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Local-field factors in a polarized two-dimensional electron gas

Juana Moreno and D. C. Marinescu
Department of Physics, Clemson University, Clemson, South Carolina 29634, USA
(Received 4 June 2002; revised manuscript received 15 November 2002; published 26 Novemper 2003

We derive approximate expressions for the static local-field factors of a spin-polarized two-dimensional
electron gas that smoothly interpolate between their small- and large-wave-vector asymptotic limits. The
proposed analytical expressions reproduce recent diffusion Monte Carlo data for the unpolarized and fully
polarized electron gas. We find that the degree of spin polarization produces important modifications to the
local factors of the minority spins, while the local-field functions of the majority spins are less affected.
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. INTRODUCTION field functions are given a6 =G_:+G" .8 In an unpolar-

. ) ized electron gasG " = GT+ = Gf appears only in the expres-

_Most m_any_—body theories of electronic systems regard theions of the electrical response functions, aBd=G;
spin polarization as a small parameter. This picture is cer_ G, only in the magnetic response susceptibilities. How-
tainly frue when the _Zee_man splitting is much smaller th":mever, in a polarized electron system the four local-field fac-
other relevant energies in the problem. Recently, howeveli

. o ; ors appear in all the response functions.
attention has been focused on materials in which the Zeeman The determination of the frequency and wave-vector de-

Sp“mn%_ domw_natez thte en_l?r:gyl specztrum, SUChl.t?S d_|Iuée endence of the local-field corrections is a very difficult
9 9 npolarized electron system. Fortunately, the asymptotic val-

rers and the magnetic |ons*that generate a valug of the €lies of the local-field factors can be obtained exactly in some
fective gyromagnetic factog™ up to hundreds of imes its ;i 25657910 Nymerical estimates of the response func-

band value. As a consequence, even in weak magnetic f'elqﬁ)ns of the two- and three-dimensional unpolarized electron

;che_sebglytstetrr?s dc?rl tzje fully pglanz’e@.ue éo t?e" easy po-. gas have shown that local-field factors smoothly interpolate
arizability, the diluted magnetic Semiconductors aré promiSy, o yeen  the asymptotic small- and large-wave-vector

'ngl'. dca?dtldaC}es_ to%l.Jhe useiihm 'sE[)m-d(taper;dentl cqnduct|on 'Behaviort! This feature is expected to exist also in the case
solid-state devices,hence the Interest in developing a cor ¢ 5 spin-polarized system. Consequently, we use the

reclt n:;]qroscoplc model for_ thetr;:. hort ffects of th asymptotic limits of the static local factors for large and
n this paper, we examine the short-range etects ot e 5" \yave vector as a starting point in deriving their ap-

Coulomb interaction in a two-dimensional polarized electron, i ate expressions across the whole spectrum of momen-
gas. A realistic picture of the spin-polarized electron ga

hinges on finding an appropriate description of the many- T'he fundamental parameters of the problem are the cou-
body interaction, which has to incorporate the explicit spin

H — A% A%
dependence of the short-range Coulomb repulsion. The self—IIng strengthv s=ag/ym(n;+n ) =ag/Van (Ref. 12 and

consistent treatment of the exchange and correlation effec Qte rsplt? ﬁoilari';gt'o@;z(m _fn'[il‘)l/ n. Slrnce tfhteh manly—rt;;)dt)i/ N
has proven to be very important in understanding the physicg1 eraction 1S independent ot the source of the polarization,

of normal metal$,but to our knowledge it has not been fully we expect our results to maintain their validity also in the

analyzed in spin-polarized systems. In addition, the re|£ase of an itinerant ferromagnet with a self-induced magnetic

evance of the exchange and correlation effects increases ggld, or Wh.e.n the_ polarization IS ach|eved by other means,
the dimensionality of the electron gas is lowered. such as shining circularly polarized light on the sample.

