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Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations
in the exchange energy between neighboring phosphorus donor electron states ifiBilkoitler, X. Hu, and
S. Das Sarma, Phys. Rev. Le8B, 027903(2002; Phys. Rev. B66, 115201(2002]. These same effects lead
to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of
crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the
donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the
Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they
produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was
done by Kaoiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues
of fabrication and calculate the expected exchange coupling between neighboring donors that have been
implanted into the silicon substrate using an 15 keV ion beam in the so-called “top down” fabrication scheme
for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the
voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic
operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the
magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm
those previously obtained by Koiller, Hu, and Das Sarma.
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[. INTRODUCTION donor separation, and a strong dependence of this coupling
on the relative orientation of the two donors with respect the
Solid state systems have emerged as a promising candstructure of the silicon substrate. They calculate the ex-
date for the construction of a large scale quantum computethange coupling using an approximate version of the Heitler-
(QC). In particular, spin based architectures take advantageondon formalism and by essentially ignoring the periodic
of the relatively long spin dephasing times of donor electrongart of the Bloch wave functions in the expression for the
or nuclei in silicon. S|ng|e qubit operations are performed bydonor electron wave functions. In this article we eliminate
tuning the spin Zeeman energy to be resonant with an osciPoth these approximations, by calculating the exchange cou-
lating field which drives the transition while neighboring qu- Pling in the full Heitler-London formalism and by including
bits are coupled via the electron exchange interactionthe full Bloch structure of the donor electron wave function.
whether it be directly in the case of electron-spin proposals,WWe show that while the first approximation breaks down for
or indirectly in the case of nuclear spin quantum computerssmall donor separations, as discussed by KHD themsglves,
In this work we concentrate on the Kaneoncept of the second approximation, that of ignoring the periodic part
single phosphorus donor nuclear spin qubits embedded in @f the Bloch functions, is in excellent agreement with the full
silicon substrate, which is a leading candidate in the searcf@lculations regardless of the donor orientation.
for a scalable QC architecture. The Kane architectsinewn
in Fig. 1 calls for the placement of phosphorus donors at[— = *
substitutiona[face-centered cubidcc)] sites in the host sili-
con matrix, with interdonor spacings of order 200 A. Quan-
tum logic operations on the nuclear-spin qubits are imple- Oxide Thickness 5nm | §
mented through coherent control of the donor electron wave
functions which are coupled to the donor nuclei through the Qubit Depth 20nm
contact hyperfine interaction. This control of the electron
wave functions is achieved through application of voltage | @ @
biases to control gates placed on the substrate surface abo Donor Separation R
(A gate, and betweenJ gate the phosphorus donors, which Back—gate Depth 60nm
create electrostatic potentials within the device thus altering
the form of the electron wave functions.
In a recent paper, Koiller, Hu, and Das SariiHD)>
presented theoretical evidence for oscillations in the FIG. 1. The Kane architecture based on buried phosphorus dop-
electron-mediated exchange coupling as a function of interants in a silicon substrate.

Z A-—gate J—gate A—gate
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This paper is organized as follows. In Sec. Il we reviewmediates both single and coupled gate operations. Therefore,
the calculation of the valence electron wave functions forthe crucial element in the quantum description of the device
phosphorus donors in silicon, in the Kohn-Luttinger effectiveis the donor electron wave function. Initial attempts to de-
mass formalism. In Sec. Ill we discuss the Heitler-Londonscribe the operation of the device, particularly in response to
formalism used to calculate the exchange coupling betweeexternal time dependent gate potentials which complicate the
neighboring donor electrons, and we show that the terms thaituation considerably, have focused on effective hydrogenic-
arise due to the periodic part of the Bloch functions oscillatetype approximations for the donor electron wave funcfifn,
sufficiently rapidly so as to average to zero over the range obr the use of simplified potentialsThese calculations pro-
the integrals. Section IV contains a discussion of some of theide some useful estimates, however, more detailed calcula-
fabricational issues that arise from the strong position depertions are required, using realistic models of both the donor
dence of the exchange energy on the production of a pho®lectron wave function and the potentials induced inside the
phorus donor based solid state quantum computer. device by the application of control gate biases.

