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Fictive impurity models: An alternative formulation of the cluster dynamical mean-field method
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“Cluster” extensions of the dynamical mean-field method to include longer-range correlations are discussed.
It is argued that the clusters arising in these methods are naturally interpreted not as actual subunits of a
physical lattice but as algorithms for computing coefficients in an orthogonal function expansion of the
momentum dependence of the electronic self-energy. The difficulties with causality which have been found to
plague cluster dynamical mean-field methods are shown to be related to the “ringing” phenomenon familiar
from Fourier analysis. The analogy is used to motivate proposals for simple filtering methods to circumvent
them. The formalism is tested by comparison to low-order perturbative calculations and self-consistent solu-

tions.
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[. INTRODUCTION and frequencies. This is regarded as a grave defect of the
method and its cure is an important open problem.
Over the last decade the “dynamical mean-fie{lMFT) In this paper we put forward an alternative point of view

method has emerged from earlier investigatiénsf the  on the question of extending dynamical mean-field theory to
infinite-dimensional limit as a very useful tool for theoretical include intersite correlations. Our motivation is as follows.
investigation of correlated electron systems. It providesThe original local dynamical mean-field method, although
(within a certain approximatiora nonperturbative means of often described in terms of a site self-consistently embedded
obtaining the electron self-energy and spectral function, anth a medium, may also be described as the “momentum-
allows treatment of inelastic and thermal effects on the samgdependent self-energy approximation.” It amounts(ito
footing as ground state energetics. It has revealed new ineplacing the general position-dependent self-energy
sights into the physics of the_ Mott transi_tiﬁmf ‘colossal”  3(R,w) by the on-site values(0,0) and (i) providing a
magnetoresistance manganitesf plutonium? and many prescription for computing (0,») from the solution of a
othgr systems, and may be comblr_led with linear mef'”'t'r‘singIe-site quantum impurity model.
orbital (LMTO) band theory(for reviews see Refs. 6,40 Considering the problem more generally, one may write
treit corrglatlo”n e1f°fects Im I’Eallﬁtlc rgodels'. | field 2 (p,w) as an expansion in orthogonal functions and truncate
s originally formulated the dynamical mean-fie the expansion at a finite order, thereby replacing a general

method is alocal approximation. The problem which one function by a small number of frequency-dependent coeffi-
actually solves is a single-site model self-consistently em- . y d y-dep

bedded in a medium. The results are an exact representati g, Wh_'ch may be_determlngg _frqm ;[he solution of a sev-
of the physics of lattice models only in a limit of infinite eral site fictive impurity model: “fictive” because although

coordination numbek? While the method captures local the several-site impurity model can be regarded as a cluster

physics very well, the treatment of intersite correlations is ars€lf-consistently embedded in a medium, this cluster need
important open issue. Attempts to formulate a controlled ex0t be a subcluster of the physical lattice considered. It
pansion about the infinite coordination limit have not led toshould be viewed as merely a device for computing the self-
useful and tractable expressions. An alternative approach f&&nergy functions of interest. The general idea of taking an
cuses on the self-consistent embedding of a larger cluster i@bstract view of the “impurity” or cluster in the dynamical
a mediunt**and is closely related to attempts to extend themean-field method is not new. It is mentioned in Ref. 1, and
“single-site coherent potential approximatiofCPA)” to has recently been elegantly exploited by Kotliar and co-
more than one sit&'® Most of the approaches published to workers to link band theory and the dynamical mean-field
date involve choosing a specific clustsubset of sites of the method® It is also the basis of an approach to the practical
actual lattice of interestas well as a specific embedding solution of the single-site DMFT equations put forward by
(geometry of connection of cluster sites to sites of the mePotthoff?> Here we apply the idea to the study of spatial
dium). An alternative E-DMFT method involves using hy- correlations.
brid boson-fermion methods to treat two-particle intersite The idea that the cluster model is merely an algorithm for
correlation$’~*®and has had some success. computing coefficients in a low-order orthogonal function
While these approaches have led to a number of interesexpansion of a physical self-energy gives insight into the
ing results(for recent examples see, e.g., Refs. 10,20,21 “causality violations” which sometimes occur in dynamical
one worries that the choice of specific geometry both of thenean-field schemes. In the context of cluster extensions of
cluster and its embedding in the medium may bias the physdynamical mean-field theory, the term “causality violation”
ics. Further, the real-space-cluster-based methods sometime®ans that for some momenta and frequencies, the imagi-
lead to self energies which are noncausal for some momentaary part of the approximate lattice self-energy computed
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from the cluster approximation has the “wrong” sign. We i.e., by minimizing with respect t& the functional

