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Possible persistence of fractional quantum Hall effect down to ultralow fillings
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A recent theoretical study indicating that the fractional quantum Hall liquid is the ground stetel2® is
inconsistent with an excitonic instability of the fractional quantum Hall liquid found earlier at the same filling
factor. This paper shows that, when the calculation is improved perturbatively, by allowing mixing between
composite fermion Landau levels, the instability disappears. In fact, no instability occurs in our theory for
filling factors as low asy=1/31, suggesting that the fractional quantum Hall effect may be robust down to
much smaller filling factors than presently believed.
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I. INTRODUCTION wave functions, which are based on different physical ap-
proaches.
It is believed that the fractional quantum Hall effect In this paper, we revisit the issue of excitonic instability

(FQHE) liquid will undergo a phase transition into a Wigner of the FQHE state, armed with the more sophisticated meth-
crystaf (WC) state at sufficiently low values of the elec- ods developed since Ref. 18. We investigate how the energy
tronic Landau levelLL) filling factor v. The phase transi- of the neutral CF exciton is modified by CF-Landau level
tion had been previously thought to occur atr~*~6.5,  mixing, caused by weak residual interaction between the
but the experimental evidence has been conflicting. On theomposite fermions. As shown below, the energy of the uni-
one hand, the insu|ating state on both sides=sfl/5 and for form IIQUId is reduced SUbStantia”y relative to the excitations
filling factors below»=1/5 was interpreted in terms of a atv= 1/9, eliminating the instability found in Ref._18. S.elf—
Wigner crystaP=! On the other, experiments reportéd consistency with the ground-state energy comparisons is thus
evidence for a FQHE at=1/7, 2/11, and 1/9, and recent achieved at the current level of accuracy. o
investigation in very high quality samples have indicated This raises the question of when, ultimately, a transition

. - om the CF liquid to the WC takes place. As explained in
:Egnpifi;scg of,vri?;h:\r/igztnecr;s:\c/oemi(i??E gltlfll"g?l?(:'g;il% ef. 16, an accurate determination of whether the CF liquid

or the Wigner crystal is the ground state becomes more and
; " thore difficult as the filling factor is reduced, because of the
the issue of where a quantum phase transition from thGery small energy difference between the two states, and
FQHE liquid to the Wigner crystal takes place. because the thermodynamic extrapolation introduces addi-
In a recent papef; we have improved upon the ground- (o4l uncertainties. On the other hand, the present method of
state energy of the liquid within the composite fermion considering excitations can be taken to much lower fillings.
theory!’ by allowing mixing between composite fermion We find no instability down ta = 1/31.
Landau levels, which had been neglected previoustyis Even though our results are very accurate, certainly the
stressed that our theory below will be confined strictly to thepest theoretical estimates presently available, the usual cave-
lowestelectronicLandau leve). Although such mixing low-  ats of any variational study apply. While precise calculations
ered the energy only by<1%, that small energy change for the energy differences between the ground and excited
qualitatively affected the phase boundary between the FQHEtates can be performed for our model, it is difficult to judge,
liquid and the Wigner crystal. Comparisons with best avail-in general, how trustworthy the model itself is, especially
able estimates for the energy of the WRefs. 5 and § when the energy differences are very small. Also, a first-
showed that the ground state of the system is very likely therder transition into a crystalline state can occur without the
composite-fermiofCF) liquid for »=1/7 and 1/9, and quite vanishing of an excitation energy, so the absence of the latter
possibly also at=1/11. does not rule out a transition into a WC in the filling factor
This conclusion is inconsistent with an earlier region considered here. For these reasons, the final answer to
calculatiort® which considered the excitation spectrum andthe question “How low can the FQHE go?” raised in the title
found that forv=<1/9 the CF exciton had lower energy than will come only from experiment, but our study does suggest
the assumed “ground state,” thus signaling an instability ofthe possibility that the FQHE may be more robust and extend
the FQHE liquid. The instability occurs, in that calculation, to smaller filling factors than earlier believed.
at a wave vector that is very close to the reciprocal-lattice We note that it is entirely possible that at low fillings the
vector of the Wigner crystal, consistent with the expectedactual state goes into a complex “alternating phase,” with
transition. It was noted that because the instability was founthe FQHE liquid at certain special filling factors and the
in a theory that used the same physics for the construction digner crystal in between. There is already evidéntifor
the ground and the excited states, the result was presumaldyich a re-entrant phase near 1/5.
less sensitive to the accuracy of the trial wave functions than The neutral excitations are of relevance to a number of
the comparisons between the FQHE and WC variationaissues other than the liquid-solid transition considered here.
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They have been measured directly in inelastic light

