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Local-field factors in a polarized two-dimensional electron gas
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We derive approximate expressions for the static local-field factors of a spin-polarized two-dimensional
electron gas that smoothly interpolate between their small- and large-wave-vector asymptotic limits. The
proposed analytical expressions reproduce recent diffusion Monte Carlo data for the unpolarized and fully
polarized electron gas. We find that the degree of spin polarization produces important modifications to the
local factors of the minority spins, while the local-field functions of the majority spins are less affected.
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I. INTRODUCTION

Most many-body theories of electronic systems regard
spin polarization as a small parameter. This picture is c
tainly true when the Zeeman splitting is much smaller th
other relevant energies in the problem. Recently, howe
attention has been focused on materials in which the Zee
splitting dominates the energy spectrum, such as dilu
magnetic semiconductors. The large Zeeman splitting is
to the strong exchange interactions between the itinerant
riers and the magnetic ions that generate a value of the
fective gyromagnetic factorg* up to hundreds of times its
band value. As a consequence, even in weak magnetic fi
these systems can be fully polarized.1 Due to their easy po-
larizability, the diluted magnetic semiconductors are prom
ing candidates to be used in spin-dependent conductio
solid-state devices;2 hence the interest in developing a co
rect microscopic model for them.

In this paper, we examine the short-range effects of
Coulomb interaction in a two-dimensional polarized electr
gas. A realistic picture of the spin-polarized electron g
hinges on finding an appropriate description of the ma
body interaction, which has to incorporate the explicit sp
dependence of the short-range Coulomb repulsion. The
consistent treatment of the exchange and correlation eff
has proven to be very important in understanding the phy
of normal metals,3 but to our knowledge it has not been ful
analyzed in spin-polarized systems. In addition, the
evance of the exchange and correlation effects increase
the dimensionality of the electron gas is lowered.

We model the exchange and correlation hole around e
electron by using spin-dependent local-field correction fu
tions G̃s

6(q,v).4–7 An additional local-field factor (Gs
n) is

needed to relate the interacting polarization function~zero-
order term in the diagrammatic expansion of the char
charge correlation function! Pss with the noninteracting one
Pss

0 as in Ref. 8

Pss~q,v!5
Pss

0 ~q,v!

112v~q!Gs
n~q,v!Pss

0 ~q,v!
. ~1!

This parametrization of the modified polarization functi
leads to a renormalized expression of the local fields
determine the response functions, so that the complete lo
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field functions are given asGs
65G̃s

61Gs
n .8 In an unpolar-

ized electron gas,G15G↑
15G↓

1 appears only in the expres
sions of the electrical response functions, andG25G↑

2

5G↓
2 only in the magnetic response susceptibilities. Ho

ever, in a polarized electron system the four local-field fa
tors appear in all the response functions.

The determination of the frequency and wave-vector
pendence of the local-field corrections is a very diffic
problem which remains unsolved even in the case of
unpolarized electron system. Fortunately, the asymptotic
ues of the local-field factors can be obtained exactly in so
limit cases.7,9,10 Numerical estimates of the response fun
tions of the two- and three-dimensional unpolarized elect
gas have shown that local-field factors smoothly interpol
between the asymptotic small- and large-wave-vec
behavior.11 This feature is expected to exist also in the ca
of a spin-polarized system. Consequently, we use
asymptotic limits of the static local factors for large an
small wave vector as a starting point in deriving their a
proximate expressions across the whole spectrum of mom
tum.

The fundamental parameters of the problem are the c
pling strengthr s5aB* /Ap(n↑1n↓)5aB* /Apn ~Ref. 12! and
the spin polarizationz5(n↑2n↓)/n. Since the many-body
interaction is independent of the source of the polarizati
we expect our results to maintain their validity also in t
case of an itinerant ferromagnet with a self-induced magn
field, or when the polarization is achieved by other mea
such as shining circularly polarized light on the sample.