shall argue that this is nothing but the “ringing” phenom-

enon familiar from Fourier analysis: if one approximates a Q[2]=—Trin(=Ggy '+ 32) + g [X]. (7)

non-negative but sharply peaked function by a few low-order o , ,

terms in an orthogonal function expansion, the approximant 1he original momentum-independent-self-enefgiygle-

will change sign. We shall use the analogy to propose sever&ite) dynamical mean-field approximation may be formulated

simple cures. We note that the dynamical cluster approximal®m Egs. (4),(6) as follows (essentially this derivation is

tion (DCA) formalism used, for example, in Refs. 8,9,21 9iven in Ref. 1. define ®,. as the approximation to the

corresponds to a choice of orthogonal functions which aré€Xact sl 2(p,w)] obtained by replacing the exact mo-

everywhere non-negative but which have no common supentum dependent self-energy by a local approximant

port. In this sense, “ringing” is absent, so the method is>oc(®@)=J(dp)%(p,w) which depends only on frequency.

plainly causal, but discontinuities in momentum space occufConsistency demands that this be equivalent to replacing
The outline of this paper is as follows. In Sec. Il we ®4[G] in Eq. (4) by the analogous quantity defined with

outline the formalism we shall use. In Sec. Il we presentthe local Green function. Becau2g,(w) depends only on

examples of the use of several-site impurity models to calfrequency, the quantity which follows from E¢5) is the

culate the self-energy of the two-dimensional Hubbardocal Green functionG.= [(dp)G(p,w) and Eg.(6) be-

model. Section IV discusses “causality violations” and pos-comes the relatioB .= [ (dp)[ Gy *(p,®) — Zjec(@)] L.

sible cures. Section V is a conclusion. The crucial observation which makes the single-site dy-
namical mean-field approximation useful is that becabgg
Il. FORMALISM is a functional only of a function of frequency, it may be

defined nonperturbatively as the solution of a single-site
X ) . . . (quantum-impurity model which is specified by a
lattice with short ranged hopping amplitudeescribed by a = 64/ency-dependent Weiss field and by interaction terms re-
quadratic HamiltoniarH,) and interactionsdescribed by & |5teq to the local interactions of the original model. The
HamiltonianH;y). Physical properties of the model may be \yeiss field is fixed by demanding that E() is satisfied
derived from the general “Luttinger-Ward” expression for \,hen the left-hand side of this equation is the Green function
the action, which we may write in terms of the exact Greengg|cyjated from the impurity model and the right-hand side is
function G of the model as the local Green function calculated from the lattice Hamil-
tonian, using the impurity model self-energy.

A generalization is now evident. Consider a set of func-
tions{¢;,¢;} such that

We study a model of electrons moving od-@imensional

S=TrIn(—G)+ D[ G] (1)

with @[ G] the sum(with appropriate symmetry factors
of all vacuum to vacuum “skeleton” diagrams drawn with
full Green functions G) and no self-energy insertions. The 5pp,=2_ di(p)i(p'), (8
electron self-energ® may be obtained via !

— so that
2: 5(bskell 6G. (2)
The functionalSis defined for anyG once the interactions 3(p,w)= Z di(p)Zi(w) 9
(H;,) are specified. The corre@ for a given “band struc- !
ture” (Ho) is determined from the equation with 3 ()= [(dp) #i(p)2(p,®). Inserting Eq(9) into Eq.
55 (4) yields

—(8—Ho) =Gyt (3)

=35 B
(I)ske[{zi}] = CDskeI_ 2 Tr(ziGi) (10)
It is convenient for our purposes to eliminakein favor !

of X via a Legendre transformatiofthis transformation is  with G,= [ (dp) ¢;(p)G(p, ).

also basic to the work of PotthGf defining Now, construct an approximant for the self-energy as a
_ sum of a small number of terms in the expansion given in
D[ 2] = Pge— TI(XG). 4 Eq. (9)