We model the exchange and correlation hole around each In Sec. Il, we study the large- and small-wave-vector lim-

electron by using spin-dependent local-field correction funcl®™ of the local-field functions and their dependence with the

i = 47 i i - electronic density and polarization. In Sec. lll, we give a

tions G, (g,»).”"" An additional local-field factor €;) IS gimple parametrization of the local-field factors that satisfy

needed to relate the interacting polarization functipero- e 45ymptotic limits and reproduces the most recent numeri-
order term in the diagrammatic expansion of the chargeqy| results for the unpolarized and fully polarized electron

charge correlation functiorl,,, with the noninteracting one - g451! Section IV presents our conclusions.

%, asin Ref. 8

0 Il. LIMITING BEHAVIOR OF THE LOCAL-FIELD
I,,(9,0)

11 , W)= . 1 FACTORS
7o) 1+2v(q)GY(q, )11, (0, ) W

A. Small wave vector

This parametrization of the modified polarization function At zero frequency and small wave vector, sum rules are
leads to a renormalized expression of the local fields thatised to connect the static limits of various response functions
determine the response functions, so that the complete locaie certain thermodynamic coefficients, which can be ex-
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pressed as derivatives of the ground-state energy of the elec- 0.7 T T T T T
tron gas® Subsequently, the renormalized local-field func-
tions, which are directly connected with these response
functions, are written down as derivatives of the exchange 0.6
and correlation energy of the interacting electron ga¥’):
G+( 0) arg Jexe (926XC+2 ' ) 92exe 0.5
—0)= —r sgno) ———|, b
AT gz arg T TS G g 3
2 04
- ars 92 exc re 52 ex¢C
G, (q—0)= - +sgno) 5 ———|, (3 0.3
-(a—0) zﬁ( o TS ) @
whereq=q/k is the normalized momentune*°=E*%/N is 0.2 . L . . L .
the exchange and correlation energy per particle measured in -1 -0.5 0 0.5 1
rydbergs and the coupling strengthis measured in units of 4

the effective Bohr radius of the systéfmUsing the explicit

. + )
expression of the exchange energy the local-field functionﬁo FIG. 1. Initial slopea; (rs,{) of the local-field factor as a func

n of the polarizatiory for r4=0.1(dotted curvg r,=1.0(dashed

become curve, r,=5.0 (dot-dashed curyeandr = 20.0. (solid curve.
G;(q_@)zzi[(ﬂ OVI+i-J1-¢] bution from thg exchgnge intgraction,+which dominates at
™ large electronic densities, given by, =[(2+)J1+¢
T2 [ gec e PrRe —{¢{\J1-{]/27. Since the exchange interaction takes place
+ s _e_rs_6+2_6 VA only between electrons with parallel spin, increasing values
82\ drs or2  arsdl of ¢ induce larger effects and further reduction of the uni-
form electron density at smaij. Consequently, the value of
q +¢ ¢ aT+ increases. Correlation effects become more important
G, (q—0)=5= - with increasing ¢ and they partl el the st -
1 > — T Js y partly canc stroggdepen
TANI+HE V14 dence ofe, , as it can be seen in Fig. 1.
N are 52€C N re 9% - Figtljre 2 (:ishplays.ﬁ(rsl,g.) asa ftlmctior*;oi*S fo:jdiﬁe_r-
- > . ent values of the spin polarization. It can be note tis
22\ a2 2 areat pin p tha

a monotonic increasing function of for values of{=<0.5.

Similar expressions apply t(Gf due to the fact that This feature is also displayed in Fig. 1. In particular, as pre-
Gl (D=6 (-0

The inclusion of the correlation energy in the small
limit of the local-field factors is crucial to correctly evaluate N
the response functions. If only the exchange contribution to \
the local-field factors is included, the magnetic susceptibility LA N T
of the unpolarized gas develops a pole foy= w2 3 S~ ———
~2.2218in disagreement with the results of extensive nu- | T e m e
merical calculations that show a stable paramagnetic phas 05 1 N
up tor =26141 s

