

This homogeneous system of linear algebraic equations
Cn has a nontrivial solution if and only if

deti f (2)~E!i50, ~18!

where the matrixi f (2)(E)i is defined as
0-4
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UNIFIED TREATMENT OF BOUND, SCATTERING, AND . . . PHYSICAL REVIEW B68, 195320 ~2003!
i f (2)~E!i[ lim
x→1`

S F1L
(1)~E,2x!, F2L

(1)~E,2x!

F1R
(2)~E,x!, F2R

(2)~E,x!
D ~19!

and by analogy with the standard three-dimensional sca
ing theory19 can be called the Jost matrix.

So, the procedure of locating possible bound states is v
simple. By solving the differential equations~13! from x
50 to certainuxmaxu in both directions, we calculate the ma
trix i f (2)(E)i for different energiesE on the negative rea
axis, trying to find such values among these energies
which Eq.~18! holds. This can take place at discrete poin
E0 ,E1 ,E2 , . . . , corresponding to the energies of bou
states, if any. At each of the pointsEi thus found, the coef-
ficients C1 and C2 are then determined by the system~17!
uniquely with the exception of the general normalization fa
tor which is finally fixed when the physical wave functio
~16! is normalized.

B. Resonances

Physical wave function of a resonance state, w
asymptotic behavior given by Eq.~6!, can be constructed ou
of the basic solutions just in the same way as for bou
states. As is easily seen, the conditions~6! give the same
homogeneous linear equations~17! for the coefficientsC1
andC2. Therefore the resonance energiesEres and the total
widths G are also determined by rootsEr of Eq. ~18!. The
only difference is that the resonance zeros of Eq.~18! are
complex and the channel momenta~5! should be taken on
the physical (Imkl.0) or unphysical (Imkl,0) sheet of the
Riemann surface~see Appendix A! if the corresponding
channel is closed or open. This choice between the phys
and unphysical sheets is dictated by the necessity to obe
boundary conditions, i.e., to have attenuating or grow
waves at large distances. Since the resonances in the
channels are only possible at positive collision energiesEres,
the corresponding zerosEr are situated below the positiv
real axis of the complexE plane

Er5Eres2
i

2
G.

Locating complex zeroEr of the Jost matrix, we determin
both the energy and total width of a resonance at the s
time. A procedure for calculating the partial widthsGL and
GR is given in Appendix B.

Therefore the positions of both bound and resonant st
are given by zeros of the determinant of the same ma
~19!. This is yet another reason why we call it the Jost m
trix.

C. Scattering states

Quantum scattering is a transformation of the incom
waves into outgoing waves at real positive energies~whenE
is above at least one of the limit valuesVL andVR) by the
effect of the potential, which can be schematically presen
as follows:
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Here we consider the general case when the incident wa
come from the both sides with the left and right amplitud
beingA(E) andB(E), respectively. After the interaction ha
taken place the scattered waves also diverge in both di
tions. Each of the scattered wavesA8(E)e2 ikRx and
B8(E)eikLx include the corresponding transmitted and
flected waves. The waves that span to the far left (2`) and
far right (1`) ends of thex line can be considered as mov
ing in two different channels (L and R channels, respec
tively! coupled by the potential. IfE is above bothVL and
VR , both channels are open and the waves can be transm
between them. Otherwise only reflection~elastic scattering!
in the open channel is possible.

Since the flux of the particles is conserving we have

uA~E!u21uB~E!u25uA8~E!u21uB8~E!u2,

which implies that the incoming wave amplitudes are tra
formed into the outgoing ones by a unitary 232 matrix

S A8

B8
D 5SS A

BD . ~20!

Matrix elements of theS matrix can be obtained as a by
product when we construct the physical wave function.
deed, substituting Eqs.~16! and ~11! into Eq. ~7!, we obtain
two systems of linear equations involving the coefficien
Cn , viz.

C1F1L
(1)~E,2`!1C2F2L

(1)~E,2`!5A,

C1F1R
(2)~E,1`!1C2F2R

(2)~E,1`!5B, ~21!

C1F1L
(2)~E,2`!1C2F2L

(2)~E,2`!5A8,

C1F1R
(1)~E,1`!1C2F2R

(1)~E,1`!5B8. ~22!

At first sight, it seems that we have too many equations
C1 andC2. Since, however,A andB are given amplitudes o
the incident waves whileA8 andB8 are unknown quantities
we have four unknowns here. The coefficientsC1 and C2
should be obtained from the system~21!. Then the scattered
wave amplitudesA8 and B8 can be calculated by means o
Eqs.~22!.

Equations~21! and ~22! can be rewritten in the matrix
form

i f (2)~E!i S C1

C2
D 5S A

BD and S A8

B8
D 5i f (1)~E!i S C1

C2
D ,

~23!

where the matrixi f (2)(E)i is defined by Eq.~19! while
i f (1)(E)i is
0-5
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i f (1)~E!i[ lim
x→1`

S F1L
(2)~E,2x!, F2L

(2)~E,2x!

F1R
(1)~E,x!, F2R

(1)~E,x!
D .

~24!

The scattering wave function normalized to the incom
flux uAu21uBu2 is therefore given by the following produc
of row, 232, and column matrices

Cscatt~E,x!5S eiklxF1l
(1)~E,x!1e2 ikl xF1l

(2)~E,x!

eiklxF2l
(1)~E,x!1e2 ikl xF2l

(2)~E,x!
D T

3i f (2)~E!i21
•S A

BD ,

wherel 5L for negativex and l 5R for x.0.
Comparing Eqs.~23! with the definition of theS matrix

~20!, we see that

S~E!5i f (1)~E!ii f (2)~E!i21. ~25!

This equation has exactly the same form as the expressio
the S matrix in terms of the Jost matrix and its conjuga
partner, which is introduced in the three-dimensional the
of multichannel and noncentral potentials.18,19,13 It should
also be noted that at the spectral points~bound and resonan
states! where the condition~18! holds, the matrix~25! has
poles, as one would expect from anS matrix.

The matrix elements of theSmatrix do not depend on th
choice of the initial wave amplitudesA andB. Therefore to
clarify the physical meaning of these matrix elements we
consider special cases with simple choices ofA andB.

If AÞ0 andB50 ~left incoming wave! then RL5A8/A
andTL5B8/A are the left reflection and transmission amp
tudes, respectively. Similarly, ifA50 and BÞ0 then RR
5B8/B andTR5A8/B are the right reflection and transmi
sion amplitudes. SubstitutingA50 or B50 into the equation

S A8

B8
D 5S S11A1S12B

S21A1S22B
D

we see that theS matrix consists of these transmission a
reflection amplitudes, namely,

S~E!5S RL~E!, TR~E!

