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Optimizing thermal transport in the Falicov-Kimball model: The binary-alloy picture
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We analyze the thermal transport properties of the Falicov-Kimball model concentrating on locating regions
of parameter space where the thermoelectric figure of rZériis large. We focus on high temperature for
power generation applications and low temperature for cooling applications. We constrain the static particles
(iong to have a fixed concentration, and vary the conduction electron concentration as in the binary-alloy
picture of the Falicov-Kimball model. We find a large region of parameter spacezwithl at high tempera-
ture and we find a small region of parameter space &ib-1 at low temperature for correlated systems, but
we believe inclusion of the lattice thermal conductivity will greatly reduce the low-temperature figure of merit.
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I. INTRODUCTION device forZT>0.7, but one would need T~4 to achieve
the coefficient of performance of a conventional compressor-
There has been a recent resurgence of interest in solidbased refrigeratofwhich lies in the 1.2—1.4 rangeNever-
state devices for thermoelectric applicatibfower genera- theless, most commercial thermoelectric devices have
tion or cooling. One area of concentration is the investiga-near 1 because few bulk materials have been discovered with
tion of strongly correlated materials, which may prove tomuch larger values at ambient pressure. Of course, there is
have better performance at low temperature than the curresignificant interest in increasirgT to 4 at room temperature
generation of semiconductor-based devices. The two maifto be competitive with conventional coolant-based technol-
areas of application for thermoelectrics are in power generasgy) or to above 1 at low temperature to allow for new
tion from the Peltier effect,where heat energy is converted applications such as solid-state coolers for superconducting
into electricity, and in thermoelectric cooling, where an elec-electronics or infrared detectors.
trical current is driven through a device to force heat to move Although there are no fundamental thermodynamic
from the cold to the hot end. Power generation applicationsimitations’ to the size ofZT, it has proved to be quite dif-
typically operate at temperatures higher than 600 K, with thdicult to find bulk materials at ambient pressure wWZ&iT
heat source being a radioactive mate(far applications in  >1 over a wide temperature range and to find much larger
the space industjyor a combustion source. Thermoelectric values ofZT (sayZT>3 except for electron-crystal-phonon-
coolers usually operate around room temperature, and thglass work with nanostructur®s Recently, Rontani and
semiconductor-based devices do not function below aboushani proposed that heterostructures of correlated semicon-
200 K. Currently, thermoelectric devices fit niche markets,ductors and metals could have dramatically large values of
where reliability, size, or weight are more important thanZT at low temperature. Their idea was that if one tuned the
efficiency. The coolers usually operate with relatively low large electronic density of staté®0S) of the f electrons to
heat loads because of their poor efficiency. lie close to the Fermi level, then one could produce huge
The efficiency of a thermoelectric device is a function of values ofZT (earlier work proposed similar ideas as el
the dimensionless product of a material parameter derbted Mahan and Sofbalso argued in the same vein for optimiza-
with the average temperatufie (between the hot and cold tion in bulk materials in 1996. But so far, no one has been
heat sources of the devicand is calledZT (thermoelectric  able to demonstrate that such large value® Bfare possible

figure of meri}. It satisfies in a true many-body systefand are not the artifact of some
approximations employed in the analysig/e examine this

Tog.S? problem in detail for the Falicov-Kimball model here. By

- Kot K| @) working in the limit where the ion concentration is fixed and

nonzero aff =0, we have adjusted the renormalized energy
and the termoy.S? in the numerator is often called the level of the ion to lie at the electronic chemical potential,
power factor. Herery. is the dc electrical conductivitysis ~ which has the potential for producing large thermoelectric
the Seebeck coefficiehfthermopower, T is the temperature, responses.
K, is the electronic contribution to the thermal conductivity, ~Mahan and Sofbalso proved that the figure of merit al-
and «, is the lattice contribution to the thermal conductivity ways satisfies an inequality
(we are assuming the electron-phonon interaction is small
enough such that these two effects can be decoupliets Kot TorgoS?
commonly stated thaZ T>1 is needed for operation of ther- ZT<T @)
moelectric devices, but this is not necessarily friar ex-
ample, if we consider a thermoelectric cooler operating ategardless of the strength of the many-body interactions.
300 K and with 50 K of cooling, then one can operate such ahis has important implications for theorists because in
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purely electronic moglels, su.ch. as _thg one we inves'gigathizl) or the presence ofion (w;=0) at sitei, andU is
here, k=0, so there is n@ priori limitation on the magni-  the interaction strengtfdifference in the site energy between

tude of ZT. But it also presents some problems for I6w- the A and B ions). The hopping integral is scaled with the
calculations, since the electronic contribution to the thermakpatial dimensionl so as to have a finite result in the liffit

conductivity is usually much smaller than the lattice contri-q_,«: we measure all energies in units tbf=1. We work
bution at low temperaturéespecially for insulato)s and  on a hypercubic lattice where the noninteracting density of
hencepurely electronic estimates of ZT can be greatly en-giates is a Gaussiar{e) = exp(~ 62)/\/;I*Quc (with Q. the

hanced whgn the Iatti_ce effects are ignordthis becomes volume of the unit ce)l A chemical potentiak is employed
less of an issue at high temperature, where the electronig, adjust the conduction-electron filling, .

contribution to the thermal conductivity can dominate. The Falicov-Kimball model can be solved exactly by em-
. Another intergsting feature that plagues the Iﬁ}megime ploying dynamical mean-field theoly4 A review that de-
is the fact that in most systen—0 asT—0. Since the  gcripes how to solve for Green’s function using the equation
ratio of the conductivities often satisfies the Wiedemann- motion technique has recently appeale®ecause the

Franz law self-energy (z) has no momentum dependence, the local
2 Green’s function satisfies
Ke kg
a—=(€ £r ® 1
dc
G(z)—f dep(e)—ﬁﬂ_z(z)_e, 6)

with £ the Lorenz numbetequal to7%/3 in a Fermi liquid

and 3 in an intrinsic semiconducjowe haveZT—0 if S with z a complex variable. The self-energy, local Green’s

—0 at low temperature. Similarly, i§(T) suffers a sign  fynction, and effective mediurg, are related to each other
change at anyl, thenZT will be quite low in the vicinity of  py

the sign change.