In Sec. II, we study the large- and small-wave-vector li
its of the local-field functions and their dependence with
electronic density and polarization. In Sec. III, we give
simple parametrization of the local-field factors that sati
the asymptotic limits and reproduces the most recent num
cal results for the unpolarized and fully polarized electr
gas.11 Section IV presents our conclusions.

II. LIMITING BEHAVIOR OF THE LOCAL-FIELD
FACTORS

A. Small wave vector

At zero frequency and small wave vector, sum rules
used to connect the static limits of various response functi
to certain thermodynamic coefficients, which can be e
©2003 The American Physical Society10-1
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pressed as derivatives of the ground-state energy of the
tron gas.9 Subsequently, the renormalized local-field fun
tions, which are directly connected with these respo
functions, are written down as derivatives of the exchan
and correlation energy of the interacting electron gas (Exc):

Gs
1~q→0!5

q̃r s
2

8A2
S ]exc

]r s
2r s

]2exc

]r s
2

12 sgn~s!
]2exc

]r s]z D ,

~2!

Gs
2~q→0!5

q̃r s

2A2
S 2

]2exc

]z2
1sgn~s!

r s

2

]2exc

]r s]z D , ~3!

whereq̃5q/kF is the normalized momentum,exc5Exc/N is
the exchange and correlation energy per particle measure
rydbergs and the coupling strengthr s is measured in units o
the effective Bohr radius of the system.12 Using the explicit
expression of the exchange energy the local-field functi
become

G↑
1~q→0!5

q̃

2p
@~21z!A11z2zA12z#

1
q̃r s

2

8A2
S ]ec

]r s
2r s

]2ec

]r s
2

12
]2ec

]r s]z D , ~4!

G↑
2~q→0!5

q̃

2p S 21z

A11z
1

z

A12z
D

1
q̃r s

2A2
S 2

]2ec

]z2
1

r s

2

]2ec

]r s]z D . ~5!

Similar expressions apply toG↓
6 due to the fact that

G↓
6(z)5G↑

6(2z).
The inclusion of the correlation energy in the smallq

limit of the local-field factors is crucial to correctly evalua
the response functions. If only the exchange contribution
the local-field factors is included, the magnetic susceptibi
of the unpolarized gas develops a pole forr s>p/A2
;2.221,13 in disagreement with the results of extensive n
merical calculations that show a stable paramagnetic ph
up to r s&26.14,15

To precisely evaluate the contribution from the correlat
energy toGs

6(q→0) we use the latest numerical comput
tion of the ground-state energy of the two-dimensional el
tron gas by Attaccaliteet al.15 By taking the appropriate de
rivatives of Eq. ~3! in Ref. 15, we derive analytica
expressions for the initial slope of the static local-field c
rection functions:as

65Gs
6(q̃→0)/q̃.

The behavior ofa↑
1(r s ,z) and a↑

2(r s ,z) is quite differ-
ent. Figure 1 showsa↑

1(r s ,z) as a function of the polariza
tion for several values ofr s . Note thata↑

1 is always positive,
as the local effects always decrease the uniform electron
sity at large interelectronic distances. Also note thata↑

1 for
small values ofr s is a monotonically increasing function o
z. This behavior can be understood by analyzing the con
19521
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bution from the exchange interaction, which dominates
large electronic densities, given byax

15@(21z)A11z
2zA12z#/2p. Since the exchange interaction takes pla
only between electrons with parallel spin, increasing valu
of z induce larger effects and further reduction of the u
form electron density at smallq. Consequently, the value o
a↑

1 increases. Correlation effects become more import
with increasingr s and they partly cancel the strongz depen-
dence ofax

1 , as it can be seen in Fig. 1.
Figure 2 displaysa↑

1(r s ,z) as a function ofr s for differ-
ent values of the spin polarization. It can be noted thata↑

1 is
a monotonic increasing function ofr s for values ofz&0.5.
This feature is also displayed in Fig. 1. In particular, as p

FIG. 1. Initial slopea↑
1(r s ,z) of the local-field factor as a func

tion of the polarizationz for r s50.1 ~dotted curve!, r s51.0 ~dashed
curve!, r s55.0 ~dot-dashed curve!, andr s520.0. ~solid curve!.