Section V is devoted to a calculation of the dependence of In going beyond the effective hydrogenic treatment of the
the exchange coupling between neighboring donor electronground-state electron wave function for phosphorus donors
on voltage biases applied to the contdajjate, used to tune in silicon it is recognized that the underlying crystal structure
the interqubit coupling. By extending the conventional effec-of the silicon must have an effect. The wave function is thus
tive mass formalism we construct a basis of nonisotropieexpanded in the basis of the Bloch functions for siliédn,
hydrogenlike envelope functions in which we expand the
donor-electron wave function in the presence of the electric
potentials. The potential created inside the device due to the \If(r)=J F(k) di(r)dk. @)
J-gate bias is calculated using a commercial software pack- - . _
age specifically designed for the modeling of semiconductor N€ coefficients=(k) are obtained by substituting the above
devices. Donor wave functions are obtained by direct diagof0'™M into the Schrdinger equation, with the Hamiltonian
nalization, and the Heitler-London formalism is used to de-H =Ho—=U(r), whereH, is the Hamiltonian for the pure
termine the exchange coupling for various gate biases argflicon crystal andU(r) is the donor-potential for phos-

donor separations oriented in the silic00] direction. phorus. The Bloch functions can be written in the form
o (r)=e"*Tu(r), whereu,(r) is a function that shares the
Il. THE DONOR ELECTRON WAVE FUNCTION periodicity of the lattice, and can be expanded in a basis of

plane waves with wave vectors equal to the reciprocal lattice
Although the qubits of the Kane quantum computer arevectors for siliconG, u(r)=3A(G)e'®". The result is
encoded by the nuclear spins, it is the donor electron whiclhat the Schrdinger equation can be written as

EF(K)=EPF(K)+ X | AY oA cU(r)e®k k) rel(G=CDrE (k) drdk’
G,G’ '

—E°F(K) + >, J’A:,’G,AKYGD(H—G—k’—G')F(k’)dk’, (2)
G,G’

whereU(k)=fU(r)e~""*dr is the Fourier transform of the component. Them, ,m; are effective masses and the in-
impurity potential. TheE{ are the eigenenergies of the Bloch equality of these two values reflects the anisotropy of the
functions ¢,(r), for the pure silicon lattice. We make the conduction band minima. An ad.dltlonal'approxmatm')n is
approximation that due to the increased energies of thg'ade whereby only the terms witA=G’ in the potential
higher bands, only conduction band states contribute to thErm of the Schrdinger equation are included. The assump-
impurity wave function. Further, in silicon there are six de-tion is thatU(k—k’+G—G")<U(k—k’) for G=G'. This
generate conduction band minima, located along(ft@g)y ~ @PProximation is WeI_I satisfied for a_CouIc_>mb|c potential
directions ink space, 85% of the way between the center (Y (K)=1/(x7?|k|?), with k=11.9 the dielectric constant for
point and the zone boundary(point). Because of the re- silicon, and with the rgmprogal lattice vectors of magmtude
duced energies in these regions the envelope functions caff|=n27/d, wheren is an integer andi=>5.43 .A is the
be expressed as a sum of functions localized around each Btice spacing for silicon. Another way of viewing the ap-
the conduction band minimé(k) == ,F (k). proximation is that the terme (=) in the first line of Eq.

In the effective-mass treatm&nt®the Bloch energies are (2) oscillate on a scale sufficiently short compared to varia-
expanded to second order around the conduction bangbons in U(r), that they average the integrand to zero. We
minima Ep~ (4%/2) (k% /m, +kf/m), wherek  is the com-  will show in the next section that the same approximation
ponent ofk—k,, perpendicular tk, andk is the parallel allows us to ignore the periodic part of the Bloch functions in
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FIG. 2. The solid line shows Kohn-Luttinger wave function for a phosphorus donor electron in silicon, plotted along directions of high
symmetry within the crystal. The dotted line shows an isotrogididrogenic wave function, with an Bohr radius of 20.13 A.

the donor electron wave functions when performing Heitler-where the periodic part of the Bloch function is independent

London integrations.