The Falicov-Kimball modéf appears to be able to de- Ggl(z)—Gfl(z):z(z), (6)
scribe an increasing number of materials and systems. One
example that fits within the binary-alloy picture is tantalum and Green’s function also satisfies
deficient tantalum nitridé Ta,N. This material is metallic
whenx=1 but becomes a fairly large-gap insulatabout
1.5 eV) whenx=0.6. If we let theA ion denote a unit cell
with a Ta atom and & ion denote a unit cell with no Ta
atom, thenU is the difference in site energies for the two Herew, is the average concentration of tAdons (which is
configurations. The total conduction-electron concentratioryn input parameter The algorithm for determining Green’s
also depends on the Ta vacancies, as each vacancy can bififhction begins with the self-energy set equal to zero. Then
five electrons. It is easy to model the metal-insulator transigq. (5) is used to find the local Green’s function. The effec-
tion atx=0.6 by properly varying the electron concentrationtive medium is found from Eq(6). The new local Green’s
with the concentration of Ta vacancies. function is then found from Eq7) and the new self-energy

In Sec. Il we develop the formalism for deriving the dc from Eq. (6). This algorithm is repeated until it converges.
conductivity, the thermopower and the thermal conductivity. \When these equations are solved we find a number of
We use this to determine both the Lorenz number and thérteresting results for the single-particle properties. First,
figure of merit. In Sec. Ill we provide numerical results for hoth the interacting DOS(pi(w)=—IM[G(w+i8)]/7)
the thermal transport illustrating regimes wh&® can be- and the self-energy on the real axis are independent of
come large and describing the physical principles that driveemperatur® whenw, and u are fixed(all the temperature
such enhancements. In addition, we describe in detail thgependence for fixeﬂe arises from the temperature depen-
situation behind a large figure of merit at [oland whether  dence ofu, which shifts the zero-frequency point of the
achieving such a goal is feasible. Conclusions are presentgs0s). Second, we find that the self-energy does not display

G(2)=(1-wy1)Gp(2) + W1 —

Gy l2-U’ )

in Sec. IV. Fermi-liquid properties unles$J=0, w;=0 or w;=1
(which are all noninteracting caset particular, we do find
Il. FORMALISM FOR THE THERMAL TRANSPORT (for small enoughU) that the imaginary part of the self-

energy is quadratic irv, but the curvature has the wrong

sign, and the zero-frequency value of the imaginary part of

the self-energy does not go to zero Bs-0 (in fact, it re-

o mains fixed for allT). Third, the real part of the self-energy
_ T At is linear(for small enoughl), but the slope has the opposite

H= 2d <.21> Gicit UEi WiGiCi @ sign of what is seen in a Fermi liquid. Finally, we see that if

U is large enough, the DOS develops a gap, and the self-

wherec! (c;) is the electron creatiotannihilatior) operator  energy has quite anomalous behaviacluding developing

for a spinless electron at sitéspin can be included trivially a pole.

if desired by doubling alL;; defined below, w; is a variable Transport properties are calculated within a Kubo-

that equals 0 or 1 and corresponds to the presenceAf@m  Greenwood formalismy This relates the transport coeffi-

The Hamiltonian we study is the spinless Falicov-Kimball
modef® with a canonical-binary-alloy picture,
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cients to correlation functions of the corresponding transportefinition of theL;; coefficients is the current standard, with
current operator@hese are equal to the bare bubbles becausene factor ofT lesser than in earlier wofk??.

there are no vertex corrections in the large-dimensional Once the transport coefficients are known, we can deter-
limit'8). We need two current operators here—the particlemine the electrical and thermal conductivities and the ther-
current® mopower. In addition, we find the figure of merit satisfies

. t |_2
1= Eq: VqCqCq (8 ZT= —122 (15
L11L22_ L12
(whgre the velocity operqtor &= Vqe(q), the banq struc- when we negleck, and the Lorenz number becomes
ture ise(q), and the Fourier transform of the creation opera-
ety R et 19
tor is ¢, =2 exdiq- Rj]c;/N) and the heat curretft i K 2_ ke [k 2'—11'—22"—%2
e) oaT \e) 1212
¢ 11

o (16)

. U
jo=2 [e(@)— ulvgCicq+ 5 2 W(a—1')
! ad Note that because df(w)/dw is an even function o,
><[vq+vq,]cgcq, , 9 only the even part of( @), 7o(w)=[7(w)+ 7(— w)]/2, con-
_ . tributes to thel; andL ,, coefficients, and only the odd part
Wh?LeVZ(Q) _(Ejiex.p(._'thi)Wi /N. del ic th ITo(w)=[7'(w) — 7(— w)]/2 contributes td_4,. Furthermore,
e dc conductivity, thermopower, and electronic thermal,’ expects on general physical grounds tat)=0. In-

conductivity can all be determined from relevant correlationdeed this can be easily shown to be true by rearranging Eq
functions of the current operatatsWe define three transport (14) i,nto '