TL~E!, RR~E!
D . ~26!

It should be noted that in the above equation,E is complex
and only for real energies the quantitiesRl andTl have the
simple physical meaning. IfE is real, one can prove th
following relations between them~see, for example, Ref
20!. When the interaction is time-reversal invariant the l
and right transmission amplitudes are equal,TL5TR . Fur-
thermore, in this case, the left and right reflection coefficie
coincide as well,uRLu25uRRu2, which follows from the fact
that the total current is conserving, i.e.,uTl u21uRl u251.

Therefore, when an appropriate domain of the compl
energy plane is considered, the differential equations~13!
together with boundary conditions~14!, ~15! at x50, give
full solution of the one-dimensional problem for bound, sc
19532
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tering, and resonant states in a unified way. For any comp
E, by solving these equations fromx50 to uxmaxu, one ob-
tains not only the Jost andSmatrices but at the same time th
functions Fnl

(6)(E,x) that give the corresponding physic
wave functions, via Eqs.~11! and~16!, with guaranteed cor-
rect behavior at large distances.

In many practical problems concerning the semiconduc
heterostructures, the potential is constant for allx outside
certain finite intervaluxu,xmax. In such cases the limits

Fnl
(6)~E,6`!5Fnl

(6)~E,6xmax!

apparently exist for any complexE, and therefore Eqs.~13!
can be applied as they are, without any of the modificatio
~complex rotation! discussed in the subsequent sections.
general, however,V(x) can be of the long-range nature i
for example, electric charge is accumulated at the surface
the heterostructure.3,21 Such problems can also be solved u
ing the proposed method, though a more careful analysis~see
Appendix A! shows that, for locating resonances, they
quire a different path~along a line in the complexx plane!
for integration of Eqs.~13!.

IV. LONG-RANGE BEHAVIOR OF F „Á…

As is shown in Appendix A, in the general case of
long-range potential obeying the constraint~2!, the functions
Fnl

(1)(E,x) andFnl
(2)(E,x) have finite limits (uxu→`) in dif-

ferent domains of the RiemannE surface, namely, in the
domains defined by

Fnl
(2)~E,x! →

uxu→`
~ lim ' if Im klx>0!, ~27!

Fnl
(1)~E,x! →

uxu→`
~ lim ' if Im klx<0!, ~28!

where x→2` for l 5L and x→1` for l 5R. In other
words

~ lim ' if Im kL<0! ←
2`←x

Fnl
(2)~E,x!

→
x→1`

~ lim ' if Im kR>0!,
~29!

~ lim ' if Im kL>0! ←
2`←x

Fnl
(1)~E,x!

→
x→1`

~ lim ' if Im kR<0!.
~30!

Comparing these conditions with the definitions~19! and
~24! of the Jost matrix and its conjugate partner, we see
the matricesuu f (2)(E)uu and uu f (1)(E)uu, exist in the follow-
ing domains of theE surface:

uu f (2)~E!uu ' if Im kl>0, ~31!

uu f (1)~E!uu ' if Im kl<0. ~32!

They exist simultaneously only on the real axis of theE
plane. For different limits, this axis serves therefore as eit
the lower or upper bound of the corresponding domains
the E plane. Such an ultimate separation of the upper a
lower half planes takes place, however, only for long-ran
0-6
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potentials. If the potential decays very fast~exponentially, for
instance! the lower bound is shifted downwards and the u
per bound upwards which results in a widening of the co
mon domain of theE plane. That is, for short-range pote
tials all the above limits exist simultaneously whenE is
within a band along the real axis~see Appendix A!.

The fact thatFnl
(6)(E,x) has no limits in certain domain

of the E plane seems to contradict the asymptotics~10! that
are valid for any complexE. These asymptotics, howeve
are written in a general form and must include both ter
involving exp(iklx) and exp(2iklx), only if Im klx50, when
they are of the same order of magnitude. If ImklxÞ0, then
one of the exponential functions exp(6iklx) is growing while
the other is vanishing. This means that in such a case the
and right-hand sides of Eq.~10! are sums of ‘‘small’’ and
‘‘large’’ terms. The ‘‘small’’ term is significant only at the
spectral points where the ‘‘large’’ term is zero by definitio
At all other points and off the real axis, the asymptotics~10!
does not prescribe the structure of any ‘‘small’’ terms, a
therefore we should keep only the leading terms at the
and right hand sides of Eq.~10!. If either Fnl

(1)(E,x) or
Fnl

(2)(E,x) diverges, it is always multiplied in Eq.~11! by a
vanishing exponential function that compensates its gro
so that the corresponding term does not contribute into
leading order asymptotic behavior of the function~11! and
therefore does not contradict Eq.~10!.

Thus, the two-term decomposition~11! guarantees term
by term correspondence with the asymptotic form~10! when
Im klx50 and at the spectral points~bound and resonan
states!. For the other points of theE plane, one of the terms
~11! at large distances acquires a diverging admixture wh
however, remains infinitesimal compared to the other te
that corresponds to the leading term of the asymptotics~10!.

Since the limits ofFnl
(6) do not exist for all complexE’s

the applicability of Eqs.~13! generally~in the case of long-
range potentials! is limited, namely, using these equations w
can solve only the scattering problem (S matrix for realE)
and locate bound states~zeros of the Jost matrixuu f (2)(E)uu
on the negative real axis!. In the resonance domain of theE
plane~under the real axis! Eqs.~13! generally do not give us
uu f (2)(E)uu since the required limits limx→1`Fn

(2)(E,x) do
not exist. This difficulty, however, can be circumvented
using a complex integration path which is discussed nex

V. COMPLEX ROTATION

The conditions~28! and~27! for the existence of the long
range limits of the functionsFnl

(6)(E,x) involve the imagi-
nary part of the productklx but not of the momentum alone
This offers an elegant way to extend the domains of thE
plane where these limits exist, to practically the wholeE
plane. Indeed, if, for example, Imklx is negative we can
always make it positive by using complex values ofx.

Let us assume that the long-range tail ofV(x) is an ana-
lytic function of x. Suppose it vanishes faster thanuxu21 at
both ends of the line~see Fig. 2!

x5z exp~ iu!, Im z50, zP@2`,1`#, ~33!
19532
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for any rotational angleu in the interval 0<uuu<umax
,p/2. Then, first, according to the existence theorem~see,
for example, Ref. 16!, the solutionsfn(E,x) of Eq. ~3! are
holomorphic functions ofx within the corresponding domain
of the x plane and, secondly, they have the asymptotic
havior of the type~10! along any line~33!. Moreover, the
coefficientsa(E), b(E), a8(E), andb8(E) in such asymp-
totics are the same for all choices of the rotation angle
cause they do not depend onx.

