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Possible persistence of fractional quantum Hall effect down to ultralow fillings

Michael R. Peterson and Jainendra K. Jain
Department of Physics, 104 Davey Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, U

~Received 5 June 2003; published 14 November 2003!

A recent theoretical study indicating that the fractional quantum Hall liquid is the ground state atn51/9 is
inconsistent with an excitonic instability of the fractional quantum Hall liquid found earlier at the same filling
factor. This paper shows that, when the calculation is improved perturbatively, by allowing mixing between
composite fermion Landau levels, the instability disappears. In fact, no instability occurs in our theory for
filling factors as low asn51/31, suggesting that the fractional quantum Hall effect may be robust down to
much smaller filling factors than presently believed.
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I. INTRODUCTION

It is believed that the fractional quantum Hall effect1–3

~FQHE! liquid will undergo a phase transition into a Wign
crystal4 ~WC! state at sufficiently low values of the ele
tronic Landau level~LL ! filling factor n. The phase transi
tion had been previously thought5–8 to occur atn21'6.5,
but the experimental evidence has been conflicting. On
one hand, the insulating state on both sides ofn51/5 and for
filling factors belown51/5 was interpreted in terms of
Wigner crystal.9–11 On the other, experiments reported12–14

evidence for a FQHE atn51/7, 2/11, and 1/9, and recen
investigations15 in very high quality samples have indicate
the presence of rather extensive FQHE at filling factors l
than n51/6.5, with evidence forn51/7, 2/11, 2/13, 3/17,
3/19, 2/15, 2/17, and 1/9. This has led to renewed interes
the issue of where a quantum phase transition from
FQHE liquid to the Wigner crystal takes place.

In a recent paper,16 we have improved upon the ground
state energy of the liquid within the composite fermi
theory,17 by allowing mixing between composite fermio
Landau levels, which had been neglected previously.~It is
stressed that our theory below will be confined strictly to
lowestelectronicLandau level.! Although such mixing low-
ered the energy only by,1%, that small energy chang
qualitatively affected the phase boundary between the FQ
liquid and the Wigner crystal. Comparisons with best ava
able estimates for the energy of the WC~Refs. 5 and 6!
showed that the ground state of the system is very likely
composite-fermion~CF! liquid for n51/7 and 1/9, and quite
possibly also atn51/11.

This conclusion is inconsistent with an earli
calculation18 which considered the excitation spectrum a
found that forn<1/9 the CF exciton had lower energy tha
the assumed ‘‘ground state,’’ thus signaling an instability
the FQHE liquid. The instability occurs, in that calculatio
at a wave vector that is very close to the reciprocal-latt
vector of the Wigner crystal, consistent with the expec
transition. It was noted that because the instability was fo
in a theory that used the same physics for the constructio
the ground and the excited states, the result was presum
less sensitive to the accuracy of the trial wave functions t
the comparisons between the FQHE and WC variatio
0163-1829/2003/68~19!/195310~9!/$20.00 68 1953
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wave functions, which are based on different physical
proaches.

In this paper, we revisit the issue of excitonic instabili
of the FQHE state, armed with the more sophisticated me
ods developed since Ref. 18. We investigate how the ene
of the neutral CF exciton is modified by CF-Landau lev
mixing, caused by weak residual interaction between
composite fermions. As shown below, the energy of the u
form liquid is reduced substantially relative to the excitatio
at n51/9, eliminating the instability found in Ref. 18. Sel
consistency with the ground-state energy comparisons is
achieved at the current level of accuracy.

This raises the question of when, ultimately, a transit
from the CF liquid to the WC takes place. As explained
Ref. 16, an accurate determination of whether the CF liq
or the Wigner crystal is the ground state becomes more
more difficult as the filling factor is reduced, because of t
very small energy difference between the two states,
because the thermodynamic extrapolation introduces a
tional uncertainties. On the other hand, the present metho
considering excitations can be taken to much lower fillin
We find no instability down ton51/31.