FIG. 2. Initial slopea↑
1(r s ,z) of the local-field correction as a

function of the coupling strengthr s for different values of the spin
polarization: z521 ~dashed curve!, z520.5 ~dotted curve!, z
50.0 ~solid curve!, z50.5 ~dot-dashed curve!, and z51 ~long-
dashed curve!.
0-2
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viously noticed,11 in the unpolarized electron gasa↑
1(r s ,z

50) increases withr s .
Figure 3 displays the initial slopea↑

2(r s ,z) as a function
of z for different values ofr s . As in the case ofa↑

1 , the
main contribution for small values ofr s came from the ex-
change energy:

ax
25

1

2p S 21z

A11z
1

z

A12z
D .

For large electronic densitiesa↑
2 diverges for a fully polar-

ized system (z561), behavior explained by the fact that
a fully polarized gas the magnetic susceptibility becom
zero. Asr s increases, correlation effects quench by an ex
nential factor the diverging contribution from the exchan
energy.16 Thus, correlation effects become dominant at sm
densities and the strong dependence ofa2 on z is com-
pletely washed out. Instead, at large values ofr s , a↑

2 be-
comes a linear function ofz.

Figure 4 displaysa↑
2(r s ,z) as a function ofr s for differ-

ent values of the spin polarization. The divergence atr s50
andz561 is clearly displayed. Note thata↑

2 is a monotonic
decreasing function ofr s for any value ofz.

B. Large wave vector

In the limit of large wave vector it is easier to deriv
independently expressions forG̃s

6 and for Gs
n . For large

frequency or large wave vector, an iterative method gen
ates the exact asymptotic expressions forG̃s

6 .17 For a two-
dimensional electron gas,10

G̃↑
1~q→`!5b↑

1~r s ,z!512 1
2 g↑↓~0!, ~6!

G̃↑
2~q→`!5b↑

2~r s ,z!5 1
2 g↑↓~0!, ~7!

FIG. 3. Initial slopea↑
2(r s ,z) of the local-field factor as a func

tion of the polarization for different values ofr s as indicated in the
legend.
19521
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whereg↑↓(0) is the spin resolved pair-distribution functio
at the origin. It has been shown thatg↑↓(0) is largely unaf-
fected by the degree of spin polarization.18,19 In our calcula-
tion we use the simple expressiong↑↓(0)51/(110.6032r s

10.07263r s
2)2, where only the parameterr s appears.19 With

this choice,b↑
1(r s ,z)5b↓

1(r s ,z)5b1(r s) and b↑
2(r s ,z)

5b↓
2(r s ,z)5b2(r s).

In order to calculate the large momentum behavior ofGs
n

we need to approximate the interacting polarizati
function,20,8

Pss8~q,v!5
1

A (
k

n̄k,s2n̄k1q,s8

v1jks2jk1qs8

, ~8!

where jks5ek1sgn(s)g* B5k2/2m1sgn(s)g* B is the
quasiparticle energy in the static magnetic fieldB, n̄k,s is the
exact occupation number in the interacting electron gas,
A is the area of the system. Since at largeq the particle
number renormalization is the dominant effect, Eq.~8! ne-
glects the renormalization of the quasiparticle effective ma

By making an asymptotic expansion of the interacting p
larization function,20–22 the local factorGs

n can be written
down as

Gs
n~q→`!5

r s

A2

Dts

~11z!2
q̃5gs~r s ,z!q̃, ~9!

where q̃5q/kF is the normalized momentum andDts5ts

2ts
0 is the difference between the kinetic energy of the el

trons with spin s in the interacting system, ts

5(1/N)(kn̄ks(k2/2m), and in the noninteracting gas,ts
0

5(1/N)(knks
0 (k2/2m), over the total number of electrons

This equation is valid whenDts is measured in rydbergs an
r s in units of the effective Bohr radius.12

