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Fictive impurity models: An alternative formulation of the cluster dynamical mean-field method
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‘‘Cluster’’ extensions of the dynamical mean-field method to include longer-range correlations are discussed.
It is argued that the clusters arising in these methods are naturally interpreted not as actual subunits of a
physical lattice but as algorithms for computing coefficients in an orthogonal function expansion of the
momentum dependence of the electronic self-energy. The difficulties with causality which have been found to
plague cluster dynamical mean-field methods are shown to be related to the ‘‘ringing’’ phenomenon familiar
from Fourier analysis. The analogy is used to motivate proposals for simple filtering methods to circumvent
them. The formalism is tested by comparison to low-order perturbative calculations and self-consistent solu-
tions.
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I. INTRODUCTION

Over the last decade the ‘‘dynamical mean-field’’~DMFT!
method1 has emerged from earlier investigations2 of the
infinite-dimensional limit as a very useful tool for theoretic
investigation of correlated electron systems. It provid
~within a certain approximation! a nonperturbative means o
obtaining the electron self-energy and spectral function,
allows treatment of inelastic and thermal effects on the sa
footing as ground state energetics. It has revealed new
sights into the physics of the Mott transition,3 of ‘‘colossal’’
magnetoresistance manganites,4 of plutonium,5 and many
other systems, and may be combined with linear muffin
orbital ~LMTO! band theory~for reviews see Refs. 6,7! to
treat correlation effects in realistic models.

As originally formulated1 the dynamical mean-field
method is alocal approximation. The problem which on
actually solves is a single-site model self-consistently e
bedded in a medium. The results are an exact represent
of the physics of lattice models only in a limit of infinit
coordination number.1,2 While the method captures loca
physics very well, the treatment of intersite correlations is
important open issue. Attempts to formulate a controlled
pansion about the infinite coordination limit have not led
useful and tractable expressions. An alternative approach
cuses on the self-consistent embedding of a larger cluste
a medium,8–14and is closely related to attempts to extend
‘‘single-site coherent potential approximation~CPA!’’ to
more than one site.15,16 Most of the approaches published
date involve choosing a specific cluster~subset of sites of the
actual lattice of interest! as well as a specific embeddin
~geometry of connection of cluster sites to sites of the m
dium!. An alternative E-DMFT method involves using hy
brid boson-fermion methods to treat two-particle inters
correlations17–19 and has had some success.

While these approaches have led to a number of inter
ing results~for recent examples see, e.g., Refs. 10,20,2!,
one worries that the choice of specific geometry both of
cluster and its embedding in the medium may bias the ph
ics. Further, the real-space-cluster-based methods some
lead to self energies which are noncausal for some mom
0163-1829/2003/68~19!/195121~8!/$20.00 68 1951
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and frequencies. This is regarded as a grave defect of
method and its cure is an important open problem.

In this paper we put forward an alternative point of vie
on the question of extending dynamical mean-field theory
include intersite correlations. Our motivation is as follow
The original local dynamical mean-field method, althou
often described in terms of a site self-consistently embed
in a medium, may also be described as the ‘‘momentu
independent self-energy approximation.’’ It amounts to~i!
replacing the general position-dependent self-ene
S(R,v) by the on-site valueS(0,v) and ~ii ! providing a
prescription for computingS(0,v) from the solution of a
single-site quantum impurity model.

Considering the problem more generally, one may wr
S(p,v) as an expansion in orthogonal functions and trunc
the expansion at a finite order, thereby replacing a gen
function by a small number of frequency-dependent coe
cients, which may be determined from the solution of a s
eral site fictive impurity model: ‘‘fictive’’ because althoug
the several-site impurity model can be regarded as a clu
self-consistently embedded in a medium, this cluster n
not be a subcluster of the physical lattice considered
should be viewed as merely a device for computing the s
energy functions of interest. The general idea of taking
abstract view of the ‘‘impurity’’ or cluster in the dynamica
mean-field method is not new. It is mentioned in Ref. 1, a
has recently been elegantly exploited by Kotliar and c
workers to link band theory and the dynamical mean-fi
method.6 It is also the basis of an approach to the practi
solution of the single-site DMFT equations put forward
Potthoff.22 Here we apply the idea to the study of spat
correlations.