coefficientsL;, L1,=L5q, andL,,. Then

219, 2
Udc=92|—11' (10) T(w):f dep(e) [ImE(w)] 127 ,
{lo+p—Re(w)— el?+[IM3(w)]%}?
__ ke Ln 1) (17)
lelT Lay which is manifestly non-negative. In addition, we see that
and 7(w) vanishes whenever B(w)=0. In the case of
particle-hole symmetry, whep.=w;=0.5, it is easy to
k3 Lislog show thatr,(w)=0, and both the thermopower and th&
Ke=7 | 22~ L—u} 12 must vanish. This non-negativity af(w) can also be em-

ployed to show the Mahan-Sdfbound forZT. The inequal-
(Note that the definition of the;; coefficients adopted here ity in Eq. (2) holds for any system that satisfies the Jonson-
has one power of lesser than in our earlier wofk,and  Mahan theorem, regardless of the many-body interactions
represents the currently accepted notaji@me finds that the present, as long as there is no electron-phonon coupling,
electric and thermal conductivities are always positive, butyvhich precludes the separation of the thermal conductivity
the thermopower can have either sign—a positive therinto electronic and lattice pieces.

mopower corresponds to holelike transport and a negative The integrals for the transport coefficients all have a de-
thermopower to electronlike transpdwe use the sign con- rivative of the Fermi function in them. This derivative be-
vention of Ashcroft and Mermf). The transport coeffi- comes strongly peaked aroung=0 with a width of the
cients are found from the analytic continuation of the rel-order of T as T—0. In metals, we typically find that the
evant “polarization operators” at zero frequency which relaxation time can be written in the fora(w)= o+ w7’
produces the Mott forfi? for the transport coefficients +O(w?) for smallw. If we include only the first two terms

(which is usually called the Jonson-Mahan theoférand  in the expansion for the relaxation time, we find that
was explicitly evaluated for the Falicov-Kimball moé®l

df(w) T4c= 0070,
oo [~ (@ i
Lijzg oodw(— do (o) 172, (13 ke 22T

STl T3
with the relaxation timer(w) defined by

K3 m2aoToT
_[ImG(w) 5 B T T0Tol 19

(w)= m+2—2R€{[w+ﬂ—2(w)]G(w)}}/4w , 2 3

(14) to the lowest order inf. We can read off that the Lorenz
f(w)=1[1+exp(Bw)], andoy=e?m?/2hda® 2 on a hyper- numberZ is equal to?/3 andZT— 7?7'2T?/3 (when we
cubic lattice ind dimensions. Note that even though we rep-neglectx,). Hence,ZT will be small in metals at low tem-
resented the above form by an effective relaxation time, th@erature because the Wiedemann-Franz law fixes the ratio of
above expression for the transport coefficientexact(our  conductivities, and the thermopower vanishesTasO. If
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the Wiedemann-Franz rule holds at higher temperature dsold due to particle-hole symmejryFurthermore, ifA u(T)
well, then one needs to find a thermopower larger thardepends linearly o, the thermopower approaches a con-
kg /+/3|e| which is equal to 156:V/K in order to have stant asT—0. S can diverge if the low-temperature slope
ZT>1 in a metal. There are no known metals that havedivergedlike in the case wherd x(T) depends ol with a
thermopowers larger than 126V/K and most metals are power law less than land greater than)@ but it seems
one to two orders of magnitude smalfesp the only way to  unlikely that one could find a circumstance wheSewill
find metals that are useful for thermoelectric power generadiverge like 1T at low temperature and maintain the con-
tion or cooling is if the Wiedemann-Franz law does not hold.straintA x.(0)=0 (note that this argument does not hold for
The situation in an insulator is quite different. If we as- disordered insulators, which have localized states, so that the
sume thatr(w) = 7opint(@) With 7, @ constant, and if we DOS does not vanish at the Fermi l&i%l Hence the quali-
choose a generic interacting density of states that increaséative temperature dependence of the thermopower in a cor-

like a power law afT=0, related insulator can be determined by the temperature de-
Y pendence of the chemical potentfat low T). Note that the
pint(@)=0(0—Ey/2)C(w—Ey/2)“+ 6(— w—E4/2) above arguments obviously hold for intrinsic semiconductors

, o as long as the ansatf w) = 7gpini(w) holds.
XC(—w—Ey/2) (19) If we use the generic insulator DOS in E3Q.9) and the
[with 6(x) the unit step functionC andC’ constants, anf, ~ @pproximation that(w) = 7opin(@), then we find the fol-
the insulating gah then the behavior of the transport coeffi- lowing (lowest-ordey behavior for the transport in an insu-
cients differs from Eq(18). The starting point is to note that lator:
the number of holes excited in the lower band is equal to the
number of electrons in the upper band, and at low tempera-
ture the Fermi factors can be replaced by Boltzmann factors, o4c.= ZUOToe_BEQIZ\/CC’T‘”“’F(M- DI'(a'+1),
resulting in

CT(a+1)

0 e}
Loo'wpim(a>)e’3(‘"_A“):J0 dwpin(@)e” Flomam S=— 22 | (e o) (InT+ 1) 410 @D
C'T(a'+1)

~ 2e]
(20)
with the chemical potential written g8= uo+Aw(T). In

this derivation, one needs to note that the interacting DOS at . é 2
temperaturel is pi,[ w+ Aux(T)] and then to shift the inte- Ko=20070e PEI2\CC/ T @ T (a+ )T (o' +1) =T
gration variable byw— w—Au(T). Solving for Au(T) e
yields (24)
AM(T)~IIn jo dwpin ®)exp fw) The Lorenz number then diverges like= E§/4T2 at low
2 — temperature. Note that the thermopower does not depend on
T . T like E4/2T which is often incorrectly quoted in the litera-
— —In f dwpinm(w)exp—Bw)|, (21 ture (it becomes a constant when=«’ due to cancellations
2 1J)o in the odd integrand

In a correlated insulator, we must have=«a’, so the
thermopower becomes constant Bs-0. This occurs be-
cause the interacting density of states develops a gap due to
a large real part of the self-energy. Hence the band edge
should have the same power law as that of the noninteracting
. (22)  system, which is determined by the Van Hove singularity,
and must be the same for the upper and the lower band edge.