FIG. 4. Initial slopea↑
2(r s ,z) as a function ofr s for different

values of the spin polarization.
0-3
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JUANA MORENO AND D. C. MARINESCU PHYSICAL REVIEW B68, 195210 ~2003!
The difference in kinetic energies can be related with
exchange and correlation energies and their derivatives u
the generalization of the virial theorem to polariz
systems:23

Dts52
11sgn~s!z

2 Fsgn~s!d
]exc

]z
1r s

]exc

]r s
G2es

xc ,

~10!

where es
xc5Es

xc/N is the average exchange and correlat
energy of the electrons with spins.

The average exchange energy for any spin populatio
well known: es

x 52(4A2/3pr s)@11sgn(s)z#3/2 ~Ry!. The
spin-dependent correlation energies are difficult to evalu
or to extract from numerical calculations. Therefore, we ha
to rely on same approximate scheme to extract the s
dependent correlation energy from the available comp
tions of the full correlation energy. The total correlation e
ergy per particle is

Ec

N
5e↑

c1e↓
c5 ẽ↑

c 11z

2
1 ẽ↓

c 12z

2
.

Perdew and Wang24 suggested the following parametrizatio
for the correlation energy of a polarized electron gas:

ec~r s ,z!5ec~r s,0!1h~r s ,z! f ~z!, ~11!

whereh(r s ,z) is an even function of the polarization and

f ~z!5
~11z!3/21~12z!3/222

2~A221!

for a two-dimensional system.11 This function can be decom
posed asf (z)5@ f ↑(z)(11z)1 f ↓(z)(12z)#/2, where f s

5@A11sgn(s)z21#/(A221). An estimate of the spin
dependent correlation energies can be obtained as

es
c ~r s ,z!5

11sgn~s!z

2
ẽs

c ~r s ,z!,

where

ẽs
c ~r s ,z!5ec~r s,0!1

f s~z!

f ~z!
@ec~r s ,z!2ec~r s,0!#. ~12!

Using the parametrization of the correlation energy p
posed in Ref. 15 we obtain reasonable values fores

c . Also,
its dependence with the polarization is the expected one.
fixed value of r s , e↑

c (e↓
c) is a monotonic increasing~de-

creasing! function of z.
Figure 5 shows the dependence ofg↑(r s ,z), Eq. ~9!, with

the polarization for several values ofr s . While the initial
slopes (as

6) and the constant terms in the largeq limit ( b6)
of the local factors are always positive, the coefficientgs can
have any sign. Sincegs}Dts , a change in sign ofgs im-
plies a change of sign ofDts5ts2ts

0 . Even though, for a
given spinDts can be negative, we have checked that
difference in the total kinetic energies of the interacting a
the noninteracting system,DT5N(Dt↑1Dt↓), is positive
for any value ofz and r s .20
19521
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The negative value ofDt↑ for negative polarizations is
easily understood if the variation with the polarization of t
carrier effective mass is considered. It is well known that
a polarized electron gas the mass of the minority-~majority-!
spin populations increases~decreases! with the value of the
polarization.25 Therefore, for large enough values ofz the
mass renormalization dominates, and the kinetic energy
the minority ~majority! carriers is reduced~increased! with
respect to its free-electron value. Also, asz increases, the
exchange effects between the minority~majority! spins are
greatly reduced~increased!. Due to the combination of thes
two effects the electrons from the majority-spin populati
will tend to accumulate around the few minority spins i
creasing the local charge around them. This generate
negative value ofGn(q→`) for the minority spins. The op-
posite is true for the majority spins.

At small values ofr s and finite values of the polarization
the kinetic energy of each spin population is dominated
the exchange contribution,Dts;z/r s , a behavior that is in-
dependent of the parametrization used to obtain the s
dependent correlation energy, Eq.~12! in our case. At large
values ofr s , the correlation effects become more importa
as it can be seen in Fig. 5. Finally, we point out that the la
effect of the polarization in the value ofg↑(r s ,z) is mainly
due to the denominator (11z)2 of Eq. ~9!.

