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Optimizing thermal transport in the Falicov-Kimball model: The binary-alloy picture
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We analyze the thermal transport properties of the Falicov-Kimball model concentrating on locating regions
of parameter space where the thermoelectric figure of meritZT is large. We focus on high temperature for
power generation applications and low temperature for cooling applications. We constrain the static particles
~ions! to have a fixed concentration, and vary the conduction electron concentration as in the binary-alloy
picture of the Falicov-Kimball model. We find a large region of parameter space withZT.1 at high tempera-
ture and we find a small region of parameter space withZT.1 at low temperature for correlated systems, but
we believe inclusion of the lattice thermal conductivity will greatly reduce the low-temperature figure of merit.
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I. INTRODUCTION

There has been a recent resurgence of interest in s
state devices for thermoelectric applications1 ~power genera-
tion or cooling!. One area of concentration is the investig
tion of strongly correlated materials, which may prove
have better performance at low temperature than the cur
generation of semiconductor-based devices. The two m
areas of application for thermoelectrics are in power gen
tion from the Peltier effect,2 where heat energy is converte
into electricity, and in thermoelectric cooling, where an ele
trical current is driven through a device to force heat to mo
from the cold to the hot end. Power generation applicati
typically operate at temperatures higher than 600 K, with
heat source being a radioactive material~for applications in
the space industry! or a combustion source. Thermoelectr
coolers usually operate around room temperature, and
semiconductor-based devices do not function below ab
200 K. Currently, thermoelectric devices fit niche marke
where reliability, size, or weight are more important th
efficiency. The coolers usually operate with relatively lo
heat loads because of their poor efficiency.

The efficiency of a thermoelectric device is a function
the dimensionless product of a material parameter denotZ
with the average temperatureT ~between the hot and col
heat sources of the device! and is calledZT ~thermoelectric
figure of merit!. It satisfies

ZT5
TsdcS

2

ke1k l
, ~1!

and the termsdcS
2 in the numerator is often called th

power factor. Heresdc is the dc electrical conductivity,S is
the Seebeck coefficient3 ~thermopower!, T is the temperature
ke is the electronic contribution to the thermal conductivi
andk l is the lattice contribution to the thermal conductivi
~we are assuming the electron-phonon interaction is sm
enough such that these two effects can be decoupled!. It is
commonly stated thatZT.1 is needed for operation of the
moelectric devices, but this is not necessarily true.4 For ex-
ample, if we consider a thermoelectric cooler operating
300 K and with 50 K of cooling, then one can operate suc
0163-1829/2003/68~19!/195120~12!/$20.00 68 1951
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device forZT.0.7, but one would needZT'4 to achieve
the coefficient of performance of a conventional compress
based refrigerator~which lies in the 1.2–1.4 range!. Never-
theless, most commercial thermoelectric devices haveZT
near 1 because few bulk materials have been discovered
much larger values at ambient pressure. Of course, the
significant interest in increasingZT to 4 at room temperature
~to be competitive with conventional coolant-based techn
ogy! or to above 1 at low temperature to allow for ne
applications such as solid-state coolers for superconduc
electronics or infrared detectors.

Although there are no fundamental thermodynam
limitations5 to the size ofZT, it has proved to be quite dif-
ficult to find bulk materials at ambient pressure withZT
@1 over a wide temperature range and to find much lar
values ofZT ~sayZT.3 except for electron-crystal-phonon
glass work with nanostructures6!. Recently, Rontani and
Sham7 proposed that heterostructures of correlated semic
ductors and metals could have dramatically large values
ZT at low temperature. Their idea was that if one tuned
large electronic density of states~DOS! of the f electrons to
lie close to the Fermi level, then one could produce hu
values ofZT ~earlier work proposed similar ideas as well8!.
Mahan and Sofo9 also argued in the same vein for optimiz
tion in bulk materials in 1996. But so far, no one has be
able to demonstrate that such large values ofZT are possible
in a true many-body system~and are not the artifact of som
approximations employed in the analysis!. We examine this
problem in detail for the Falicov-Kimball model here. B
working in the limit where the ion concentration is fixed an
nonzero atT50, we have adjusted the renormalized ene
level of the ion to lie at the electronic chemical potenti
which has the potential for producing large thermoelec
responses.

Mahan and Sofo9 also proved that the figure of merit a
ways satisfies an inequality

ZT,
ke1TsdcS

2

k l
~2!

regardless of the strength of the many-body interactio
This has important implications for theorists because
©2003 The American Physical Society20-1
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purely electronic models, such as the one we investig
here,k l50, so there is noa priori limitation on the magni-
tude of ZT. But it also presents some problems for lowT
calculations, since the electronic contribution to the therm
conductivity is usually much smaller than the lattice con
bution at low temperature~especially for insulators!, and
hencepurely electronic estimates of ZT can be greatly e
hanced when the lattice effects are ignored.This becomes
less of an issue at high temperature, where the electr
contribution to the thermal conductivity can dominate.

