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An exact and unified method is developed for finding a complete solution of the one-dimensional Schro
dinger equation at any complex energy and for an arbitrary potential profile. This includes obtaining the
binding energies, resonance energies and widths, transmission and reflection amplitudes, as well as the corre-
sponding wave functions. In addition to finding the total widths of resonances, a simple but exact procedure is
proposed for calculating their partial widths that determine relative probabilities of resonance decaying into
exiting from) the left and right channels. The method is based on a direct calculation of the Jost matrix together
with the Jost solutions of the Scltioger equation. A combination of the variable-constant method with the
complex coordinate rotation is used to replace this equation with an equivalent system of linear first-order
differential equations whose solutions, taken at long distances from the interaction region, form the Jost matrix.
The effectiveness and accuracy of the method are demonstrated by several numerical examples where the
motion of particles through quantum-well semiconductor heterostructures as well as in a potential with infinite
tails is considered.
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[. INTRODUCTION that generates desired spectrum of bound states and reso-

nances of the charge carriers in the conduction band. There is

Thanks to advances in epitaxial growth technology, it hast complicated technique of the inverse scattering problem
become possible in the last two decades to make crystdhat, in principle, enables one to reconstruct the potential
structures called superlattices, nanostructures, nanodevicd¥ofile from a given set of bound states and scattering
mesoscopic devices, and semiconductor heterostructuré§aracteristicS.in practice, however, the modeling is usually
(see, for example, Ref.)1These artificially grown crystals done by solving the direct problem, i.e., by locating the
are composed of alternating layers of different semiconducPound and resonant states for a given potential. In such an

tor materials with nanometer thickness. The materials used igPProach, the optimization is achieved by repeated solving of

them have different energy gaps between the valence antae direct problem for different potential profiles and choos-

conduction bands. As a result, for the electrons and holes, tHa9Y the optimal solution.

layers represent a one-dimensional alternating sequence of This “direct modeling requires, of course, an efficient
. . and accurate method for locating the bound states and reso-
potential wells and barriers.

o : - : ances generated by one-dimensional potentials. Several
By adjusting the chemical composition and thickness Ofrrl1ethods of this kind have been developed over the past de-

the layers, it is possible, in principle, to construct a devic€ a5 Among them are the Numerov and finite element tech-
with a given potential profile. This is why some auth®sy.,  piques, the transfer matrix and Green’s function approaches,
Ref. 2 use the term “wave function engineering” to empha- the density of states, argument principle, perturbed wave
size the possibility of altering at will the shape of the waveygctor, quantum reflection pole methods, and otliensref-
function deSCfibing motion of the Charge carriers in Semicon-erences and review of the existing methods, see Ref 7
ductor devices, to suit specific applications. Bound states can be easily and accurately located by any
The most ubiquitous example of a nanostructure is thef these methods, but when it comes to locating resonances,
sequence of GaAs and /& _,As layers, wherex is the  they show notable differences. By their approach to reso-
aluminum mole fractiofusuallyx<0.45). When an electron nances, these methods can be divided into two categories
moves through such a structure, it “feels” that inside thethat cover the real and complex energy calculations, respec-
Al,Ga _,As layers the potential energy is approximately tively.
944x meV higher than in the GaAs layetsTherefore, for Using the real energy methods that are considered to be
the electrons, the GaAs regions represent potential wellsimple (although this is not always triieone can locate the
separated by the barriers that are formed by th&al ,As  position of relatively narrow resonances with a sufficiently
layers. The GaAs/AlGaAs heterostructures are used in manlyigh accuracy, but there are many difficulties in determining
electronic devices such as quantum-well infraredtheir widths and the methods usually fail for broad and over-
photodetector$ tunneling diodes, and midinfrared lasét®,  lapping resonances. The complex methods have the advan-
name just a few. tage that the calculations are based on a rigorous definition
The “wave function engineering” mentioned above, re- of resonances, namely, as singularities of Swmatrix, and
quires not only the sophisticated technology of crystal growtherefore the widths and resonant energies are obtained si-
ing but also reliable methods for setting targets for suchmultaneously.
growing, i.e., methods for optimizing the potential profile Most of the existing real- as well as complex-energy
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methods are based on discretization of the potential profile
by a sequence of thin elements of rectangular shape with
constant potential energy. For each of these elements, the vV, Vi
wave function is a superposition of the right and left travel- bound states / / ReE
ing plane waves. The superposition coefficients in two adja- ~ = o 29
cent elements are related via the so-called transfer matrix °© o QBI
that is constructed to satisfy the continuity condition. Then o o
the total transfer matrix for the whole physical structure is a
product of the elementary matrices.

Undoubtedly, the transfer-matrix approach is relatively
simple and rather universal although it is not suitable in unitary cut unitary cut
some cases. For example, it is difficult to use the transfer

matrix when the potential has slowly decaying tails outside piG. 1. Typical distribution of the bound states and resonances
the physical structuréfor instance, when charge is accumu- j e spectral pointgopen circleyin the complex energy plane. It is
lated on the surfac¢snd one has to go too far to achieve assumed tha¥, <Vg and the energy is measured relative\to.
convergence of the results. The rectangular discretization i$he resonances that can decay in the both directions, are denoted as
also not satisfactory when the potential profile has segment9B-I (quasibound states of the first typand those that decay only
of fast variations(near impurities, for instangeor is biased to the left, as QB-ll. The unitary cuts going from the branching
by strong electric fieltl(Stark effect. points to infinity are also shown. Because of the complex rotation
In the present work a method is developed for solving(33) these cuts are turned into the unphysical sheet by the argle 2
one-dimensional Schdinger equation on an infinite line
with an arbitrary potential profile. This method overcomes
the abovementioned and some other drawbacks of the exist- Il. BASIC EQUATIONS
ing methods. It belongs to the category of complex-energy
approa_ches and is based on exact_differential equations th(alt_oo,+w) where the potential energy(x) becomes con-
we derived(see Refs. 9—14for functions closely related to
. ; stant at both ends
the so-called Jost solutions well known in quantum scatter-
ing theory. At large distances these functions coincide with V, — V(X) — Vg (1)
the elements of the Jost matrix. The zeros of the determinant X Xt
of this matrix in the complex-energy plane correspond to thdaster tharjx| %, i.e.,
spectral points(bound and resonant statesf the Hamil-
tonian. lim X[V(x)=Vg ]=0. 2
Unlike in the existing methods where the bound, scatter- X

ing, and resonant states are treated differently, with the progyhen v, # v the potentialV(x) is called biased. Without
posed equations one can obtain full solution of the problenigsing the generality, we can always assume that one of these
for any chosen point in the complex-energy plane. In practijimit values V, or Vg (whichever is lower is zero. This

cal terms this means that with the same computer prograimply means that the energy is counted from this value and
that solves the same equations, one can obtain binding anfle hound stateéf any) have negative energies as is usual
resonant energies and widths as well as the transmission afghen quantum mechanical systems are considered.
reflection coefficients together with the corresponding wave \yaye function¥ (E,x) describing the motion of this par-

functions by simply considering an appropriate domain oficle with the energyE obeys the Schidinger equation
the complex-energy plane. A procedure is also developed for

calculating the partial widths that determine relative prob- [a§+ k>—V(x)]¥(E,x)=0, 3
abilities that a resonance decays iitm excited from the
left and right moving wavegthese probabilities are different Where
when the potential is not symmetyic

The proposed method is simple in application and al-
though it exploits the idea of the complex rotation of the
coordinate(which is only needed for potentials with long
tails), it is different than the traditionally used complex dila- and
tion methoddqsuch as in Ref. 15, for exampli that it does
not employ any expansion or variational procedures. Instead,
the Jost matrix at a complex energy is obtained directly from
exact equations equivalent to the effective-mass Sthger
equation. The effectiveness and accuracy of the approach afdere are three different types of possible states of a quan-
demonstrated by several numerical examples where the méum particle: bound, resonant, and scattering states. With the
tion of particles through guantum-well semiconductor het-abovementioned choice of the origin of the energy scale, the
erostructures as well as in a potential with infinite tails iscorresponding wave functions are solutions of the same
considered. equation(3) at different complexE’s as shown in Fig. 1 and

ImFE

Consider a particle of mas® moving on the linexe

2m
V(X)= ?V(x)

_2m

2
k—?.
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with different boundary conditions. whereA andB are the amplitudes of the incoming wav@s