The idea that the cluster model is merely an algorithm
computing coefficients in a low-order orthogonal functio
expansion of a physical self-energy gives insight into
‘‘causality violations’’ which sometimes occur in dynamic
mean-field schemes. In the context of cluster extension
dynamical mean-field theory, the term ‘‘causality violation
means that for some momenta and frequencies, the im
nary part of the approximate lattice self-energy compu
©2003 The American Physical Society21-1
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from the cluster approximation has the ‘‘wrong’’ sign. W
shall argue that this is nothing but the ‘‘ringing’’ phenom
enon familiar from Fourier analysis: if one approximates
non-negative but sharply peaked function by a few low-or
terms in an orthogonal function expansion, the approxim
will change sign. We shall use the analogy to propose sev
simple cures. We note that the dynamical cluster approxi
tion ~DCA! formalism used, for example, in Refs. 8,9,2
corresponds to a choice of orthogonal functions which
everywhere non-negative but which have no common s
port. In this sense, ‘‘ringing’’ is absent, so the method
plainly causal, but discontinuities in momentum space oc

The outline of this paper is as follows. In Sec. II w
outline the formalism we shall use. In Sec. III we prese
examples of the use of several-site impurity models to c
culate the self-energy of the two-dimensional Hubba
model. Section IV discusses ‘‘causality violations’’ and po
sible cures. Section V is a conclusion.

II. FORMALISM

We study a model of electrons moving on ad-dimensional
lattice with short ranged hopping amplitudes~described by a
quadratic HamiltonianH0) and interactions~described by a
HamiltonianH int). Physical properties of the model may b
derived from the general ‘‘Luttinger-Ward’’ expression fo
the action, which we may write in terms of the exact Gre
function G of the model as

S5Tr ln~2G!1F̄skel@G# ~1!

with F̄skel@G# the sum~with appropriate symmetry factors!
of all vacuum to vacuum ‘‘skeleton’’ diagrams drawn wi
full Green functions (G) and no self-energy insertions. Th
electron self-energyS may be obtained via

S5dF̄skel/dG. ~2!

The functionalS is defined for anyG once the interactions
(H int) are specified. The correctG for a given ‘‘band struc-
ture’’ (H0) is determined from the equation

2~d t2H0!21[G0
215

dS

dG
. ~3!

It is convenient for our purposes to eliminateG in favor
of S via a Legendre transformation~this transformation is
also basic to the work of Potthof22! defining

Fskel@S#5F̄skel2Tr~SG!. ~4!

Note that it follows from Eqs.~2!, ~4! that

G52
dFskel

dS
~5!

and that in this representation the theory is fixed by dema
ing that theG@S# obtained from Eq.~5! is identical to theG
obtained via

G@S#5~G0
212S!21, ~6!
19512
r
nt
ral
a-

e
p-

r.

t
l-
d
-

n

d-

i.e., by minimizing with respect toS the functional

V@S#52Tr ln~2G0
211S!1Fskel@S#. ~7!

The original momentum-independent-self-energy~single-
site! dynamical mean-field approximation may be formulat
from Eqs. ~4!,~6! as follows ~essentially this derivation is
given in Ref. 1!: define F loc as the approximation to the
exact Fskel@S(p,v)# obtained by replacing the exact mo
mentum dependent self-energy by a local approxim
Sloc(v)5*(dp)S(p,v) which depends only on frequency
Consistency demands that this be equivalent to replac

F̄skel@G# in Eq. ~4! by the analogous quantity defined wit
the local Green function. BecauseSloc(v) depends only on
frequency, the quantity which follows from Eq.~5! is the
local Green functionGloc5*(dp)G(p,v) and Eq.~6! be-
comes the relationGloc5*(dp)@G0

21(p,v)2Sloc(v)#21.
The crucial observation which makes the single-site

namical mean-field approximation useful is that becauseF loc
is a functional only of a function of frequency, it may b
defined nonperturbatively as the solution of a single-s
~quantum-impurity! model which is specified by a
frequency-dependent Weiss field and by interaction terms
lated to the local interactions of the original model. T
Weiss field is fixed by demanding that Eq.~6! is satisfied
when the left-hand side of this equation is the Green funct
calculated from the impurity model and the right-hand side
the local Green function calculated from the lattice Ham
tonian, using the impurity model self-energy.