Therefore, the limiting valuesFnl
(6)(E,6`) can be found

as the corresponding coefficients in the asymptotics

fn~E,zeiu!

→H FnL
(1)~E,2`!eikLx1FnL

(2)~E,2`!e2 ikLx, z→2`,

FnR
(1)~E,1`!eikRx1FnR

(2)~E,1`!e2 ikRx, z→1`,

~34!

wherex is given by Eq.~33! and, according to the condition
~28! and ~27!, when calculatingFnl

(1)(E,6`), we have to
use suchu that Imklx<0 while in order to findFnl

(2)(E,
6`) we have to make the rotation in the opposite direct
securing that Imklx>0. Practically the coefficients of Eq
~34! can be found by solving Eqs.~13! in which the indepen-
dent variablex is replaced byz, i.e.,

]zFnl
(1)~E,zeiu!5

exp~ iu2 ik lzeiu!

2ik l
@V~zeiu!2Vl #

3@eiklxFnl
(1)~E,x!1e2 ikl xFnl

(2)~E,x!#,

]zFnl
(2)~E,zeiu!52

exp~ iu1 ik lzeiu!

2ik l
@V~zeiu!2Vl #

3@eiklxFnl
(1)~E,x!1e2 ikl xFnl

(2)~E,x!#.

~35!

If V(x) is an analytic function on the wholex plane, then
starting from the boundary values~14! and ~15! at z50,
these equations should be solved in both directio
z→6`, until the solutions attain their limiting values a
sufficiently large uzu. When the potential is discontinuou
~sequence of square wells, for example! nearx50 and has
analytic tails in the outer regions, we can integrate Eqs.~13!
from x50 to the point where the tail begins, and from th
point turn into the complexx plane.

FIG. 2. Rotated path for integration of the differential equatio
for the functionsFnl

(6)(E,x) in the case of long-range potentials.
0-7
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If we choose the rotation angleu such that Imklx<0,
then at large distances onlyFnl

(1) converges to a constan
value whileFnl

(2) diverges. This, however, does not affect t
first of Eqs.~35! since the second term of Eq.~11! becomes
negligible as compared with the first. In other words, at la
distances the first equation of the system~35! decouples from
the second. If the rotation makes Imklx>0, thenFnl

(1) di-
verges but the second equation of Eq.~35!, decoupled from
the first, gives a finiteFnl

(2) when uzu→`.
In the general case, to obtain a full solution of the pro

lem, i.e., theSmatrix ~25!, for a complexE, we have to solve
Eqs. ~35! twice: First, to calculateuu f (2)(E)uu using an ap-
propriate~positive! rotation angle and secondly to calcula
uu f (1)(E)uu using the rotation in the opposite direction. Pra
tically, however, very seldom do we need to solve the
equations twice. Indeed, to locate the bound and reso
states, by solving Eq.~18!, it is enough to calculate the ma
trix uu f (2)(E)uu as the limit ~19! which exists when Imklx
>0, i.e., with positive rotation angle. For the scatteri
states, on the real axis, all necessary limits always exis
multaneously. The only case when we may need the elem
of the matrixuu f (1)(E)uu at complexE is for the determina-
tion of the partial widths~see Appendix B!.

Therefore, performing complex rotation of the coordina
i.e., replacing Eq.~13! with ~35!, we are able to obtain com
plete solution of the one-dimensional quantum mechan
problem at any complex energy and with any potential ob
ing the condition~2!. The rotation is only needed, howeve
when the potential has long-range tails.

VI. NUMERICAL EXAMPLES

A. Nonsymmetric square well

Demonstrating the accuracy and effectiveness of the
posed method, we start with a simple example which d
not require the complex rotation. This is the asymme
square well shown in Fig. 3 and defined as

V~x!5H V1 , x<2a,

V2 , 2a,x,1a,

V3 , x>1a,

~36!
19532
e

-

-
e
nt

i-
nts

,

al
-

o-
s

c

wherea51, V150, V25210, andV3510 in the arbitrary
units such that\2/2m51. This problem can be easily solve
analytically by the smooth matching of the plane waves
x56a. A solution that has only outgoing waves outside t
interval @2a,1a# exists if and only if

k2~k11k3!cos~2k2a!2 i ~k1k31k2
2!sin~2k2a!50, ~37!

where kj5A(E2Vj )2m/\2. Such a solution describes
bound state whenE is negative~on the physical sheet of th
Riemann surface; see Appendix A!, and a resonance whenE
is aboveV1 and has a negative imaginary part~on the un-
physical sheet!. Therefore, the roots of Eq.~37! give us exact
values of the binding and resonant energies with which
corresponding spectrum generated by the Jost matrix me
can be compared.

When obtaining this spectrum from Eqs.~13!, we do not
make use of the simplicity ofV(x). These equations ar
solved numerically in the both directions starting fromx
50 with the boundary conditions~14!, ~15!. The integration
is terminated at the pointsx56a beyond which the right-
hand sides of Eqs.~13! vanish and the Jost solution
Fnl

(6)(E,x) do not change, having attained their final valu
FnL

(6)(E,2`) andFnR
(6)(E,1`) that are used to construct th

Jost matricesuu f (6)(E)uu according to Eqs.~19! and ~24!.
ChangingE and repeating the calculations, we can loca
~using, for example, the Newton method! the points on the
complexE plane where detuu f (2)(E)uu50, i.e., the spectra
points of the given potential.

FIG. 3. Asymmetric potential well of width 2a. The parameters
used in the calculations areVL5V150, V25210, VR5V3510,
a51 ~in the arbitrary units for which\2/2m51).
matrix
its
TABLE I. Lower part of the spectrum of bound and resonant states calculated, using the Jost
method, for the asymmetric square-well potential~36!. The energies and widths are given in arbitrary un
such that\2/2m51.

ReE G GL GR

28.4837914199 0 0 0
24.1436976719 0 0 0
1.7058170112 2.4975286589 2.4975286589 0
25.5180711001 26.1093154827 21.1232875500 4.9860279327
46.7168461195 41.4802081079 31.3236139533 10.1565941546
72.9499239777 57.7898887368 42.1161727017 15.6737160351
104.2041854350 75.0092249117 53.5123817895 21.4968431222
140.4640465022 93.0507392863 65.4578827056 27.5928565807
181.7173066134 111.8304535757 77.8978089153 33.9326446604
0-8
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If the wave function is needed, we can keep track
Fnl

(6)(E,x) at the intermediate points when solving the d
ferential equations~13!. Then the physical wave function o
a bound state is constructed using Eqs.~11!, ~16!, and~17!. It
should be noted that the oscillating and attenuating expon
tial functions are included in such a wave function explici
via the ansatz~11!, and thereforeFnl

(6)(E,x) are rather
smooth functions. Similarly, the scattering wave function
gether with the reflection and transmission amplitudes can
obtained if we chooseE on the positive real axis.