To precisely evaluate the contribution from the correlation
energy toG, (q—0) we use the latest numerical computa-
tion of the ground-state energy of the two-dimensional elec-
tron gas by Attaccalitet al® By taking the appropriate de-

0 P————

rivatives of Eq. (3) in Ref. 15, we derive analytical 03
expressions for the initial slope of the static local-field cor-
rection functionsa; =G (q—0)/q. P N T T T
The behavior ofe; (rs,¢) anda; (rs,¢) is quite differ- 0 5 IIO 15 20
ent. Figure 1 show&f(rs,g) as a function of the polariza- s
tion for several values af;. Note thata?’ is always positive, FIG. 2. Initial sIopeaT*(rs,g) of the local-field correction as a

as the local effects always decrease the uniform electron defynction of the coupling strength, for different values of the spin
sity at large interelectronic distances. Also note thétfor polarization: {=—1 (dashed curye {=—0.5 (dotted curvi ¢
small values of ¢ is a monotonically increasing function of =0.0 (solid curve, {=0.5 (dot-dashed curye and =1 (long-
{. This behavior can be understood by analyzing the contridashed curve
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FIG. 3. Initial slopea; (rs,{) of the local-field factor as a func- FIG. 4. Initial slopea; (rs,¢) as a function of s for different
tion of the polarization for different values of as indicated in the values of the spin polarization.
legend.

whereg;(0) is the spin resolved pair-distribution function

viously noticed;" in the unpolarized electron gas/ (rs,{  at the origin. It has been shown thg¢, (0) is largely unaf-
=0) increases witn. fected by the degree of spin polarizati$h® In our calcula-

Figure 3 displays the initial slope; (rs,{) as a function tion we use the simple expressign, (0)=1/(1+0.6032r
of £ for different values ofr. As in the case ok , the +0.O7263r§)2, where only the parameteg appears® With
main contribution for small values af, came from the ex- this choice,ﬁ{r(rs,g)=Bf(rs,§)=,8+(rs) and B; (rs,{)

change energy: =B (rs,)=pB"(ry).
In order to calculate the large momentum behavioG{f
1| 2+¢ l we need to approximate the interacting polarization
ay =5— +t =] function?%®

2m\J1+¢ J1-¢
For large electronic densities, diverges for a fully polar- 1 Fk U_ka ”
ized system {=*+1), behavior explained by the fact that in I, (qw)= a E _— (8
a fully polarized gas the magnetic susceptibility becomes K 0t o™ ko

zero. Asrg increases, correlation effects quench by an expo-

nential factor the diverging contribution from the exchangewhere &,,= e, +sgn(o)y* B=k?/2m+sgn()y*B is the
energy“.L Thus, correlation effects becom€ dommgnt at smallyyasiparticle energy in the static magnetic fiBlch, . is the
densities and the strong dependenceaof on { is COM- exact occupation number in the interacting electron gas, and
pletely washed out. Instead, at large values of a; be- A js the area of the system. Since at lagehe particle

comes a linear function of. number renormalization is the dominant effect, E8). ne-

Figure 4 displaysy, (rs,¢) as a function of ¢ for differ-  glects the renormalization of the quasiparticle effective mass.
ent values of the spin polarization. The divergence at0 By making an asymptotic expansion of the interacting po-
and{==*1 is clearly displayed. Note that; is a monotonic larization functior;’~?*the local factorG!. can be written
decreasing function af for any value of¢. down as

B. Large wave vector
9 r« At, -~

In the limit of large wave vector it is easier to derive GQ(Q—WO)—E mq:%(rs,é’)q. 9
independently expressions f@; and for G". For large
frequency or large wave vector, an iterative method gener- _ . _
ates the exact asymptotic expressions@ar.%” For a two- ~ Whereq=a/kg is the normalized momentum anki,=t,

dimensional electron gd§, —t?, is the difference between the kinetic energy of the elec-
trons with spin o in the interacting system,t,
~ _ (k2 ; ; ; 0
Gf(q—m)zﬁf(rs,g):l—%gH(O), 6) (IN)Zyn,(k“/2m), and in the noninteracting gas,