Even though our results are very accurate, certainly
best theoretical estimates presently available, the usual c
ats of any variational study apply. While precise calculatio
for the energy differences between the ground and exc
states can be performed for our model, it is difficult to judg
in general, how trustworthy the model itself is, especia
when the energy differences are very small. Also, a fir
order transition into a crystalline state can occur without
vanishing of an excitation energy, so the absence of the la
does not rule out a transition into a WC in the filling fact
region considered here. For these reasons, the final answ
the question ‘‘How low can the FQHE go?’’ raised in the tit
will come only from experiment, but our study does sugg
the possibility that the FQHE may be more robust and ext
to smaller filling factors than earlier believed.

We note that it is entirely possible that at low fillings th
actual state goes into a complex ‘‘alternating phase,’’ w
the FQHE liquid at certain special filling factors and th
Wigner crystal in between. There is already evidence9–11 for
such a re-entrant phase nearn51/5.

The neutral excitations are of relevance to a number
issues other than the liquid-solid transition considered h
©2003 The American Physical Society10-1
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They have been measured directly in inelastic lig
scattering19–22and also via ballistic phonon scattering23,24for
many filling factors of the typen5n/(2n61). Similar direct
measurements are in principle possible at low fillings. T
neutral excitations also govern several thermodynamic qu
tities, such as entropy and specific heat.

II. COMPOSITE FERMION THEORY

In this section, we briefly outline the features of the co
posite fermion theory used in our work as well as aspect
the specific geometry in which our calculation is performe

In the composite fermion theory17 of the FQHE, strongly
interacting electrons capture an even number (2p, p integer!
of quantized vortices to transform into weakly interacti
composite fermions in order to most effectively minimize t
Coulomb interaction energy. A composite fermion is oft
imagined as an electron bound to 2p magnetic flux quanta
where f05hc/e is the elementary quantum of magne
flux. A composite fermion consisting of 2p vortices attached
to an electron is denoted by2pCF. The composite fermion
experience a reduced magnetic field~due to the vortex bind-
ing!, and have a filling factorn* , given by the relationn
5n* /(2pn* 61), where n is the electron filling factor.
When the composite fermions occupy an integral number~n!
of CF Landau levels an energy gap appears resulting in
phenomenon of the FQHE. The fractional QHE of electro
at n5n/(2pn61) is thus a manifestation of the integr
QHE of composite fermions atn* 5n. For example, a sys
tem with 8CF’s occupying one, two, or three CF LL’s corre
sponds to the electron filling factorsn51/9, 2/17, or 3/25,
respectively.

In the following, we will make use of the spherical geom
etry whereN interacting electrons are placed on the surfa
of a sphere under the influence of a radial magnetic fi
produced by a magnetic monopole of strengthQ at the center
of the sphere. This is a convenient geometry when study
bulk properties of the system because of the absence of
boundaries. The flux through the sphere is equal to 2Qf0,
whereQ is an integer or a half integer according to the Dir
quantization condition. The single-particle eigenstates are
monopole harmonics25 YQnm(V j ). Here, n50,1, . . . de-
notes the LL index,m52(Q1n),2(Q1n)11, . . . ,Q1n
labels the 2(Q1n)11 degenerate states in thenth LL, and
V j5(u j ,f j ) represents the location on the sphere of part
j with the usual spherical coordinates. Further, we assu
that all the electrons are fully spin polarized, which is oft
the case at the very small filling factors of present inter
due to the very strong magnetic fields required.

According to the CF theory, strongly interacting electro
at Q are mapped into weakly interacting composite fermio
at the effective monopole strengthq5Q2p(N21). The
wave function for interacting electrons atQ is constructed as

C5PLLLF1
2pF, ~1!

whereF is the wave function for electrons at flux strengthq,
F1 is the wave function of the lowest filled electronic LL:
19531
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2p5)

j ,k
~ujvk2v juk!

2pexp@ ip~f j1fk!#, ~2!

whereuj[cos(uj/2)e2 if j /2, v j[sin(uj/2)eif j /2, and PLLL is
the lowest LL projection operator.