One further approximation is necessadyy: c~Ay G,
which coupled with the relatio | A g|>=1 gives the ef-
fective mass Schbinger equation

n2 (K2 kP
7<E+ﬁ EM‘, F (k) +

f O(k—k") X F,(k")dk’
ys

:E% FL(K). 3)

of the position of the substitutional impurity. The values
=25.09 A, a;=14.43 A are the effective Bohr radii, and are
determined variationall§®

It is well known that the valley orbit coupling does con-
tribute to the energy of the statkparticularly if the donor
potential is not Coulombic as is the case in the immediate
vicinity of the donor nucleus. The consequence of this is that
the donor electron binding energy given by this wave func-
tion is E=28.95 meV, significantly lower than the experi-
mental value of E=45.5 meV!?!® This discrepancy is

In the standard effective mass treatment the so-called valleyhought to arise from the deviation of the donor potential
orbit terms, which couple the envelope functions at differenfrom a purely Coulombic potential as well as the effect of a
conduction band minima are ignored, and we are left with six1onstatic dielectric constant in silicéhlt is expected, how-
independent equations, one for each minimum. With a CoueVer, that at distances of more than approximately an effec-
lombic impurity potential the solutions are nonisotropic hy-tive Bohr radius from the donor nucleus, the donor potential

drogenic wave functions of the form

exd —V(x*+y?)/a, +7%a]

Fal(r)= . :
\/67-raiaH

where F,(r)=[F ,(k—k,)e'* 'dk, and we have used the

example of the envelope function localized around the
minima of the conduction band. The Kohn-Lutting&form

(4)

should be approximately Coulombic and so Ex).will pro-
vide a good description of the true donor electron in this
region® Thus the Kohn-Luttinger form of the donor-electron
wave function should be adequate for the purposes of calcu-
lating exchange energies for donor separations in the range
considered in this article.

A plot of the donor electron wave function along three
directions of high symmetry, calculated using effective Bohr

for the electron wave function of a donor situated at anyradii as determined by Koilleet al.® is shown in Fig. 2 for

positionR is then given by

W(r—R)z% F(r—R)e« =Ry (1), (5)

a donor placed at a substitutional lattice site. The coefficients
Ak#,G, were calculated using the simple local empirical

pseudopotential method as outlined in Ref. 15, and a basis of
125 states. This method accurately reproduces the electronic
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band structure for silicon, particularly in the region of inter- 1

est for this calculation, the lowest conduction bands, as ob- J(R)= E[S(R)zl1(R)—|2(R)]/[1—S(R)4]. (8)
tained using more complicated nonlocal pseudopotential

techniques. The donor electron wave functions obtained in

this manner clearly display oscillations produced by the inWhere the overlap integrals are given explicitly by
terference between the Bloch functions located at the differ-

ent conduction band minima. The wave functions are real,

and in the[111] direction slightly asymmetric, the asymme- Il(R):J d3r,d3r, W (r + RI2)W* (r,— R/2)
try being a consequence of the presence of the second sub-
lattice. In the[111] orientation the silicon atoms are not XHW(r,+RI2)¥(r,—R/2),

evenly spaced, and so the neighboring silicon atom on one
side of the phosphorus donor is much closer than that on the

other side. Superimposed over the donor wave function is an s 3 s .
isotropic 1s hydrogenic envelope with a Bohr radius of |2(R)=J d°r dry W (ry+ RI2)W* (r,—R/2)
20.13 A, reflecting the effect of the superposition of the
nonisotropic envelope functiors,, . XHWY(r,+R/2)¥(r;—R/2),
Il. THE HEITLER LONDON FORMALISM
_ 3 * _
The two electron Hamiltonian for a system of two donors S(R)_J d* ¥ (r+RI™¥ (r=RI2). ©)
separated by a vect®, in effective Rydberg units, is
> 2 2 Computation of these expressions using the Kohn-Luttinger
h h e e e X . AN : :
H=— Zvi_ ng_ — — wave function without approximation is rather tedious, given
2m 2m Amer; AmelR—ry| Amer, the large number reciprocal lattice vectors it is necessary to
. o2 2 sum over to evaluate the periodic part of the Bloch functions