=(1/N)Ekn80(k2/2m), over the total number of electrons.
- B . This equation is valid whent . is measured in rydbergs and
Gy (g—=»)=p;(rs,{)=320;,(0), (7)  r.in units of the effective Bohr radiu$.
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The difference in kinetic energies can be related with the 0.4
exchange and correlation energies and their derivatives using 03 |
the generalization of the virial theorem to polarized
systems? 02 f

XC XC 01 F

At,=— Lrsgne)e sgro)d o +rsﬂL —€ 0.0 |

2 a¢ ar —— I

(10 -01 }

where €X°=EX/N is the average exchange and correlation _02}
energy of the electrons with spin. 03 [

The average exchange energy for any spin population is !
well known: €X=—(42/3nrg)[1+sgn(@)¢]*? (Ry). The -04 |
spin-dependent correlation energies are difficult to evaluate _o05 Ll
or to extract from numerical calculations. Therefore, we have -1

to rely on same approximate scheme to extract the spin-
dependent correlation energy from the available computa-
tions of the full correlation energy. The total correlation en-
ergy per patrticle is

FIG. 5. The coefficienty,(r,{) as a function ot for different
values ofrg as indicated in the legend.

EC . .~ 1tC - 1-¢ T_he negative value oAt_T f_or negative polarizapions is
N € te =€ > uk 5 easily understood if the variation with the polarization of the
carrier effective mass is considered. It is well known that in
Perdew and Warf§ suggested the following parametrization a polarized electron gas the mass of the minofityajority-)

for the correlation energy of a polarized electron gas: spin populations increasédecreaseswith the value of the
. . polarization?® Therefore, for large enough values dfthe
€(rs,0) =€ (rs 0 +h(rs, (L), (1) mass renormalization dominates, and the kinetic energy of

whereh(rs,¢) is an even function of the polarization and ~ the minority (majority) carriers is reducedincreaseg with
respect to its free-electron value. Also, asncreases, the

(1+ )%+ (1-0)%?*-2 exchange effects between the minoritpajority) spins are
f()= > \/5— 1 greatly reducedincreased Due to the combination of these
( ) two effects the electrons from the majority-spin population

for a two-dimensional systefi This function can be decom- Wwill tend to accumulate around the few minority spins in-
posed asf(£)=[f()(1+0)+f (£)(1-2)1/2, wheref, creasi_ng the local charge around _ther_n. This generates a
=[V1+sgn(E){—1]/(y2—1). An estimate of the spin- negative value o3"(q— o) for the minority spins. The op-

dependent correlation energies can be obtained as posite is true for the majority spins.
At small values of ¢ and finite values of the polarization,
c 1+sgno)d ~, the kinetic energy of each spin population is dominated by
€x(ls:0)= > €5(r's.4), the exchange contributiot\t,~¢/r, a behavior that is in-
dependent of the parametrization used to obtain the spin-
where dependent correlation energy, E42) in our case. At large
£ (0) valges ofrg, the cprrglation gﬁects become more important
€ (re,)=€%(rg,0)+——[e%(rg,0)— €5(rs,0)]. (12)  asitcan be seen in Fig. 5. Finally, we point out that the large
f(2) effect of the polarization in the value of,(r,{) is mainly

. o . due to the denominator (4£)? of Eq. (9).
Using the parametrization of the correlation energy pro- Figure 6 displaysy(rs,¢) as a function of ; for several

posed in Ref. 15 we obtain reasonable valuesefor Also, values of7 between? = —0.75 andz=1. The same trends as
its dependence Withcthecpo_larization is the expected one. At g, £ig 5 hecome apparent. For the unpolarized electron gas
fixed value ofrs, €7 (e]) is a monotonic increasingde- y, increases witlr ¢, reaches a maximum ag=2.88, and

creasing function of £. , decreases afterwards. For1, y; monotonically decreases
Figure 5 shows the dependenceyol{rs,{), Eq.(9), with  \yith re.