A generalization is now evident. Consider a set of fun
tions $f i ,c i% such that

dpp85(
i

f i~p!c i~p8!, ~8!

so that

S~p,v!5(
i

f i~p!Si~v! ~9!

with Si(v)5*(dp)c i(p)S(p,v). Inserting Eq.~9! into Eq.
~4! yields

Fskel@$Si%#5F̄skel2(
i

Tr~SiGi ! ~10!

with Gi5*(dp)f i(p)G(p,v).
Now, construct an approximant for the self-energy as

sum of a small number of terms in the expansion given
Eq. ~9!

S~p,v!'Sapprox~p,v![ (
i 50•••n

f i~p!Si~v!. ~11!

DefineFapprox@Sapprox# as the functional obtained fromFskel
by using the approximate self-energy instead of the exacS.
Equation~5! implies that this construction is equivalent

approximatingF̄skel by the set of diagrams drawn using on
the G conjugate@in the sense defined below Eq.~10!# to the
retainedSi . We see thatFapprox is a functional ofn11
1-2
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frequency dependent fields. It therefore corresponds to
solution to some (n11)-site fictive impurity model involv-
ing n11 Weiss fields, and interactions derived~as discussed
below! from the original model. The Weiss fields are fixed
the requirement that the impurity-model Green functionsGi
52dFapprox/dSi are given by appropriate integrals over t
lattice Green function

Gi~v!5E ~dp!f i~p!@G0
21~p,v!2Sapprox~p,v!#21.

~12!

From this point of view we may interpret the impurity mod
simply as a mathematical means for calculating, nonper
batively, an approximation to the self-energy.

The original dynamical mean-field method corresponds
retaining only thei 50 term in the self-energy. In the ‘‘DCA’’
approach of Jarrell and co-workers,8 the functionsf i are
obtaining by tiling the Brillouin zone into regionsRi and
settingf i(p)51 if p is contained inRi andf i(p)50 oth-
erwise. These functions are clearly nonnegative everywh
and are orthogonal because they have no common suppo
any p exactly onef i is nonzero. This choice of function
leads approximants with discontinuities in momentum spa
Other choices are discussed below.

To completely specify the impurity model we must dete
mine the interaction terms. Specifying the interaction ter
is a subtle issue in general. One approach is to observe
the skeleton functional, and therefore its approximantFapprox
is defined for any hopping HamiltonianH0. We may there-
fore consider the special case of no hopping~soH0 is simply
the energies of whatever on-site levels are considered!. For
models~such as the Hubbard model! in which the interaction
is local, both the Green function and self-energy are diago
in the site representation and are easy to compute. Com
son of the exact and approximate expressions then show~as
was already demonstrated for the single-site DMFT in R
1! that the interaction terms in the impurity model are simp
the original interaction terms of the lattice model. Howev
for longer ranged interactions, the situation may beco
more complicated. Indeed the difficulty with longer-ran
interactions appears to be common to all schemes. For
ample, in real space cluster schemes the issue of interac
connecting the cluster to the medium must be addressed17–19

while in the DCA the Laue-function arguments advanced
Aryanpouret al.14 require a momentum-independent intera
tion. A separate paper will analyze the issue from the pres
point of view.23

III. EXAMPLE APPROXIMANTS

A. General considerations

A cluster extension of dynamical mean-field theory
volves finding an impurity model to represent the frequen
dependent expansion coefficients in Eq.~9!. Such a model
must involven fields which have an orthogonality propert
so that we may unambiguously determinen independent
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Green functions and self-energies. One convenient choic
to introduce anm.n component spinor of fermionsc and
write an action of the form

S5S(2)1Sint ~13!

with ~we have suppressed the spin indices here!

S(2)5c†F (
i 50, . . . ,m

biM i Gc, ~14!

where bi are frequency dependent Weiss fields and
m3m matricesM i satisfy

Tr@M iM j #5md i j . ~15!

A general impurity model Green function is given by

Gimp5g0M01g1M11g2M21••• ~16!

with coefficientsgi(v) given by

gi5
1

m

d ln Zimp

dbi
. ~17!

The orthogonality relations imply the self-energies

S imp,i5
1

m
TrFM i S (

j
bjM j2Gimp

21 D G ~18!

leading to self-consistency equations of the form~12!. The
self consistency condition in the local~no-hopping! limit im-
plies M0 is the unit matrix.

B. Harmonic expansion-second order

Here we write, for a hypercubic lattice ind dimensions

Sapprox~p,v!5S0~v!1(
a

eipaSa~v! ~19!

with a56x,6y, . . . , so that naively there are 2d11
mean-field equations

G05E ~dp!Gp~v!, ~20!