Figure 6 displaysg↑(r s ,z) as a function ofr s for several
values ofz betweenz520.75 andz51. The same trends a
in Fig. 5 become apparent. For the unpolarized electron
g↑ increases withr s , reaches a maximum atr s52.88, and
decreases afterwards. Forz51, g↑ monotonically decrease
with r s .

III. SPIN-DEPENDENT LOCAL-FIELD CORRECTIONS

Numerous parametrized expressions of the local-field f
tors for the unpolarized three-dimensional26,27,5,28 and
two-dimensional29,30,21 electron gas have been suggest
since the pioneering work of Hubbard.31 However, param-
etrized expressions ofG6 for the polarized gas have no
received so much attention. Numerical calculations in

FIG. 5. The coefficientg↑(r s ,z) as a function ofz for different
values ofr s as indicated in the legend.
0-4
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polarized electron gas are also computationally challeng
and, so far, only results for the ground-state energy and
pair-distribution functions are available.14,32,33,15

As we have discussed in the preceding section, at sm
values of q the local factors follow a linear dependenc
Gs

6(q→0)5as
6(r s ,z) q̃, where q̃5q/kF . In the opposite

end of the spectrum the local corrections follow a linear p
constant dependence,Gs

6(q→`)5b6(r s)1gs(r s ,z) q̃.
Given the diversity of behaviors displayed by the parame
as

6 , b6, andgs , we will consider a general interpolatin
scheme for all values ofr s andz. We parametrizedG6 with
two fitting parametersq0

6 andq1
6 as

Gs
6~q!5as

6q̃e2(q̃/q0
6)4

1~b61gsq̃!@12e2(q̃/q1
6)4

#.
~13!

The fast decreasing exponential factors exp@2(q̃/q0
6)4#

and exp@2(q̃/q1
6)4# are needed to mimic the rapid evolutio

of the local functions from their smallq to their largeq
limiting behaviors. This fast evolution is clearly displayed
the latest diffusion Monte Carlo~DMC! results,11 which
show how the local factorsG1(q) and G2(q) follow the
predicted linear dependence at small values of the wave
tor and rapidly reach their asymptotic large-wave-vector li
its at not very large-values ofq̃. First, we consider the pa
rametersq0

6 and q1
6 as functions only on the electro

density. By fitting Eq.~13! to the DMC results of Ref. 11 we
find that the two fitting parameters are smoothly varyi
functions of the coupling strength and can be parametrize

qi
15

ai
11bi

1r s
2

11ci
1r s

and qi
25

ai
21bi

2r s
2

11ci
2r s

2
, ~14!

where the parametersai
6 ,bi

6 , andci
6 are given in Table I.

The fit for parametersqi
1 is based on DMC data of the un

FIG. 6. The coefficientg↑(r s ,z) as a function of the coupling
strength r s for different values of the polarization:z520.75
~dashed curve!, z520.5 ~solid curve!, z50.0 ~long-dashed curve!,
z50.25 ~dot-dashed curve!, andz51 ~dotted curve!.
19521
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polarized system atr s51,2,5,10, and 40.11 In the fit of pa-
rametersqi

2 we have to combine data of the unpolarized g
at r s51,2,5, and 10 with data of the fully polarized syste
at r s540. This and the fact that numerical calculations
G2 display larger error bars than the equivalent data forG1

made our parametrized expressions forqi
2 more prone to

inaccuracy.
In Fig. 7 we compared our results forG1(q) of the un-

polarized electron gas atr s51,2,5, and 10, Eqs.~13! and
~14!, with the DMC results.11 In Fig. 8 our results forG2(q)
of the unpolarized electron gas are also compared with
numerical equivalent data. It is clear that our parametriz
expressions agree very well with the quantum Monte Ca
~QMC! results.11 By adding more free parameters to Eq.~13!
the agreement with the numerical results will improve, b
the question of how the parameters of the fit evolve with
spin polarization remains, as yet, unanswered. Thus, we k
the parametrization as simple as possible with only two f
parameters.