The lower part of the spectrum thus obtained for the
tential ~36! is given in Table I. It includes two bound state
one resonance of the second type~that can only decay in the
left channel!, and the first six resonances of the first typ
The Jost matrix method reproduces all the energies
widths that can be obtained from Eq.~37!, with practically
any desired accuracy. In Table I, the numbers are given w
ten figures after the decimal point~all these figures are th
same as the exact solutions!, but if necessary the accurac
can be increased even further by decreasing the toler
parameters in the numerical procedures that solve the di
ential equations and locate zeros of the Jost matrix dete
nant. It should be emphasized that the results remain a
rate even if we consider very broad resonances.

In addition to the total widths of the resonances, in t
third and fourth columns of Table I, the partial widths f
decaying into the left and right channels are given. With
the proposed method, they can be obtained simultaneo
with G, using Eq.~B6!. To the best of our knowledge, n
other method is able to calculate partial widths of on
dimensional resonances.

As one would expect, for the potential~36!, the probabil-
ity of decaying of a resonance in the left direction is sign
cantly higher than that for the right direction. This al
means that the particle approaching the potential from
left, has more chances to be trapped in one of these reso
states than the same particle moving from the right. In
case of the more complicated functionV(x), however, it is
not easy to guess which direction is preferable for a re
nance to decay. Knowledge ofGL and GR gives, therefore,
additional important information on the properties of t
resonances.

B. Symmetric quadruple-well heterostructure

The next example we consider is taken from Ref. 7, wh
the resonance spectrum of a particle with mass equa

FIG. 4. Symmetric quadruple-well heterostructure of Ref. 7. T
heights of all barriers are equal to 230 meV. The widths of
barriers and gaps are shown underneath in nm. The resonanc
this structure were located for a particle of massm* 50.067me ,
whereme is the mass of electron.
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0.067 mass of electron, moving in the symmetric quadrup
well heterostructure shown in Fig. 4, was calculated us
several different methods. The profile of the potential co
sists of five rectangular barriers having equal heights of 2
meV with zero potential elsewhere. The widths of the ba
ers are~from left to right! 3, 5, 5, 5, and 3 nm, and the gap
separating them are 3, 1, 1, and 3 nm wide. This potentia
a little bit more complicated than Eq.~36!, but our numerical
method does not need any modifications regardless of
complicated the potential is.

Several spectral states generated by this potential
given in Table II where the results obtained by differe
methods are compared. As in Ref. 7, the widths of the re
nances are presented in terms of their lifetimest5\/G. As
is seen, all the digits obtained by the Argument Princip
Method ~APM! of Ref. 7 are correct while the other thre
methods@the Quantum Reflection Pole Method~QRPM!,
Perturbed Wavenumber Method~PWM!, and Modified Den-
sity of States Method~MDOS!# are not sufficiently accurate
even with this simple potential consisting of rectangular b
riers.

e
e
s in

TABLE II. The spectrum of resonant states for a particle
massm* 50.067me ~whereme is the mass of free electron! moving
in the symmetric quadruple-well potential which is shown in Fig.
The resonance width is given in terms of the corresponding lifet
t5\/G.

E(meV) t (ps) method

129.9256515015 0.0574930342 this work
129.925 0.057 APM
130.047 0.058 QRPM
129.967 0.071 PWM
130.2957090471 0.0563038531 this work
130.296 0.056 APM
130.156 0.055 QRPM
130.310 0.067 PWM
130.376 0.070 MDOS
205.2566066390 0.3189863719 this work
205.257 0.319 APM
205.257 0.316 QRPM
205.220 0.316 PWM
205.323 0.365 MDOS
254.0528681944 0.1283002864 this work
254.053 0.128 APM
254.053 0.125 QRPM
254.061 0.136 PWM
254.094 0.135 MDOS
365.1443824466 0.0196816576 this work
365.144 0.020 APM
365.861 0.023 QRPM
365.235 0.029 PWM
365.410 0.029 MDOS
414.4454409411 0.0099325202 this work
509.7135327776 0.0065002559 this work
600.7565867563 0.0041682986 this work
698.0676599010 0.0037912730 this work
0-9
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C. Nonsymmetric quadruple-barrier heterostructure

Since the potential shown in Fig. 4 is symmetric, the to
width G is equally divided betweenGL andGR . This is why
the partial widths are not given in Table II. In the next e
ample~see Fig. 5! there is no symmetry or any clear way
say which direction is preferable for resonances to de
And indeed, as one can see in Table III, some of them ten
decay into the left while the others into the right chann
This tendency cannot be guessed from studying the en
dependence of the reflection and transmission coefficient
general, the information on analytic structure of theSmatrix,
i.e., knowledge of the distribution of its poles in the compl
energy plane, gives much more than detailed scattering c
acteristics. Thus, the transmission coefficient shown in F
6, has only three clear peaks that correspond to narrow r
nances while the broad resonances are not seen again
background and each other. An extreme case of such r
nance ‘‘hiding’’ is demonstrated by the next example, whe
the transmission coefficient does not show any irregulari
whatsoever.

D. Potential with infinite tails

All three potentials we considered so far are of fin
range, i.e., they become constant at finite distances frox
50. This means that we need to integrate Eqs.~13! only on
a finite intervalx1<x<x2 outside of which the right-hand

FIG. 5. Nonsymmetric quadruple-barrier heterostructure. T
barrier potentials~from left to right! are 225, 225, 200, and 30
meV. Bottoms of the wells separating them, are respectively
2225, 2150, and2225 meV. The widths of the barriers and ga
are shown on the figure in nm. The spectral states of this struc
given in Table III, were located for a particle of massm*
50.067me , whereme is the mass of electron.
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sides of these equations vanish and the functionsFnl
(6)(E,x)

do not change. Let us consider now a case when the pote
has tails extending to infinity. An example of such a poten
is shown in Fig. 7 and defined as

V~x!5H V1x2exp~1m1x!, x,0,

V2x2exp~2m2x!, x>0,
~38!

whereV1510, V2520, m151, andm252 in the arbitrary
units such that\2/2m51.

It might seem that the tails are insignificant because t
vanish very rapidly whenuxu increases. This is true when th
scattering is concerned~calculation of the transmission coe
ficient at real positive energies!. Although even in this case
in order to achieve high accuracy, one has to take into
count the interaction at rather long distances. However, w
it comes to resonances, the presence of the tails has s
nontrivial consequences and cannot be ignored.