Unfortunately the hypercubic lattice in large dimensions
does not behave like this generic insulator in the strong-
coupling limit. This happens because the DOS never van-
ishes for a finite range ofy, but rather approaches zero
exponentially for all nonzera (it is suppressed to zero pre-
cisely ato=0 andT=0). Hence we need to analyze the

dAu situation for the Gaussian DOS in more detail.
L= —LllTF, (23 Inside the “gap region” of the DOS, the real part of the
self-energy is large, because the self-energy develops a pole
which follows by taking the derivative of Eq20) with re- at «=0 in a correlated insulatofwhich occurs forU
spect toT and using the definitions fdr,; andL4, in the  >1/y2w;(1—w;)). Similarly, the imaginary part of the
low-temperature limit. IfA «(T) =0, as occurs at half filling, self-energy is very small. Hence, we can approximately de-
then we immediately see th&=0 (as we also know must termine the Hilbert transformation in E(p) as

with ug the chemical potential af =0, which lies in the
middle of the insulating gagand is chosen to be the origin
here. Using the form for the DOS in Eq19) then yields

!

a—«a T
Ap(T)=- TT“’] T+ Eln

C'T(a'+1)
Cl(a+1)

This form for A (T) plays an important role in the ther-
mal transport of insulatorpwith a relaxation time approxi-
mated well byr(w) = mppini(®)]. Indeed, an examination of
the L1; and L, coefficients in an insulator, witfi <Ey/2,
leads immediately to
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1 1 smoothly to the regime where the absolute value of the self-
Glw)=~ — + 3 mplw energy is larger than 132 (the generalization appears to be
ot p=RE(0)  w+u—Re(w)] accurate wheho|<0.04 2U%w,(1—w;)—1]). So we need

to find an additional extrapolation regime where the imagi-

+u—Re(w)]+ilm3(w) nary part of the self-energy is small, but the real part of the

[o+p—ReE(w)]? self-energy is not yet very large. It turns out that we can

develop another expansion for the ratio of the imaginary

3 ts of Green’s function to the self- hen the imagi-

+ (25)  Parts of Green's function to the self-energy when the imagi
2[w+u—ReS(w)]* nary part of the self-energy is small compared to the size of

b ing it h buti 5 th the real part of the self-energy. We calculate the second piece
y noting it has contributions from two source(s)._t € 8- of 7(w) directly from the real parts of the self-energy and
gion arounde=0 and (i) the region arounde=w+u  Green's function generated by the iterative algorithm. We

—Re(w). We determine the self-energy by substituting thepgjieye that the real parts of each are determined accurately
asymptotic form for Green’s function into the functional re- , this regime even if the imaginary parts are not. In this

lationship between the self-energy and Green's function degase we do find smooth behavior for the relaxation time for
termined by the quadratic equation of Brandt and Miefsch. all .
Simplifying to the lowest-order contributions, we finally de-

: There is an advantage of studying the Falicov-Kimball
termine that

model over the more popular Hubbard motfehecause the
Falicov-Kimball model can be tuned to have a metal-

U2wy(1—wy)— E insulator transition for any value of,, simply by choosing
RES ()~ (26) U large enough and fixingpe=1—w; [ue=(1—wg)U].
w+pu—(1-wy)U The Hubbard model has a metal-insulator transition only at

half filling, where the thermopower vanishes due to particle-
hole symmetry(this can be broken by introducing multiband
Im3 (o) Hubbard modef®). Hence we can study effects of the cor-
related metal-insulator transition in the Falicov-Kimball
model, which are inaccessible in the single-band Hubbard
model. Since real materials typically have complicated band
™ p structures, one does not expect them to be particle-hole sym-
[o+pu—(1-wy)uJ* Letp=(1-w)U metric except in very speciaF\)I circumstances? Once again,)'ihe
— Uy (1—w,) — 1]8(w). 27) Falicoy-KimbaII mod_e_l can be vjewed as a more generic
metal-insulator transition for making contact with real mate-
Now the local self-energy of the correlated insulator has a&ials. The only disadvantage is that the Falicov-Kimball
pole atw=0, hence we learn that,=(1—w;)U for the  model is a non-Fermi-liquid except in “noninteracting” lim-
correlated insulator, and the interacting DOS is equal to zergis (where it is a Fermi gas
atw=0 (andT=0). The function contribution in Eq(27)
arises from the pole in the self-energy. To lowest order, we
find that the scattering time then satisfies 11l. NUMERICAL RESULTS

and

2 1]° 2 1
u W1(1_W1)_§ u W1(1_W1)_§

[w+u—(1-wyU]* We present results at,=1—w;, for three different values
28 oy (i) U=1 which is a strongly correlated metal that has
a dip or kink in the interacting DOS at the Fermi levéi)
which is a quartic dependence on frequency in the “gap reJ=1.5 which undergoes a metal-insulator transition as a
gion” at T=0 [since uo=(1—w;)U]. This implies that for  function ofw,; and(iii) U=2 which is a correlated insulator
the hypercubic lattice, the scattering time is much biggewith a sizable “gap region.”
than what one would guess from the approximaticim) The effective scattering time and the interacting DOS are
= 7opint(®) (which would be exponentially small plotted in Fig. 1. We choosg=1, p,=1—w,, and varyw,