In Fig. 9 our results for the generalized local-field corre
tion factor G of the unpolarized and fully polarized gas
r s540 are compared with QMC results by Moroni.34 The
generalized local-field function is defined as

G~q,v!5
1

vq
F 1

xee~q,v!
2

1

x0~q,v!
G11, ~15!

where xee is the charge-charge response function andx0

5(sPss is the Lindhard susceptibility. For the unpolarize

TABLE I. Optimal fit parameters for the local-field factors a
parametrized in Eqs.~13! and ~14!.

i 50 i 51 i 50 i 51

ai
1 3.1061 2.8575 ai

2 2.9432 4.3032
bi

1 6.82431024 1.14931023 bi
2 1.45631023 8.92531023

ci
1 5.16631023 3.86431023 ci

2 3.47331023 4.08431023

FIG. 7. Local-field correction factorG1(q,v50) of the unpo-
larized electron gas vs normalized momentumq/kF for r s51,2,5,
and 10. The black circles correspond to the diffusion Monte Ca
~DMC! results of Ref. 11 and the solid curves are calculated acc
ing to Eqs.~13! and ~14!.
0-5
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JUANA MORENO AND D. C. MARINESCU PHYSICAL REVIEW B68, 195210 ~2003!
electron gasG5G↑
15G↓

1 and for a fully polarized system
G5G↑

11G↑
2 . The parametrization given by Eq.~14! repro-

duces very well the data for the unpolarized electron g
However, the agreement in the case of the fully polarized
is not so good. We can closely mimic the numerical data
introducing a weak dependence of the fitting parametersqi

1

with polarization:

q0,s
1 5

a0
11b0

1r s
2

~11c0
1r s!@11sgn~s!z#x0

and

FIG. 8. Local-field correction factorG2(q,v50) of the unpo-
larized electron gas vs normalized momentumq/kF for the same
values ofr s . The black circles correspond to the DMC results
Ref. 11 and the solid curves are calculated according to Eqs.~13!
and ~14!.

FIG. 9. Generalized local-field correction factorG(q,v50) as
defined in Eq.~15! vs normalized momentumq/kF for r s540. The
left panel corresponds to the unpolarized system (z50) and the
right panel to the fully polarized gas (z51). Black triangles corre-
spond to the DMC results of Moroni~Ref. 34!, solid curves are
calculated according to Eqs.~13! and ~14!, and the dashed curv
corresponds to the parameters defined in Eq.~16!.
19521
s.
s

y
q1,s

1 5
~a1

11b1
1r s

2!@11sgn~s!z#x1

~11c1
1r s!

, ~16!

where x050.130 76 andx150.035 523. Note that this de
pendence withz has to be considered a tentative guess si
it is based only on the data atr s540, z51. Figure 10 com-
pares results forGs

1 at r s510 andz50.5 using both param-
etrizations. The differences are mainly in the transition
gion from the small-wave-vector to the large-wave-vec
behavior, where Eq.~14! generates larger values ofG↑

1 and
smaller values ofG↓

1 than Eq.~16!.
Using our initial parametrization scheme, Eqs.~13! and

~14!, we calculate the momentum dependence of the lo
field functions for three values of the polarization,z
50,0.5, and 0.9, and two values of the coupling streng
r s52 ~density of 7.4331010 cm22 in GaAs! and r s510
~density of 0.29731010 cm22 in GaAs!. Figure 11 shows our
results forGs

1(q). The factor associated with the majorit
spins,G↑

1 , behaves quite different from the one of the m
nority spins,G↓

1 . The field factorG↑
1 is always positive for

positive values of the polarization. It slightly increases w
the degree of polarization, but it keeps the characteristic p
of the unpolarized local factor around the same value ofq.
This peak is a residue of the sharp peak in the excha
potential,35 which is washed out and/or shifted to higher va
ues ofq by the inclusion of short-range correlations.36 On
the other hand, the behavior ofG↓

1 is dominated by the
forced change in its slope, from a positive value at smallq to
a large negative value at large wave vectors.37 As a result,
G↓

1 has always a maximum, whose position shifts to low
values of q̃ with increasingz and it is dependent on th
precise parametrization used. This issue should be expl
in greater detail. Finally, Fig. 11 also compares the field f
tors atr s52 andr s510 which show similar dependence o
wave vector and polarization.