It is shown in Appendix A that the limit~19! defining the
Jost matrix, exists only if the pointE is on or above the
unitary cuts~see Fig. 1! which are along the real positiv
axis when the rotation angleu50. This also means that fo
any point below the cuts the elements of the matrix on
right-hand side of Eq.~19! diverge whenuxu increases. This

e

t

re

FIG. 6. Energy dependence of the transmission coefficient
the nonsymmetric quadruple-well heterostructure shown in Fig.
matrix

8
9
9

TABLE III. Lower part of the spectrum of bound and resonant states calculated, using the Jost
method, for the nonsymmetric quadruple-barrier heterostructure shown in Fig. 5.

ReE(meV) G (meV) GL(meV) GR(meV)

273.8492200705 0 0 0
231.3309516367 0 0 0
151.3121881936 6.9709902700 6.3462911249 0.6246991451
282.9329059403 27.8291339527 16.7703085398 11.0588254128
410.6371295776 75.9212736352 44.5409201457 31.3803534895
541.7594328710 258.7348042047 254.5090164605 4.2257877443
759.4317036555 247.1716665063 117.6181561005 129.553510405
917.1817136188 378.1741780097 146.8361399247 231.338038084
1189.8521293731 478.8772625385 430.4969782256 48.380284312
0-10
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divergency is caused by the tails of the potential despite t
fast ~exponential in this example! vanishing.

Figures 8 and 9 illustrate these statements as well as
fact that the limit~19!, i.e., values of the elements of the Jo
matrix, does not depend on the choice ofu if this angle is
such that the pointE is above the cuts. To avoid complicate

FIG. 7. Two-barrier potential, defined by Eq.~38!, with the tails
extending to infinity in both directions. The energy and distance
measured in arbitrary units such that\2/2m51. The resonance en
ergies are shown by horizontal lines and their widths by vert
bars. These spectral points are also given in Table IV and show
Fig. 10.

FIG. 8. Absolute value of the Jost matrix determinant for t
two-barrier potential~38!, as a function of maximal distancexmax to
which the differential equations~35! are integrated and which
therefore, stands for the infinity in Eq.~19!. All the curves corre-
spond to the same real energyE55 but to different choices of the
rotation angleu shown next to them. The energy and distance ar
arbitrary units such that\2/2m51.
19532
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monitoring of individual matrix elements, the value o
udetf (2)(E)u was calculated as a function of the real para
eterxmax which effectively served as ‘‘infinity’’ in Eq.~19!.
More precisely, Eqs.~35! were solved fromz50 to z
52xmax in the left direction and toz5xmax/2 in the right
direction ~because the right tail decays faster!. In other
words, the left and right tails of the potential were cut
z52xmax andz5xmax/2, respectively. The determinant wa
then calculated by substituting into Eq.~19! the values of
FnL

(1)(E,2xmaxe
iu) andFnR

(2)(E,xmaxe
iu/2) thus obtained.

Since VL5VR50, the left and right channel threshold
for the potential~38! as well as the corresponding unita
cuts coincide. Both cuts start fromE50 and run to infinity
along the real axis. Whenu.0 they turn down together an
thus expose the points of theE plane above them. For th
point E55 on the real axis, Fig. 8 shows how the right-ha
side of Eq.~19! converges to its limit with three choices o
the rotation angle, namely, 0, 0.2p, and 0.4p. The conver-
gence becomes faster when this angle increases.

Apparently, for differentu, Eqs.~35! and therefore their
solutions, i.e., functionsFnl

(6)(E,x), are quite different. How-
ever, despite different behaviors at smalluxu, they eventually
converge to the same limitsFnl

(6)(E,6`) if E is above the
cuts. This remarkable fact suggests a very simple and reli
way of controlling the accuracy of the calculations. Indee
we can repeat the calculation for a particular value ofE using
two or three different values ofu. Then the digits~in the
value of transmission coefficient or resonance energy,
example! that remain the same, i.e., areu independent, can
be considered as exact because the probability of coincide
is negligible.

In the case under consideration, such an analysis sh

e

l
in

n

FIG. 9. Absolute value of the Jost matrix determinant for t
two-barrier potential~38!, as a function of maximal distancexmax to
which the differential equations~35! are integrated and which
therefore, stands for the infinity in Eq.~19!. All the curves corre-
spond to the same complex energyE552 i5 but to different
choices of the rotation angleu shown next to them. The energy an
distance are in arbitrary units such that\2/2m51.
0-11
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that the accuracy of ten digits in the value ofudetf (2)(5)u
50.4510841955 is achieved whenxmax>30 with u50. For
the points in the fourth quadrant of theE plane, the conver-
gence is slower and also improves with increasingu. For the
point E552 i5, this is illustrated in Fig. 9. Whenu is small,
the Jost matrix at this energy does not converge at al
accordance with formal considerations given in Appendix
With u50.3p, the last digit in udetf (2)(52 i5)u
50.0548640248 stabilizes after thexmax reaches 60. When
u50.25p, the same result is obtained withxmax>90. When
u50.225p, only the first three digits~0.0549! are stable
even atxmax5150.

The resonances of the potential~38! found using appro-
priate values ofu ~that move the unitary cuts below th
corresponding spectral points!, are given in Table IV and
shown in Figs. 7 and 10. The remarkable feature of t
resonance spectrum is the fact that all the resonances ov
and, except for the first one, are very broad. Because of
the potential~38! would be a real challenge for any metho
designed for locating resonances. Apparently, only
complex-energy methods would be able to locate them.
deed, at real energies the transmission coefficient~see Fig.
11! does not show any peaks or even small bumps. Su
potential could therefore serve as a testing ground~a tough
one! for new methods.

TABLE IV. Spectral points calculated, using the Jost mat
method, for the two-barrier potential defined by Eq.~38! and shown
in Fig. 7. Energies are given in arbitrary units such that\2/2m
51. These spectral points are shown in Fig. 10.

ReE G GL GR

2.0480027780 0.1909349562 0.0000120286 0.19092292
4.5428598416 19.9110037394 2.6595868957 17.2514168
5.1944714957 14.6973943851 1.9210051579 12.7763892
5.2940624464 1.7007155642 0.3838049449 1.31691061
5.5532015404 9.8209883494 1.2869433510 8.53404499
5.5849886470 5.2292359995 0.8604715925 4.36876440

FIG. 10. Spectral points of Table IV for the two-barrier pote
tial, defined by Eq.~38! and shown in Fig. 7. The energy is i
arbitrary units such that\2/2m51.
19532
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VII. CONCLUSION

A combination of the variable-constant method with t
complex coordinate rotation is used to replace o
dimensional Schro¨dinger equation by an equivalent syste
of linear first-order differential equations whose solution
taken at long distances from the interaction region, form
Jost matrix. Zeros of its determinant in the complex-ene
plane correspond to the spectral points that include bo
states and resonances. In addition to determining total wid
of resonances, a simple but exact procedure is proposed
calculating their partial widths that show relative probab
ties of resonance decaying into the left and right channe

The proposed equations not only solve the problem
locating spectral points for an arbitrary potential profile, b
give a complete solution of the one-dimensional Schro¨dinger
equation at any complex energy, i.e., they also give the c
responding wave functions as well as the transmission
reflection amplitudes.