Ga5E ~dp!eipaGp~v!, ~21!

so we should write an impurity model action involving 2d
11 fields. However, we may argue that in a cubic lattice,
of the componentsSa are equal, so that the physics may
expressed via an impurity model depending on two fieldsS0
andSa . There are two self-consistency conditions. The i
purity model is then specified by a partition functionZ(2)

arising from a functional integral over the action

S(2)5~c1
† c2

†
!S b0 b1

b1 b0
D S c1

c2
D 1Sint

(2) . ~22!

The mean-field equations may be written in symmetriz
form as
1-3
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G0,imp5
d ln Z(2)

2db0
5E ~dp!Gp~v!, ~23!

G1,imp5
d ln Z(2)

2db1
5E ~dp!gpGp~v!, ~24!

where

Gp~v!5
1

v2«p2S022dgpS1
. ~25!

One may consider including longer ranged correlation
for example, ind.1 the second neighbor correlation, wri
ing

Sapprox~p,v!5S0~v!1(
a

eipaS1~v!

1 (
a,bÞa

ei (pa1pb)S2~v!. ~26!

We must then seek a multisite impurity model which d
pends upon three Weiss fieldsb0 ,b1 ,b2 and involves three
self-energy functions. When written in matrix form the im
purity model must thus involve a closed algebra of th
orthogonal symmetric matricesM0 ,M1 ,M2. We have not
found a suitable closed algebra of 333 matrices; however, a
closed algebra of 434 matrices exists, with

M051, ~27!

M15
1

A2 S 0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

D , ~28!

M25S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D . ~29!

This choice corresponds to a four-site real-space cluster
the same topology as that considered by Lichtenstein
Katsnelson in a pioneering study of superconductivity a
antiferromagnetism in the Hubbard model.10

The impurity model action becomes

S(4)5Tr lnF (
a50,1,2

baMaG1Sint
(4) ~30!

leading to the self-consistency conditions

1

4

d ln Z((4)

dba
5E ~dp!fa~p!G~p,v! ~31!

with (z is the number of nearest neighbors!

f051, ~32!
19512
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f15eipa5
1

z (
a

eipa, ~33!

f25ei (pa1pb)5
1

z~z21! (
a,b

ei (pa1pb). ~34!

We finally discuss the interaction terms. In models w
purely on-site interactions, theS int

(n) may be fixed by analysis
of the local limit, in which Ga50 for aÞ0 and G0 is
known. For example, in the Hubbard model,G0 has poles at
v56U/2. The absence of any intersite correlations ensu
that any off-diagonal terms inSint

(n)50 and the identity of the
n sites implies the interaction is just

Sint
(n)5U (

j 51, . . . ,n
nj↑nj↓ . ~35!

When treated perturbatively to orderU2, the two and four
impurity models reproduce exactly the appropriate Fou
coefficients of the exact~perturbative! lattice self-energy of
the Hubbard model. To gain some idea of effects beyo
perturbation theory we show in Figs. 1~a! and 1~b! results for
the real and imaginary parts of the self-energy obtained fr
the iterated perturbation theory~IPT! approximation,1 in
which the impurity model and self-consistency condition a
solved by writing the second order perturbation theory
pression for the self-energy, but using exact~impurity model!
Green functions. We observe that in the IPT approximat
to the Hubbard model, non local effects are very small.

FIG. 1. ~a!, ~b!: Real and imaginary part of self-energy obtain
from ‘‘iterated perturbation theory’’ approximation to half-fille
Hubbard model (U54, T50) using one and four-site clusters
Dash-dotted curves are for one-site cluster. Solid, dashed, and
ted curves areS0 , S1, andS2 in four-site clusters, respectively.S1

andS2 are multiplied by 4.~c!,~d! Self-energies in four-site cluster
obtained from simple filtering procedure of Sec. IV, withf 150.85
and f 25 f 1

2.
1-4
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IV. CAUSALITY

A. General considerations and a simple example

A key difficulty in cluster extensions of the coherent p
tential approximation or of dynamical mean-field theory h
been causality. Any physical theory must be causal, wh
implies in particular that ImS(p,v),0. Many cluster
schemes, however, generate functionsSapprox(p,v) with the
unfortunate property that for some range ofp,v,
Im Sapprox(p,v).0. These violations of causality have a
parently never been clearly understood or cured, but are
erally viewed a deficiencies of the ‘‘cluster model’’ used
calculate the self-energy.