Note that it follows from Eqs(2), (4) that

- 6q)skel E(pyw)%zapproip:w)zizozun ¢|(p)2,(w) (11)

5
3 Define ® 4ppr0f 2approd @s the functional obtained frodge
and that in this representation the theory is fixed by demand?y using the approximate self-energy instead of the eXact
ing that theG[ =] obtained from Eq(5) is identical to thec ~ Equation(5) implies that this construction is equivalent to
obtained via approximating® . by the set of diagrams drawn using only

. . the G conjugatein the sense defined below E4.0)] to the
G[X]=(Gy —2) 7, (6)  retained;. We see thatb,,,.x is a functional ofn+1
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frequency dependent fields. It therefore corresponds to th&reen functions and self-energies. One convenient choice is
solution to some rf+ 1)-site fictive impurity model involv-  to introduce arm>n component spinor of fermiong and

ing n+1 Weiss fields, and interactions deriv@s discussed write an action of the form

below) from the original model. The Weiss fields are fixed by 2)

the requirement that the impurity-model Green functiGhs S=S"+ Sy (13

= — 0D approxl 9% are given by appropriate integrals over the with (we have suppressed the spin indices here
lattice Green function
> bM;
m

_ -1 _ -1
Gi(w)‘j (dp)$i(P)[Go (P, @) = Zapprof P, )]~ where b; are frequency dependent Weiss fields and the
(12 mXx m matricesM; satisfy

S(Z) — l//T I/I, (14)

THIM;M. ]=mé;; . 15
From this point of view we may interpret the impurity model [MiM,] ! 19
simply as a mathematical means for calculating, nonpertur- A general impurity model Green function is given by
batively, an approximation to the self-energy.

The original dynamical mean-field method corresponds to Gimp=9oMo+91M1+goMo+ - - (16)

retaining only the =0 term in the self-energy. In the “DCA" | .. coefficientsg;(w) given by
1

(17

(18

approach of Jarrell and co-workérghe functions¢,; are
obtaining by tiling the Brillouin zone into regionk; and 1 8INZimp
setting ¢;(p)=1 if p is contained inR; and ¢;(p)=0 oth- gi:E b
erwise. These functions are clearly nonnegative everywhere, :
and are orthogonal because they have no common support: at The orthogonality relations imply the self-energies
any p exactly oneg; is nonzero. This choice of functions
leads approximants with discontinuities in momentum space. .
Other choices are discussed below. Zimpi =1 T Mi( > bjM; _Gimp)

To completely specify the impurity model we must deter- .
mine the interaction terms. Specifying the interaction termdeading to self-consistency equations of the foft®). The
is a subtle issue in general. One approach is to observe thaelf consistency condition in the locao-hopping limit im-
the skeleton functional, and therefore its approximbgs, .« plies Mg is the unit matrix.
is defined for any hopping Hamiltoniad,. We may there-
fore consider the special case of no hoppisgH is simply B. Harmonic expansion-second order
the energies of whatever on-site levels are considefear
models(such as the Hubbard modiéh which the interaction
is local, both the Green function and self-energy are diagonal

Here we write, for a hypercubic lattice ohdimensions

in the site representation and are easy to compute. Compatri- Eappro)(p,w)zio(wHE e'Pa3 (o) (19
son of the exact and approximate expressions then stasvs a
was already demonstrated for the single-site DMFT in Refyjth a=+x,+y, ..., sothat naively there are ®+1

1) that the interaction terms in the impurity model are simply mean-field equations

the original interaction terms of the lattice model. However,

for longer ranged interactions, the situation may become

more complicated. Indeed the difficulty with longer-range GO:J (dp)Gp(w), (20
interactions appears to be common to all schemes. For ex-

ample, in real space cluster schemes the issue of interactions _

connecting the cluster to the medium must be addréés&d Gazf (dp)ePeGy(w), (21)
while in the DCA the Laue-function arguments advanced by