The effectiveness and accuracy of the method are dem
strated by several numerical examples. A reliable way
accuracy control based on calculations with different rotat
angles, is used. It is shown that the proposed method is
to locate even extremely wide and overlapping resonance
well as adequately take into account long-range tails of
potential.

In the real-life problems concerning one-dimension
semiconductor nanostructures, there is an additional com
cation caused by the fact that the effective mass of the ch
carriers~electrons or holes! is different inside semiconducto
layers with different chemical compositions. This proble
was not discussed in the present paper simply because o
size limitations. Actually, these mass variations can be nic
fitted in the suggested Jost matrix theory. This is done
constructing the Jost matrix in a way similar to the we
known transfer-matrix method. However, in contrast to t
traditional transfer-matrix method, where the potential p
file must be discretized by a sequence of thin elements
rectangular shape with constant potential energy, within
Jost matrix approach the transfer matrix is calculated dire
for an arbitrary potential. This is achieved by using two li

6
7
3

3
4
0

FIG. 11. Energy dependence of the transmission coefficient
the two-barrier potential, defined by Eq.~38! and shown in Fig. 7.
The energy is in arbitrary units such that\2/2m51.
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early independent solutions~11! of Eqs. ~13! instead of the
plane waves, on each segment of the line where the effec
mass is constant. This generalized transfer-matrix met
will be published in a forthcoming article together with th
extension of the Jost matrix theory, suitable for potenti
having Coulomb tails and nanostructures placed in a str
electric field.
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APPENDIX A: ASYMPTOTICS OF F „Á…

To analyze the behavior of the functionsFnl
(6)(E,x) at

largeuxu we rewrite the system~13! in the following compact
form:

]xFnl
(6)~E,x!56

e7 ikl x

2ik l
@V~x!2Vl #fn~E,x!, l 5L,R,

~A1!

wherefn(E,x) is given by Eq.~11!. It is clear that if the
limits limx→6`Fnl

(6)(E,x) exist then the derivatives at th
left-hand side of Eqs.~A1! vanish whenx→6`, which im-
plies vanishing of the products exp(7iklx)@V(x)2Vl#fn . The
converse statement, i.e., the existence of these limits
result of vanishing of the right-hand sides of Eqs.~A1!, is not
generally true. For our purpose, however, it is enough
know that if the right-hand sides of Eqs.~A1! vanish faster
than 1/uxu, then the limits limx→6`Fnl

(6)(E,x) do exist. In-
deed, for any functionw(r ), the behavior of its derivative

dw~r !
dr

;
r→`

r 2(e11), e.0,

is a sufficient condition for existence of its limit at larger
since the asymptotic behavior ofw(r ) can be written as

w~r ! ;
r→`

E r 2(e11)dr5 S const2 1
er e

D →
r→`

const.

Therefore, at those values of~complex! E at which the prod-
ucts exp(7iklx)@V(x)2Vl#fn vanish faster than 1/uxu whenx
→6`, the functionsFnl

(6)(E,x) have finite limits determin-
ing the Jost matrices~19! and ~24!.

In many practical applications the potential becomes id
tically constantV(x)[Vl at large uxu and hence the Jos
matrices exist for all complexE’s. However, in the genera
case defined by Eq.~2!, the long-range behavior of the righ
hand sides of Eqs.~A1! depends on the choice of the pointE
in the complex energy plane. Indeed, the choice ofE deter-
mines the behavior of the exponential functions exp(7iklx)
as well as the basic solutionsfn(E,x) that can be oscillating
growing, or vanishing.

Since the functionsFnl
(6)(E,x), and therefore the Jos

matrices ~19! and ~24!, depend on the energyE via the
channel momenta kL5A(2m/\2)(E2VL) and kR

5A(2m/\2)(E2VR), there are two square-root branchin
19532
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points for these matrices in the energy plane, namelyE
5VL and E5VR . This means that if we make two ful
circles around either of these points then matrix element
uu f (6)(E)uu return to the same values from which the circlin
was started~one full circle is not enough!. This is because
the channel momentum

kl5A~2m/\2!uEl ueix l5A~2m/\2!uEl ueix l /2 ~A2!

comes to its initial value whenx l→x l14p, whereuEl u and
x l are the polar coordinates of the pointE on the energy-
plane relative to the branching pointVl , i.e.,

E5Vl1uEl ueix l. ~A3!

In other words, elements of the Jost matrix have two diff
ent values at each pointE on this circle.

In order to make the Jost matrix a single-valued funct
of E, we can assume~as is usual in the complex analysi!
that the complex energy forms the so-called Riemann sur
consisting of several parallel sheets. When doing the fi
circle around a branching point, we are moving on the fi
sheet and then continue on the second one until coming b
to the first sheet after completing the two full circles. Such
continuous transition from one sheet to another is possib
we make a cut from the branching point to infinity, and co
nect opposite rims of the cuts on the two sheets~see Fig. 12!.

As is usual in scattering theory, we make straight line c
from both branching points to infinity along the positive re
axis. Each of the two sheets related by the first branch
point, is further branched at the second branching po
Therefore the full Riemann surface consists of four para
sheets. We can reach any of these sheets by making an
propriate number of circles around the first and seco
branching points.

The physical energy~at which scattering takes place! is on
the positive real axis. We choose the cuts and their interc
nections in such a way that the physical scattering ener
lie on the upper rims of both cuts. Starting from these phy
cal energies and moving in an anticlockwise direction arou
all branching points, we cover the so-called physical shee
the energy plane. According to Eq.~A2! the channel mo-
menta corresponding to this sheet have positive imagin

FIG. 12. Fragments of the physical (S1) and unphysical (S2)
sheets of the complex-energy Riemann surface around a branc
point ~B! that corresponds to a threshold energy (VL or VR). Tran-
sition from S1 to S2 and back is possible through the unitary c
running fromB to infinity.
0-13
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parts. The bound states are also on the physical sheet~this is
necessary to guarantee the exponential attenuation of
wave functions!. The resonances, however, correspond to
ros of the Jost-matrix determinant at the momenta with ne
tive imaginary parts@see Eq. ~6! showing the resonan
boundary conditions# and therefore lie on the unphysic
sheet of the Riemann surface. The resonances that are a
decay in both directions~both channels! must have Im(kL)
,0 and Im(kR),0. This means that they lie on the she
which is unphysical with respect to both branching points

In practical calculations, we can choose points on one
the four Riemann sheets by selecting appropriate sign
front of the square roots~5! for kL andkR , i.e., appropriate
signs of their imaginary parts. We assume thatV(x) is an
analytic function ofx and satisfies the condition

lim
uxu→`

x@V~x!2Vl #50 ~A4!

within the sectors swept by the linex5z exp(iu) shown in
Fig. 2, when

2umax<u<umax, 0,umax,p/2

with a large enoughumax. It is obvious that if the Jost ma
trices exist for certain potential, then they also exist for
other potentials that have faster decaying tails. Therefor
we find the domains of their existence in theE plane for the
‘‘worst case,’’ namely,

V~x! →
uxu→`

S const
x11«

1Vl D , «.0, l 5L,R, ~A5!

then for all other potentials obeying the condition~A4!, the
Jost matrices exist at least in the same domains.