The formal development of the previous section sugge
that the causality violations may be thought of as an exam
of the ‘‘ringing’’ phenomenon familiar from Fourier analysis
Any straightforward real-space cluster scheme correspo
to using some set of orthogonal functions to expand the
mentum dependence of the exact lattice self-energyS(p,v)
in the sense of Eq.~11!. The first term in an orthogona
function expansion isf051 which is everywhere positive
so the local approximation is guaranteed to be causal, bu
of the other orthogonal functions change sign over the B
louin zone, so an expansion which is truncated at low or
is not guaranteed to be positive everywhere in the zone
particular, if at fixedv the functionS(p,v) has a strong,
narrow peak at some momentump, then truncating an
orthogonal function expansion at a low order will produ
a self-energy whose imaginary part changes sign. As no
above, in the DCA approach8 this problem is avoided, at th
expense of introducing discontinuities in the moment
space representations ofG andS, by choosing the orthogo
nal functions to be a tiling of the Brillouin zone by recta
gular filters. However, the general argument, that acausa
havior found in most schemes arises from ‘‘ringing
associated with narrow peaks in the momentum depen
self-energy, also suggests that the phenomenon is not of
great significance.

To illustrate the issue we show in Fig. 2 the momentu

FIG. 2. Momentum dependence of the second-order pertu
tion theory approximation to the imaginary part of the self-ene
of the half-filled two-dimensional Hubbard model atT50. Solid,
dashed, dotted, and dash-dotted curves are forv510, 2, 1, and
210, respectively.
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dependence of the second-order perturbation theory app
mation to the imaginary part of the self-energy of the tw
dimensional square-lattice Hubbard model, for several dif
ent frequencies. At frequencies within the electronic band
momentum dependence of the self-energy is relatively we
but at frequencies well above the upper band edge or w
below the lower band edge, the imaginary part of the s
energy becomes sharply peaked in momentum space.
phenomenon has a simple kinematic origin. At this order
perturbation theory, the imaginary part of the self-energy
v.0 corresponds to a decay of a particle into two partic
and a hole. Atv510, energy conservation means the
lowed final states correspond to two particles near the top
the band@momenta near (p,p)] and a hole near the bottom
of the band@momenta near (0,0)]. Momentum conservati
then restricts the initial momentum to be near (0,0).

We now consider expanding the self-energy in Four
harmonics. The symmetry of the hypercubic lattice impl
that

S~p,v!5S0~v!12dgpS1~v!12d~d21!gp
(2)S2~v!1•••

~36!

with, for a hypercubic lattice of unit lattice constant ind
dimensions,

gp5
1

d (
a51•••d

cos~pa!, ~37!

gp
(2)5

1

d~d21! (
a51•••d

bÞa

cos~pa!cos~pb!. ~38!

The dashed and dotted curves in Fig. 3 show the resu
approximating the exactly calculatedS by the first and sec-
ond, or first three terms in the series given in Eq.~36!. An
acausal behavior is observed at frequencies well above
upper band edge or well below the lower band edge, in
cordance with the qualitative arguments presented above
v58, we observe the acausal behavior does not occu

a-
y

FIG. 3. Comparison of momentum dependence of exact sec
order perturbation theory approximation to self-energy of half-fill
two-dimensional Hubbard model~solid line! and the approximation
using Eq.~36! at T50; dash and dotted curves are the approxim
tion using the first and second, and first three terms in Eq.~36!.
1-5
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only the first neighbor term is retained~dashed line! but does
occur if both first and second neighbor terms are retain
This is because ImS2(v) changes sign betweenv58 and 9
to fit the exact ImS(p,v). @One can see this behavior eve
in Figs. 1~b!,1~d!.#

As noted above the acausal behavior has~at least in this
instance! a simple kinematic origin, which suggest that
may not occur in all circumstances. For example, at largeU,
more complicated decay channels~e.g., one particle decay
ing into three particles and two holes! with fewer kinematic
constraints may become important, leading to a broaden
of peaks in the momentum dependent self-energy and th
fore to a causal self-energy. An example of this phenome
is shown in Fig. 4, which displays the imaginary part of t
self-energy calculated high frequencies in the IPT appro
mation at several differentU values. The broadening of th
peak and the destruction of the acausal behavior sugge
by the arguments above are clearly observed. We stress
the IPT is an uncontrolled approximation—however, it is
computationally tractable example illustrating a phenome
which we suspect is of more general significance.