scattering®??and also via ballistic phonon scatterfig*for OP=]T (ujpk—v;u)?exip(d;+ ¢, 2
many filling factors of the type=n/(2n*1). Similar direct J=k

measurements are in principle possible at low fillings. Thewhereu;=cos@/2)e %%, v;=sin(6/2)e'*"?, and P is
neutral excitations also govern several thermodynamic quanhe lowest LL projection operator.

tities, such as entropy and specific heat. The zeroth-order approximation for the ground-state wave
function atv=n/(2pn+1) is obtained with® equal to the
single Slater determinant of filled Landau levels. In this
case, because the wave functidnis obtained from nonin-

In this section, we briefly outline the features of the com-teracting electrons at* =n, we will refer to it as the non-
posite fermion theory used in our work as well as aspects ofiteracting composite fermion wave function at CF filling
the specific geometry in which our calculation is performed factor v* =n and denote it by¥(?). It ought to be stressed

In the composite fermion thedr{of the FQHE, strongly that noninteracting composite fermions provide a theory of
interacting electrons capture an even numbgr, (8 integey ~ strongly interacting electrons at electron filling facter
of quantized vortices to transform into weakly interacting=n/(2pn+1). Further, since¥® describes an integral
composite fermions in order to most effectively minimize thenumber of completely filled CF LLs it is a filled shell state
Coulomb interaction energy. A composite fermion is oftenwith total angular momenturh=0.
imagined as an electron bound tp Znagnetic flux quanta, One of the important technical aspects of our calculation
where ¢o=hc/e is the elementary quantum of magnetic is the projection of the wave functions into the lowest elec-
flux. A composite fermion consisting of?vortices attached tronic LL. It has been shown in Refs. 26 and 27 that after
to an electron is denoted BBPCF. The composite fermions such a projection, we get
experience a reduced magnetic figddie to the vortex bind-
ing), and have a filling factow*, given by the relatiorv V=0CF, ()

:ﬁ*/(zhpy*il)’ there v is the electron fiIIinIg f?]z::;' where ®°F has exactly the same form & but with the
When the composite fermions occupy an integral nu roo - . N
of CF Landau levels an energy gap appears resulting in thgngle particle e|genstate§’qnm(g2'!) in @ replaced by

II. COMPOSITE FERMION THEORY

phenomenon of the FQHE. The fractional QHE of electrons single-CF" particle eigenstate¥ g, where
at v=n/(2pn*=1) is thus a manifestation of the integral (20+1)!
QHE of composite fermions at* =n. For example, a sys- YCF (Q) =Ny —1)9Fn-M_—<_~7"__a+m,q-m
L 8~ . , gnmi=&) gnm (2Q+n+1)! J
tem with ®*CF’s occupying one, two, or three CF LL's corre- :
sponds to the electron filling factons=1/9, 2/17, or 3/25, n n 2
. g+n
respectively. X (= 1)8( )
In the following, we will make use of the spherical geom- s=0 s/\g+n—m—s
etry whereN interacting electrons are placed on the surface g \S[ 5 \n-s
of a sphere under the influence of a radial magnetic field X uSpn~s <_) (_) JP} (4
produced by a magnetic monopole of stren@tht the center ” auj) | dv; :

of the sphere. This is a convenient geometry when studyin%th normalization factor

bulk properties of the system because of the absence of any

boundaries. The flux through the sphere is equal @3,

whereQ is an integer or a half integer according to the Dirac Ngnm

quantization condition. The single-particle eigenstates are the 4m n!(2q+n)!