Another interesting feature that plagues the low-T regime
is the fact that in most systemsS→0 as T→0. Since the
ratio of the conductivities often satisfies the Wiedema
Franz law

ke

sdc
5S kB

e D 2

LT, ~3!

with L the Lorenz number~equal top2/3 in a Fermi liquid
and 3 in an intrinsic semiconductor!, we haveZT→0 if S
→0 at low temperature. Similarly, ifS(T) suffers a sign
change at anyT, thenZT will be quite low in the vicinity of
the sign change.

The Falicov-Kimball model10 appears to be able to de
scribe an increasing number of materials and systems.
example that fits within the binary-alloy picture is tantalu
deficient tantalum nitride11 TaxN. This material is metallic
when x51 but becomes a fairly large-gap insulator~about
1.5 eV! whenx50.6. If we let theA ion denote a unit cell
with a Ta atom and aB ion denote a unit cell with no Ta
atom, thenU is the difference in site energies for the tw
configurations. The total conduction-electron concentrat
also depends on the Ta vacancies, as each vacancy can
five electrons. It is easy to model the metal-insulator tran
tion atx50.6 by properly varying the electron concentrati
with the concentration of Ta vacancies.

In Sec. II we develop the formalism for deriving the d
conductivity, the thermopower and the thermal conductiv
We use this to determine both the Lorenz number and
figure of merit. In Sec. III we provide numerical results f
the thermal transport illustrating regimes whereZT can be-
come large and describing the physical principles that d
such enhancements. In addition, we describe in detail
situation behind a large figure of merit at lowT and whether
achieving such a goal is feasible. Conclusions are prese
in Sec. IV.

II. FORMALISM FOR THE THERMAL TRANSPORT

The Hamiltonian we study is the spinless Falicov-Kimb
model10 with a canonical-binary-alloy picture,

H52
t*

2Ad
(
^ i , j &

ci
†cj1U(

i
wici

†ci , ~4!

whereci
† (ci) is the electron creation~annihilation! operator

for a spinless electron at sitei ~spin can be included trivially
if desired by doubling allLi j defined below!, wi is a variable
that equals 0 or 1 and corresponds to the presence of anA ion
19512
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(wi51) or the presence of aB ion (wi50) at sitei, andU is
the interaction strength~difference in the site energy betwee
the A and B ions!. The hopping integral is scaled with th
spatial dimensiond so as to have a finite result in the limit12

d→`; we measure all energies in units oft* 51. We work
on a hypercubic lattice where the noninteracting density
states is a Gaussianr(e)5exp(2e2)/Apt* Vuc ~with Vuc the
volume of the unit cell!. A chemical potentialm is employed
to adjust the conduction-electron fillingre .

The Falicov-Kimball model can be solved exactly by em
ploying dynamical mean-field theory.13,14 A review that de-
scribes how to solve for Green’s function using the equat
of motion technique has recently appeared.15 Because the
self-energyS(z) has no momentum dependence, the lo
Green’s function satisfies

G~z!5E der~e!
1

z1m2S~z!2e
, ~5!

with z a complex variable. The self-energy, local Gree
function, and effective mediumG0 are related to each othe
by

G0
21~z!2G21~z!5S~z!, ~6!

and Green’s function also satisfies

G~z!5~12w1!G0~z!1w1

1

G0
21~z!2U

. ~7!

Herew1 is the average concentration of theA ions ~which is
an input parameter!. The algorithm for determining Green’
function begins with the self-energy set equal to zero. Th
Eq. ~5! is used to find the local Green’s function. The effe
tive medium is found from Eq.~6!. The new local Green’s
function is then found from Eq.~7! and the new self-energy
from Eq. ~6!. This algorithm is repeated until it converges

When these equations are solved we find a numbe
interesting results for the single-particle properties. Fi
both the interacting DOS„r int(v)52Im@G(v1 id)#/p…

and the self-energy on the real axis are independen
temperature16 whenw1 andm are fixed~all the temperature
dependence for fixedre arises from the temperature depe
dence ofm, which shifts the zero-frequency point of th
DOS!. Second, we find that the self-energy does not disp
Fermi-liquid properties unlessU50, w150 or w151
~which are all noninteracting cases!. In particular, we do find
~for small enoughU) that the imaginary part of the self
energy is quadratic inv, but the curvature has the wron
sign, and the zero-frequency value of the imaginary par
the self-energy does not go to zero asT→0 ~in fact, it re-
mains fixed for allT). Third, the real part of the self-energ
is linear~for small enoughU), but the slope has the opposi
sign of what is seen in a Fermi liquid. Finally, we see tha
U is large enough, the DOS develops a gap, and the s
energy has quite anomalous behavior~including developing
a pole!.