The zeroth-order approximation for the ground-state wa
function atn5n/(2pn11) is obtained withF equal to the
single Slater determinant ofn filled Landau levels. In this
case, because the wave functionC is obtained from nonin-
teracting electrons atn* 5n, we will refer to it as the non-
interacting composite fermion wave function at CF fillin
factor n* 5n and denote it byC (0). It ought to be stressed
that noninteracting composite fermions provide a theory
strongly interacting electrons at electron filling factorn
5n/(2pn11). Further, sinceC (0) describes an integra
number of completely filled CF LL’s it is a filled shell stat
with total angular momentumL50.

One of the important technical aspects of our calculat
is the projection of the wave functions into the lowest ele
tronic LL. It has been shown in Refs. 26 and 27 that af
such a projection, we get

C5FCF, ~3!

where FCF has exactly the same form asF but with the
single-particle eigenstatesYqnm(V j ) in F replaced by
‘‘single-CF’’ particle eigenstatesYqnm

CF , where

Yqnm
CF ~V j !5Nqnm~21!q1n2m

~2Q11!!

~2Q1n11!!
uj

q1mv j
q2m

3(
s50

n

~21!sS n

sD S 2q1n

q1n2m2sD
3uj

sv j
n2sF S ]

]uj
D sS ]

]v j
D n2s

Jj
pG ~4!

with normalization factor

Nqnm5A~2q12n11!

4p

~q1n2m!! ~q1n1m!!

n! ~2q1n!!
~5!

and

Jj5)
k

8

~ujvk2v juk! expS i

2
~f j1fk! D . ~6!

The prime over the product symbol signifieskÞ j . We stress
that the subscriptn in Yqnm

CF (V j ) refers to the CF-LL index;
the wave function is strictly within the lowestelectronicLL
for arbitraryn. The derivation of the form given in Eq.~4! is
given explicitly in Ref. 26 from which we only have quote
the final result.

It is noted that in the spherical geometry the degener
in successive CF LL’s is not equal; therefore the filling fac
of a state is taken to be its value in the thermodynamic li
(n5 limN→`2Q/N).

With the explicit wave function above, the ground-sta
Coulomb energy per particle is calculated according to
0-2
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E5
1

N

^CuVuC&

^CuC&
, ~7!

V5(
i , j

e2

eRi j
, ~8!

wheree is the background dielectric constant,

Ri j 52RUcos
u i

2
sin

u j

2
2cos

u j

2
sin

u i

2
ei (f i2f j )U ~9!

is the cord distance between two electrons located on
sphere atV i andV j , andR5AQ is the radius of the spher
in units of magnetic length,l[A\c/eB.

Comparisons26–28of the ground-state energy obtained u
ing the noninteracting CF wave functionC (0) with values
from exact diagonalization have shown an accuracy
;0.2%. This is remarkable considering the fact that the
wave function is a trial wave function with no adjustab
parameters. Furthermore, according to the variational th
rem, it provides a strict upper bound to the energy.

III. EXPANDED COMPOSITE FERMION BASIS

Composite fermions are indeed very weakly interacti
as is evident by the accuracy ofC (0). To obtain a more
accurate excitation spectrum, we incorporate into theory
residual interactions among composite fermions pertur
tively. The effect of the residual interactions is to cause
hybridization with higher CF LL’s, which modifiesC (0) and
the ground-state energy, as studied in Ref. 16.

To obtain the quantitative effects of CF-LL mixing, w
diagonalize the Coulomb Hamiltonian, for each value of a
gular momentum,29 in an extended basis space,

@$C (0)%,$Cb
(1)%,$Cg

(2)%, . . . ,$Ch
(J)%#. ~10!

Here,Cm
( j )5Fm

CF( j ) denote states in whichj composite fer-
mions have been excited from the highest occupied CF L
the lowest unoccupied CF LL, withm labeling all CF
particle-hole configurations in that subspace.30 The compos-
ite fermion excited stateCm

( j ) corresponding to a definite
value of L is in general a superposition of Slater determ
nants. We assume, with no loss of generality, that thez com-
ponent of the total orbital angular momentumLz of the ex-
cited state is zero.