+Vgi(rq,ro). for each of the six Bloch states in the donor electron wave
function. We have used an adaptive Monte Carlo quadrature
(6) program to evaluate all overlap integrals, taking due care to
obtain reasonable precision.
In the standard Heitler-London approximattbone assumes In Fig. 3 we plot the exchange energy as a function of
that the lowest energy two electron wave function of thegonor separation in each of the major lattice directions. For
two-donor system is simply a correctly symmetrized supercomparison the result using an isotropic hydrogenic wave
position of single electron wave functions centered aroundynction is also given. We compare our results with those
each of the two donors obtained using the method of KHD in their original paper,
who used two major approximations in order to make the
1 calculation more tractable, some of which are discussed in
201+ ) detail in reference$’ First, the Heitler-London expression
for the exchange energy is approximated by the Coulomb
W (ri+R2)V(r,—R/2)], (7) exchange integral alone, an approximation that is asymptoti-
- ] cally quite good, however it is this approximation that is
where the two donors are located at positiohR/2. This  regponsible for the difference between our result and that
approximation s asymptotically exact _and should hold forgptained by KHD in Ref. 3. In Ref. 4, the authors have used
separations greater than the effective Bohr ratR|  the complete form for the Heitler-London expression, and
>a, ,a). The antisymmetry of the fermion wave function gptained results that match those presented here.
energies between the spin singlet and triplet spin states, igontribution of the periodic part of the Bloch functions
simply eql_JaI to the difference in energy between the stategﬂ(r)zl; this is an excellent approximation as can be seen
V.., that isEyiper— Esinge= E-—E. from the figures in which it is almost impossible to distin-
In this article we present our results in terms of the ex-gyish between the results obtained in this approximation and
change, od coupling, in the exchange term of the effective those for which the detailed Bloch structure was included.
spin HamiltonianJo§- o5, which is common to the quantum The ability to ignore the periodic part of the Bloch structure
computing literature. We make this decision despite the obin the computation of the Heitler-London integrals signifi-
servation that it is the exchange splitting, the energy differcantly reduces the complexity of the calculation by eliminat-
ence between the single and triplet states, that is most conmng the sums over reciprocal lattice vectors. It is worth ex-
monly presented in the solid-state literature. These quantitieamining this approximation in more detail as we find it is
are related by the expressidr- (Eyipier— Esingled /4- effectively the same approximation as is made in effective
In the Heitler-London formalism the exchange couplingmass formalism to obtain the Kohn-Luttinger form for the
can be expressed in terms of matrix elements of the Hamildonor electron wave function.
tonian one can rewrite this as The Heitler-London integrals are all of the form

- + +
4’7T€|R— I’2| 47T6|r1— I’2| 4m7eR

W (ry,rp)= [V(ri—RI2)¥(r,+R/2)

195209-4



ELECTRON EXCHANGE COUPLING FOR SINGLE-DON®. . . PHYSICAL REVIEW B 68, 195209 (2003

= : [100] ' = g ' [110] '
8 0.4¢ 2 04F 3
E E
g E Qg F
£ 03¢ £ 0.3F
o, o
= 3 .
S 0.2¢ S 0.2F
) E o)
op £ ap
S 0.1: g 0.1
e E e
© E O
& 0.0f ‘ ‘ . & 0.0f
80 90 100 110 120 80 90 100 110 120
Donor separation (Angstroms) Donor separation (Angstroms)
= : [111] ]
[V} £ 3
g 0.4 ]
8o ]
£ 0.3% 3
B, :
= :
S 0z2: ]
v :
g E .
§ 0.1¢ 3
< R LY A T
) AP AN A e
S 0.0k ‘ ‘ A
80 90 100 110 120

Donor separation (Angstroms)

FIG. 3. Calculated exchange couplings as a function of donor separations along three high symmetry directions. In each case we plot with
a solid line the results obtained when the periodic part of the Bloch funationis included, a dashed line indicates the results obtained
with u(r)=1. In each plot these lines cannot be separately resolved. The dotted line gives the results obtained when using the approxima-
tions of KHD and the dotted-dashed line gives the exchange coupling calculated using a 1s hydrogenic orbital with an effective Bohr radius
of 20.13 A. The asterisks denote the positions of lattice sites.

which is equivalent to setting,(r)=1 in Eq. (10). The
I= f W*(ry—RI2)W* (r+ RI2)V(ry,r2)V(r,—R/2) “rapidly oscillating” terms include the exponentials contain-
ing the values ok at the conduction band minima, which are
XW(ry+R/2)drdr, separated by a minimum magnitude ofk=22
X 0.857/d. This separation is sufficiently large to allow us
_f 2 Fi(r,—RI2)F;(r,+R/2) to ignore terms except those for whiédk=m,l=j. Since
a,B,v,6 i,j,I,m

36A% cAk.c=1, this allows us to ignore the periodic part of
X F|(Fy— RI2)F o(F1+ RI2V(r1,1 ) the Bloch functions in the Heitler-London integrals.