Under the condition~A5!, the behavior of the general so
lution of Eq.~3! at large distances is of the exponential ch
acter. A rigorous proof of this can be found, for example,
Ref. 22. For our purpose it is enough to simply apply t
WKB approximation that gives the leading terms of the
ymptotics behavior of the two linearly independent solutio
of Eq. ~3! at largeuxu in the form

C1,2~E,x! →
uxu→`

1

A44k22V~x!
expF6 i Ex

Ak22V~x8!dx8G
5

1

A4k22V~x!

3expF6 i ExAk22Vl2
const

x811«
dx8G

'
1

A4k22V~x!
expF6 i ExS kl2

const

2x811«D dx8G .

Since«.0, the integration ofx212« gives a vanishing term

C1,2~E,x! }
uxu→`

1

Akl

expF6 i S klx1
const

2«x«D G ,
19532
eir
-

a-

e to

t

f
in

ll
if

-

-
s

and at largeuxu we remain with the exponential functio
} exp(6iklx). Therefore the basic solutionsfn(E,x) of Eq.
~3! defined by Eqs.~8! and ~9!, have the form

ane1 ikLx1an8e
2 ikLx ←

2`←x
fn~E,x! →

x→1`
bn8e

1 ikRx

1bne2 ikRx, ~A6!

wherean , an8 , bn8 , andbn arex-independent coefficients.
When Im(klx)50 all terms of this asymptotics are osci

lating and hence the solutionsfn(E,x) are bounded, i.e.
there are such constantsFn that

ufn~E,x!u<Fn when uxu→`.

The exponential functions in Eq.~A1! are also bounded
uexp(7iklx)u51 when Imklx50. Together with the condition
~A4! this means that the right-hand sides of Eqs.~A1! vanish
at largeuxu faster than 1/uxu and therefore the Jost matrice
exist.

When Im(klx).0 the situation is more complicated be
cause the asymptotics~A6! of the basic solutions involve
both the growing and vanishing terms. To simplify furth
derivations, we can rewrite Eq.~A6! in the following com-
pact form:

fn~E,x! →
uxu→`

znle
1 ikl x1jnle

2 ikl x, ~A7!

where, as usual, the subscriptl should be replaced byL or R
when we consider the far left or right end of thex axis,
respectively, whileznl andjnl are the corresponding coeffi
cients in the asymptotics~A6!, namely,znL5an , znR5bn8 ,
jnL5an8 , andjnR5bn . Combining this with Eq.~A1!, we
see that

]xFnl
(6)~E,x!

→
uxu→`

6
e7 ikl x

2ik l
@V~x!2Vl #~znle

1 ikl x1jnle
2 ikl x!

5H 1
1

2ik l
@V~x!2Vl #~znl1jnle

22ikl x! for ~1 !,

2
1

2ik l
@V~x!2Vl #~znle

12ikl x1jnl! for ~2 !.

~A8!

Since exp(22iklx) is growing while exp(12iklx) is vanishing
when Imklx.0, the functionFnl

(2)(E,x) does have a finite
limit in this case andFnl

(1)(E,x) does not.
When Im(klx),0 as can be seen from the same Eq.~A8!,

we have just the opposite case, namely, the limit
Fnl

(1)(E,x) does exist while that ofFnl
(2)(E,x) does not.

Looking at the Jost matrices~19! and~24!, we see that all
the elements ofuu f (2)(E)uu and uu f (1)(E)uu exist when
Im klx>0 and Imklx<0, respectively. These two matrice
exist simultaneously only on the dividing lines Imklx
50, (l 5L,R). Using Eqs.~13!, we can therefore calculat
the matrixuu f (2)(E)uu on and above these lines and the m
trix uu f (1)(E)uu on and below them. For realx, these lines
0-14
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coincide with the cuts~along the positive real axis! that sepa-
rate the physical and unphysical domains of the compleE
surface.

It should be emphasized that, as follows from the gene
theory of multichannel scattering~see, for example, Ref. 18!,
for physically reasonable potentials~without peculiar behav-
ior such as nonintegrable singularities, for instance! the Jost
matrix and its conjugate partner exist and are analytic fu
tions ofE in all areas of the complexE plane that are physi
cally interesting~where the bound, scattering, and reson
states are situated!. Therefore, when we say that the Jo
matrix does not exist at certain values ofE, this simply
means that, without modification~complex rotation!, our Eq.
~13! produce diverging results for the limits~19! or ~24!.

By considering complexx, we can do the analytic con
tinuation of uu f (6)(E)uu across the dividing lines to the do
mains where Eqs.~13! do not give finite values for thes
matrices. For example, the dividing lines can be turn
downwards to expose the resonance spectral points, by r
ing x as given by Eq.~33!. Indeed, ifx l is the polar angle
parameterizing the position of a point on theE plane relative
to the branching pointVl , then by choosing large enoughu
we can make Imklx,

Im klx5Im~ ukl uzei (u1x l /2)!5ukl uz sin~u1x l /2!, ~A9!

positive even whenx l is negative~when the pointE is below
the cut, i.e., on the unphysical sheet! and vise versa. From
the last equation is clear that whenu.0 both dividing lines
are turned down by 2u ~see Fig. 1!.

It is worthwhile to mention that the ultimate separation
the domains of the complexE plane by the dividing lines
takes place only in the ‘‘worst case’’ when the potential h
slowly decaying tails. If, however, the potential decays
largeuxu exponentially, then the matrixuu f (1)(E)uu also exists
within a band above the dividing lines and the mat
uu f (2)(E)uu in the symmetric bands below them. The fas
the potential decays the wider this band is.

For example, if the potential decays as;exp(2mx) at the
right end of thex axis, then according to Eq.~A8!, the de-
rivative ]xFnR

(2)(E,x) below the dividing line (ImkRx,0)
behaves as

]xFnR
(2)~E,x!;e2mxe2ikRx

5ei (2 RekRx2m Im x)exp~22 ImkRx2m Rex!.