monopole harmoniés Yqon(Q;). Here, n=0,1,... de-

notes the LL indexm=—(Q+n),—(Q+n)+1,... Q+n

labels the 2Q+n)+ 1 degenerate states in théh LL, and ' i

Q:=(6,,¢;) represents the location on the sphere of particle _ . s

j with the usual spherical coordinates. Further, we assume i l_k[ (Ui ex%2(¢’+¢k))' ©

that all the electrons are fully spin polarized, which is often i o

the case at the very small filling factors of present interesfl N€ prime over the proCdFuct symbol signifies j. We stress

due to the very strong magnetic fields required. that the subscript in Yg,(€;) refers to the CF-LL index;
According to the CF theory, strongly interacting e|ectronsthe wave function is Strictly within the lowestectronicLL

atQ are mapped into weakly interacting composite fermiongdor arbitraryn. The derivation of the form given in E¢4) is

at the effective monopole strength=Q—p(N—1). The given explicitly in Ref. 26 from which we only have quoted

wave function for interacting electrons @tis constructed as  the final result. _
It is noted that in the spherical geometry the degeneracy

in successive CF LL's is not equal; therefore the filling factor

B (29+2n+1) (g+n—m)!(g+n+m)!

®)

and

_ 2
V=P PP, 1) of a state is taken to be its value in the thermodynamic limit
(v=Ilimy_.2Q/N).
where® is the wave function for electrons at flux strength With the explicit wave function above, the ground-state

&, is the wave function of the lowest filled electronic LL: Coulomb energy per particle is calculated according to
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wheree is the background dielectric constant, (b)
Rij=2R 0052 sin 5 0052 sin 5 e i 9

is the cord distance between two electrons located on the 3 ﬁ
sphere af); and{};, andR= JQ is the radius of the sphere

in units of magnetic length= \7%c/eB. (©)
Comparison®~28of the ground-state energy obtained us- A_M_

ing the noninteracting CF wave functiok(®) with values

from exact diagonalization have shown an accuracy of FIG. 1. Schematic depiction of the physical picture of the exci-

~0.2%. This is remarkable considering the fact that the CRations of a FQHE state in terms of composite fermions. A dot

wave function is a trial wave function with no adjustable represents an electron and an arrow represents a quantized vortex

parameters. Furthermore, according to the variational thedor magnetic-flux quantumA *°CF is depicted as a dot withp2

rem, it provides a strict upper bound to the energy. arrows emanating from it. The horizontal lines are representative of
kinetic energy levels of composite fermions. Paf@l shows the

one filled Landau level state ofCFs. Panelgb) and (c) show

excitations containing one and two CF excitons, respectively.
Composite fermions are indeed very weakly interacting, . o .

as is evident by the accuracy &f(®). To obtain a more is the number of composite fermions in the topmost filled CF

accurate excitation spectrum, we incorporate into theory théL. This basis gives the excitation spectrum studied previ-

residual interactions among composite fermions perturbaously, for example in Ref. 18. _

tively. The effect of the residual interactions is to cause a Together, all three panels of Fig. 1 show the=2

hybridization with higher CF LL's, which modifie¢’(® and ~ composite-fermion basis. The basis ¢ 2 is more compli-

the ground-state energy, as studied in Ref. 16. cated. In general, there now is more than one basis function
To obtain the quantitative effects of CF-LL mixing, we in each angular momentum sector. Effectively, we are ex-

diagonalize the Coulomb Hamiltonian, for each value of anPanding the low-energy basis space to include the effects of

IIl. EXPANDED COMPOSITE FERMION BASIS

gu'ar momenturﬁ? in an extended basis space, CF-LL miXing, which should produce a quantitatively more
accurate description of the excitation spectrum than Ref. 18.
[{\p(o)},{qr(ﬁl)},{qf(yz)}, L ,{xp(””}]_ (10) The basis thus obtained is in general not orthogonal. An

) ] orthonormal basis is constructed through the standard Gram-
Here,\I’Ej)ZQDCF(') denote states in whichcomposite fer-  Schmidt(GS) procedure, which we implement numerically.
mions have been excited from the highest occupied CF LL ta.et us relabel the basis of Eq10) for a given L as
the lowest unoccupied CF LL, withe labeling all CF  [xq,x2,...,xs]. Using Monte Carlo methodéetropolis
particle-hole configurations in that subspdt@he compos-  algorithm) we numerically calculate the inner products
ite fermion excited statelfﬂ) corresponding to a definite (x;|x;) and Coulomb matrix elemenisy;|V|x;). Because
value of L is in general a superposition of Slater determi-the Monte Carlo is most efficient when the quantity being
nants. We assume, with no loss of generality, thatztbem-  evaluated is positive definit&,we use the following expres-
ponent of the total orbital angular momenturm of the ex-  sions:
cited state is zero.