We find that in our calculations, the iterative approach to(0.5, 0.4, 0.3, 0.2, and 0.1Note how the strong correlations
determining Green’s function fails once the absolute value otreate a dip in both the interacting DOS and the relaxation
the self-energy is less than about 1§ because the numeri- time near the Fermi level. Aw; is made smaller, the scat-
cal precision of the computer does not allow them to betering time becomes more asymmetric in frequency, which
determined accuratelgthe difficult step is to construct the should yield larger thermopowers. Note that there is residual
self-energy from the difference of the inverse of the localscattering at the Fermi energy as—0, which should pro-
Green’s function and the effective medium, where numericatluce a finite value for the dc conductivity B0 (recall the
precision is lost For accurate calculations, we need to beFalicov-Kimball model is not a Fermi liquid in this regime
able to push the iterative approach to the point where we calt is interesting to also point out that(w) approaches a
match up with the asymptotic forms given above. Unfortu-nonzero constant for larges|. This must occur because a
nately, the generalization of E@28) to include fifth- and small number of states are very effective in carrying current
sixth-order terms inw+u—(1—w;)U will not join  through the system; this effect will not occur in any system

T(w)~

47 UPwy(1—wq)— 313
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FIG. 1. (a) Effective (T=0) scattering time an¢b) interacting
DOS for the Falicov-Kimball model d/ =1, p,=1—w,, andw,
=0.5(solid), 0.4 (dashed, 0.3 (chain-dotteg, 0.2 (dotted, and 0.1
(chain-triple-dottegl Note how bothr(w) and DOS develop dips at
the Fermi level; both functions are symmetric at half fillimg
=0.5. These plots have fixed the origin at the-0 limit of the
chemical potential.

with a finite bandwidth and will only affect very high-
temperature properties.

We plot the dc conductivity, thermopower, and electronic

contribution to the thermal conductivity in Fig. 2. The dc

0.3 T T T T T T T

0.2 LT =

0.1 f =
o ——F——)——"4—
1.5 | ;

1 Ui,
05 fy T

0 — _:___.-
1 .
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o-dc(T)

S(T)
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N

FIG. 2. (a) dc conductivity(in units of o), (b) thermopoweKin
units ofkg/|e|), and(c) electronic contribution to the thermal con-
ductivity (in units of kétro/ez) for the Falicov-Kimball model at
U=1, pe=1-w,;, andw;=0.5 (solid), 0.4 (dasheg, 0.3 (chain-
dotted, 0.2 (dotted, and 0.1(chain-triple-dotted
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0.4:- SN (b)
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FIG. 3. (a) Lorenz number an¢b) thermoelectric figure of merit
for the Falicov-Kimball model a=1, p,=1—w;, andw;=0.5
(solid), 0.4 (dashed, 0.3 (chain-dotted, 0.2 (dotted, and 0.1
(chain-triple-dottegl

conductivity is fairly flat as a function o over a wide
temperature range, and is enhancedwads made smaller
(and the particle-hole asymmetry is enhancethe ther-
mopower decreases likeTLAt high temperature, increases as
w, decreases, and then has a crossover to linear behavior
below T~0.28*. The slope of the low-temperature linear
behavior increases as the particle-hole asymmetry increases.
The thermal conductivity is linearly increasing at high tem-
perature, and has a characteristic linear behavior that sets in
below T~0.4t* (often with a different slope than the high-
temperature regimeThis behavior is typical of a metal that
has significant scattering. Note that at low temperature we
might expect the Wiedemann-Franz law to hold, while at
high temperature, the Lorenz number may become constant
with T (since the ratio of the conductivities decreases linearly
with T).

The Lorenz number and thermoelectric figure of merit are
plotted in Fig. 3. Note how the Lorenz number approaches
7?13 as T—0. This follows whenever(w)#0 at w=0,
whenever the interacting DOS at the chemical potential is
nonzero, or if the relaxation time behaves as a power law and
the temperature dependence of the chemical potentidl as
—0 is slow enough. The constant value ©fat highT oc-
curs because the dc conductivity becomes flat and the elec-
tronic contribution to the thermal conductivity is linear at
high T. What is interesting is the moderate temperature peak
in £ with the linear decrease toward the Fermi-liquid value
asT—0. This occurs because the system has strong scatter-
ing, which produces deviations from the Wiedemann-Franz
law at moderatel. What is unfortunate is that an enhance-
ment of £ leads to a reduction i@ T. The peak in the figure
of merit is large and increases in magnitudengsdecreases
mainly due to the enhancement of the thermopower. But the
figure of merit rapidly decreases at lolvand indicates that
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FIG. 4. (a) Effective (T=0) scattering time an¢b) interacting FIG. 5. (a) dc conductivity,(b) thermopower, andc) electronic