5 @l (ki +km—kj —k)) - RI2gi (K= ki) -r1gi (K —K}) -2
IV. FABRICATION

X AF * i(Gy=Gy) 11 o
A 6,6, .6, Ay 6, The observed extreme sensitivity of the exchange cou-

% el (Gs=G,) Tadr . dr (10) pling on the relative orientation of the two phosphorus do-
_ . e _ ~nors sets stringent requirements on the placement of donors
The various potentials represented in the above expression i any quantum computer architecture that is reliant on the

V(ry,rp) are all impurity potentials of a similar nature to exchange interaction to couple qubits. In this section we dis-
those encountered in the effective mass formalism, and so wgss these implications for the construction of a Kane

expect that they are sufficiently slowly varying that we cannuclear spin quantum computer.

safely ignore the rapidly oscillating terms in the above inte- Fabrication of the Kane solid-state quantum computer is

grand, in exactly the same manner. This immediately givesbeing pursued along two parallel paffisin the so-called
“bottom up” approach, individual phosphorus donors are ef-

= > Fi(r,— RI2)F|(ry+RI2)Fi(r,—R/2) fectively placed with atomic precision on a phosphorus sur-
i face by application of phosphine gas to a hydrogen termi-
><Fj(rl+R/2)V(r1,rz)ei("i“‘m‘ki‘kl)'R’zdrldrz, nated silicon surface in which individual hydrogen atoms

have been removed at the proposed donor site using a
(1)  scanning-tunneling microscope tip. The hydrogen monolayer
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FIG. 4. Calculated exchange couplings for donors at fcc latticdN® €xchange coupling between donor electrons for donors im-
sites that are displaced by a vec®from their ideal separation of Planted 200 A apart in thf100] direction, using a 15 keV phos-
200.91 A in the[100] direction. The couplings are plotted as a phoru; ion .beam. The donors are assumed to take a substitutional
fraction of the expected exchange coupling(200.91 A)  fcc lattice site.
=0.18 ueV.

a coupling of 50ueV corresponds to a gate time of the order
is then removed and the surface overgrown withof 1Q GHz. The top down approach can 'in this case produce
phosphorug?® Although this approach has not been fully de- 9uPits coupled by extremely fast gates with a very high prob-
veloped, it is likely that it will be able to produce an array of aPility. In nuclear spin quantum computers however, the ex-
donors located at precise fcc substitutional sites, to within £hange interaction only mediates the interqubit coupling and
few lattice spaces. Small displacements are inevitable, hown€ resulting gates are slower. The original Kane proposal
ever, and can have dramatic effects on the exchange couplif@lls for an adiabatic implementation of a controlled-NOT
between the donors. This is illustrated in Fig. 4 where wedate tha;terequw_e_s a exchange COUP“”Q of appro_X|maf[er
show a plot of the exchange coupling as a function of the?0 #&V.” Addltég)nal proposals exist for nonadiabatic
magnitude of the displacemeni| of the second phosphorus |mplementa_t|on%2* for which controlled-NOT gates can be
dopant from its desired position at a fcc substitutional site &ccurately implemented with a lower exchange coupling.
distance of 200.91 A, in thg100] direction, from the first Flgure 5 _ShOWS the probablllty_ that the bare exchangg cou-
dopant. These dopants have been displaced by no more thBiN9 for implanted donors being greater than 58V, is
four fundamental lattice spacings on either of the two fcc@Pout 6%. What is more important than the bare coupling
lattices that make up the silicon matrix, however, the exNowever is the values of the exchange coupling that can be
change coupling varies by more than an order of magnitud@chieved with the application dkgate biases.
emphasizing the need for precise placement. We note that KHD have performed calculations that sug-