the polarization for several values of. While the initial
slopes @) and the constant terms in the largdimit ( 3*)
of the local factors are always positive, the coefficigpican
have any sign. Since,xAt,, a change in sign o¥, im- Numerous parametrized expressions of the local-field fac-
plies a change of sign akt,=t,—t%. Even though, for a tors for the unpolarized three-dimensiciidl>?® and
given spinAt, can be negative, we have checked that thewo-dimension&f>%?! electron gas have been suggested
difference in the total kinetic energies of the interacting andsince the pioneering work of Hubbatt However, param-
the noninteracting systemAT=N(At;+At)), is positive etrized expressions 0B~ for the polarized gas have not
for any value ofZ andr.%° received so much attention. Numerical calculations in the

IIl. SPIN-DEPENDENT LOCAL-FIELD CORRECTIONS
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sk T TABLE |. Optimal fit parameters for the local-field factors as
: parametrized in Eqg13) and (14).

i=0 i=1 i=0 i=1

a”  3.1061 2.8575 a; 29432 4.3032
b 6.824<107* 1.149<10°® b, 1.456<10 3 8.925<10 3

¢ 5.166<10°3 3.864x107% ¢ 3.473<10°3 4.084x10°3

polarized system at=1,2,5,10, and 48! In the fit of pa-
rametersy; we have to combine data of the unpolarized gas
atrg=1,2,5, and 10 with data of the fully polarized system
at rs=40. This and the fact that numerical calculations of
G~ display larger error bars than the equivalent datador
made our parametrized expressions épr more prone to
inaccuracy.

In Fig. 7 we compared our results f@&*(q) of the un-

FIG. 6. The coefficienty,(r,¢) as a function of the coupling Polarized electron gas at=1,2,5, and 10, Eqs(13) and
strengthr for different values of the polarizationf=—0.75  (14), with the DMC results” In Fig. 8 our results fo ™~ (q)
(dashed curve = — 0.5 (solid curve, Z=0.0 (long-dashed curye  Of the unpolarized electron gas are also compared with the
{=0.25(dot-dashed curyeand/=1 (dotted curvé numerical equivalent data. It is clear that our parametrized

expressions agree very well with the quantum Monte Carlo

polarized electron gas are also computationally challengingQMC) results™ By adding more free parameters to E&3)
and, so far, only results for the ground-state energy and ththe agreement with the numerical results will improve, but
pair-distribution functions are availabt&323315 the question of how the parameters of the fit evolve with the

As we have discussed in the preceding section, at smadlpin polarization remains, as yet, unanswered. Thus, we keep
values ofq the local factors follow a linear dependence, the parametrization as simple as possible with only two free
G:(q—0)=a(rs,l) 9, whereq=g/kg. In the opposite Parameters. . _
end of the spectrum the local corrections follow a linear plus !N Fig. 9 our results for the generalized local-field correc-
constant  dependenceG: (q—<)=B"(rd)+ vs(r<,d) 3 tion factor G of the unpolarized and fully polarized gas at

Given the diversity of behaviors displayed by the parametergse:ng?afiizree dﬁg?ﬁi{gﬁ \fl:/;:]rétgr’\]ﬂg (;ee?iwésd Zé MordfiiThe
a, , B, andy,, we will consider a general interpolating 9

scheme for all values af, and. We parametrize* with 1 1 1
two fitting parameters|, andq; as G(q,w)= — _ +1, (15)
o . va| x*4q,0)  x%(q,0)
+ _ = —(a/qy + P —(a/qy
G, (q=a,qe W)+ (B +y,q[1-e (@) ]-(13) where x®¢ is the charge-charge response function afd

=3 ,I1,, is the Lindhard susceptibility. For the unpolarized

The fast decreasing exponential factors [exf@/qy)*]