The basis states are depicted schematically in Fig. 1. In
the J=0 sector the basis iV (9} containing only one state,
the state withn CF LL's completely occupied; this is the
ground state in the approximation in which the interaction@"d
between the composite fermions is neglected. It is a uniform
state with angular momentulr=0, shown schematically in <Xi|V|Xj>:<Xi+Xj|V|Xi+Xj> xilVIxi) <Xj|V|Xj>.
Fig. 1(a). For filling factors of the formy=1/(2p+1), ¥© 2
is identical to Laughlin's wave functiott. (12)

Panels (8 and (b) in Fig. 1 show theJ=1 basis T calculate the above quantities;10 Monte Carlo runs

[{w @} {¥{P}], which includes the uniform ground state were performed with-10° iterations each.
described above as well as the lowest branch of neutral ex- The new orthonormal basis is defined as

citation. Simple counting shows that the latter has one statgy,, ¢, ,¢s, .. .¢s] wheres' is the number of orthonormal
for each value of angular momentun¥ 2, . . .N, whereN basis states, which is in general less than or equad.to

<Xi|Xj>:<Xi+Xj|Xi+Xj>_2<Xi|Xi>_<Xj|Xj> 1
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According to the GS procedure we sgf= y; and compute == =
©2, ®3, ... ,@g , iteratively according to -0.386[— = %
Gl (alea) o
XilX1 Xil¥2 ===
eimx (x1lx1) X (@2 @2) 2 oo _ 3= =
-0.398 1 = . .
_<<XI|T|1>><Pi1- (13) 04021 _'_-'-_'__Q._Q_ ry |
Pi-1/Pi-1 0406 |
All of the ¢; can be written in terms of the original basis T 04100 @ |
along with their overlap matrix elements calculated from o, e £t T Tttt 1++=FL
Monte Carlo. " 03861 = TE.z = - 3 — F1 = % -1
If 6’< 6 then the original basis is linearly dependent. The === =TITT S ; - % I3
Gram-Schmidt procedure will make this evident; will 0390 s I; 1313 i  ; % *
equal zero if it is linearly dependent on the previgys To -0.394 7_:_ ; ; ; E 3 ; i i 3+
insure that our calculation captures all of the linearly inde- 0398 i = |
pendent basis states, we find it useful to start with a random X3 .o o o
superposition of the original basis functions. -0.402- Rl s = 7
The Coulomb matrix elementée;|V|e;) can be ex- -0.406 4
pressed in terms of the Coulomb matrix elements computed (b)
from the original basis, namely;|V|x;). After calculating V40P ]
the Coulomb matrix elements in the new orthogonal basis, 0L A2SHSE6 T8 S IHRLAE
the matrix is diagonalized, obtaining eigenstaté8 along
with their corresponding eigenenergieS’. This procedure FIG. 2. The energy spectrum as a functionLdfor a system at
is implemented for each angular momenturseparately. v=1/3 with N=10 particles at flux value@Q=27. The energy per

To give an idea of the size of the full Hilbert space com-particle is reporteq in this and SL_Jbsequent figu.res in urjisza‘I.
pared to the low-energy basis space we work with, considefhere!=v%c/eB is the magnetic length and is the dielectric
N=10 electrons at @=117 (v=1/13). In terms of elec- constant of the host semiconductor. The black dashes are energies

trons, this system has a Hilbert space with dimensich9 obtained by exact diagonalization and the dotsEfe (earlier re-
% 1013 making any exact calculations impossible. In con-Ported in Ref. 33and E® in panels(a) and (b), respectively. The
trast i,n terms of composite fermions, truncatingat2, the Monte Carlo error is smaller than the symbol size. The finite-size
basié has only 172 linearly independént states. Further Wh"change in the electron density from its thermodynamic value has