The basis states are depicted schematically in Fig. 1
theJ50 sector the basis is$C (0)% containing only one state
the state withn CF LL’s completely occupied; this is th
ground state in the approximation in which the interact
between the composite fermions is neglected. It is a unifo
state with angular momentumL50, shown schematically in
Fig. 1~a!. For filling factors of the formn51/(2p11), C (0)

is identical to Laughlin’s wave function.31

Panels ~a! and ~b! in Fig. 1 show the J51 basis
@$C (0)%,$Cb

(1)%#, which includes the uniform ground sta
described above as well as the lowest branch of neutral
citation. Simple counting shows that the latter has one s
for each value of angular momentumL52, . . .Ñ, whereÑ
19531
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is the number of composite fermions in the topmost filled
LL. This basis gives the excitation spectrum studied pre
ously, for example in Ref. 18.

Together, all three panels of Fig. 1 show theJ52
composite-fermion basis. The basis forJ>2 is more compli-
cated. In general, there now is more than one basis func
in each angular momentum sector. Effectively, we are
panding the low-energy basis space to include the effect
CF-LL mixing, which should produce a quantitatively mo
accurate description of the excitation spectrum than Ref.

The basis thus obtained is in general not orthogonal.
orthonormal basis is constructed through the standard Gr
Schmidt~GS! procedure, which we implement numericall
Let us relabel the basis of Eq.~10! for a given L as
@x1 ,x2 , . . . ,xd#. Using Monte Carlo methods~Metropolis
algorithm! we numerically calculate the inner produc
^x i ux j& and Coulomb matrix elementŝx i uVux j&. Because
the Monte Carlo is most efficient when the quantity bei
evaluated is positive definite,32 we use the following expres
sions:

^x i ux j&5
^x i1x j ux i1x j&2^x i ux i&2^x j ux j&

2
~11!

and

^x i uVux j&5
^x i1x j uVux i1x j&2^x i uVux i&2^x j uVux j&

2
.

~12!

To calculate the above quantities,;10 Monte Carlo runs
were performed with;106 iterations each.

The new orthonormal basis is defined
@w1 ,w2 ,w3 , . . .wd8# whered8 is the number of orthonorma
basis states, which is in general less than or equal tod.

FIG. 1. Schematic depiction of the physical picture of the ex
tations of a FQHE state in terms of composite fermions. A d
represents an electron and an arrow represents a quantized v
~or magnetic-flux quantum!. A 2pCF is depicted as a dot with 2p
arrows emanating from it. The horizontal lines are representativ
kinetic energy levels of composite fermions. Panel~a! shows the
one filled Landau level state of2CFs. Panels~b! and ~c! show
excitations containing one and two CF excitons, respectively.
0-3
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According to the GS procedure we setw15x1 and compute
w2 , w3 , . . . ,wd8 , iteratively according to

w i5x i2
^x i ux1&

^x1ux1&
x12

^x i uw2&

^w2uw2&
w22•••

2
^x i uw i 21&

^w i 21uw i 21&
w i 21 . ~13!

All of the w i can be written in terms of the original bas
along with their overlap matrix elements calculated fro
Monte Carlo.

If d8,d then the original basis is linearly dependent. T
Gram-Schmidt procedure will make this evident;w i will
equal zero if it is linearly dependent on the previousw j . To
insure that our calculation captures all of the linearly ind
pendent basis states, we find it useful to start with a rand
superposition of the original basis functions.

The Coulomb matrix elementŝw i uVuw j& can be ex-
pressed in terms of the Coulomb matrix elements compu
from the original basis, namelŷx i uVux j&. After calculating
the Coulomb matrix elements in the new orthogonal ba
the matrix is diagonalized, obtaining eigenstatesx (J) along
with their corresponding eigenenergiesE(J). This procedure
is implemented for each angular momentumL separately.

To give an idea of the size of the full Hilbert space co
pared to the low-energy basis space we work with, cons
N510 electrons at 2Q5117 (n51/13). In terms of elec-
trons, this system has a Hilbert space with dimension;8.9
31013, making any exact calculations impossible. In co
trast, in terms of composite fermions, truncating atJ52, the
basis has only 172 linearly independent states. Further, w
the full electron Hilbert space grows exponentially as
filling factor decreases, for composite fermions the dim
sion of the low-energy basis for a givenJ does not depend on
filling factor, allowing an investigation of arbitrary small va
ues ofn.