The last exponential function decays at large distance
Im kRx.2(m/2)Rex, i.e., when

ukRusin~u1x/2!.2
m

2
cosu. ~A10!

If u50, this condition reads ImkR.2m/2 which means tha
FnR

(2)(E,1`) exists not only for all points of the physica
sheet but also on the unphysical sheet in the immediate
cinity of the cut.
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APPENDIX B: PARTIAL WIDTHS

As was mentioned in Sec. II, the total widthG is a sum of
the partial widthsGL andGR that determine the decay prob
abilities for the left and right channels~directions!. A simple
way to show this and to develop a procedure for calculat
GL and GR , is to consider theS matrix near the pointEr
5Eres2 iG/2.

First of all, we notice that when the collision energy b
comes very high~goes to infinity! the incoming waves are
transmitted through the potential almost completely, i.e.,
transmission amplitudesTl in Eq. ~26! tend to some complex
numberseid l that give 1 for the transmission coefficien
uTl u2, while the reflection amplitudes tend to zero. Keepi
this in mind, we write the matrix functionS(E) as follows:

S~E!5SdF12
iC~E!

E2Eres1 iG/2G , ~B1!

where

Sd5S 0 eidL

eidR 0 D
and

C~E!5
1

i
~E2Eres1 iG/2!

3~12Sd
21uu f (1)~E!uuuu f (2)~E!uu21!.

The form~B1! is most convenient in the vicinity of the reso
nance energyEr , where theS matrix is singular. If we as-
sume that the resonances are isolated and correspon
simple zeros of the Jost matrix determinant, then near
point Er the matrix functionC(E) varies slowly and there-
fore can be approximated byC(Er), i.e.,

S~E!'SdF12
iC~Er !

E2Eres1 iG/2G ~E→Er !. ~B2!

If E is real, the unitarity conditionS†S51 implies that

i ~C†2C!~E2Eres!1C†C2~C†1C!
G

2
50.

This must be true for allE nearEres, which is only possible
if C†5C. Therefore

@C~Er !#
25GC~Er !. ~B3!

Note that this cannot be reduced toC(Er)5G because the
inverse matrixC21(Er) does not exist. Indeed,

C~Er !5 iSd
21 lim

E→Er

~E2Er !uu f (1)~E!uuuu f (2)~E!uu21

5
i

d
Sd

21uu f (1)~E!uuuuM uu,
0-15
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whered5detuu f (2)(E)uu/(E2Er) and

uuM uu5cof~ uu f (2)~Er !uu!5S f 22
(2) 2 f 12

(2)

2 f 21
(2) f 11

(2) D
is the matrix made up of the cofactors ofuu f (2)(Er)uu trans-
posed. Since detuuM uu50 and therefore detuuC(Er)uu50, this
implies that columns ofC(Er) are linearly dependent, i.e.,

Cll 8~Er !5g lh l 8 ,

where the choice of the numbersg l and h l 8 is not unique.
Using the fact thatC†5C, we can choose them in such
way that

Cll 8~Er !5g lg l 8
* .

Then, from Eq.~B3!, it follows that

(
l

ug l u25G. ~B4!

Therefore, if we defineGL5ugLu2 and GR5ugRu2, then G
5GL1GR .

It is easy to show thatGL and GR determine the partia
probabilities of decaying of the resonance into~or its excit-
ing from! the left and right channels. Indeed, consider a wa
packet

c in~x,t !5
1

A2p\vL
resE0

`

ei (kLx2Et/\)v~E!dE ~B5!

that falls on the potential from the left with the average v
locity *0

`v(E)vdE5vL
res corresponding to the resonance e

ergy Eres. We assume that the energy distributionv(E) has
a narrow peak around this energy but this peak is wider t
the resonance widthG. Since the integrand in Eq.~B5! van-
ishes whenE is far fromEres, we can extend the integratio
interval to (2`,1`). This extension does not significant
affect its value but is convenient in the subsequent der
tions. Then, according to Eq.~20!, the scattered wave packe
in the right channel is

cout~x,t !5
1

A2p\vR
resE

2`

1`

ei (kRx2Et/\)SRL~E!v~E!dE.

Expanding the functionkR(E) near the pointEres,

kR~E!'kR
res1~E2Eres!

dkR

dE
5kR

res1
E2Eres

\vR
res

,

we can approximate the corresponding probability density
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ucout~x,t !u25
GLGR

2p\vR
resU E

2`

1`ei (kRx2Et/\)v~E!

E2Eres1 iG/2
dEU2

'
GLGRuv~Eres!u2

2p\vR
res

3U E
2`

1`
expF2

i

\
~E2Eres!~ t2x/vR

res!G
E2Eres1 iG/2

dEU2

,

where takingv(E) outside the integral is justified by th
assumption that its peak is wider thanG. The last integral
can be evaluated by contour integration. This gives

ucout~x,t !u252p
GLGRuv~Eres!u2

\vR
res

3expF2
G

\
~ t2x/vR

res!Gu~ t2x/vR
res!,

whereu(z) is the step function. The total probabilityPR of
seeing the particle in the right channel is then obtained
integratingucout(x,t)u2 over all x. The resulting value

PR52p
GLGR

G
uv~Eres!u2

is factorized in the probability of capture the particle fro
the left channelPcapture52pGLuv(Eres)u2 and the probability
that the resulting resonance decays into the right chan
Pdecay5GR /G. Thus, the meaning of the quantitiesGL and
GR becomes clear.

Equation~B2! offers a simple way of calculating the pa
tial widths GL andGR as the limits

G l5 lim
E→Er

u~E2Er !Sll ~E!u, l 5L,R.

In practical calculations, however, this procedure may ca
numerical instabilities since theS matrix is singular atE
5Er . To avoid this difficulty, we can use the fact that th
sum of the partial widths is already known,GL1GR5G.
What remains is to find their ratio

GL

GR
5 lim

E→Er

USLL

SRR
U,

where the vanishing denominators ofSLL andSRR ~determi-
nant of the Jost matrix! cancel out. Indeed, from Eqs.~19!,
~24!, and~25! it follows that
GL

GR
5 lim

x→`
UF1L

(2)~Er ,2x!F2R
(2)~Er ,x!2F1R

(2)~Er ,x!F2L
(2)~Er ,2x!

F1L
(1)~Er ,2x!F2R

(1)~Er ,x!2F1R
(1)~Er ,x!F2L

(1)~Er ,2x!
U . ~B6!

Therefore, the total widthG is determined when we locate the resonance zero of the Jost matrix in the complexE plane. Then
Eq. ~B6! gives us the ratioGL /GR and the partial widths can be found from the conditionGL1GR5G.
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