. . geen incorporated by multiplying each energy byp/py
the full electron Hilbert space grows exponentially as the 200N,

filling factor decreases, for composite fermions the dimen-
sion of the low-energy basis for a givérdoes not depend on
filling factor, allowing an investigation of arbitrary small val- momentum for this systenN= 10, 20=27) computed from
ues ofy. exact diagonalization, and also from the CF theory at two
Of course, if we keep increasintj the dimension of the levels of approximation. The dashes and dots in Fig) 2
low-energy basis space will grow until we obtain, in prin- represente®*2°t and E®), respectively> The Monte Carlo
ciple, the exact spectrurtalthough that would not be the uncertainty in the energy is not shown when it is smaller than
most efficient method to calculate the exact specjrurhe the symbol size. The energy is given in unitsedfel where
point here is that the CF theory erlables us to directly zoom= /4 ¢c/eB is the magnetic length. All energies include in-
into the low-energy part of the Hilbert space, thereby proeraction with a uniform positive background, and have been
ducing an extremely accurate estimation of the low-energy.grrected for finite-size deviation in the electron density
specirum with relatively few basis states. from the thermodynamic limit by multiplication of/p/py
=+/2Qv/N, wherep andpy are the densities in the thermo-
IV. COMPARISON WITH EXACT RESULTS dynamic limit and for theN particle system, respectively. We
It was shown in Ref. 16 that the inclusion of CF-LL mix- S€€ thaE™ describes the lowest band of excitations quali-
ing leads to an improved ground-state energy. To test ihtatively, and has a quantitative accuracy of better than 0.3%.
validity of the method for excited states, we first compareNotice that there is nd.=1 state present ifE™); The L
our results with the excitation spectra of one of the largest 1 State of the electron system a29 is annihilated* by
systems K=10, 20=27) for which exact results are the lowest LL projection operatd? .
known. The dimension of the full Hilbert space in the For the next level of approximation we consider the basis
=0 subspace is 246 448, whereas the corresponding dimenerresponding td=2. Figure 2b) showsE®*atandE(?) as
sion of the orthogonal CF basis used in our stiasth J a function of angular momentum. The lowest energy at each
=2) is 172, as mentioned above, with the largest matrix. is now much closer to the exact result, the two often being
diagonalized being 1818. indistinguishable within the Monte Carlo uncertairifjable
Figure 2 shows a plot of energy as a function of angulai). Even though our present interest is with the lowest energy
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TABLE I. The second column gives the exact energy per par- =1 |
ticle for the lowest energy at orbital angular momenta 0.020~ @ v=1/9 .
=0,1, ... 10 for terparticles at =27 (v=1/3). EV is the en-
ergy per particle of the state with a single-particle hole pair of 0.0151- ‘h X
composite fermionsE®) is the energy per particle after the CF r '
Landau level mixing is incorporated, through diagonalization in the 0.010[ v, . =
Fock space of all states containing O, 1, or 2 pairs of particle hole 3 5 ¥
excitations of composite fermions, as described in the text. The last 0.005+ e ot -
column gives the percent error for cases whek® differs from b8 i
E®*2°tsignificantly. The Monte Carlo uncertainty in the last digit is 30.000 ot 2 N=10
shown in parentheses. Sg [ | |® N=9 |, |
& T e Ns [T
L exact E® E@ Error (%) e T =
0 —0.41062897 —0.4103%92) —0.410623) 0.015¢ ’ : .
1 -0.39609058 -0.3957(1) 0.1 2 . L 'A
2 —0.39836847 —0.3972(1) —0.3981(1) 0.07 0.010-. " . v '."" _
3 —0.39985458 —0.39916(8) —0.3996(1) 0.06 v o yuts
4 —0.40203892 —0.4017(1) —0.40194(5) 0.02 0005 & 'vA. . v:,é'. i
5 —0.40354097 —0.40324(8) —0.40343(4) 0.03 D
6 —0.40268431 —0.4023(1) -—0.40261(5)  0.02 o N SR
7 —0.4012351 —0.40094(8) —0.4013(2) 0 0.5 1 1.5 2 2.5 3
8 —0.40115314 —0.40081(6) —0.401 15(5) kil
9 -0.40157815 —0.40127(5 —0.4015(1) FIG. 3. The exciton energ®* as a function ofk=L/./Q at
10 —0.40120351 —0.40098(8) —0.4013(1) v=1/9. Different symbols represent®™ for different system sizes