Of course, if we keep increasingJ, the dimension of the
low-energy basis space will grow until we obtain, in pri
ciple, the exact spectrum~although that would not be th
most efficient method to calculate the exact spectrum!. The
point here is that the CF theory enables us to directly zo
into the low-energy part of the Hilbert space, thereby p
ducing an extremely accurate estimation of the low-ene
spectrum with relatively few basis states.

IV. COMPARISON WITH EXACT RESULTS

It was shown in Ref. 16 that the inclusion of CF-LL mix
ing leads to an improved ground-state energy. To test
validity of the method for excited states, we first compa
our results with the excitation spectra of one of the larg
systems (N510, 2Q527) for which exact results ar
known. The dimension of the full Hilbert space in theLz
50 subspace is 246 448, whereas the corresponding dim
sion of the orthogonal CF basis used in our study~with J
52) is 172, as mentioned above, with the largest ma
diagonalized being 18318.

Figure 2 shows a plot of energy as a function of angu
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momentum for this system (N510, 2Q527) computed from
exact diagonalization, and also from the CF theory at t
levels of approximation. The dashes and dots in Fig. 2~a!
representEexact and E(1), respectively.33 The Monte Carlo
uncertainty in the energy is not shown when it is smaller th
the symbol size. The energy is given in units ofe2/e l where
l 5A\c/eB is the magnetic length. All energies include in
teraction with a uniform positive background, and have be
corrected for finite-size deviation in the electron dens
from the thermodynamic limit by multiplication ofAr/rN

5A2Qn/N, wherer andrN are the densities in the thermo
dynamic limit and for theN particle system, respectively. W
see thatE(1) describes the lowest band of excitations qua
tatively, and has a quantitative accuracy of better than 0.
Notice that there is noL51 state present inE(1); The L
51 state of the electron system at 2q59 is annihilated34 by
the lowest LL projection operatorPLLL .

For the next level of approximation we consider the ba
corresponding toJ52. Figure 2~b! showsEexact andE(2) as
a function of angular momentum. The lowest energy at e
L is now much closer to the exact result, the two often be
indistinguishable within the Monte Carlo uncertainty~Table
I!. Even though our present interest is with the lowest ene

FIG. 2. The energy spectrum as a function ofL for a system at
n51/3 with N510 particles at flux value 2Q527. The energy per
particle is reported in this and subsequent figures in units ofe2/e l
where l[A\c/eB is the magnetic length ande is the dielectric
constant of the host semiconductor. The black dashes are ene
obtained by exact diagonalization and the dots areE(1) ~earlier re-
ported in Ref. 33! andE(2) in panels~a! and ~b!, respectively. The
Monte Carlo error is smaller than the symbol size. The finite-s
change in the electron density from its thermodynamic value
been incorporated by multiplying each energy byAr/rN

5A2Qn/N.
0-4
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excitations, we note that we also get a reasonably accu
description of higher energy excitations as well as the e
tations at values ofL not available forJ51 ~for example,
L51 and L.Ñ). Given the quantitative accuracy of th
low-energy spectrum, we restrict our study toJ52.

Such an accurate description of the excitation spectrum
the FQHE state gives yet another compelling theoretical
tification for the CF theory, and for the remarkably simp
physical picture for the excitations in terms of compos
fermions, shown in Fig. 1.

V. NEUTRAL EXCITATIONS AT SMALL n

A. nÄ1Õ9 revisited

Having ascertained the validity of our method, we pr
ceed to calculate the low-energy spectra for smalln. As was
mentioned above, an instability in the excitation spectr
was seen forn<1/9 usingE(1). However,E(2) is a more
accurate description of this spectrum which we now inve
gate.

Here we calculate the CF exciton energyDex(k), the en-
ergy required to create a CF particle-hole pair out of
ground state, forJ51 andJ52, as a function of wave vec
tor k[L/R5L/AQ. The ground state forJ51 is the nonin-
teracting CF state, while the ground state forJ52 is the
more accurate weakly interacting CF ground state with
ergy E(2)(0). Figure 3 showsDex(k) for J51 in panel~a!
and J52 in panel ~b! for n51/9. The different symbols
represent different system sizes and convergence to the
modynamic limit is evident by the fact that the energies
different N fall on a single curve. In this and all subseque
figures, only the lowest excitation energy is shown at e
wave vector~for eachN).