DOS for the Falicov-Kimball model at/=1.5, p,=1—w;,, and  contribution to the thermal conductivity for the Falicov-Kimball
w,;=0.5 (solid), 0.4 (dashedi 0.3 (chain-dottet} 0.2 (dotted, and ~ model atU=1.5, pe=1—w;, andw,;=0.5 (solid), 0.4 (dashed,
0.1 (chain-triple-dottel Now 7(w) has a quartic dependence on 0-3 (chain-dotteg| 0.2 (dotted, and 0.1(chain-triple-dotte
frequency, and the DOS becomes exponentially small in the “gap
region.” The “gap” fills in for w;<0.333(which is difficult to see =2 case below Our calculations are not accurate enough to
in the figurg, so we expect the transport behavior to be different forinvestigate that regionT(<0.002) in detail.
smallw;. The plots of the Lorenz number and of the thermoelectric
figure of merit in Fig. 6 show a number of interesting fea-
strongly scattering metals of this type cannot be used fotures. First, note the very large increasedras T—0 for
thermoelectric applications at low temperat(aed here the cases withw, close to 0.5. This behavior occurs at half fill-
peak value is too low to be of practical use and would likelying because this case is qualitatively different from all other
be reduced when the lattice contribution to the thermal concases at low temperature. At half filling, the chemical poten-
ductivity is includedl. tial is always atU/2 and has no temperature dependence.
Next we show the evolution of the relaxation time and the
interacting DOS as we move into the correlated insulator

regimeU=1.5. Here the self-energy develops a polewat 12 F I I I j
=0 for w;>0.333, which produces a narrow region of ex- 10 ]
ponentially small DOS inside a “gap region,” but the pole 8 ]
disappears for small enougty, and the system has strong 5 ]
scattering, but is still metallic a§—0. This is difficult to i
see in the above figur@Fig. 4 because we are not plotting 4 T T TS
the “gap region” on a logarithmic scale. We expect that the o2 0 === =
transport properties may differ depending on the value pf o 7

for U=1.5, but it should not be too dramatic because the
metallic phase has very strong scattering. T

The transport coefficients are plotted in Fig. 5. These look 1+ 7 N 4
similar to those in Fig. 2 except that now the conductivity ' K

vanishes a§ —0 for the insulating phases and the thermal |l:l [ 2 i
conductivity approaches zero faster than linearly for the in- 05 . .7 Bt “- N
sulators as well. In addition, we find a loWwsign change in | /e — e T,
the thermopower. Our calculations become inaccuraté as ,:.'/-/ __________
—0, so we cannot definitively say whether the thermopower e
vanishes or is finite al =0. Furthermore, as we examine 0 0.5 L 1~5* 2
larger values otJ we find that there is another sign change at Tempe rature T [t ]

even smallerT leading to a large positive thermopower at  F|G. 6. (a) Lorenz number antb) thermoelectric figure of merit
very low temperaturgup to a value olU~1.7) for largerU  for the Falicov-Kimball model atU=1.5, po=1—w,, andw;
there no longer is a sign change B(T) but the low- =0.5(solid), 0.4 (dashed] 0.3 (chain-dotted 0.2 (dotted, and 0.1
temperature peak becomes even more appdses theU (chain-triple-dotteyl
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FIG. 8. (a) dc conductivity,(b) thermopower, andc) electronic
contribution to the thermal conductivity for the Falicov-Kimball
model atU=2, p.=1-w;,, andw,;=0.5 (solid), 0.4 (dasheg, 0.3

(chain-dotted, 0.2 (dotted, and 0.1(chain-triple-dottegl Note the
very low-temperature peak ig(T).

Hence the system always has a pseudogaplike behavior @fyergg in the correlated insulator at half filling, but now
the DOS, with it vanishing only at the Fermi level. For all visibly has the low¥ peak and return ter2/3 asT—0 away

other cases, the chemical potential dependd.oHence, at

from half filling (Fig. 9). The thermoelectric figure of merit

finite T, the DOS at the chemical potential is nonzero andhas a sharp peak at low temperature, whose width and peak

only vanishes exactly aff=0. This makes the low-

location increase with an increaseldfand a decrease of;.

temperature behavior away from half filling depend deli-Note that the lowF peak is associated with the sharp drop in
cately on the temperature dependence of the chemical potep- 4t |ow temperature, which seems to occur only when one

tial and the power-law behavior of the relaxation time. Wep 4 pseudogap behavior and a chemical potential that moves

cannot go to low-enough temperature to see if all cases away
from half filling result in the7?/3 limit, but asw, is made
small enough our temperature window is large enough to see
that effect. Hence there is a lowdownturn to£ far enough
off of half filling. Second, at high temperaturg, continues

to have doping dependence and approaches a constant value.

Finally, the values of the thermoelectric figure of merit are
enhanced at moderate temperature for lwywand become
larger than 1 over a small range Bfasw, is made smaller,
the peak irZ T increases in magnitude and moves to lower

We plot the relaxation time and interacting DOS for the
caseU=2 in Fig. 7. Now all dopings have well-defined
“gap regions,” but the size of the “gap” is still relatively
small and the chemical potential is placed asymmetrically in
what we would call by eye the “gap region” of the DOS.
Note that the effective relaxation time is quartic at low fre-
quency for all fillings here.

The transport coefficients are plotted in Fig. 8 fd=2.
Both the electrical and thermal conductivities behave as ex-
pected, with exponentially small values at Iow(but the
“gap” decreases a®/, decreases, so the exponent is doping
dependent The thermopower now has a visible low-
temperature peak. The peak height moves out to largerd

R

ZT

50
40
30
20
10

0.5

0
0

e 4 — = == — =

0.5 1 15
Temperature T [t*]

2

FIG. 9. (a) Lorenz number an¢b) thermoelectric figure of merit

the peak broadens &sis increased and as; is decreased. for the Falicov-Kimball model aV=2, p,=1—w;,, andw;=0.5
We expect this will have a significant impact @ . (solid), 0.4 (dashed, 0.3 (chain-dotted, 0.2 (dotted, and 0.1
The Lorenz number becomes huget does not appear to (chain-triple-dottefl
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FIG. 10. Blowup of the low-temperature region for the thermo- FIG. 11. (a) dc conductivity,(b) thermopower, an¢c) electronic

electric figure of merit with(@ U=3 and(b) U=2. The curves  qyibytion to the thermal conductivity for the Falicov-Kimball
correspond tav, = 0.4625(solid), 0.4 (dashegl 0.3 (chain-dotteg] model atU=1, w;=0.2, andp,+w,=0.8 (solid), 0.9 (dashe