Aryanpouret al'* require a momentum-independent interac-S0 we should write an impurity model action involvingl 2

tion. A separate paper will analyze the issue from the present 1 fields. However, we may argue that in a cubic lattice, all
point of view?® of the component& , are equal, so that the physics may be

expressed via an impurity model depending on two figlgs
andX,. There are two self-consistency conditions. The im-
lIl. EXAMPLE APPROXIMANTS purity model is then specified by a partition functi@®’)
) ) arising from a functional integral over the action
A. General considerations
A cluster extension of dynamical mean-field theory in-
volves finding an impurity model to represent the frequency-
dependent expansion coefficients in Eg). Such a model
must involven fields which have an orthogonality property, = The mean-field equations may be written in symmetrized
so that we may unambiguously determineindependent form as

b b lﬂl
@yl g (2)
e 1/12)( by bo) ( l/’z) S0 @2
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6Inz®
Goimp=75p = f (dp)Gp(w), (23
5inz®
1,imp:Tb1:f (dp) ¥,Gp(w), (24)
where
Gp(w)= (29

w—ep—20—2dyp2q "

One may consider including longer ranged correlations—

for example, ind>1 the second neighbor correlation, writ-
ing

2appro>(p:w):Eo(ﬂ))‘FE ePa3, (w)

+ 2, PN, ().

a,b#a

(26)
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FIG. 1. (a), (b): Real and imaginary part of self-energy obtained
from “iterated perturbation theory” approximation to half-filled
Hubbard model =4, T=0) using one and four-site clusters.

We must then seek a multisite impurity model which de-Dash-dotted curves are for one-site cluster. Solid, dashed, and dot-

pends upon three Weiss fielthg,b;,b, and involves three

self-energy functions. When written in matrix form the im-

ted curves ar&,, 3, ands, in four-site clusters, respectivel,
andX, are multiplied by 4(c),(d) Self-energies in four-site clusters

purity model must thus involve a closed algebra of threeobtained from simple filtering procedure of Sec. IV, with=0.85

orthogonal symmetric matricelly,M{,M,. We have not
found a suitable closed algebra 0k3 matrices; however, a
closed algebra of A4 matrices exists, with

Mo=1, (27)

01 0 1

1/1 0 1 0 ,
M,=—

1010

0 010

0 0 0 1 .
M=11 0 0 o (29
0100

andf,=f2,

. 1 .
pr=ePr=— > &, (33
a

b, =gl (Patpb)— gl (pa+pb).

2z-1) & 34

We finally discuss the interaction terms. In models with
purely on-site interactions, th&{") may be fixed by analysis
of the local limit, in whichG,=0 for «#0 and G, is
known. For example, in the Hubbard mod@l; has poles at
w=*+U/2. The absence of any intersite correlations ensures
that any off-diagonal terms i8{") =0 and the identity of the
n sites implies the interaction is just

This choice corresponds to a four-site real-space cluster with

the same topology as that considered by Lichtenstein and
Katsnelson in a pioneering study of superconductivity and

antiferromagnetism in the Hubbard mod®l.
The impurity model action becomes

>

a=0,1,2

SW=TrIn b,M,|+S (30)

leading to the self-consistency conditions

15Nz g
ZTa_f( P) . (P)G(p,w) (3D
with (z is the number of nearest neighbprs
¢0: 1, (32)

Sw=U_ (35

When treated perturbatively to orde?, the two and four
impurity models reproduce exactly the appropriate Fourier
coefficients of the exadjperturbative lattice self-energy of
the Hubbard model. To gain some idea of effects beyond
perturbation theory we show in Figsial and Xb) results for
the real and imaginary parts of the self-energy obtained from
the iterated perturbation theorflPT) approximation. in
which the impurity model and self-consistency condition are
solved by writing the second order perturbation theory ex-
pression for the self-energy, but using ex@ctpurity mode)
Green functions. We observe that in the IPT approximation
to the Hubbard model, non local effects are very small.
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FIG. 2. Momentum dependence of the second-order perturba- FIG. 3. Comparison of momentum dependence of exact second-
tion theory approximation to the imaginary part of the self-energyorder perturbation theory approximation to self-energy of half-filled
of the half-filled two-dimensional Hubbard model B=0. Solid,  two-dimensional Hubbard modé&olid line) and the approximation
dashed, dotted, and dash-dotted curves arewferlO, 2, 1, and using Eq.(36) at T=0; dash and dotted curves are the approxima-
—10, respectively. tion using the first and second, and first three terms in(B6).