TABLE I. The second column gives the exact energy per p
ticle for the lowest energy at orbital angular momentaL
50,1, . . . 10 for tenparticles at 2Q527 (n51/3). E(1) is the en-
ergy per particle of the state with a single-particle hole pair
composite fermions.E(2) is the energy per particle after the C
Landau level mixing is incorporated, through diagonalization in
Fock space of all states containing 0, 1, or 2 pairs of particle h
excitations of composite fermions, as described in the text. The
column gives the percent error for cases whereE(2) differs from
Eexact significantly. The Monte Carlo uncertainty in the last digit
shown in parentheses.

L Eexact E(1) E(2) Error ~%!

0 20.410 628 97 20.410 39~2! 20.410 62~3!

1 20.396 090 58 20.395 7~1! 0.1
2 20.398 368 47 20.397 2~1! 20.398 1~1! 0.07
3 20.399 854 58 20.399 16~8! 20.399 6~1! 0.06
4 20.402 038 92 20.401 7~1! 20.401 94~5! 0.02
5 20.403 540 97 20.403 24~8! 20.403 43~4! 0.03
6 20.402 684 31 20.402 3~1! 20.402 61~5! 0.02
7 20.401 235 1 20.400 94~8! 20.401 3~2!

8 20.401 153 14 20.400 81~6! 20.401 15~5!

9 20.401 578 15 20.401 27~5! 20.401 5~1!

10 20.401 203 51 20.400 98~8! 20.401 3~1!
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At the simplest level of approximation@Fig. 3~a!# we re-
cover the instability in the spectrum for a value of the wa
vectorkl;0.85, which was earlier interpreted18 as indicating
a collapse of the FQHE forn<1/9. For E(2), however, a
finite excitation gap exists for all values ofk and the insta-
bility disappears. The slightly more accurate energy sp
trum of the CF liquid atn51/9 thus leads to aqualitatively
different conclusion. The lack of instability is consistent wi
Ref. 16 where it was shown that the CF liquid state ve
likely has lower energy than the WC state forn51/9.

Of course, eachE(2) is lower than the correspondingE(1),
but the energy differenceDex can either increase or decreas
Figure 3 shows that the ground-state energy decreases
than the energy of the exciton. For theN510 particle sys-
tem, for example, the ground-state energy~per particle! has
gone from 20.249 133(20)e2/e l in Fig. 3~a! to
20.249 788(10)e2/e l in Fig. 3~b!. It is also important to
note that the dimension for the CF basis for the CF exciton
its minimum is, in general, larger than that for theL50
ground state, giving the former more variational freedo
~For example, for Fig. 2, the number of basis states aL
55 is 13, which ought to be compared to five basis state
L50.! As a result, one might havea priori expected theL
50 ground state to be less affected by an admixture w
higher CF LL’s than the CF exciton at its minimum. Ou
result is exactly the opposite, which makes it all the mo
convincing.

For J52, we show the lowest energy for a more extend
range ofL than available forJ51. For J51, the largeL

r-

f

e
le
st

FIG. 3. The exciton energyDex as a function ofk5L/AQ at
n51/9. Different symbols representDex for different system sizes
N. Panel~a! is from Ref. 18 and showsE(1)(k). An instability is
seen for a wave vector value that is close to the reciprocal-lat
vector of the Wigner crystal. Panel~b! is the more accurate spec
trum E(2)(k). No instability is seen in~b!; there exists a finite
energy gap for all values ofk.
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limit of the exciton branch is a far separated particle-h
pair of composite fermions, which gives the gap relevan
transport experiments. Care must be exercisednot to inter-
pret the energy at largeL for the J52 results shown in this
paper as the transport gap.~The transport gap, which is th
energy required to create asingle far separated pair of CF
particle and CF hole, is the largeL limit of the J51 excita-
tion branch. In Fig. 2, this would be the energy of the exci
state atL510. The energy is somewhat affected by CF le
mixing, as in going from Fig. 2~a! to ~b!, but is distinct from
the energy of the largestL excitation in theJ52 sector of
Fig. 3.!