N. Panel(a) is from Ref. 18 and show&*)(k). An instability is

o §een for a wave vector value that is close to the reciprocal-lattice
excitations, we note that we also get a reasonably accurafe ; .
description of higher energy excitations as well as the exciyector of the W|gqer cry_s_,tal._ Panéb) is the more ac_curate spec-
trum E@(k). No instability is seen inb); there exists a finite

tations at valu~es of. not available forJ=1 (for example, energy gap for all values df
L=1 andL>N). Given the quantitative accuracy of the
low-energy spectrum, we restrict our studyJte 2. At the simplest level of approximatidiFig. 3(@)] we re-

Such an accurate description of the excitation spectrum ofover the instability in the spectrum for a value of the wave
the FQHE state gives yet another compelling theoretical jusvectorkl~0.85, which was earlier interpret€das indicating
tification for the CF theory, and for the remarkably simplea collapse of the FQHE for<1/9. For E®, however, a
physical picture for the excitations in terms of compositefinite excitation gap exists for all values &fand the insta-
fermions, shown in Fig. 1. bility disappears. The slightly more accurate energy spec-
trum of the CF liquid atv=1/9 thus leads to gualitatively
different conclusion. The lack of instability is consistent with
Ref. 16 where it was shown that the CF liquid state very
likely has lower energy than the WC state fior 1/9.

Having ascertained the validity of our method, we pro-  Of course, eack(? is lower than the correspondirtgf®,
ceed to calculate the low-energy spectra for smals was  but the energy differencA®* can either increase or decrease.
mentioned above, an instability in the excitation spectrunfFigure 3 shows that the ground-state energy decreases more
was seen forv=<1/9 usingE™). However,E?) is a more  than the energy of the exciton. For the=10 particle sys-
accurate description of this spectrum which we now investitem, for example, the ground-state enefgegr particleé has
gate. gone from —0.249133(20%/el in Fig. 3@ to

Here we calculate the CF exciton enedy§*(k), the en-  —0.249788(10%% el in Fig. 3(b). It is also important to
ergy required to create a CF particle-hole pair out of thenote that the dimension for the CF basis for the CF exciton at
ground state, fod=1 andJ=2, as a function of wave vec- its minimum is, in general, larger than that for the=0

V. NEUTRAL EXCITATIONS AT SMALL »

A. v=1/9 revisited

tor k=L/R=L/\/Q. The ground state fo}=1 is the nonin-
teracting CF state, while the ground state fior2 is the

ground state, giving the former more variational freedom.
(For example, for Fig. 2, the number of basis stated at

more accurate weakly interacting CF ground state with en=5 is 13, which ought to be compared to five basis states at

ergy E®)(0). Figure 3 showsA®X(k) for J=1 in panel(a)
and J=2 in panel(b) for »=1/9. The different symbols

L=0.) As a result, one might have priori expected thd
=0 ground state to be less affected by an admixture with

represent different system sizes and convergence to the thdrigher CF LL's than the CF exciton at its minimum. Our
modynamic limit is evident by the fact that the energies forresult is exactly the opposite, which makes it all the more

different N fall on a single curve. In this and all subsequent

convincing.

figures, only the lowest excitation energy is shown at each ForJ=2, we show the lowest energy for a more extended

wave vector(for eachN).

range ofL than available fordJ=1. ForJ=1, the largeL
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FIG. 4. The exciton energ¥®* as a function ok (for J=2) for FIG. 5. The exciton energ&®* as a function ok (for J=2) for

several values of at fillings of the formy=1/(2p+1). Different ~ several values ol at fillings of the formy=2/(4p+1). Different
symbols represent different system sizes. Pai@gl¢b), (c), and(d) ~ Symbols represent different system sizes. Pafagl¢b), (c), and(d)
show the results forr=1/11,1/13,1/21, and 1/31, respectively. show results fow=2/13,2/17,2/21, and 2/25, respectively. There is
There exists a finite energy gap for all valueskdh (a)—(d) indi- & finite energy gap for all values &fin (a)—(d) indicating that the
cating that the CF liquid is stable to excitations at these fillingCF liquid is stable to excitations at these filling factors.