IV. CAUSALITY dependence of the second-order perturbation theory approxi-

mation to the imaginary part of the self-energy of the two-

dimensional square-lattice Hubbard model, for several differ-
A key difficulty in cluster extensions of the coherent po- ent frequencies. At frequencies within the electronic band the

tential approximation or of dynamical mean-field theory hasmomentum dependence of the self-energy is relatively weak,

been causality. Any physical theory must be causal, whiclhut at frequencies well above the upper band edge or well

implies in particular that Ink(p,w)<<0. Many cluster below the lower band edge, the imaginary part of the self-

schemes, however, generate functi@igyo(p,w) with the  energy becomes sharply peaked in momentum space. This

unfortunate property that for some range @f, o, phenomenon has a simple kinematic origin. At this order of

Im X pprof P, @) >0. These violations of causality have ap- perturbation theory, the imaginary part of the self-energy at

parently never been clearly understood or cured, but are gers>0 corresponds to a decay of a particle into two particles

erally viewed a deficiencies of the “cluster model” used to and a hole. Atw=10, energy conservation means the al-

calculate the self-energy. lowed final states correspond to two particles near the top of
The formal development of the previous section suggestthe band momenta near+#, )] and a hole near the bottom

that the causality violations may be thought of as an examplef the band momenta near (0,0)]. Momentum conservation

of the “ringing” phenomenon familiar from Fourier analysis. then restricts the initial momentum to be near (0,0).

Any straightforward real-space cluster scheme corresponds We now consider expanding the self-energy in Fourier

to using some set of orthogonal functions to expand the moharmonics. The symmetry of the hypercubic lattice implies

mentum dependence of the exact lattice self-en&iy, w) that

in the sense of Eq(11). The first term in an orthogonal

function expansion isho=1 which is everywhere positive, 3(p,®)=3¢(w)+2dy31(w)+2d(d—1)yPS 5 (w)+ - -

so the local approximation is guaranteed to be causal, but all (36)

of the other orthogonal functions change sign over the Brilyith for a hypercubic lattice of unit lattice constant éh

louin zone, so an expansion which is truncated at low ordefjjmensions,

is not guaranteed to be positive everywhere in the zone. In

particular, if at fixedw the functionX(p,w) has a strong,

A. General considerations and a simple example

narrow peak at some momentum then truncating an ?’p:aa:z_‘d cogPa), (37
orthogonal function expansion at a low order will produce

a self-energy whose imaginary part changes sign. As noted 1

above, in the DCA approa€hhis problem is avoided, at the yé2)=m > cogp,)cogpy). (38
expense of introducing discontinuities in the momentum a:bl%é'd

space representations GfandZ,, by choosing the orthogo-
nal functions to be a tiling of the Brillouin zone by rectan-  The dashed and dotted curves in Fig. 3 show the result of
gular filters. However, the general argument, that acausal beépproximating the exactly calculatéd by the first and sec-
havior found in most schemes arises from “ringing” ond, or first three terms in the series given in E2f). An
associated with narrow peaks in the momentum dependeicausal behavior is observed at frequencies well above the
self-energy, also suggests that the phenomenon is not of veppper band edge or well below the lower band edge, in ac-
great significance. cordance with the qualitative arguments presented above. At
To illustrate the issue we show in Fig. 2 the momentumw=28, we observe the acausal behavior does not occur if
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T, : quantum critical point. In such a case, long-ranged interac-

tions are evidently physically crucial, and modeling them
with a local model is simply inappropriate. However, as seen
in the explicit calculations present above, peaks inXIm
which are both sharp and large relative to typical values of
are more often associated with band edges and extremal fre-
quencies. These regions of and p are not particularly im-
portant for energetics, suggesting that the acausality is sim-
ply a minor technical annoyance. In what follows we
consider methods of removing it.

We first note that in particular temperature regimes of
particular problems(for example, the double exchange
model on the simple cubic lattice and at not too low
temperature$) the ringing phenomenon might not occur. We

FIG. 4. Main panel: momentum dependence ofd(w) at w also note that a clever choice of expansion functions may
=9,11 calculated fotJ=1,2,4,6 by use of the IPT approximation Mitigate the severity of the problem. For example, we saw in
on a four-site cluster. The increase Wfis seen to lead to a broad- the Hubbard model the difficulties arise from narrow peaks
ening of the peak, which for the larde values is seeltinse) to  centered near the band edes=0 andp~(,, ...)]. An
eliminate the “acausal” behavior entirely. expansion based on the functionsyl,and a function or-

thogonal to both 1 and,, but strongly peaked near O and
only the first neighbor term is retainédashed lingbut does (7,7, .. .) might have a wider range of applicability than
occur if both first and second neighbor terms are retainedhe straightforward harmonic expansion.