B. Excitations at very low filling factors

In this subsection we investigate where an instability
the exciton state may occur by going to yet smaller filli
factors. We have computed the spectra fromE(2) for filling
factorsn52/13,2/17,2/21,1/11,2/25,1/13,1/21, and 1/31. T
lowest energies at each wave vector are displayed in Fig
and 5.

From Fig. 4~d! we see that even down to the smalle
filling factor investigated,n51/31, the energy gap remain
positive. The excitation minima located nearkWCl ~where
kWCl is the reciprocal-lattice vector of the WC! seem to have
approached a well defined thermodynamic limit. Finite-s
effects are more severe close tokl50, as expected, but th
energies are too high there to cause instability.

FIG. 4. The exciton energyDex as a function ofk ~for J52) for
several values ofN at fillings of the formn51/(2p11). Different
symbols represent different system sizes. Panels~a!, ~b!, ~c!, and~d!
show the results forn51/11,1/13,1/21, and 1/31, respectivel
There exists a finite energy gap for all values ofk in ~a!–~d! indi-
cating that the CF liquid is stable to excitations at these fill
factors.
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The states investigated in Fig. 5 correspond to two
LL’s filled up by 6CF’s,8CF’s, 10CF’s, and 12CF’s, respec-
tively. Here, we have the choice of exciting composite f
mions from either of the two filled CF LL’s. Because ou
objective is simply to create an extended basis to prov
some variational freedom at low energies, we only promoj
composite fermions from the topmost CF LL; we believe th
this should be sufficient for our purpose.30

In Fig. 5, the lowest excitation energies atn52/17,2/21,
and 2/25, which have the formn52/(4p11), do not fall on
a single curve, which is indicative of significant finite-siz
effects at these fractions for the values ofN considered. An
investigation of largerN would be required for an accurat
estimation of the gap, but we have not pursued that h
because of a lack of urgent experimental motivation. It
sufficient to note for now that the gap remains positive for
cases studied.

VI. FILLING FACTOR DEPENDENCE

Will there be a transition, in our theory, into a Wigne
crystal state as we go to still lower filling factors? To loo
into that question, we study how the minimum energy,
beledDmin

ex , behaves as a function of the filling factor. Th
general trend expected is thatDmin

ex will decrease with de-
creasingn, perhaps becoming zero at some filling, signali
an instability of the CF liquid state.

The most effective way to answer this question is by co
sidering the value of the minimum-energy gap in the therm

FIG. 5. The exciton energyDex as a function ofk ~for J52) for
several values ofN at fillings of the formn52/(4p11). Different
symbols represent different system sizes. Panels~a!, ~b!, ~c!, and~d!
show results forn52/13,2/17,2/21, and 2/25, respectively. There
a finite energy gap for all values ofk in ~a!–~d! indicating that the
CF liquid is stable to excitations at these filling factors.
0-6
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dynamic limit (N→`). In order to determineDmin
ex at the

thermodynamic limit we take, for eachn, the lowest energy
excitation for each system sizeN and perform a linear ex
trapolation inN21 using standard techniques. Forn51/9,
1/11, 1/21, and 1/31 we considerN57, 8, 9, and 10,
whereas forn52/13, 2/17, 2/21, and 2/25 we conside
N514, 16, 18, and 20.

Figure 6 displays the thermodynamic limit ofDmin
ex as a

function of filling factorn. As expected,Dmin
ex decreases with

decreasingn. However, it is not possible to reach a defin
conclusion regarding whereDmin

ex will hit zero. Our results do
not rule out the possibility that it remains finite~for our
model! to arbitrarily smalln.