FIG. 10. Local-field correctionsGs
1(q,v50) vs normalized

momentumq/kF for an electron gas withr s510 andz50.5. Upper
curves correspond toG↑

1(q,v50), lower curves toG↓
1 . Results

with nonpolarization dependence ofq0
1 and q1

1 @Eq. ~14!#, solid
curves, and with dependence on the degree of polarization@Eq.
~16!#, dashed curves, are included.
0-6
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Figure 12 displays the local-field factorGs
2(q) versus

normalized momentum for the same values ofz andr s used
in Fig. 11. The main difference betweenG↑

1(q) andG↑
2(q)

is that the latest one displayed a sharper peak aroundq̃;2. It
appears that higher-order effects, which are important in
computation ofG↑

1 , cancel out in calculations ofG↑
2 due to

the antisymmetric averaging over spin.38 It is also noticeable
how the local factors change with increasingr s .

IV. CONCLUSIONS

We have considered an analytic parametrization of
spin-dependent local-field factors of the polarized tw
dimensional electron gas, Eq.~13!. Our parametrization in-
corporates the known asymptotic limits of the local corre
tions and gives an accurate fit of the available quant
Monte Carlo data.11 We found that the local-field correction
associated to the minority spins strongly depend on the
larization, while the local-field functions of the majorit
spins are less affected by the degree of polarization. Th
mainly due to the negative value of the linear term on
largeq limit of the local factors of the minority spins.37

The analytic parametrization used has only two para
eters which have been fitted to reproduce the latest D
results for the unpolarized and fully polarized electron ga11

FIG. 11. Local-field correctionsGs
1(q,v50) vs normalized

momentumq/kF for an electron gas withr s52 ~left panel! and r s

510 ~right panel!. Results are calculated using Eqs.~13! and ~14!.
Results forG1 at z50 ~solid curves!, G↑

1 ~long-dashed curves!,
andG↓

1 ~dot-dashed curves! at z50.5, andG↑
1 ~dotted curves! and

G↓
1 ~dashed curves! at z50.9 are displayed.
.

,

19521
e

e
-

-

o-

is
e

-
C

Since there is only a very limited set of numerically com
puted local-field factors, our parametrizations@Eqs.~14! and
~16!# rely heavily on these results, in particular Eq.~16!
which includes a dependence on polarization. Therefore,
ther study will be needed to evaluate the efficacy of o
parametrization and their precise dependence on the spin
larization and density.

In conclusion, we believe that our approach provides
realistic qualitative description of the paramagnetic phase
the polarized electron gas. Caution, however, should be
ercised in applying our calculation in the limit ofz approach-
ing unity, where the paramagnetic model breaks down.
have found that for small values ofr s , the magnetic suscep
tibility and the inverse dielectric constant develop a pole
the same value of the electronic density and spin polar
tion. This fact signals a charge-spin density wave instabi
in the polarized electron gas and it will be discuss
elsewhere.39
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FIG. 12. Local-field correctionsGs
2(q,v50) vs normalized

momentumq/kF for a two-dimensional electron gas withr s52 ~left
panel! and r s510 ~right panel!. Results are calculated using Eq
~13! and ~14!. Results forG2 at z50 ~solid curves!, G↑

2 ~long-
dashed curves!, and G↓

2 ~dot-dashed curves! at z50.5, andG↑
2

~dotted curves! andG↓
2 ~dashed curves! at z50.9 are included.
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