0.2 (dotted, and 0.1(chain-triple-dottey} the w;=0.4625 case is 1.0 (chain-dotted} 1.05(dotted, and 1.1(chain-triple-dottey
only shown in pane(a). Note how the peak can be pushed to very

low T and to reasonably high values whérns tuned to lie closer to
the criticalU of the metal-insulator transition. The peak generically
moves to higheiT, increases in magnitude, and broadensJais
increased.

elusive, even if we neglect the lattice contribution to the
thermal conductivity.

We conclude our presentation of results by showing what
happens when the system is forced to be metallic by pushing
the electronic chemical potential away from the “gap re-
sharply away from the point where the DOS vanishes at figion.” We start with the strongly correlated metal lat=1
nite T. Nevertheless, the peak is rather Striking and doeﬁnd w;=0.2, but we vary the total concentration to be 0.8
show thatZT>1 is possible at low temperature in an all (solid), 0.9 (dashed, 1.0 (chain-dotted] 1.05 (dotted, and
electronic system. Since the electronic contribution to thel.1 (chain-triple-dottesl The relaxation time and the inter-
thermal conductivity exponentially decreases at low tem-acting density of states can be read off of ¥ine=0.2 curves
perature, while the lattice contribution decreases as a cubio Fig. 1, with the only change an overall shift of the origin
power law(when one is well below the Debye eneygwe  for the different electronic fillings. The transport coefficients
expect that at very low temperatures the thermal conductivityre plotted in Fig. 11. As expected, the system is least con-
will be dominated by a lattice contribution, and if this con- ductive when the filling is equal to (corresponding to the
tribution is significantly larger than the electronic contribu- chemical potential at the “kink” in the interacting DQSThe
tion, then the lowF peak inZT must go away. thermopower is enhanced as we approach a total filling of 1

We blow up theZT plots for the low-temperature region from below.
in Fig. 10. Note how one can find a sharp peak with an The Lorenz number and thermoelectric figure of merit are
enhancedZT at low temperature when one is close to theplotted in Fig. 12. Note how the peak in the Lorenz number
metal-insulator transition. A is increased, the magnitude only occurs for total fillings larger than about 0.85, and how
of the peak increases and broadens, but it is pushed to high#rgets larger and moves to higher temperature as the elec-
values of temperature. We expect that the lattice contributiotronic filling increases. This has an obvious effecton we
to the thermal conductivity may significantly reduce thisfind ZT is enhanced as the total filling approaches 1 from
peak, or may even destroy it, but in both cases, the thermdielow. The magnitude of the enhancement can be significant
conductivity at the lowF peak (T~0.01) is about 10* the  (over 50% and since these metallic systems are more con-
value at room temperaturd £0.05) and perhaps the lattice ductive, the electronic contribution to the thermal conductiv-
thermal conductivity could be low enough such that it wouldity can be larger than the lattice contribution over a wider
not significantly interfere with the peak. Note further that atrange ofT. Note also that the sign change $wat low tem-

a given value ofU we seem to be able to push the peak toperature for fillings of 1 and 1.05 greatly reduc& at low
lower temperature and larger magnitude simply by shiftingtemperature as expected. Still, we do not find>1 for
w; closer to 0.5. It seems like one could get these peakhese metallic cases.

values to be as large as desired and to occur at any tempera- Finally, we examine a strongly correlated insulator with
ture, but our series of calculations show that finding larged=3 andw;=0.2. We do not plot the relaxation time and
regions of temperature whe#&T>1 at low temperature is DOS here, because it is similar to what is seender 2, but
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FIG. 12. (@) Lorenz number andb) thermoelectric figure of FIG. 14. (a) Lorenz number andb) thermoelectric figure of

merit for the Falicov-Kimball model atV=1, w;=0.2, andp, merit for the Falicov-Kimball model a=3, w;=0.2, andp,
+w;=0.8 (solid), 0.9 (dashed, 1.0 (chain-dottegi 1.05 (dotted, +w;=0.8 (solid), 0.9 (dasheg 1.0 (chain-dottegl 1.05 (dotted,
and 1.1(chain-triple-dotteyl and 1.1(chain-triple-dottedl

less than 1 and “gapped” behavior for the insulator. The

with a somewhat larger “gap region.” The transport coeffi- A . : -~
cients are plotted in Fig. 13. Here we see a marked diﬁerem}%ermopower has quite interesting behavior. For fillings less

between the metallic cases, with total filling not equal to 1"an 1, we see a dramatic enhancement in the low-

and the insulating case where it equals 1. In particular, the d ”mperat)ure triermopowerr] ashwe approacﬂ the |n§ulatﬁr. For
conductivity rises a3 decreases, as expected for a metal, bu lllings above 1, we see the thermopower has a sign change.