B. Filtering

We have argued that any cluster extension of the dyna
cal mean field method amounts to a scheme for compu
the coefficients in a low-order orthogonal function expans
of the electronic self-energy. This suggests that the repo
causality difficulties are generic and inescapable:no trunca-
tion of an orthogonal function expansion is guaranteed
lead to an everywhere non-negative approximant for an a
trary test function. We emphasize, however, that the impu
model itself is causal; it is only the resulting lattice se
energy which may have acausal features.

The discussion of the previous subsection suggests
the acausal behavior is ‘‘ringing’’ is associated with a re
tively large peak near a particular momentum. It is possi
that such a peak could be physically important, occurring
example at a fermi surface ‘‘hot spot’’ in a system close to

FIG. 4. Main panel: momentum dependence of ImS(v) at v
59,11 calculated forU51,2,4,6 by use of the IPT approximatio
on a four-site cluster. The increase ofU is seen to lead to a broad
ening of the peak, which for the largeU values is seen~inset! to
eliminate the ‘‘acausal’’ behavior entirely.
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quantum critical point. In such a case, long-ranged inter
tions are evidently physically crucial, and modeling the
with a local model is simply inappropriate. However, as se
in the explicit calculations present above, peaks in ImS
which are both sharp and large relative to typical values oS
are more often associated with band edges and extrema
quencies. These regions ofv andp are not particularly im-
portant for energetics, suggesting that the acausality is s
ply a minor technical annoyance. In what follows w
consider methods of removing it.

We first note that in particular temperature regimes
particular problems~for example, the double exchang
model on the simple cubic lattice and at not too lo
temperatures16! the ringing phenomenon might not occur. W
also note that a clever choice of expansion functions m
mitigate the severity of the problem. For example, we saw
the Hubbard model the difficulties arise from narrow pea
centered near the band edges@p'0 andp'(p,p, . . . )]. An
expansion based on the functions 1,gp and a function or-
thogonal to both 1 andgp but strongly peaked near 0 an
(p,p, . . . ) might have a wider range of applicability tha
the straightforward harmonic expansion.

A more general approach is to filter the self-energy,
example by convolving it with a function to smooth out an
sharp peaks and then approximating the smoothed func
by a low order harmonic expansion. Let us make this
proach more precise, writing Eq.~11! as

Sapprox~p,v![ (
i 50•••n

f if i~p!S i~v!, ~39!

where f 051 and 1. f i .0f0 are the Fourier components o
the smoothing function. Carrying through the developm
of the previous section leads to

Gi~v!5
dVapprox

dS i~v!
5 f iE ~dp!Gp~v!f i~p! ~40!

so that the quantum impurity model acts to reproduce
smoothed Green’s functions of the theory.~We note that sum
rules typically constrain the largev behavior of the local
Green function, so that one must choosef 051 in order to
have a consistent representation at least within the sim
impurity models of which we have studied.! Figure 5 shows
the results obtained using different choices of simple filter
coefficients in the low-order self-energies discussed in
previous section. The result of applying the filtering proc
dure to a four-site dynamical mean-field calculation is sho
in panels~c! and~d! of Fig. 1. Comparison to panels~a! and
~b! shows that the main effect~for the parameters studied! is
to reduce, by approximately a factor of 2, the magnitude
S1 andS2.

The straightforward filtering approach gives up som
fraction of the intersite correlations in order to guarante
causal theory. A more sophisticated possibility would be
frequency dependent filtering. We saw from the low-ord
perturbation calculation on the Hubbard model that the s
energy was only very strongly peaked in momentum sp
for very high- or very low-energy states, where decay kin
matics constrained all states involved to be near the b
1-6
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edges. These states are not very important to energetics.
may therefore filter out only these by setting an arbitra
frequency scalev f and D and writing, e.g., f 151
2 f̄ /@exp$(2uvu1vf)/D%11#. We note that this filtering may
be performed ex post facto: one may solve the impu
model, determine the band-edge regions where filtering
required, and then solve again the impurity model with
tering only in these regions. Figure 6 shows the results
tained using the above frequency-dependent filtering w
different choices of parameters. Here, we takef 25 f 1

2, and
the four-impurity model is self-consistently solved. It
clearly shown thatS1,2 are reduced at higher frequency r
gion where acausal behavior has been observed in
second-order perturbation theory approximation~Fig. 5! and
IPT ~Fig. 4!, while there is not much effect in the low fre
quency region.