For bound states the energy is real and negative while thihe general case bothandB are nonzero, which means that
wave function is square integrable. Corresponding solutionthe waves come from both the left and right channelsile
of Eqg. (3), if they exist, have exponentially decaying A’ andB’ are the amplitudes of the scattered waves. When

asymptotic tails at the both ends of tkdine solving the scattering problems, we determileandB’.
" - As is seen, all these boundary conditions look quite dif-
NEdelkk — W(Ex) — NEe ki, (4 ferent which necessitates the use of different mathematical

methods for solving bound, resonance, and scattering prob-
lems. We can avoid this, however, if we find a convenient
T way to obtain the fundamental system of solutions of @j.
ki =K"=V g ®) at a)llny complexE, and a unified wZ\y to construct the ph(sgcal
are the asymptotic values of the moment(channel mo- solutions obeying the boundary conditio@, (6), and (7)
menta andNE™) are the asymptotic normalization constants,0ut of it. _ _
The resonances are described by the wave functions that Since Eq.(3) is of the second order, its fundamental sys-

where

have only outgoing waves at large distances tem of solutions consists of any two linearly independent
functions obeying this equatiofsee, for example, Ref. 16
ME e KX  W(E,x) - MED kR, (6)  The choice of them is not unique like a choice of the basis in
— 0« X X— + 0

any space. To make our choice, we define two different so-
where M,(Ei) are also asymptotic normalization constants.|utions ¢,(E,x) and ¢,(E,x) of Eq. (3) by fixing values of
The solutions of this kind exist at complex energiEs them and their derivatives at=0 as follows:
=E;es 1112 (E;es>0,'>0).

At this point it should be noted that the motion of a par- #$1(E,00=0, dc¢1(E,0)=1, (8)
ticle on an infinite line is inherently a multichannel problem
that has at least two channels involved. These two channels $2(E,00=1, dy¢,(E,0=0. 9)

are the motion on the left and right halves of the line. Thes%ince the Wronskian of any two solutions of E8) is inde-
channels open at the corresponding thresh&esV, and pendent ofx, we can calculate it at=0. Hence

E=Vg. If the resonance energl,.s is above both these

thresholds, the resonant state can decay into both channels W(,,d)=—1
(both directiony otherwise it can decay only into one of _ ) )
them. for all points of the interval {o,+ ), which means that

Sometimes these two types of resonances are called quiilé conditions(8) and(9) guarantee the linear independence
sibound states of the first and second type, respectigely, of th_e solutions¢, and ¢,. Hereafter they are called basic
for example, Ref. ¥ although they have essentially the sameSolutions. .
nature since both correspond to tBematrix poles in the At large distances the potential becomes constant and the
complex energy plane. The boundary conditions are also th@eneral solutionb of Eqg. (3) has the form
same, given by Eq6), for both “types” of resonances. In- KX ik X , iKex
deed, if, for example, the particle cannot go-te (when the a(B)e™+a'(Be”™_o O(Ex), 3 b'(E)eTr
physical energyE,.«<V,) then k?—V,)<0 and the left- +b(E)ekrX, (10)
moving plane wave exp(ik X) in Eq. (6) automatically be- . i ith hoi |
comes exponentially attenuating, provided that, for a close imriar ;0 Eq.(?) W'tl. any c oge of(con}p e)ﬁb E._Anylsq—
channel, we choose Ik >0 from the two possible signs ution of Eq.(3) is a linear combination of its basic solutions
when calculating the square root in E&). ¢, and ¢,

When the potential is not symmetric and both channels _
are open, it is natural to expect that the probabilities of de- P(E2)=C1h1(EX)+Co42(EX).
caying of a resonance infor its exciting from the left and  Therefore, in constructing the physical solutions from the
right channels may be differeitas is usual in multichannel basic ones, we have to find such coefficie@tsandC, that
problemg. The corresponding widthis, andI'y in this case the asymptotic$10) takes the form of Eq(4), (6), or (7). In
sum up to the total widtl’=I"| +I'r. In Appendix B, a order to facilitate this, we look fo, and ¢, in the follow-
procedure for determining the partial widths andI'r is  ing special form:
given.

The scattering happens at real positive energies. At largén(E,x)
distances the corresponding wave function is a superposition SUEC(E %)+ e MUEC(E x),  x=0,

of the incident and scattered waves, viz. e _
e*RERD(E,x)+e RF(ID(E,x), x=0, n=1,2,

11)

where F()(E,x) and F{Z(E,x) are new unknown func-
tions. Since for each intervaH{,0] and[ 0,+ =) instead of
(7) one unknown functionp, (for eachn), we have introduced

A(E)eikLX+A'(E)e—ikL{;X\If(E,x)

xjocB,(E)eikRX—’— B(E)e_ikRX,
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two functions, they must be subjected to an additional con- lll. JOST MATRIX AND S MATRIX
strain condition. The most convenient is the Lagrange con- . . . . o
dition grang Any physical solution¥ (E,x) is a linear combination of

the basic solutions
ik x F(+) E + —ik x F(*) E — <
eia,F (D (Ex)+e "o F{ (Ex) =0, x=0, W (E,X)=Cy1(E,X) +Cohs(E ), (16)
e ®o FCR(Ex) +e *Rg,F(D(E,x)=0, x=0, n=1,2,  where the coefficientC, and C, are determined by the
(12 boundary conditiong4), (6), or (7) at large distances. To
which is standard in the variable-constant method for solvindind appropriate coefficients in E¢16), we therefore need
differential equationg’ to know the behavior of¢,(E,x) and ¢,(E,x) when
Substituting the ansat¢ll) into Eq. (3) and using the ?<—>i°°,(vy)hich in turn requires the knowledge of the behav-
condition (12), we derive the following coupled differential ior of F,~'(E,x) at the both ends of the intervat-(»,
equations of the first order: + ) for various complex values of the energy
Comparing Eq(11) with Eqg. (10), we may expect that at

ki large distances the functiorfsﬁ,,i)(E,x) become constants.

aF(I(E,x) =

[V(x) =V I[e*F{(E,x)

2ik, And indeed, if the differencdV(x)—V,] vanishes fast
e () enough whenx|—o or becomes zero at finite|, then the
+e R (EX) ], right-hand sides of Eq§13) disappear, i.e.,
e FSP(EX)=0, [X|>Xmay,

aFSEX) =— =~ [V(X) = V| ][ *F D (E, )

2ik, which means thak ) (E,x) = const for largdx|.

+e EC(EX)], (13) In Appendix A it is shown that indeed, under the condition
(2), in certain domains of th& plane these functions have
finite limits F{;")(E, + ). This question is discussed in Sec.
IV, while here we describe how the physical solutions can be
constructed if the necessary limiting valtjéﬁ)(E,ioo) do
exist. We show that these values can be combined in a 2
X2 matrix which has the same properties as the Jost matrix
of the three-dimensional theory, namely, its zeros correspond
to bound and resonant states, and it relates t&tmatrix in

the same way.

where the subscript=L,R assumes the valuésandR when
x is on the left and right half linege (—<0,0] andxe][0,
+), respectively.

To derive the boundary conditions for the functid#s’
that correspond to the conditior8), (9), we make use of
Egs.(11), (12) and obtain

F{(E,0+F$(E0=0,

i (+) i (=) =
ikiF3°(E,0) —ikFy ’(E,0=1 A. Bound states

and When we use¢;(E,x) and ¢,(E,x) to construct the

wave function of a bound state, the coefficie@ts and C,
should be chosen in such a way that the resulting physical
() (o) _ wave function® (E,x) is exponentially decaying at large|
kiF3 (B0 —ikiF3 (E,0)=0. in both directions as is given by E¢4). Of course, such a
Hence the boundary values of the functidig’ , that guar- choice ofC, andC, is possible only at certain points on the

antee the linear independence of the corresponding basic sBegative real axis of the plane corresponding to the ener-
lutions ¢,(E,x), are (=L,R) gies of bound states if they exist. Conversely, if we found a

pair of numbersC; and C, such that the combinatio(iL6)
. 1 - 1 obeys the condition&4), then the energy at which this takes
F{(E 0= TR F{(E0)=— ik (14)  place is the bound state energy.
' ! Substituting Eq.(11) into Eq. (16) we can rewrite the
conditions (4) in terms of the functions={;(E,x) as fol-