The second approach, known as the top down approacdest & method f_or overcoming the strong dependence of the
calls for the implantation if the phosphorus donors into the®Xchange coupling on the donor onentaﬁ*oﬁhgy calculate
silicon using an ion beam of phosphorus ions incident on th&he exchange coupling, in the same approximations as dis-
substraté® The precision of such a technique in the place-cussed earlier, for phosphorus donor electrons in uniaxially
ment of dopants is fundamentally limited by the phenom-Strf""”ed SI.|ICOI'1. The strain is a product of the silicon host
enon known as “straggling,” whereby the implanted ions P€ing fabricated on a layer of Si;Ge;, and is found to
scatter from the nuclei of the host silicon atoms. Simulation$SUPPress the oscillations in the coupling for donors that lie
of this process for a beam of 15 keV phosphorus ions imwlth_ln a plane perpendlculz_ir to 'Fhe dlrectlo_n_ of the l_m|aX|aI
planted into silicon, an energy appropriate for an impIanta—Stra'”- The coupllng remains highly sensitive to displace-
tion depth of approximately 200 A into the silicon substrate,ents away from this plane.
give a roughly Gaussian distribution for the final position of
the dopant with a variance of about 90 A in the transverse
direction, and 100 A in the longitudinal direction. Using
these data, for two dopants implanted 200 A apart in the
[100] direction, we have calculated the distribution of ex- Inherent in the Kane proposal for a solid state quantum
change couplings between the donor electrons, assuming thedmputer is the ability to control the exchange coupling of
after thermal annealing the phosphorus donors take up a p@eighboring donor electrons through the application of volt-
sition on a fcc substitutional site. Figure 5 shows a plot theage biases to a contrdlgate placed on the substrate surface
integrated probability/P(J")dJ’, that is the probability between the position of the phosphorus donors, as illustrated
that the exchange coupling is greater than a vd|der two  in Fig. 1. In this section we calculate the effect on the ex-
dopants implanted in the manner just described. change coupling on thégate bias. Some results have been

In the case of electron spin quantum computers where it iseported on similar calculations. Famrgal.” used an unre-
the exchange energy that directly couples neighboring qubitstricted Hartree-Fock method, which avoids some of the ap-

V. EXTERNAL CONTROL OF THE EXCHANGE
COUPLING
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FIG. 6. Potential produced inside the device by a voltage bias of 8 8 90 95 100 105 110 115 120
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donors are located at==+100 A and atz=0. The potential is

independent of thg coordinate, mimicking a very long electrode. FIG. 7. Exchange coupling as a function of donor separation for
The dashed line is the one-dimensional potential used by Eaaly  donors oriented along tH&00] direction and various-gate biases.
with ©=0.15 and shifted to match our potentialxaz=0.

where theFZ"'m(r— R/2) are nonisotropic hydrogenic enve-
proximations inherent in the Heitler-London approach, tojope functions defined by FaulknErThe u is a label for the
calculate the exchange coupling between phosphorus dongfx degenerate conduction band minima and determines the
electrons as a function of a Slmp“fled electric potential. The)/direction of the anisotropy of the enve|0pe function, for ex-
use a trial wave function of the forrﬂ'(r)zF(r)qskﬂ(r), ample,FLM(r)=FMM(x y, yz), is the hydrogenic function
including only one of the six degenerate conduction bandyith a Bohr radiusa=a, andy=a;/a, . The orthonormal-
minima, with a spherical envelope function, that is one of theity of this basis is enforced by the'(ks %) ("=R2) terms
same form as Eq4), but witha, =a;=20 A. As aresult of which appear in the matrix elements and due to their rapidly
their single minimum approximation they cannot possiblyoscillating nature average to zero unléss=k, . The coef-
reproduce the oscillatory nature of the coupling which resultsicientsc,,, , are determined by direct numerical diagonali-
from interference between the terms localized at the sixation of the Hamiltonian in the presence of the electrostatic
minima. They model the potential produced inside the devicgotential. We use a basis of 140 states, which includes all
by the control gate as one-dimensional potential of the fornstates with principle quantum number up to and including
V5(x) = u[ (x—R/2) (x+R/2)/(R/2)?]X 30 meV, wherexis  n=7, and we rescale the energies such that the unperturbed
the distance is along the direction between the two donorground-state energy gives the experimentally observed value
which are situated at=*+R/2, as defined in Fig. 1. of 45.5 meV for phosphorus donors in silicon.