it is exponentially suppressed in the insulator. The thermaf 1S SIgn change is easy to understand. When the total filling
conductivity is similar, with well-developed linear regimes €S In the range between 1 and 1.1, the electronic chemical

for the metallic systemghat are better defined for fillings Potential lies in the lower half of the upper Hubbard band at
low temperature. Hence at loWw, the thermopower should

appear to be electronlikhegative. But asT is increased,
the influence of the gap becomes smaller, and the system
looks overall holelike because the chemical potential is in the
top part of the overall “band structure.” The crossover tem-
perature should be of the order of the size of the “gap re-
gion.” In addition to this sign change, we see a large en-
hancement of the high-temperature thermopower as the
filling increases. This is also expected because the chemical
potential is moving higher and higher in the band.
We end with the Lorenz number and thermoelectric figure
of merit forU=3 andw;=0.2 in Fig. 14. The behavior here
is also quite interesting. The Lorenz number is monotonic for
total filling less than 1, but then shows a large peak at a
0.2 . filing of 1. When the filling increases further, it develops a
=il = lower-temperature dip below a higher-temperature peak. This
0.1 o pemn Rt I - low-temperature dip can be advantageous to thermoelectric
L/, (C) _ properties, but unfortunately the thermopower is too low
A N B (since it passes through zgria this region to create a large
0 0.5 1 1.5 2 ZT (note that the dip inC could have useful applications for
Temperature T [t*] conducting electricity without conducting as much heat as in
a conventional metal Nevertheless, we do see interesting
FIG. 13. (a) dc conductivity,(b) thermopower, ancc) electronic ~ phenomena in th&T curves as well. As we approach a total
contribution to the thermal conductivity for the Falicov-Kimball filling of 1, the low-temperature peak gets pushed closer to
model atU=3, w;=0.2, andp.+w;=0.8 (solid), 0.9 (dashedl T=0, and it remains at a fairly high value, above 1, then it
1.0 (chain-dotteq, 1.05(dotted, and 1.1(chain-triple-dotteyl separates into a low-temperature peak and a higher-
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temperature peak, with the low-temperature peak eventualljeterostructure will also reduce the lattice thermal conduc-
disappearing and the high-temperature peak being pushewity, it is possible that the low-temperature peak could be
out to very high temperatures. The behavior here is quiteealized, but it is likely to require a careful tuning of the
complex. correlation gap, and the thicknesses of the metallic and cor-
related layers of the heterostructure. One also has to be able
IV. CONCLUSIONS to maintain the correlated behavior within the thin layers of
) . the heterostructure.

We have examined the thermal transport properties of the apother potential way to create states within the gap is
Falicov-Kimball model in a binary-alloy picture. By fixing simply via a thermal rearrangement of the DOS within the
the ion concentration as a function of temperature, we force |k system asT increases. In the Falicov-Kimball model,
the renormalized energy level of the localized particles to ligg interacting DOS iF independent, but in other correlated
at the chemical potential a—0, which is believed to be gystemgsuch as the Hubbard or periodic Anderson models
advantageous for thermal transport. Indeed, we find signifithe correlated DOS does dependTorit would be interesting
cant regions of parameter space WiZii>1 at moderate o see if the creation of an exponentially small DOS via
temperature, and in the correlated insulators we also find gyermal activation could allow for a peak in the low-
small region of parameter space WiT>1 at low tempera-  temperature thermoelectric figure of mehtt this cannot be
ture. Our calculations neglect the lattice contribution to thestdied with the Falicov-Kimball model or particle-hole
thermal conductivity, which should have a limited effect on symmetric versions of the Hubbard modeNote, however,
the moderate temperatgre galculations, but can destroy thgat having a nonzero “subgap” DOS is only a necessary but
low-temperature peaks iAT if the lattice thermal conduc- not sufficient requirement for the low-temperature peak in
tivity is too big. ZT.

We showed that generically, in a correlated insulagr, The situation at moderate temperature is much more
approaches a constant or vanishes'as0 andL—x asT  promising. We find that generically the thermoelectric figure
—0. Our analysis for the thermopower emphasized a relapf merit has a peak at intermediate value§ ¢fvhich can be
tionship betweert and the temperature dependence of theyery high temperatures t# is of the order of 0.5 e)/ with
chemical potential, which appears to be general for systemg potentially large magnitude. We found that the figure of
that display a true gapunder the assumption that{®)  merit usually improved when the electronic filling was
= 7opint(®)]. The generic dependences $fand £ at low  pyshed higher in the band, and that there was no magical
temperature imply that the generic thermoelectric figure oheed to tune the electronic chemical potential to lie in the
merit would be small at low temperature. But in the infinite- gap region; rather the enhancement was generic in correlated
dimensional hypercubic lattice, the noninteracting DOS is &ystems.

Gaussian, which implies that the system really possesses a e finally note that our scattering time(w) is never
pseudogap in the correlated insulator, with the interacting|ose in appearance to & function in this system. It can
DOS exponentially small in the “gap region.” This has a gevelop large asymmetry with a large peak lying at one side
significant effect on the thermal transport because the relaxgf the chemical potential, but the peak width is always large,
ation time is not exponentially small within the “gap region” anq determined by the effective bandwidth of the conduction
and, in particular, it can produce a low-temperature peak t@|ectrons. This is, of course, because we have no hybridiza-
ZT that moves to lower temperature ag approaches 0.5 tjon in this model, which precludes the appearance of a sharp
and asU is tuned to lie closer to the metal-insulator transi- aAprikosov-Suhl resonance in the DOS and the similar forma-
tion. If we took the hopping energy scafé to be of the  tjon of such a structure in(w). It would be interesting to
order of 0.5 eV, then the low-temperature peakZifi can  see how the situation could change if hybridization was in-

easily occur below 50 Ksee Fig. 10 where the peak in panel cluded, but this requires significantly more sophisticated nu-
(b) lies at aboufT=0.01]. The key issue is whether or not merical efforts.

the lattice thermal conductivity would wash out this effect.

One question to ask, then, is can one find a way to intro-
duce an e>_<ponent|ally small DOS into tha gap region of a ACKNOWLEDGMENTS
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