FSO(E0+FS(E,0=1,

(+) Lo L .
Fa'(E0=5, F3 ’(E0=5. (15  lows:
As can be easily checked, these conditions also guarantee the C1Fi(E, — o)+ CoF 5 (E, —) =0,
continuity of ¢,(E,x) and its first derivative at=0. Equa- - )
tion (13) together with the boundary conditiori$4), (15) C1FiR'(E, +2) +CoF 3/ (E, +2)=0. 17

define the fundamental system of solutiops(E,x) of Eq. his h £ li lgebrai . ¢
(3) via Eq.(11). The functions=(")(E,x) are closely related This omogeneous system of linear algebraic equations for
' ' nt AT C, has a nontrivial solution if and only if

to the so-called Jost solutions well known in quantum scat-

tering theory where they are defined as the solutions of the def|f)(E)||=0 (18
Schralinger equation that at large distances converge to '
exp(tikr).18 where the matriX|f(7)(E)| is defined as
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FIU(E, =%, FY(E,—x) A(E)e’k” )e"k’”
[f)E)|= lim (29 Uin NN~ . <_
e\ FREX),  FR(EX) '
and by analogy with the standard three-dimensional scatter- ' —ikpx ' ikpx
, 9 : A(E)e ™t B'(E)e'™*r
ing theory® can be called the Jost matrix. out - — AMAN ANAAA ——s

So, the procedure of locating possible bound states is very
simple. By solving the differential equatiorid3) from x  Here we consider the general case when the incident waves
=0 to certain|x,4 in both directions, we calculate the ma- come from the both sides with the left and right amplitudes
trix |[f()(E)|| for different energieE on the negative real beingA(E) andB(E), respectively. After the interaction has
axis, trying to find such values among these energies atken place the scattered waves also diverge in both direc-
which Eq.(18) holds. This can take place at discrete pointstions. Each of the scattered waves'(E)e ¥ and
Eo,E1,E,, ..., corresponding to the energies of boundB’(E)e'*.* include the corresponding transmitted and re-
states, if any. At each of the poinEs thus found, the coef- flected waves. The waves that span to the far lefto) and
ficients C; and C, are then determined by the systéfy)  far right (+) ends of thex line can be considered as mov-
uniquely with the exception of the general normalization fac-ing in two different channelsl( and R channels, respec-
tor which is finally fixed when the physical wave function tively) coupled by the potential. IE is above bothv, and
(16) is normalized. Vg, both channels are open and the waves can be transmitted

between them. Otherwise only reflecti¢elastic scattering
B. Resonances in the open channel is possible.

. . _ Since the flux of the particles is conserving we have
Physical wave function of a resonance state, with

asymptotic behavior given by E¢f), can be constructed out |A(E)|?+|B(E)|?=|A(E)|?>+|B'(E)|?,

of the basic solutions just in the same way as for bound

states. As is easily seen, the conditiai$ give the same which implies that the incoming wave amplitudes are trans-
homogeneous linear equatiofs?) for the coefficientsc,  formed into the outgoing ones by a unitarK2 matrix

and C,. Therefore the resonance energigs; and the total A/ A

widths I are also determined by rooE of Eq. (18). The ( )=S( ) (20)
only difference is that the resonance zeros of H@) are B’ B

Id be taken on . . .
complex and the channel momer(& shou Matrix elements of theS matrix can be obtained as a by-

the physical (Ink;>0) or unphysical (Ink, <0) sheet of the product when we construct the physical wave function. In-

Riemann surfacegsee Appendix A if the corresponding eed, substituting Eq€16) and (1) into Eq. (7), we obtain

channel is closed or open. This choice between the physic o systems of linear equations involving the coefficients
and unphysical sheets is dictated by the necessity to obey t vi); q 9

boundary conditions, i.e., to have attenuating or growing="’
waves at large distances. Since the resonances in the open FU(E, —o0) + CoFS(E, — o) = A
channels are only possible at positive collision enerBigs 2 ' '
the corresponding zerds, are situated below the positive

real axis of the compleE plane FIR)(E, o)+ CoF5R (B, +) =B, (21)

CiF{(E,— )+ CoF S (B, —) =AY,

i
E,=E.. =T.
r res 5 Cng‘E)(E’+oo)+Cz|:(+)(E +0)=B’. (22

Locating complex zerde, of the Jost matrix, we determine At first sight, it seems that we have too many equations for
both the energy and total width of a resonance at the sam@, andC,. Since, howeverA andB are given amplitudes of
time. A procedure for calculating the partial widthg and  the incident waves whild&’ andB’ are unknown quantities,
I'r is given in Appendix B. we have four unknowns here. The coefficiefits and C,
Therefore the positions of both bound and resonant stateshould be obtained from the systé@fl). Then the scattered
are given by zeros of the determinant of the same matrixvave amplitudesA’ andB’ can be calculated by means of
(19). This is yet another reason why we call it the Jost maEgs.(22).
trix. Equations(21) and (22) can be rewritten in the matrix

form
A’ C,
Quantum scattering is a transformation of the incoming [|f¢(E) and (B’) :||f(+)(E)”(C )
waves into outgoing waves at real positive energvesen E C2 2 29
is above at least one of the limit valu¥s andVRg) by the
effect of the potential, which can be schematically presentewhere the matrix|f(")(E)|| is defined by Eq.19) while
as follows: [£C(E)| is

C. Scattering states
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FIOUE,—x), FSO(E,—x) tering, and resonant states in a unified way. For any complex
[f)(E)||= lim E, by solving these equatlons_fromzo t0 [Xmax » one ob-
x—+e\ F{(EX), FO(E,x) tains not only the Jost arflimatrices but at the same time the

functions F(;)(E,x) that give the corresponding physical
(24) nl

] ) ) ) _wave functions, via Eqg11) and(16), with guaranteed cor-
The scattering wave function normalized to the incomingect behavior at large distances.

flux |A|?+|B|? is therefore given by the following product  |n many practical problems concerning the semiconductor
of row, 2X2, and column matrices heterostructures, the potential is constant forxabutside
eik'XF(lr)(E,x)Jreik'XF(ll)(E,x))T certain finite intervalx|<Xqa. In such cases the limits

eMXEL(E,x) + e MR (E x) Fi (B, 00) =F{7(E, + Xy

A apparently exist for any complek, and therefore Eqg13)
X [fE)| L ) can be applied as they are, without any of the modifications
B (complex rotatioh discussed in the subsequent sections. In
general, howevery/(x) can be of the long-range nature fif,
for example, electric charge is accumulated at the surfaces of
the heterostructuré®! Such problems can also be solved us-
ing the proposed method, though a more careful analgsis
S(E) = [f(E)|[F(E)| 2. (25) Ap.pendix.A) shows that, for Igcat'ing resonances, they re-
quire a different pati{along a line in the complex plane
This equation has exactly the same form as the expression @fr integration of Eqs(13).
the S matrix in terms of the Jost matrix and its conjugate
partner, which is introduced in the three-dimensional theory IV. LONG-RANGE BEHAVIOR OF F®)
of multichannel and noncentral potenti&ts®*3 It should
also be noted that at the spectral poitiisund and resonant ~ As is shown in Appendix A, in the general case of a
state$ where the conditior(18) holds, the matrix(25) has  long-range potential obeying the constrei@y, the functions
poles, as one would expect from &matrix. FET)(E,X) andeﬂ_)(E,x) have finite limits (x| —) in dif-
The matrix elements of th® matrix do not depend on the ferent domains of the RiemanB surface, namely, in the
choice of the initial wave amplitude& and B. Therefore to  domains defined by
clarify the physical meaning of these matrix elements we can

‘l’scattE,X)Z

wherel =L for negativex andl =R for x>0.
Comparing Eqgs(23) with the definition of theS matrix
(20), we see that

consider special cases with simple choices\and B. FﬁT)(E,X)lxljm(”m 3 if Imkx=0), (27)
If A#0 andB=0 (left incoming wave thenR_ =A'/A +) ) )
andT_ =B'/A are the left reflection and transmission ampli- Fhi (E’X)|x|:’oc(|'m 3 if Imkx=<0), (28)

tudes, respectively. Similarly, iR=0 andB#0 thenRg  \yhere x——o for =L and x—+ for |=R. In other
=B'/B andTg=A'/B are the right reflection and transmis- ;5,qs
sion amplitudes. Substitutiy=0 or B=0 into the equation

lim 3 if Imk, <0) — F{I)(E,x
(A’) (811A+SlzB) ( L )_me nl ( )

B') |SyA+S,B ij(lim 3 if Imkg=0),

29

we see that thé& matrix consists of these transmission and @9

reflection amplitudes, namely, (im3 if Imk.=0) — F{I(E,x)
—0+—X
RL(E), Tgr(E) ' i <
S(E):( L R ) 26 = (im3 i 1m kg=0).
T.(E), Rg(E) (30

It should be noted that in the above equatiBiris complex ~ Comparing these conditions with the definitiof&9) and

and only for real energies the quantitiBsand T, have the (24) of the Jost matrix and its conjugate partner, we see that
simple physical meaning. IE is real, one can prove the the matriced|f")(E)|| and||f")(E)||, exist in the follow-
following relations between thentsee, for example, Ref. INg domains of theé surface:

20). When the interaction is time-reversal invariant the left

(=) i
and right transmission amplitudes are equal=Tg. Fur- (B 3 if Im k=0, 3D
thermore, in this case, the left and right reflection coefficients (+) :
coincide as well|R, |>=|Rg|?, which follows from the fact 2@ 3 if Imk=<0. (32)
that the total current is conserving, i.€T;|%+|R|?=1. They exist simultaneously only on the real axis of the

Therefore, when an appropriate domain of the complexplane. For different limits, this axis serves therefore as either
energy plane is considered, the differential equatiti®  the lower or upper bound of the corresponding domains of
together with boundary conditiond4), (15 at x=0, give the E plane. Such an ultimate separation of the upper and
full solution of the one-dimensional problem for bound, scat-lower half planes takes place, however, only for long-range
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potentials. If the potential decays very féskponentially, for
instance the lower bound is shifted downwards and the up- Imz xp@e\
e

per bound upwards which results in a widening of the com- A
mon domain of theE plane. That is, for short-range poten- /(
tials all the above limits exist simultaneously whé&nis

within a band along the real axisee Appendix A Rez
The fact thatF{;’(E,x) has no limits in certain domains
of the E plane seems to contradict the asymptotitd that
are valid for any compleXE. These asymptotics, however,
are written in a general form and must include both terms
involving expkx) and exptikx), only if Im k;x=0, when
they are of the same order of magnitude. Ifkm+0, then
one of the exponential functions expikx) is growing while

the other is vanishing. This means that in such a case the leffo" @ny rotational angled in the interval 0<| 6] < Omax
and right-hand sides of Eq10) are sums of “small” and </2. Then, first, according to the existence theoi@ee,

“large” terms. The “small” term is significant only at the for example, Ref. 15 the solutionsén(E,x) of Eq. (3) are
spectral points where the “large” term is zero by definition. folomorphic functions ok within the corresponding domain
At all other points and off the real axis, the asymptotitg) ~ ©f the x plane and, secondly, they have the asymptotic be-
does not prescribe the structure of any “small” terms, andhavior of the type(10) along any line(33). Moreover, the
therefore we should keep only the leading terms at the leffoefficientsa(E), b(E), a'(E), andb’(E) in such asymp-
and right hand sides of Eq10). If either FET)(E-X) or totics are the same for all choices of the rotation angle be-
F()(E.x) diverges, it is always multiplied in Ed11) by a ~ €2use they do not depend an _

vanishing exponential function that compensates its growth Therefore, the I!m|t|ng Ve.‘ll."egn' .(E’ioo) can b‘? found

so that the corresponding term does not contribute into th@S the corresponding coefficients in the asymptotics

leading order asymptotic behavior of the functi@i) and

FIG. 2. Rotated path for integration of the differential equations

for the functionng,t)(E,x) in the case of long-range potentials.

therefore does not contradict EG.0).

Thus, the two-term decompositioiil) guarantees term
by term correspondence with the asymptotic fdf) when
Imkx=0 and at the spectral poinibound and resonant
state$. For the other points of thE plane, one of the terms

¢n(E,ze")
FOO(E, —»)ek o+ F(E,—o)e kX, 2z —oo,
T EM) ikgx o (=) —ikgx
oR (B, +o)e R+ F J(E,+x)e” "R z—+ox,
(34)

(11) at large distances acquires a diverging admixture which, o ) N
however, remains infinitesimal compared to the other ternfvherexis given by Eq(33) and, according to the conditions

that corresponds to the leading term of the asympt@tios
Since the limits ofF ;) do not exist for all compleX’s
the applicability of Eqs(13) generally(in the case of long-

(28) and (27), when calculating:gf)(E,too), we have to
use suchd that Imkx<0 while in order to findF{,’(E,
+ o) we have to make the rotation in the opposite direction

range potentialsis limited, namely, using these equations we Securing that Ink;x=0. Practically the coefficients of Eq.

can solve only the scattering probler8 (natrix for realE)
and locate bound statéseros of the Jost matriff()(E)||
on the negative real axisln the resonance domain of tlie
plane(under the real axjsEqgs.(13) generally do not give us
[[fC)(E)|| since the required limits ligm,..F{(E,x) do

not exist. This difficulty, however, can be circumvented by
using a complex integration path which is discussed next.

V. COMPLEX ROTATION

The conditiong28) and(27) for the existence of the long-
range limits of the functionﬂﬂi)(E,x) involve the imagi-
nary part of the produdt x but not of the momentum alone.
This offers an elegant way to extend the domains ofEhe
plane where these limits exist, to practically the whéle
plane. Indeed, if, for example, Ikpx is negative we can
always make it positive by using complex valuesxof

Let us assume that the long-range tail\fx) is an ana-
lytic function of x. Suppose it vanishes faster thpg~ ! at
both ends of the lingésee Fig. 2

x=zexpif), Imz=0, ze[—o,+x], (33

(34) can be found by solving Eq§13) in which the indepen-
dent variablex is replaced by, i.e.,

 exp(i0—ikzd?
&ZF%T)(E,ZQ(’):F(.—l)
2|k|

X[ F{EX) +e M (EX)],

[V(z€")=V/]

exp(i 6-+ik ze?)
o 2iky
(M F((Ex) +e M FGIENX)].

(39

If V(x) is an analytic function on the whobe plane, then
starting from the boundary valugd4) and (15 at z=0,
these equations should be solved in both directions
z— * oo, until the solutions attain their limiting values at
sufficiently large|z|. When the potential is discontinuous
(sequence of square wells, for examphearx=0 and has
analytic tails in the outer regions, we can integrate Ef3)
from x=0 to the point where the tail begins, and from that
point turn into the complex plane.

9,F( ) (E,zd %)=~ [V(zd?)—V|]
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If we choose the rotation anglé such that Ink;x<0, V(z)
then at large distances onﬁ'ﬁf) converges to a constant —V;
value whileF!,” diverges. This, however, does not affect the
first of Egs.(35) since the second term of EQL1) becomes
negligible as compared with the first. In other words, at large z
distances the first equation of the syst&$) decouples from
the second. If the rotation makes kjx=0, thenF{’ di-
verges but the second equation of E85), decoupled from —a +a
the first, gives a finité={|) when|z|—o.

In the general case, to obtain a full solution of the prob- k|G, 3. Asymmetric potential well of width&@ The parameters
lem, i.e., theSmatrix (25), for a complexE, we have to solve  ysed in the calculations aMé, =V,;=0, V,=—10, Vg=V5=10,

Egs. (35) twice: First, to calculaté|f(")(E)|| using an ap- a=1 (in the arbitrary units for whictk22m=1).
propriate(positive) rotation angle and secondly to calculate

||fC")(E)|| using the rotation in the opposite direction. Prac-wherea=1, V,=0, V,= — 10, andVs= 10 in the arbitrary
tically, however, very seldom do we need to solve theseunits such that;?/2m= 1. This problem can be easily solved
equations twice. Indeed, to locate the bound and resonaahalytically by the smooth matching of the plane waves at
states, by solving Eq18), it is enough to calculate the ma- x=+a. A solution that has only outgoing waves outside the
trix ||f(_)(E)|| as the limit(19) which exists when Inkx interval[ —a, +a] exists if and only if

=0, i.e., with positive rotation angle. For the scattering

states, on the real axis, all necessary limits always exist si- k,(k,+k3)cod 2k,a) —i(k ks +k3)sin(2k,a)=0, (37
multaneously. The only case when we may need the elements

of the matrix||f(*)(E)|| at complexE is for the determina- where kj=\/(E—V,-)2m/ﬁ2. Such a solution describes a
tion of the partial widthgsee Appendix B bound state whek is negative(on the physical sheet of the

Therefore, performing complex rotation of the coordinate,Riemann surface; see Appendi},Aand a resonance whén
i.e., replacing Eq(13) with (35), we are able to obtain com- is aboveV; and has a negative imaginary p&on the un-
plete solution of the one-dimensional quantum mechanicgbhysical shegt Therefore, the roots of E¢37) give us exact
problem at any complex energy and with any potential obeyvalues of the binding and resonant energies with which the
ing the condition(2). The rotation is only needed, however, corresponding spectrum generated by the Jost matrix method
when the potential has long-range tails. can be compared.

When obtaining this spectrum from Eq4.3), we do not
make use of the simplicity oV (x). These equations are
solved numerically in the both directions starting from
=0 with the boundary conditiond4), (15). The integration

Demonstrating the accuracy and effectiveness of the prdS terminated at the points=*a beyond which the right-
posed method, we start with a simple example which doelé‘af)d sides of Eqgs(13) vanish and the Jost solutions
not require the complex rotation. This is the asymmetricFni (E.X) do not change, having attained their final values
square well shown in Fig. 3 and defined as F{L(E,—) andF{Z)(E,+) that are used to construct the

Jost matriceq|f(*)(E)|| according to Eqs(19) and (24).