—Imz/U?

0.00

0,0

This is because I ,(w) changes sign between=8 and 9 A more general approach is to filter the self-energy, for
to fit the exact In®(p,w). [One can see this behavior even €xample by convolving it with a function to smooth out any
in Figs. Ab),1(d).] sharp peaks and then approximating the smoothed function

As noted above the acausal behavior tatsleast in this by @ low order harmonic expansion. Let us make this ap-
instance a simple kinematic origin, which suggest that it Proach more precise, writing E¢L1) as
may not occur in all circumstances. For example, at latgjer
more complicated decay channéésg., one particle decay- S w)= X fei(p)Si(w), (39
ing into three particles and two ho)ewith fewer kinematic approf P e P2

constraints may become important, leading to a broadeninﬁ/herefozl and T>f,_,>0 are the Fourier components of

of peaks in the momentum dependent self-eqergy and the“l:"ﬁe smoothing function. Carrying through the development
fore to a causal self-energy. An example of this phenomenogf the previous section leads to

is shown in Fig. 4, which displays the imaginary part of the
self-energy calculated high frequencies in the IPT approxi- 8D approx
mation at several differerltl values. The broadening of the Gi(w)= W:fif (dp)Gp(w) ¢i(p) (40
. . i (1))
peak and the destruction of the acausal behavior suggested
by the arguments above are clearly observed. We stress thed that the quantum impurity model acts to reproduce the
the IPT is an uncontrolled approximation—however, it is asmoothed Green'’s functions of the thedie note that sum
computationally tractable example illustrating a phenomenomules typically constrain the large behavior of the local
which we suspect is of more general significance. Green function, so that one must chodge=1 in order to
have a consistent representation at least within the simple
impurity models of which we have studigdzigure 5 shows
the results obtained using different choices of simple filtering
We have argued that any cluster extension of the dynamieoefficients in the low-order self-energies discussed in the
cal mean field method amounts to a scheme for computingrevious section. The result of applying the filtering proce-
the coefficients in a low-order orthogonal function expansiondure to a four-site dynamical mean-field calculation is shown
of the electronic self-energy. This suggests that the reporteith panels(c) and(d) of Fig. 1. Comparison to pane{s) and
causality difficulties are generic and inescapabletrunca-  (b) shows that the main effe¢for the parameters studipis
tion of an orthogonal function expansion is guaranteed tdo reduce, by approximately a factor of 2, the magnitude of
lead to an everywhere non-negative approximant for an arbix,; and>.,.
trary test function. We emphasize, however, that the impurity The straightforward filtering approach gives up some
model itself is causal; it is only the resulting lattice self- fraction of the intersite correlations in order to guarantee a
energy which may have acausal features. causal theory. A more sophisticated possibility would be a
The discussion of the previous subsection suggests théitequency dependent filtering. We saw from the low-order
the acausal behavior is “ringing” is associated with a rela-perturbation calculation on the Hubbard model that the self-
tively large peak near a particular momentum. It is possibleenergy was only very strongly peaked in momentum space
that such a peak could be physically important, occurring forfor very high- or very low-energy states, where decay kine-
example at a fermi surface “hot spot” in a system close to amatics constrained all states involved to be near the band

B. Filtering
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FIG. 5. Comparison of filtered, unfiltered, and exact results for
second-order perturbation approximation to self-energy of the half-
filled two-dimensional Hubbard model at=10. Solid curve is the
exact result. Dashed and dotted curves are obtained from four- 0.02 |-
impurity model with filtering coefficients,;=1 and 0.85, respec-
tively, andf,= ff. Numerical calculation gives the following values
for Im3,;: (Im34,Im%,,Im3,,)=(—0.00418;-0.00234, 0.01
—0.00114) forf;=1 and (-0.00418;-0.00144+-0.00033) for
f1=0.85. Calculations are done at=0.