14F 1 F
and ex@—(a/qf)“] are needed to mimic the rapid evolution 1.2 - .
of the local functions from their smatj to their largeq G 0113 i 1t 1
limiting behaviors. This fast evolution is clearly displayed on w08} i .
the latest diffusion Monte CarldDMC) results'* which o F =4t F=2
show how the local factor&*(q) and G~ (q) follow the 0 TR S TR A
predicted linear dependence at small values of the wave vec- 4T [T
tor and rapidly reach their asymptotic large-wave-vector lim- 12 F 1t = ]
its at not very large-values af. First, we consider the pa- G 0_; 3 1t ]
rametersqg and q; as functions only on the electron © 06 F 1 F .
density. By fitting Eq(13) to the DMC results of Ref. 11 we 8-‘21 F =5 1t r=10. 3
find that the two fitting parameters are smoothly varying 0 PP S P S
functions of the coupling strength and can be parametrized as 0 2 4 6 80 2 4 6 8
a/ke a/k:
o ptp2 - phr2
qf:Lblrs and qf=Lk)j;, (14) FIG. 7. Local-field correction facto®* (g, =0) of the unpo-
1+crg 1+crg larized electron gas vs normalized momentgfkg for r¢=1,2,5,

. N _ _ and 10. The black circles correspond to the diffusion Monte Carlo
where the parametees ,b;”, andc; are given in Table . (DMC) results of Ref. 11 and the solid curves are calculated accord-
The fit for parameters;;” is based on DMC data of the un- ing to Egs.(13) and (14).
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04 <xs 1t .
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o 02} 1t A 1 15l i
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R 0.4 ¢ =5. 1 I rs=10. . g b ':/ \\\\
ASa _ / >
o 02 B 1 r . NN
05 | 4
O 1 1 1 L 1 1
0 2 4 6 80 2 4 6 8
C]/kF C]/kF 0 1 1 1
0 2 4 6 8
FIG. 8. Local-field correction facto®  (q,w=0) of the unpo- q/kF

larized electron gas vs normalized momentgfike for the same

values ofrg. The black circles correspond to the DMC results of  F|G. 10. Local-field correctionss; (q,w=0) vs normalized
Ref. 11 and the solid curves are calculated according to @&s. momentunyy/ke for an electron gas with;=10 and{=0.5. Upper
and(14). curves correspond t6; (q,=0), lower curves toG . Results
with nonpolarization dependence qf andq; [Eg. (14)], solid
curves, and with dependence on the degree of polarizgfon

electron gagly=G; =G/ and for a fully polarized system
g ! L yp y (16)], dashed curves, are included.

ngT*+GT’ . The parametrization given by E¢L4) repro-
duces very well the data for the unpolarized electron gas. (af + b r2)[1+sgra) (]
However, the agreement in the case of the fully polarized gas qIU: t s , (16)

is not so good. We can closely mimic the numerical data by (1+ciry)
introducing a weak dependence of the fitting paramedérs where x,=0.130 76 andx,=0.035523. Note that this de-

with polarization: pendence witll has to be considered a tentative guess since
it is based only on the data B{=40, {=1. Figure 10 com-

at+bir2 pares results foG, atr =10 andZ=0.5 using both param-
q&g: - 0 _0's etrizations. The differences are mainly in the transition re-
(1+core[1+sgrio) ] gion from the small-wave-vector to the large-wave-vector
behavior, where Eq.14) generates larger values @fT+ and
and smaller values on than Eq.(16).

Using our initial parametrization scheme, E@$3) and
(14), we calculate the momentum dependence of the local-
field functions for three values of the polarizatiod,
=0,0.5, and 0.9, and two values of the coupling strength,
r<=2 (density of 7.4%10°°cm 2 in GaAs and r¢=10
(density of 0.29% 10*° cm™2 in GaAs. Figure 11 shows our
results forG_ (q). The factor associated with the majority
spins,GT+ , behaves quite different from the one of the mi-
nority spins,Gf . The field factorGT+ is always positive for
positive values of the polarization. It slightly increases with
the degree of polarization, but it keeps the characteristic peak
of the unpolarized local factor around the same valug.of
This peak is a residue of the sharp peak in the exchange
potential®® which is washed out and/or shifted to higher val-
ues ofq by the inclusion of short-range correlatiofisOn
the other hand, the behavior Gf is dominated by the
forced change in its slope, from a positive value at smmpadi
FIG. 9. Generalized local-field correction fact@fq,o=0) as a large negative value at large wave vectras a result,