VI. NUMERICAL EXAMPLES

A. Nonsymmetric square well

Vi, x<-a, ChangingE and repeating the calculations, we can locate
(using, for example, the Newton methatthe points on the
V(x)=4 V2, —a<x<+a, (38 complexE plane where délf(")(E)||=0, i.e., the spectral
V3, x=+a, points of the given potential.

TABLE |. Lower part of the spectrum of bound and resonant states calculated, using the Jost matrix
method, for the asymmetric square-well potent&8). The energies and widths are given in arbitrary units
such thati?/2m=1.

ReE r T, Tq
—8.4837914199 0 0 0
—4.1436976719 0 0 0
1.7058170112 2.4975286589 2.4975286589 0
25.5180711001 26.1093154827 21.1232875500 4.9860279327

46.7168461195
72.9499239777
104.2041854350
140.4640465022
181.7173066134

41.4802081079
57.7898887368
75.0092249117
93.0507392863
111.8304535757

31.3236139533
42.1161727017
53.5123817895
65.4578827056
77.8978089153

10.1565941546
15.6737160351
21.4968431222
27.5928565807
33.9326446604
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V(z) 0.067 mass of electron, moving in the symmetric quadruple-
well heterostructure shown in Fig. 4, was calculated using
several different methods. The profile of the potential con-
sists of five rectangular barriers having equal heights of 230
meV with zero potential elsewhere. The widths of the barri-
3 3 5 1.5 1 5 3 3 ers arg(from left to right 3, 5, 5, 5, and 3 nm, and the gaps

FIG. 4. Symmetric quadruple-well heterostructure of Ref. 7. TheSeparating them are 3, 1, 1, and 3 nm wide. This potential is
heights of all barriers are equal to 230 meV. The widths of the@ little bit more complicated than E(86), but our numerical
barriers and gaps are shown underneath in nm. The resonancesethod does not need any modifications regardless of how
this structure were located for a particle of mas$=0.06"m,, complicated the potential is.
wherem, is the mass of electron. Several spectral states generated by this potential are

given in Table Il where the results obtained by different

If the wave function is needed, we can keep track ofmethods are compared. As in Ref. 7, the widths of the reso-
F((E,x) at the intermediate points when solving the dif- Nances are presented in terms of their lifetimesi/I". As

ferential equation$13). Then the physical wave function of 1S seen, all the digits obtained by the Argument Principle
a bound state is constructed using Ed4), (16), and(17). It Method (APM) of Ref. 7 are correct while the other three

should be noted that the oscillating and attenuating exponerfethods[the Quantum Reflection Pole Methd@RPM),
tial functions are included in such a wave function explicitly Perturbed Wavenumber Meth¢gWM), and Modified Den-

via the ansatz(11), and thereforngf)(E,x) are rather Sity of States MethodMDOS)] are not sufficiently accurate

smooth functions. Similarly, the scattering wave function to-
gether with the reflection and transmission amplitudes can bE®"S:
obtained if we choos& on the positive real axis.

The lower part of the spectrum thus obtained for the po-

tential (36) is given in Table I. It includes two bound states, .
one resonance of the second tyffeat can only decay in the
left channel, and the first six resonances of the first type. _

. . T=hIT
The Jost matrix method reproduces all the energies and

even with this simple potential consisting of rectangular bar-

TABLE II. The spectrum of resonant states for a particle of
massm* = 0.06, (wherem, is the mass of free electrbmoving

in the symmetric quadruple-well potential which is shown in Fig. 4.
The resonance width is given in terms of the corresponding lifetime

widths t_hat can be obtained from E@7), with practipally E(meV) 7 (ps) method
any desired accuracy. In Table I, the numbers are given with
ten figures after the decimal poifell these figures are the 129.9256515015 0.0574930342 this work
same as the exact solutiondut if necessary the accuracy 129.925 0.057 APM
can be increased even further by decreasing the tolerandg0.047 0.058 QRPM
parameters in the numerical procedures that solve the diffet29.967 0.071 PWM
ential equations and locate zeros of the Jost matrix determit30.2957090471 0.0563038531 this work
nant. It should be emphasized that the results remain accu30.296 0.056 APM
rate even if we consider very broad resonances. 130.156 0.055 QRPM
In addition to the total widths of the resonances, in thej3g 310 0.067 PWM
third and fourth columns of Table I, the partial widths for 130 376 0.070 MDOS
decaying into the left and right channel; are g'iven. Withinygs 2566066390 0.3189863719 this work
th.e propo;ed method, they can be obtained simultaneouslys 55 0.319 APM
with T", using Eq.(BG). To the best of our knc_)wledge, No 505 957 0.316 QRPM
gitrTern Sniwoeng)(rje sli nzalse;o calculate partial widths of oNe-545 590 0316 PWM
’ . . 205.323 0.365 MDOS
_ As one would expect, for the potentid6), the probabil- | 254.0528681944 0.1283002864 this work
ity of decaying of a resonance in the left direction is signifi- 254.053 0.128 APM
cantly higher than that for the right direction. This also =~ " '
means that the particle approaching the potential from thg>4.053 0.125 QRPM
left, has more chances to be trapped in one of these resonagm-061 0.136 PWM
states than the same particle moving from the right. In the?>4.094 0.135 MPOS
case of the more complicated functidfx), however, it is ~ 365.1443824466 0.0196816576 this work
not easy to guess which direction is preferable for a reso36>.144 0.020 APM
nance to decay. Knowledge &% andI'y gives, therefore, 365.861 0.023 QRPM
additional important information on the properties of the365.235 0.029 PWM
resonances. 365.410 0.029 MDOS
414.4454409411 0.0099325202 this work
B. Symmetric quadruple-well heterostructure 509.7135327776 0.0065002559 this work
600.7565867563 0.0041682986 this work
The next example we consider is taken from Ref. 7, wherg9g.0676599010 0.0037912730 this work

the resonance spectrum of a particle with mass equal te
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FIG. 5. Nonsymmetric quadruple-barrier heterostructure. The
barrier potentialdfrom left to righy are 225, 225, 200, and 300
meV. Bottoms of the wells separating them, are respectively at
—225, — 150, and—225 meV. The widths of the barriers and gaps
are shown on the figure in nm. The spectral states of this structure
given in Table Ill, were located for a particle of mass*

=0.06",, wherem, is the mass of electron.

C. Nonsymmetric quadruple-barrier heterostructure

PHYSICAL REVIEW B 68, 195320 (2003

E (meV)

500 1000

FIG. 6. Energy dependence of the transmission coefficient for

the nonsymmetric quadruple-well heterostructure shown in Fig. 5.

Since the potential shown in Fig. 4 is symmetric, the total

width I" is equally divided betweeh, andI'g. This is why

the partial widths are not given in Table Il. In the next ex-
ample(see Fig. b there is no symmetry or any clear way to
say which direction is preferable for resonances to deca
And indeed, as one can see in Table IIl, some of them tend t&

decay into the left while the others into the right channel.
This tendency cannot be guessed from studying the energy
dependence of the reflection and transmission coefficients. In
general, the information on analytic structure of Swmatrix,

i.e., knowledge of the distribution of its poles in the complexwhereV,=10, V,=20, u;=1, andu,=2 in the arbitrary

energy plane, gives much more than detailed scattering chamnits such that;?/2m=1.
acteristics. Thus, the transmission coefficient shown in Fig.

Vox2exp( + uiX),

V(X)=

Vox2exp( — uoX),

sides of these equations vanish and the functijs(E,x)

do not change. Let us consider now a case when the potential
)pas tails extending to infinity. An example of such a potential

S shown in Fig. 7 and defined as

x<0,

Xx=0, (38)

It might seem that the tails are insignificant because they

6, has only three clear peaks that correspond to narrow reswanish very rapidly whefx| increases. This is true when the
nances while the broad resonances are not seen against g@ttering is concernggdalculation of the transmission coef-
background and each other. An extreme case of such resteient at real positive energigsAlthough even in this case,
nance “hiding” is demonstrated by the next example, wherein order to achieve high accuracy, one has to take into ac-
the transmission coefficient does not show any irregularitiesount the interaction at rather long distances. However, when
it comes to resonances, the presence of the tails has some
nontrivial consequences and cannot be ignored.

It is shown in Appendix A that the limi¢19) defining the
Jost matrix, exists only if the poinE is on or above the

All three potentials we considered so far are of finiteunitary cuts(see Fig. 1 which are along the real positive
range, i.e., they become constant at finite distances ftom axis when the rotation anglé=0. This also means that for

whatsoever.