factors. ) ) o
The states investigated in Fig. 5 correspond to two CF

limit of the exciton branch is a far separated particle-holeLLs filled up by °CF's,®CF's, !%CF's, and '°CF's, respec-
pair of composite fermions, which gives the gap relevant tdively. Here, we have the choice of exciting composite fer-
transport experiments_ Care must be exercisetto inter- mions from either of the two filled CF LL's. Because our
pret the energy at largee for the J=2 results shown in this objective is simply to create an extended basis to provide
paper as the transport gafThe transport gap, which is the some variational freedom at low energies, we only promote
energy required to create single far separated pair of CF composite fermions from the topmost CF LL; we believe that
particle and CF hole, is the lardelimit of the J=1 excita- this should be sufficient for our purpo3e.
tion branch. In Fig. 2, this would be the energy of the excited In Fig. 5, the lowest excitation energiesat 2/17,2/21,
state al_=10. The energy is somewhat affected by CF leveland 2/25, which have the form=2/(4p+1), do not fall on
mixing, as in going from Fig. @) to (b), but is distinct from @ single curve, which is indicative of significant finite-size
the energy of the |arge$_[ excitation in thelJ=2 sector of effects at these fractions for the valueshNtonsidered. An
Fig. 3) investigation of largeiN would be required for an accurate
estimation of the gap, but we have not pursued that here
because of a lack of urgent experimental motivation. It is
sufficient to note for now that the gap remains positive for all
In this subsection we investigate where an instability incases studied.
the exciton state may occur by going to yet smaller filling
factors. We have Computed the SpeCtra frEFﬁ) for fllllng VI. FILLING FACTOR DEPENDENCE
factorsy=2/13,2/17,2/21,1/11,2/25,1/13,1/21, and 1/31. The
lowest energies at each wave vector are displayed in Figs. 4 Will there be a transition, in our theory, into a Wigner
and 5. crystal state as we go to still lower filling factors? To look
From Fig. 4d) we see that even down to the smallestinto that question, we study how the minimum energy, la-
filling factor investigatedy=1/31, the energy gap remains beledA,, behaves as a function of the filling factor. The
positive. The excitation minima located nelag,cl (where general trend expected is thAf), will decrease with de-
kwcl is the reciprocal-lattice vector of the WGeem to have creasingv, perhaps becoming zero at some filling, signaling
approached a well defined thermodynamic limit. Finite-sizean instability of the CF liquid state.
effects are more severe closekb=0, as expected, but the The most effective way to answer this question is by con-
energies are too high there to cause instability. sidering the value of the minimum-energy gap in the thermo-

B. Excitations at very low filling factors
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FIG. 6. The thermodynamic limit of the minimum exciton en- FIG. 7. A®* as a function okl for N=10 particles atv=1/9.

ergyAny, as a function ofr. AR is reduced with decreasing filling Al four curves correspond to an electron density pf1.0
factor, but remains positive down to the smallest value of filling x 10'* cm™2 with square-well potential widths of 0, 20, 40, and 60
factor studied. The uncertainty, indicated by error bars, is mainlynm.

from the thermodynamic extrapolation.

Figures 7—10 show the lowest energy excitations ifor
AN =1/9 and 2/17 for system sizes df=10 and 20, respec-
thermodynamic limit we take, for eaah the lowest energy (jely, for various widths and electron densities. The first two
excitation for each system si2¢ and perform a linear ex- - ghow the width dependence for square quantum well widths
trapolation inN~! using standard techniques. For=1/9, of 0, 20, 40, and 60 nm for a fixed density pf=1.0
111, 1/21, and 1/31 we considdd=7, 8, 9, and 10, s 10ll cm2 The energy of the CF exciton is reduced at all
whereas forv=2/13, 2/17, 2/21, and 2/25 we consider yaye vectors with increasing width, as expected. The last
N:1.4' 16, 18; and 20. o two show the density dependence for a fixed width of 30 nm.