defined in Eq(15) vs normalized momentumy ke for r s=40. The G| has always a maximum, whose position shifts to lower
left panel corresponds to the unpolarized systehr @) and the Vvalues ofg with increasing¢ and it is dependent on the
right panel to the fully polarized gag€ 1). Black triangles corre-  precise parametrization used. This issue should be explored
spond to the DMC results of Moror(Ref. 34, solid curves are in greater detail. Finally, Fig. 11 also compares the field fac-
calculated according to Eq¢13) and (14), and the dashed curve tors atrg=2 andr¢=10 which show similar dependence on
corresponds to the parameters defined in (&). wave vector and polarization.

1.5

a/ke a’k:
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2 I'.,«l-m.l...:/"////' T T T 2 'I"'I"'I'-1
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15 | % 1t e 15
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1k /4 1t - 41
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-1} ] \ 4 F \ =
sl N E 115
1. | ‘ \\\ “ =1.
1 N ]
_2 P 1 1 L 1o 4, 1 )
0 2 4 6 0 2 4 6
a/k; a/k;

FIG. 11. Local-field correctionss7 (gq,w=0) vs normalized FIG. 12. Local-field correctionss,(q,w=0) vs normalized
momentumg/kg for an electron gas withg=2 (left pane) andr momentung/ke for a two-dimensional electron gas with=2 (left
=10 (right pane). Results are calculated using E¢$3) and (14). pane) andr¢=10 (right pane). Results are calculated using Egs.
Results forG* at =0 (solid curvey, GT+ (long-dashed curveés  (13) and (14). Results forG™ at =0 (solid curves, G; (long-
andG; (dot-dashed curvesit{=0.5, andG, (dotted curvesand  dashed curvés and G, (dot-dashed curvesat {=0.5, andG,
Gf (dashed curvgsat {=0.9 are displayed. (dotted curvesandG | (dashed curvgsat {=0.9 are included.
Figure 12 displays the local-field factd@ (q) versus
normalized momentum for the same valueg @ndr¢ used

Since there is only a very limited set of numerically com-
in Fig. 11. The main difference betweéhﬁ(q) andG; (q)

puted local-field factors, our parametrizatidiis. (14) and

(16)] rely heavily on these results, in particular Ed.6)

_ _ ~ which includes a dependence on polarization. Therefore, fur-

is that the latest one displayed a sharper peak arquiil. It - yher study will be needed to evaluate the efficacy of our

appears that h|gfler-order effects, which are important in they - a metrization and their precise dependence on the spin po-

computation ofG;", cancel out in calculations &, dueto  |ization and density.

the antisymmetric averaging over s:ﬁﬁ’il is also noticeable In conclusion, we believe that our approach provides a

how the local factors change with increasing realistic qualitative description of the paramagnetic phase of

the polarized electron gas. Caution, however, should be ex-

IV. CONCLUSIONS ercised in applying our calculation in the limit 6fapproach-

ing unity, where the paramagnetic model breaks down. We

ave found that for small values of, the magnetic suscep-

We have considered an analytic parametrization of th
spin-dependent local-field factors of the polarized two-

dimensional electron gas, E(L3). Our parametrization in- tibility and the inverse dielectric constant develop a pole at
corporates the known asymptotic limits of the local correc-t.he same valug of the electronic Qensny'and spin polar_ga—
tions and gives an accurate fit of the available quanturﬁ'on' This fac't signals a charge-spin dgnsﬂy wave |_nstab|I|ty
Monte Carlo data! We found that the local-field corrections g}séc\,ehe‘:glﬁianzed electron gas and it will be discussed
associated to the minority spins strongly depend on the po- '

larization, while the local-field functions of the majority
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