D. Potential with infinite tails

=0. This means that we need to integrate E@8) only on

any point below the cuts the elements of the matrix on the

a finite intervalx,<x<x, outside of which the right-hand right-hand side of Eq(19) diverge wherx| increases. This

TABLE lIl. Lower part of the spectrum of bound and resonant states calculated, using the Jost matrix
method, for the nonsymmetric quadruple-barrier heterostructure shown in Fig. 5.

ReE(meV) I' (meV) ' (meV) I'r(meV)
—73.8492200705 0 0 0
—31.3309516367 0 0 0
151.3121881936 6.9709902700 6.3462911249 0.6246991451

282.9329059403
410.6371295776
541.7594328710
759.4317036555
917.1817136188
1189.8521293731

27.8291339527
75.9212736352
258.7348042047
247.1716665063
378.1741780097
478.8772625385

16.7703085398
44.5409201457
254.5090164605
117.6181561005
146.8361399247
430.4969782256

11.0588254128
31.3803534895
4.2257877443
129.5535104058
231.3380380849
48.3802843129
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| det £

10
10°
10* S
V()| 7 103
T6 <| ] 10?
1° — 10" -
+4
+ 3 1 4
T\ 107!
i 1072 T — T T 1
| I I I I I I I I I I I I I h I 1
-8 -6 —4 —9 0 2 4 6 0 10 20 30 40 Tmax
FIG. 7. Two-barrier potential, defined by E@8), with the tails FIG. 9. Absolute value of the Jost matrix determinant for the

extending to infinity in both directions. The energy and distance ardWo-barrier potential38), as a function of maximal distanagq to
measured in arbitrary units such tet/2m=1. The resonance en- Which the differential equationg35) are integrated and which,

ergies are shown by horizontal lines and their widths by verticatherefore, stands for the infinity in E¢L9). All the curves corre-

bars. These spectral points are also given in Table IV and shown iiPond to the same complex enery=5-i5 but to different
Fig. 10. choices of the rotation angeshown next to them. The energy and

distance are in arbitrary units such thef2m=1.

divergency is caused by the tails of the potential despite their
fast (exponential in this examplevanishing. monitoring of individual matrix elements, the value of
Figures 8 and 9 illustrate these statements as well as tHeletf")(E)| was calculated as a function of the real param-
fact that the limit(19), i.e., values of the elements of the Jost €ter Xmax Which effectively served as “infinity” in Eq(19).
matrix, does not depend on the choiceff this angle is More precisely, Eqs(35 were solved fromz=0 to z
such that the poiriE is above the cuts. To avoid complicated = —Xmax in the left direction and t@=xy,/2 in the right
direction (because the right tail decays fastem other
words, the left and right tails of the potential were cut at
Z= — Xmax @Nd 2= X/ 2, respectively. The determinant was
then calculated by substituting into E(L9) the values of
FUE, —Xma'?) andF{R(E, Xmae'?/2) thus obtained.
SinceV =Vir=0, the left and right channel thresholds
0.5 1 for the potential(38) as well as the corresponding unitary
cuts coincide. Both cuts start froEB=0 and run to infinity
0.4 — ' along the real axis. Whe&>0 they turn down together and
thus expose the points of the plane above them. For the
pointE=5 on the real axis, Fig. 8 shows how the right-hand
side of Eq.(19) converges to its limit with three choices of
the rotation angle, namely, 0, 62 and 0.4r. The conver-
0.2 gence becomes faster when this angle increases.
Apparently, for differentd, Eqgs.(35) and therefore their
0.1 - solutions, i.e., functions {{(E,x), are quite different. How-
047 x ever, despite different behavigrs at small, they eventually
0 | | | T converge to the same limis{)(E, = =) if E is above the
cuts. This remarkable fact suggests a very simple and reliable
0 5 10 15 20 25 way of controlling the accuracy of the calculations. Indeed,
FIG. 8. Absolute value of the Jost matrix determinant for the W& Can repeat the calculation for a particular valu& efing
two-barrier potentia(38), as a function of maximal distanag,,to (WO or three different values of. Then the digits(in the
which the differential equation$35) are integrated and which, Value of transmission coefficient or resonance energy, for

therefore, stands for the infinity in E¢L9). All the curves corre- €xamplg that remain the same, i.e., aéeindependent, can
spond to the same real enerfy=5 but to different choices of the be considered as exact because the probability of coincidence

rotation angled shown next to them. The energy and distance are ins negligible.
arbitrary units such that2/2m=1. In the case under consideration, such an analysis shows

| det £

0.6 0

0.3
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TABLE IV. Spectral points calculated, using the Jost matrix T(E)
method, for the two-barrier potential defined by E28) and shown —_
in Fig. 7. Energies are given in arbitrary units such that2m |
=1. These spectral points are shown in Fig. 10. 0.8

ReE r re I'r 7
2.0480027780 0.1909349562 0.0000120286 0.1909229276 06
4.5428598416 19.9110037394 2.6595868957 17.2514168437 i
5.1944714957 14.6973943851 1.9210051579 12.7763892273 0.4 1
5.2940624464 1.7007155642 0.3838049449 1.3169106193 7
5.5532015404 9.8209883494 1.2869433510 8.5340449984 0.2 4
5.5849886470 5.2292359995 0.8604715925 4.3687644070 4 E
0 T T T T T T T T T

that the accuracy of ten digits in the value |d&tf(7)(5)|

=0.4510841955 is achieved whep,,= 30 with #=0. For
the points in the fourth quadrant of tiieplane, the conver-
gence is slower and also improves with increaging-or the
pointE=5—15, this is illustrated in Fig. 9. Whe# is small,

FIG. 11. Energy dependence of the transmission coefficient for
the two-barrier potential, defined by E®8) and shown in Fig. 7.
The energy is in arbitrary units such tHat/2m=1.

VIl. CONCLUSION

the Jost matrix at this energy does not converge at all in

accordance with formal considerations given in Appendix
in |detf()(5—i5)|
=0.0548640248 stabilizes after thg,,, reaches 60. When
0=0.25m, the same result is obtained wit,,,=90. When
0=0.2257, only the first three digitq40.0549 are stable

With  6=0.3m,

the last

even atXy,—= 150.

The resonances of the potent{@8) found using appro-
priate values off (that move the unitary cuts below the
corresponding spectral pointsare given in Table IV and
shown in Figs. 7 and 10. The remarkable feature of thi
resonance spectrum is the fact that all the resonances over
and, except for the first one, are very broad. Because of thi
the potential(38) would be a real challenge for any method
designed for locating resonances. Apparently, only th
complex-energy methods would be able to locate them. In-
deed, at real energies the transmission coefficise¢ Fig.
11) does not show any peaks or even small bumps. Such
potential could therefore serve as a testing gro(mdbough

one for new methods.

—10 4

digit

4 Re E

1 ImFE

A A combination of the variable-constant method with the
complex coordinate rotation is used to replace one-
dimensional Schidinger equation by an equivalent system
of linear first-order differential equations whose solutions,
taken at long distances from the interaction region, form the
Jost matrix. Zeros of its determinant in the complex-energy
plane correspond to the spectral points that include bound
states and resonances. In addition to determining total widths
of resonances, a simple but exact procedure is proposed for
calculating their partial widths that show relative probabili-
mss of resonance decaying into the left and right channels.

The proposed equations not only solve the problem of
?(‘Jcating spectral points for an arbitrary potential profile, but
@ive a complete solution of the one-dimensional Sdhrger
equation at any complex energy, i.e., they also give the cor-
responding wave functions as well as the transmission and
r§f|ection amplitudes.

The effectiveness and accuracy of the method are demon-
strated by several numerical examples. A reliable way of
accuracy control based on calculations with different rotation
angles, is used. It is shown that the proposed method is able
to locate even extremely wide and overlapping resonances as
well as adequately take into account long-range tails of the
potential.