VII. FINITE THICKNESS

So far, we have taken the electron system to be stri
two dimensional and neglected the electronic LL mixin
The latter ought to be a good approximation, given the la
fields needed to reach the low filling factors in question
typical densities. In this section we take account of
former by considering the finite extent of the electronic wa
function in the direction perpendicular to the tw
dimensional plane (z direction!. The quantitative effect of
finite width is important to ascertain because some of
experiments of Panet al.15 are performed in fairly wide
quantum wells. We have focused onn51/9 and 2/17. The
neutral excitation energies are, of course, calculated u
the energiesE(2).

It is well known that the general effect of the inclusion
finite thickness effects is a softening of the short dista
part of the repulsive interaction, which causes a lowering
all of the energies. The finite thickness effects will be inc
porated into our calculation by considering an effective
teraction obtained through a self-consistent local-density
proximation ~LDA ! calculation, following Refs. 35 and 36
As an example, we will only consider the square quant
well confinement potential, with widths in the range of 0–
nm and electron densities fromr53.031010 to 5.0
31011 cm22.

FIG. 6. The thermodynamic limit of the minimum exciton e
ergyDmin

ex as a function ofn. Dmin
ex is reduced with decreasing filling

factor, but remains positive down to the smallest value of filli
factor studied. The uncertainty, indicated by error bars, is ma
from the thermodynamic extrapolation.
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Figures 7–10 show the lowest energy excitations forn
51/9 and 2/17 for system sizes ofN510 and 20, respec
tively, for various widths and electron densities. The first tw
show the width dependence for square quantum well wid
of 0, 20, 40, and 60 nm for a fixed density ofr51.0
31011 cm22. The energy of the CF exciton is reduced at
wave vectors with increasing width, as expected. The
two show the density dependence for a fixed width of 30 n

The effect of finite thickness seems rather simple. T
shape of the dispersion is not affected by thickness, only
magnitude. In fact, the exciton energies for finite thickne
can be obtained, to a good approximation, from those at z
thickness by scaling the entire dispersion by a thickne
dependent~but wave-vector-independent! factor. For the two
filling factors (n51/9 and 2/17! considered, this multiplica-
tive factor also appears to be filling factor independent,
we have not confirmed that over a wider range of fillings

The main point here is that, within the present level
approximation, no instability occurs atn51/9 or 2/17 as a
function of thickness. We expect that to be the case als
larger filling factors, in the width and density ranges cons
ered.

y

FIG. 7. Dex as a function ofkl for N510 particles atn51/9.
All four curves correspond to an electron density ofr51.0
31011 cm22 with square-well potential widths of 0, 20, 40, and 6
nm.

FIG. 8. Dex as a function ofkl for N520 particles atn
52/17. All four curves correspond to an electron density ofr
51.031011 cm22 with square-well potential widths of 0, 20, 40
and 60 nm.
0-7
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In the experiment of Ref. 15, the 1/9 state was obser
for a density ofr51.031011 cm22 for a quantum well of
width 50 nm. The minimum excitation energy here is a
proximately 0.0025e2/e l , which, for a magnetic field ofB
'40 T, is equal to;800 mK. For n51/7, the minimum
energy is;0.004e2/e l , which, after taking into account fi
nite thickness corrections, gives an energy of;700 mK at
B529 T. These numbers ought to be compared to the
perimental temperatures of 200–300 mK above which FQ
at these fillings is not seen.15 As usual, the experimental en
ergy scales are smaller than those obtained from theory,
the discrepancy attributable to theory’s neglect of disorde

VIII. CONCLUSION

An instability of the FQHE found earlier forn51/9 is
eliminated when the CF theory is improved to take into

FIG. 9. Dex as a function ofkl for N510 particles atn51/9.
All four curves correspond to a square-well potential width of
nm with electron densities ofr53.031010, 1.031011, and 5.0
31011 cm22.
a

r,

am

19531
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count CF-LL mixing, caused by the weak residual interact
between composite fermions. The lack of instability persi
down ton51/31, the smallest filling factor studied. While
first-order transition into a Wigner crystal state cannot
ruled out from our study, it indicates that the liquid state
composite fermions may be robust down to much sma
fillings than earlier believed.
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FIG. 10. Dex as a function ofkl for N520 particles atn
52/17. All four curves correspond to a square-well potential wid
of 30 nm with electron densities ofr53.031010, 1.031011, and
5.031011 cm22.
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