A still more sophisticated approach would be to mix d
ferent harmonic components, so that low-order terms w
modified only if higher-order terms were important~i.e., if
filtering were really needed!. This approach is most helpful i
a priori knowledge of the locations of sharp momentu
space structures is available. Indeed, the calculations
sented above of the behavior of the Hubbard model stron
suggest that the singularities are associated with the top
bottom of the band, i.e., with states aroundp5(0,0, . . . ) or
p5(p,p, . . . ). Todefine this transformation we begin from
the harmonic expansion~11!, and then introduce a transfo
mation which mixes the harmonic coefficients, so that

Sapprox~p,v![ (
i , j 50•••n

f i~p! f i j S j~v!, ~41!

and the self-consistency equation becomes

FIG. 5. Comparison of filtered, unfiltered, and exact results
second-order perturbation approximation to self-energy of the h
filled two-dimensional Hubbard model atv510. Solid curve is the
exact result. Dashed and dotted curves are obtained from f
impurity model with filtering coefficientsf 151 and 0.85, respec
tively, andf 25 f 1

2. Numerical calculation gives the following value
for Im S i : (Im S0 ,Im S1 ,Im S2)5(20.00418,20.00234,
20.00114) for f 151 and (20.00418,20.00144,20.00033) for
f 150.85. Calculations are done atT50.
19512
ne
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y
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Gi~v!5(
j

f i j E ~dp!Gp~v!f j~p!. ~42!

We have, however, not yet explored these more complica
filtering procedures

V. CONCLUSION

In this paper we have argued that one should take a m
abstract view of cluster extensions of the dynamical me
field method; regarding them as algorithms for comput
frequency-dependent coefficients in an orthogonal funct
expansion of the electron self-energy. This approach ren
moot the debates about ‘‘correct’’ choice of cluster and e
bedding, and clarifies the meaning of the ‘‘causality vio
tion’’ encountered in real-space-cluster extensions of the
namical mean-field method. We have suggested that
causality violation is in most cases a minor technical pro
lem which can be cured if needed by any of a variety
‘‘filtering’’ procedures.

Several questions arise, for which further research wo

r
lf-

r-

FIG. 6. Real~a! and imaginary~b! part of self-energy,S1 and
S2, obtained from iterated perturbation theory approximation
half-filled Hubbard model (U52, T50) using four-site cluster
with frequency-dependent filtering. Solid and dashed curves are

results with parameters (f̄ ,v f ,D)5(0.15,6,1) and~0.15,4,1!, re-
spectively. Dotted curves are the results without filtering.
1-7
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be desirable. One is the question of the correct choice
interaction terms in the ‘‘fictive impurity model.’’ This issu
has been discussed in the context of on-site interactions
pecially in connection with the DCA,14 and, for longer
ranged interactions in the context of the E-DMF
approach18,19 but deserves more attention in the context
the more conventional orthogonal function expansions
second key issue is the origin of the causality violations.
have shown that in simple perturbative models~chosen be-
cause exact expressions for the momentum-dependent
energy are available! the violations are an example of th
familiar ‘‘ringing’’ phenomenon, and moreover occur main
in band edge regions of little kinematical importance. T
issue, however, deserves further exploration in less tri
contexts. A third open problem is the question of which a
proximants to the self-energy are representable by impu
models. We have presented arguments~substantiated by low-
order perturbative calculations in different limits! indicating
that straightforward orthogonal function expansions, w
and without filtering, are representable. However, one mi
imagine that more complicated approximate representat
ev

n

o

D
ys
.

nd

19512
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f
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e
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of the self-energy might be advantageous in some proble
We do not at present have a general framework for determ
ing the circumstances under which a general approximan
S is representable in terms of an impurity model. The iss
of different choices of filtering function seems also likely
benefit from further research. In particular, it seems like
that one can more efficiently exploit the observation that
acausality is associated mainly with thep50 and p
5(p,p, . . . ). Finally, applying the method to a wider rang
of models, to explore which choices lead to good repres
tations of the physics of interest, is an urgent task.
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