In the real-life problems concerning one-dimensional
semiconductor nanostructures, there is an additional compli-
cation caused by the fact that the effective mass of the charge
carriers(electrons or holess different inside semiconductor
layers with different chemical compositions. This problem
was not discussed in the present paper simply because of the
size limitations. Actually, these mass variations can be nicely
fitted in the suggested Jost matrix theory. This is done by
constructing the Jost matrix in a way similar to the well-
known transfer-matrix method. However, in contrast to the
traditional transfer-matrix method, where the potential pro-
file must be discretized by a sequence of thin elements of

FIG. 10. Spectral points of Table IV for the two-barrier poten- rectangular shape with constant potential energy, within the
tial, defined by Eq.(38) and shown in Fig. 7. The energy is in Jost matrix approach the transfer matrix is calculated directly
arbitrary units such that?/2m=1.

for an arbitrary potential. This is achieved by using two lin-
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early independent solutior(d1) of Egs. (13) instead of the
plane waves, on each segment of the line where the effective
mass is constant. This generalized transfer-matrix method
will be published in a forthcoming article together with the
extension of the Jost matrix theory, suitable for potentials
having Coulomb tails and nanostructures placed in a strong

Sy

cut

electric field.
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APPENDIX A: ASYMPTOTICS OF F*)

To analyze the behavior of the functioi&i)(E,x) at
large|x| we rewrite the syster(13) in the following compact
form:

Iik|X

2ik,

aFGUEX) == [V(X)=V,]én(E,x), |=L,R,

(A1)

where ¢,(E,x) is given by Eqg.(11). It is clear that if the
limits lim,_,...F{7)(E,x) exist then the derivatives at the
left-hand side of Eq9/Al) vanish wherx— =+, which im-
plies vanishing of the products expikx)[V(X)—V,]¢,. The

converse statement, i.e., the existence of these limits as

result of vanishing of the right-hand sides of E@51), is not

generally true. For our purpose, however, it is enough to

know that if the right-hand sides of Eq®1) vanish faster
than 1Jx|, then the limits limy_ ...F{(E,x) do exist. In-
deed, for any functiorp(r), the behavior of its derivative

de(r)
dr
is a sufficient condition for existence of its limit at large
since the asymptotic behavior ¢f(r) can be written as

r—oo

r= (et >0,

— const.

r—o

@(r)r~mf r‘(f“)drz(const—L
— \ ErE
Therefore, at those values @omplex E at which the prod-
ucts expikX)[V(X)—V,]¢, vanish faster than | whenx
—+w, the functionsF{;(E,x) have finite limits determin-
ing the Jost matrice€l9) and (24).

FIG. 12. Fragments of the physicab,) and unphysical $,)
sheets of the complex-energy Riemann surface around a branching
point (B) that corresponds to a threshold eneryy or Vg). Tran-
sition from S; to S, and back is possible through the unitary cut
running fromB to infinity.

points for these matrices in the energy plane, namEly,
=V, and E=Vg. This means that if we make two full
circles around either of these points then matrix elements of
[|f)(E)|| return to the same values from which the circling
was startedone full circle is not enough This is because
the channel momentum

ki=(2m/A?)[E [N = (2m/#:?)|E, |2

comes to its initial value wheg,— x,+ 4w, where|E,| and
)% are the polar coordinates of the poiton the energy-
plane relative to the branching poivt, i.e.,

(A2)

E=V,+|E e, (A3)

In other words, elements of the Jost matrix have two differ-
ent values at each poil on this circle.

In order to make the Jost matrix a single-valued function
of E, we can assuméas is usual in the complex analysis
that the complex energy forms the so-called Riemann surface
consisting of several parallel sheets. When doing the first
circle around a branching point, we are moving on the first
sheet and then continue on the second one until coming back
to the first sheet after completing the two full circles. Such a
continuous transition from one sheet to another is possible if
we make a cut from the branching point to infinity, and con-
nect opposite rims of the cuts on the two shésée Fig. 12

As is usual in scattering theory, we make straight line cuts
from both branching points to infinity along the positive real
axis. Each of the two sheets related by the first branching

In many practical applications the potential becomes ide”point, is further branched at the second branching point.

tically constantV(x)=V, at large|x| and hence the Jost
matrices exist for all complek’s. However, in the general
case defined by E@2), the long-range behavior of the right-
hand sides of Eq$A1) depends on the choice of the polat
in the complex energy plane. Indeed, the choic& afeter-
mines the behavior of the exponential functions exig(X)
as well as the basic solutiors,(E,x) that can be oscillating,
growing, or vanishing.

Since the functionsF{;(E,x), and therefore the Jost
matrices (19) and (24), depend on the energl via the

channel momenta k =(2m/2%)(E-V,) and kg

Therefore the full Riemann surface consists of four parallel
sheets. We can reach any of these sheets by making an ap-
propriate number of circles around the first and second
branching points.

The physical energgat which scattering takes plads on
the positive real axis. We choose the cuts and their intercon-
nections in such a way that the physical scattering energies
lie on the upper rims of both cuts. Starting from these physi-
cal energies and moving in an anticlockwise direction around
all branching points, we cover the so-called physical sheet of
the energy plane. According to E¢A2) the channel mo-

=(2m/%?)(E—VpR), there are two square-root branching menta corresponding to this sheet have positive imaginary
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parts. The bound states are also on the physical gtiéetis and at large|x| we remain with the exponential function
necessary to guarantee the exponential attenuation of theirexp(zikx). Therefore the basic solutions,(E,x) of Eq.
wave functions The resonances, however, correspond to ze¢3) defined by Egs(8) and(9), have the form

ros of the Jost-matrix determinant at the momenta with nega-

tive imaginary parts[see Eq.(6) showing the resonant ane+iktx+age‘“‘txi;—ﬂ(ﬁn(E,x)xjmﬁge“ka
boundary conditionsand therefore lie on the unphysical ikox
sheet of the Riemann surface. The resonances that are able to +Bne TR (A6)

decay in both directiongboth channelsmust have Imk.)  wherea,, o/, B,, andB, arex-independent coefficients.
<0 and Imkg)<0. This means that they lie on the sheet \yhen Imx)=0 all terms of this asymptotics are oscil-

which is unphysical with respect to both branching points. |ating and hence the solutions,(E,x) are bounded, i.e.,
In practical calculations, we can choose points on one Ofhere are such constards, that

the four Riemann sheets by selecting appropriate signs in

fr.ont of the square .rootéE) for k. andkg, i.e., appropriate |pn(E,x)|<®, when |x|—o.
signs of their imaginary parts. We assume tWék) is an
analytic function ofx and satisfies the condition The exponential functions in EqAl) are also bounded
|exp(Fikx)|=1 when Imk;x=0. Together with the condition
lim x[V(x)—V,]=0 (Ad)  (A4) this means that the right-hand sides of Edsl) vanish
x| o0 at large|x| faster than 1k| and therefore the Jost matrices
exist.

within the sectors swept by the line=zexp(6) shown in

Fig. 2, when When Imk;x)>0 the situation is more complicated be-

cause the asymptotiog\6) of the basic solutions involve
— O 0= Oy 0= Oy 7712 both the growing and vanishing terms. To simplify further
derivations, we can rewrite EGA6) in the following com-
with a large enougl®,,«. It is obvious that if the Jost ma- pact form:
trices exist for certain potential, then they also exist for all

other potentials that have faster decaying tails. Therefore, if gbn(E,x)| |—>w§n|e“klx+ Eqe kX, (A7)
we find the domains of their existence in theplane for the X
“worst case,” namely, where, as usual, the subscripthould be replaced by or R

when we consider the far left or right end of theaxis,
respectively, whilel,,, and &,, are the corresponding coeffi-
cients in the asymptoticGA6), namely,{, = @, {nr= B
&n =), and é,r= B,. Combining this with Eq(Al), we
see that

CC’”Sbrv,), >0, |=L,R, (AB)

X1+s

V(X)M—;Oo
then for all other potentials obeying the conditith4), the
Jost matrices exist at least in the same domains.

Under the conditiofA5), the behavior of the general so-

()
lution of Eq. (3) at large distances is of the exponential char-  9xFni (E.X)

acter. A rigorous proof of this can be found, for example, in eTikix ' _
Ref. 22. For our purpose it is enough to simply apply the — to [V(X)—V,](y et kX + &, e ki)
WKB approximation that gives the leading terms of the as- [x]—ee 1K
ymptotics behavior of the two linearly independent solutions 1
of Eqg. (3) at large|x| in the form + W[V(X)—Vd(?nﬁ§n|972ik'x) for (+),
[
1 X 1 .
¥, (E,X) — —ex;{ii[ Vk2=V(x")dx’ ——[V(X)—V et 2ikixy for (—).
1,2( )‘X‘_)wé/m ( ) 2|k|[ ( ) I](gnl fnl) ( )
1 (A8)
- —é/m Since exp{-2ikx) is growing while expf-2ikx) is vanishing

when Imkx>0, the functionF,’(E,x) does have a finite
limit in this case and~{/’(E,x) does not.
When Im(;x) <0 as can be seen from the same &®8),
we have just the opposite case, namely, the limit of
F(I(E,x) does exist while that of{[)(E,x) does not.
Looking at the Jost matricg49) and(24), we see that all
the elements of||[f(7)(E)|| and ||f(*)(E)|| exist when
Imkx=0 and Imk;x<0, respectively. These two matrices
exist simultaneously only on the dividing lines kx

(X ) const
xXexg *i ke—V,— . dx’
X e

1 +_fx K const dx’
~—————eXg *i ———|dXx
A=V 'ooxire

Sincee >0, the integration ok~ 1~ ¢ gives a vanishing term

1 cons =0, (I=L,R). Using Egs.(13), we can therefore calculate
U, (E,X) o —ex;{ +i| kx+ ‘) , the matrix||f(")(E)|| on and above these lines and the ma-
' x| = VK| 2ex® trix ||[f(7)(E)|| on and below them. For real these lines
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coincide with the cut$along the positive real aXishat sepa- APPENDIX B: PARTIAL WIDTHS
;?Jtsat:: physical and unphysical domains of the comiex As was mentioned in Sec. Il, the total widthis a sum of

a1'|he partial widthd", andI'k that determine the decay prob-
abilities for the left and right channe{directions. A simple
way to show this and to develop a procedure for calculating
I' andT'g, is to consider theS matrix near the poink,

=E s 11'/2.