Figure 6 displays the thermodynamic limit &%, as a The effect of finite thickness seems rather simple. The
function of filling factorv. As expectedA i, decreases with  shape of the dispersion is not affected by thickness, only the
decreasing. However, it is not possible to reach a definite magnitude. In fact, the exciton energies for finite thickness
conclusion regarding whet, will hit zero. Our results do  can be obtained, to a good approximation, from those at zero
not rule out the possibility that it remains finiigor our  thickness by scaling the entire dispersion by a thickness-

dynamic limit (N—). In order to determine\p at the

mode) to arbitrarily smallv. dependentbut wave-vector-independerfactor. For the two
filling factors (v=1/9 and 2/1Y considered, this multiplica-
VII. FINITE THICKNESS tive factor also appears to be filling factor independent, but

. we have not confirmed that over a wider range of fillings.
So far, we have taken the electron system to be strictly The main point here is that, within the present level of

two dimensional and neglected the_ elegtroni(_: LL mixmg-approximation, no instability occurs at=1/9 or 2/17 as a
The latter ought to be a good approximation, given the 1argg ncrion of thickness. We expect that to be the case also at

fields needed to reach the low filling factors in question for|, g filling factors, in the width and density ranges consid-
typical densities. In this section we take account of thegoq

former by considering the finite extent of the electronic wave
function in the direction perpendicular to the two- N ——
dimensional plane 7 direction. The quantitative effect of 00208 o wiam=gin N=20, v=2/17
finite width is important to ascertain because some of the kol o e
experiments of Paret al!® are performed in fairly wide >-> Width=60 nm
guantum wells. We have focused or=1/9 and 2/17. The §| p=r0x10"em”
neutral excitation energies are, of course, calculated using )
the energie€(?. “20010F
It is well known that the general effect of the inclusion of < i
finite thickness effects is a softening of the short distance
part of the repulsive interaction, which causes a lowering of 0.005[ ;
all of the energies. The finite thickness effects will be incor-
porated into our calculation by considering an effective in-
teraction obtained through a self-consistent local-density ap- o 05 1 15 2
proximation(LDA) calculation, following Refs. 35 and 36. K
As an example, we will only consider the square quantum F|G. 8. A®X as a function ofkl for N=20 particles atv
well confinement potential, with widths in the range of 0—-60=2/17. All four curves correspond to an electron densitypof
nm and electron densities fromp=3.0x10"" to 5.0 =1.0x10"cm 2 with square-well potential widths of 0, 20, 40,
X 10 cm™2. and 60 nm.
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FIG. 9. A®* as a function okl for N=10 particles atv=1/9. FIG. 10. A®* as a function ofkl for N=20 particles atv

All four curves correspond to a square-well potential width of 30 =2/17. All four curves correspond to a square-well potential width
nm with electron densities 0p=3.0x10', 1.0x10", and 5.0  of 30 nm with electron densities gf=3.0x 101, 1.0x 10", and
x 10 em™2, 5.0 10" cm™2.

In the experiment of Ref. 15, the 1/9 state was observedount CF-LL mixing, caused by the weak residual interaction
for a density ofp=1.0x10" cm 2 for a quantum well of between composite fermions. The lack of instability persists
width 50 nm. The minimum excitation energy here is ap-down tovr=1/31, the smallest filling factor studied. While a
proximately 0.0026% el, which, for a magnetic field oB  first-order transition into a Wigner crystal state cannot be
~40 T, is equal to~800 mK. Forv=1/7, the minimum ruled out from our study, it indicates that the liquid state of
energy is~0.004?%/ €l, which, after taking into account fi- composite fermions may be robust down to much smaller
nite thickness corrections, gives an energy~0f00 mK at fillings than earlier believed.

B=29 T. These numbers ought to be compared to the ex-
perimental temperatures of 200—300 mK above which FQHE
at these fillings is not seénAs usual, the experimental en-
ergy scales are smaller than those obtained from theory, with This work was supported in part by the National Science
the discrepancy attributable to theory’s neglect of disorder. Foundation under Grant Nos. DGE-998758GERT) and
DMR-0240458. We are grateful to the High Performance
Computing(HPC) Group led by V. Agarwala, J. Holmes, and
Viil. CONCLUSION J. Nucciarone at the Penn State University ASETademic

An instability of the FQHE found earlier for=1/9 is  Services and Emerging Technologie®r assistance and

eliminated when the CF theory is improved to take into ac-computing time with the LION-XL cluster.
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