0.00

-ImZX

edges. These states are not very important to energetics. One
may therefore filter out only these by setting an arbitrary
frequency scalews and A and writing, e.g., f;=1

— f/[exp{(—|w|+ w;)/A}+1]. We note that this filtering may
be performed ex post facto: one may solve the impurity 0 2 4 6 8 10 12
model, determine the band-edge regions where filtering is
required, and then solve again the impurity model with fil-
tering only in these regions. Figure 6 shows the results ob- FIG. 6. Real(a) and imaginary(b) part of self-energy}., and
tained using the above frequency-dependent filtering witl®,, obtained from iterated perturbation theory approximation to
different choices of parameters. Here, we tdEe:fz, and half-filled Hubbard model Y=2, T=0) using four-site cluster
the four-impurity model is self-consistently solved. It is With frequency-dependent filtering. Solid and dashed curves are the
clearly shown thak; , are reduced at higher frequency re- results with parametersf (w,A)=(0.15,6,1) and(0.15,4,3, re-
gion where acausal behavior has been observed in thgpectively. Dotted curves are the results without filtering.
second-order perturbation theory approximatibig. 5 and
IPT (Fig. 4), while there is not much effect in the low fre-
quency region. Gi(w)= 2 1:ij J’ (dp)Gp(w)¢](p) (42)
A still more sophisticated approach would be to mix dif- :
ferent harmonic components, so that low-order terms wer&Ve have, however, not yet explored these more complicated
modified only if higher-order terms were importaie., if  filtering procedures
filtering were really neededThis approach is most helpful if
a priori knowledge of the locations of sharp momentum- V. CONCLUSION
space structures is available. Indeed, the calculations pre-
sented above of the behavior of the Hubbard model strongly In this paper we have argued that one should take a more
suggest that the singularities are associated with the top ar@pstract view of cluster extensions of the dynamical mean-
bottom of the band, i.e., with states aroumd (0,0, ...) or field method; regarding them as algorithms for computing
p=(m,m, ...). Todefine this transformation we begin from frequency-dependent coefficients in an orthogonal function
the harmonic expansiofil), and then introduce a transfor- €xpansion of the electron self-energy. This approach renders
mation which mixes the harmonic coefficients, so that moot the debates about “correct” choice of cluster and em-
bedding, and clarifies the meaning of the “causality viola-
tion” encountered in real-space-cluster extensions of the dy-
namical mean-field method. We have suggested that the
E('zlpprw(p*“’)zi j:%_‘n $i(p)Fi%j(w), (41) causality violation is in most cases a minor technical prob-
’ lem which can be cured if needed by any of a variety of
“filtering” procedures.
and the self-consistency equation becomes Several questions arise, for which further research would
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be desirable. One is the question of the correct choice obf the self-energy might be advantageous in some problems.
interaction terms in the “fictive impurity model.” This issue We do not at present have a general framework for determin-
has been discussed in the context of on-site interactions, esig the circumstances under which a general approximant to
pecially in connection with the DCA! and, for longer 3 is representable in terms of an impurity model. The issue
ranged interactions in the context of the E-DMFT of different choices of filtering function seems also likely to
approacl®!® but deserves more attention in the context ofbenefit from further research. In particular, it seems likely
the more conventional orthogonal function expansions. Ahat one can more efficiently exploit the observation that the
second key issue is the origin of the causality violations. Weacausality is associated mainly with the=0 and p
have shown that in simple perturbative mod@osen be- =(m,, ...). Finally, applying the method to a wider range
cause exact expressions for the momentum-dependent setff models, to explore which choices lead to good represen-
energy are availablethe violations are an example of the tations of the physics of interest, is an urgent task.

familiar “ringing” phenomenon, and moreover occur mainly
in band edge regions of little kinematical importance. The
issue, however, deserves further exploration in less trivial
contexts. A third open problem is the question of which ap- We acknowledge very helpful conversations with B. G.
proximants to the self-energy are representable by impuritKotliar and J. Serene. This research was supported by
models. We have presented arguméatdstantiated by low- Grant No. NSF DMR-0338376, the DAAD and the CNRS,
order perturbative calculations in different linitedicating  and Grant No. DFG SFB608. A.J.M. acknowledges the hos-
that straightforward orthogonal function expansions, withpitality of the Bonn University physics department and the
and without filtering, are representable. However, one mighESPCI, and H.M. the hospitality of Columbia University.
imagine that more complicated approximate representationS.O. acknowledges the financial support of JSPS.
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