In our calculation we compute the potential produced in-  The donor electron wave functions obtained in this way
side the device due to the application of a voltage bias to @are then used in the Heitler-London formalism to calculate
metallicJ gate by numerical solution of the Poisson equationthe electron exchange energy, as a function of both the donor
using a commercial packagean,** designed for the semi- separation, and applieHgate bias. The results are plotted in
conductor industry. In Fig. 6 we plot the potential parallel toFig. 7, for donor separations from 80—-120 A in tfE0]
the interdonor axis, for several values of theoordinate, direction. We see that application of a positive bias will tend
which denotes the distance below the oxide barrier, locategb increase the exchange coupling, while a negative bias de-
at z=—200 A. For more information on the details of the creases the strength of the coupling. It is also worth noting
potential calculation see Ref. 25. We compare the potentiahat the relative increase in the exchange coupling produced
obtained for aJ-gate voltage of 1 V, with the one- by a given bias increases with the donor separation. Also the
dimensional potential of Fangt al. and see that the two change in coupling is strongest at the peaks, the application
potentials agree well for=0, the plane of the donors, pro- of a positive bias enhances the oscillations in the exchange
vided we sefu=0.15. However, we see that for this value of coupling whereas a negative bias of magnitude 1 V inverts
w the two potentials are quite different in the planes 50 Athe oscillations such that points that were originally at peaks
above and below the donors. We must therefore concludbecome troughs.
that the one-dimensional approximation is not a good one.  The range of separations shown in these plots is far less

To calculate the effect of the applied potential on the elecihan the approximately 200 A donor separation called for in
tron we expand the wave function as follows: the original Kane proposal—we have plotted values over

range for ease of comparison with our previous results, and
more particularly those of KHD. In Fig. 8 we plot the ex-
Y (r—R/2V;) change coupling as a function of tldegate bias for donors
separated by 200.91 A in tH&00] direction. At this separa-
_ 2 Cn,|,m(VJ)2 Fz,l,m(r_ R/2)eiku (1-R12), (12) tion a 1 V J-gate bias can increase the exchange coupling by
n,Lm m over two orders of magnitude up to a value of approximately
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A0 FT y U — T ] VI. DISCUSSION AND CONCLUSIONS

: ] In agreement with the approximations implicit in the cal-
30F *9 culations of donor electron exchange energy of Koiller, Hu,

g ] and Das Sarmawe show explicitly that the periodic part of
the Bloch functions in the donor electron wave functions can
] be ignored in the Heitler-London integrals, greatly reducing
° ] the complexity of the calculation. This has allowed the cal-

] culation of the intrinsic exchange coupling for a large num-
° : ber of donor pairs distributed according to the probability
: . ° ] distribution for donors implanted 200 A apart by 15 keV ion
OFba .o .. ¢ | ) ) ] beams. In this manner we have determined the probability
00 02 04 06 08 1.0 distribution of the exchange coupling for the top-down ap-

J—gate voltage (V) proach for the fabrication of a Kane solid-state quantum
computer.

In addition we have investigated the application of control
gate biases to increase the exchange coupling between donor
pairs using both realistic potentials and realistic donor elec-
tron wave functions. We find that as expected the exchange
coupling can be increased by the application of a positive
30 ueV. The exchange coupling can also be reduced vidias, and decreased with a negative bias. Over the range of
application of a negative bias. donor separations investigated it was found that the relative

Although it is difficult to compare our results with those increase of the exchange coupling produced by a given bias
of Fanget al. due to the different potentials, the shift of an increases with the separation, and for donors separated by
order of magnitude obtained for separation of 200 A and 200 A in the[100] direction a 1 V bias can increase the
bias of 1 V is greater than the shift they predict. For a valuecoupling by over two orders of magnitude.
of u=0.15, Fanget al. predict a shift of less than an order of
magnitude. This discrepancy can in part be attributed to the ACKNOWLEDGMENTS
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FIG. 8. Exchange coupling as a function bfate bias for do-
nors at fcc lattice sites separated by 200.91 A in[t@®)] direction.
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