First of all, we notice that when the collision energy be-
nfomes very highgoes to infinity the incoming waves are
transmitted through the potential almost completely, i.e., the
transmission amplitud€g in Eq. (26) tend to some complex
numberse'? that give 1 for the transmission coefficients
|T)|2, while the reflection amplitudes tend to zero. Keeping
this in mind, we write the matrix functio®(E) as follows:

It should be emphasized that, as follows from the gener
theory of multichannel scatteringee, for example, Ref. 18
for physically reasonable potentidlsithout peculiar behav-
ior such as nonintegrable singularities, for instartbe Jost
matrix and its conjugate partner exist and are analytic func
tions of E in all areas of the complek plane that are physi-
cally interesting(where the bound, scattering, and resona
states are situategdTherefore, when we say that the Jost
matrix does not exist at certain values Bf this simply
means that, without modificatidicomplex rotatiofn, our Eq.
(13) produce diverging results for the limit&9) or (24).

By considering complex, we can do the analytic con-
tinuation of||f(*)(E)|| across the dividing lines to the do-
mains where Eqs(13) do not give finite values for these
matrices. For example, the dividing lines can be turned
downwards to expose the resonance spectral points, by rotat-
ing x as given by Eq(33). Indeed, ify, is the polar angle Where
parameterizing the position of a point on tBelane relative
to the branching poinY¥,, then by choosing large enough ( 0 ei‘st)

5=
e

(B1)

S(E)=85[1 () }

 E—Etil/2

we can make Inx, iR 0

Im kx=Im(|k |z x"2) =k |zsin(0+ x,/2), (A9)

positive even whely, is negativelwhen the poink is below C(E)= E(E— E.til/2)
the cut, i.e., on the unphysical sheahd vise versa. From [ res

the last equation is clear that whén-0 both dividing lines 1 _ -
are turned down by & (see Fig. L X(A=SHIEO@|[IFO®)].

It is worthwhile to mention that the ultimate separation of The form(B1) is most convenient in the vicinity of the reso-
the domains of the comple plane by the dividing lines nance energy,, where theS matrix is singular. If we as-
takes place only in the “worst case” when the potential hassyme that the resonances are isolated and correspond to
slowly decaying tails. If, however, the potential decays atsimple zeros of the Jost matrix determinant, then near the
large|x| exponentially, then the matrif*)(E)|| also exists  point E, the matrix functionC(E) varies slowly and there-
within a band above the dividing lines and the matrixfore can be approximated Wy(E,), i.e.,

[|fC)(E)|| in the symmetric bands below them. The faster
the potential decays the wider this band is. iC(E,)

For example, if the potential decays agxp(—ux) at the S(E)~Ss1— S O
right end of thex axis, then according to EGA8), the de- E—Eestil'/2
rivative d,F (¢ (E,x) below the dividing line (Imkex<<0) £ E is real, the unitarity conditio'S=1 implies that
behaves as

1

} (E-E,). (B2

r
. H CT_C E-E CTc_ CT C)=—=
(7XF$-|E)(E,X)N3_'MXGZIKRX |( )( res) ( ) 2 0.

=g/ (2 Rekpx—u IMX) ey — 2 Imkgx— u ReX). This must be true for alE nearE ., which is only possible
if C'=C. Therefore
The last exponential function decays at large distances if

Im ka>—(,u./2)Rex, i.e., when [C(Er)]2=FC(Er) (83)

Note that this cannot be reduced @E,)=1I" because the

. . _1 .
kgl Sin( 0+ x/2) > — %cosa. (A10) inverse matrixC~ “(E,) does not exist. Indeed,
C(E,)=iS; ! lim (E—E)|[fOE)||||fUE)||
If =0, this condition reads Itkg> — u/2 which means that (E)=1S, E_>Er( A ®IIE@
F(J(E,+=) exists not only for all points of the physical _
sheet but also on the unphysical sheet in the immediate vi- :I—Slef(”(E)HHMH
cinity of the cut. d™? ’
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whered=det|f()(E)||/(E—E,) and 2

FLFR +°°ei(kRX_Et/h)w(E)
() ) o Ol = e | e
||M||=cof<||f<—><Er>||>=( o O ) 2
2 . - ' Trlo(Eed|

is the matrix made up of the cofactors |[of7)(E,)|| trans- 2SS
posed. Since dgM||=0 and therefore dC(E,)||=0, this
implies that columns o€(E,) are linearly dependent, i.e.,

i
+mex;{ —ﬁ(E—Eres)(t—x/vke
Ci(ED)=mm, X f dE| |

e E—Estil'/2
where the choice of the numbetg and #,, is not unique.
Using the fact thaC'=C, we can choose them in such a where takingw(E) outside the integral is justified by the
way that assumption that its peak is wider th&h The last integral
can be evaluated by contour integration. This gives

Ci(ED=97) ,
Then, from Eq.(B3), it follows that | foul X »[)|2:27.,FLFR’|“)¢95)|
ou ’ ﬁv;\?s
2 [nl?=T. (B4)

><exp{—%(t—x/v£ze O(t—xlvRY,
Therefore, if we defind’ =|y,|2 and T'gr=|vyg/? thenT
=TI +I'g. where 6(z) is the step function. The total probabiliy of

It is easy to show thaF, andI'; determine the partial seeing the particle in the right channel is then obtained by
probabilities of decaying of the resonance ito its excit- integrating| ¢ou(X,t)|? over allx. The resulting value
ing from) the left and right channels. Indeed, consider a wave

acket 'y
P PRZZWT|Q)(Eres}|2

Pin(X,t) = —f e'(kx-BUR) ,,(EYdE  (B5) s factorized in the probability of capture the particle from
V2mh{*Jo the left channeP = 27T | @(Eqed |2 and the probability

that falls on the potential from the left with the average ve-that the resulting resonance decays into the right channel
locity JZw(E)vdE=0*corresponding to the resonance en-Paecay=I'r/I". Thus, the meaning of the quantitiés and
ergy E,.s. We assume that the energy distributi@(E) has I'r beco'.“es clear. . .
a narrow peak around this energy but this peak is wider than Eq_uann(BZ) offers a 5|mple_ way of calculating the par-
the resonance width. Since the integrand in E¢gB5) van- tial widthsI'y, and ' as the limits
ishes wherE is far fromE,., we can extend the integration o _ _
interval to (—,+ ). This extension does not significantly F'_,EILrT;r|(E E)Si(B) 1=LR
affect its value but is convenient in the subsequent deriva-

tions. Then, according to EqR0), the scattered wave packet In practical calculations, however, this procedure may cause
in the right channel is numerical instabilities since th8 matrix is singular ate

=E,. To avoid this difficulty, we can use the fact that the

1 T ke EVR) sum of the partial widths is already knowh, +I'g=T".
Poul X, 1) = —Wf e't"r Sru(E)w(E)dE. What remains is to find their ratio
ZWhUR -
Expanding the functiotkg(E) near the poin€,es, P im St
I'r e gISrR’

E- Eres
hores where the vanishing denominators §f, and Sz (determi-
R nant of the Jost matr)xcancel out. Indeed, from Eq&l9),
we can approximate the corresponding probability density ag24), and(25) it follows that

dk
Ke(E) =K+ (E~Ered gz =kR™*

Te_ | 0FR(E 0 - FIR(E O (L —X)|
Tr o FOUE, , —0FSR(E, )~ FIR(E, XFS(E,,—x)|

(B6)

Therefore, the total widtl' is determined when we locate the resonance zero of the Jost matrix in the cdiqpne. Then
Eq. (B6) gives us the ratid’| /T'g and the partial widths can be found from the conditlgnt+T'g=T".
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