Transport properties are calculated within a Kub
Greenwood formalism.17 This relates the transport coeffi
0-2
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cients to correlation functions of the corresponding transp
current operators~these are equal to the bare bubbles beca
there are no vertex corrections in the large-dimensio
limit 18!. We need two current operators here—the parti
current19

j5(
q

vqcq
†cq ~8!

~where the velocity operator isvq5“qe(q), the band struc-
ture ise(q), and the Fourier transform of the creation ope
tor is cq

†5( jexp@iq•Rj #cj
†/N) and the heat current20,19

jQ5(
q

@e~q!2m#vqcq
†cq1

U

2 (
qq8

W~q2q8!

3@vq1vq8#cq
†cq8 , ~9!

whereW(q)5( jexp(2iq•Rj )wj /N.
The dc conductivity, thermopower, and electronic therm

conductivity can all be determined from relevant correlat
functions of the current operators.21 We define three transpor
coefficientsL11, L125L21, andL22. Then

sdc5e2L11, ~10!

S52
kB

ueuT
L12

L11
, ~11!

and

ke5
kB

2

T FL222
L12L21

L11
G . ~12!

~Note that the definition of theLi j coefficients adopted her
has one power ofT lesser than in our earlier work,21 and
represents the currently accepted notation.! One finds that the
electric and thermal conductivities are always positive,
the thermopower can have either sign—a positive th
mopower corresponds to holelike transport and a nega
thermopower to electronlike transport~we use the sign con
vention of Ashcroft and Mermin22!. The transport coeffi-
cients are found from the analytic continuation of the r
evant ‘‘polarization operators’’ at zero frequency whic
produces the Mott form23 for the transport coefficients
~which is usually called the Jonson-Mahan theorem,20 and
was explicitly evaluated for the Falicov-Kimball model21!:

Li j 5
s0

e2E2`

`

dvS 2
d f~v!

dv D t~v!v i 1 j 22, ~13!

with the relaxation timet(v) defined by

t~v!5F ImG~v!

ImS~v!
1222Re$@v1m2S~v!#G~v!%G /4p2,

~14!

f (v)51/@11exp(bv)#, ands05e2p2/2hdad22 on a hyper-
cubic lattice ind dimensions. Note that even though we re
resented the above form by an effective relaxation time,
above expression for the transport coefficients isexact~our
19512
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definition of theLi j coefficients is the current standard, wi
one factor ofT lesser than in earlier work20,21!.

Once the transport coefficients are known, we can de
mine the electrical and thermal conductivities and the th
mopower. In addition, we find the figure of merit satisfies

ZT5
L12

2

L11L222L12
2

~15!

when we neglectk l and the Lorenz number becomes

LS kB

e D 2

5
ke

sdcT
5S kB

e D 2 L11L222L12
2

L11
2 T2

. ~16!

Note that because2d f(v)/dv is an even function ofv,
only the even part oft(v), te(v)5@t(v)1t(2v)#/2, con-
tributes to theL11 andL22 coefficients, and only the odd pa
to(v)5@t(v)2t(2v)#/2 contributes toL12. Furthermore,
one expects on general physical grounds thatt(v)>0. In-
deed, this can be easily shown to be true by rearranging
~14! into

t~v!5E der~e!
@ ImS~v!#2/2p2

$@v1m2ReS~v!2e#21@ ImS~v!#2%2
,

~17!

which is manifestly non-negative. In addition, we see th
t(v) vanishes whenever ImS(v)50. In the case of
particle-hole symmetry, whenre5w150.5, it is easy to
show thatto(v)50, and both the thermopower and theZT
must vanish. This non-negativity oft(v) can also be em-
ployed to show the Mahan-Sofo9 bound forZT. The inequal-
ity in Eq. ~2! holds for any system that satisfies the Jons
Mahan theorem, regardless of the many-body interacti
present, as long as there is no electron-phonon coup
which precludes the separation of the thermal conductiv
into electronic and lattice pieces.

The integrals for the transport coefficients all have a
rivative of the Fermi function in them. This derivative be
comes strongly peaked aroundv50 with a width of the
order of T as T→0. In metals, we typically find that the
relaxation time can be written in the formt(v)5t01vt8
1O(v2) for small v. If we include only the first two terms
in the expansion for the relaxation time, we find that

sdc5s0t0 ,

S52
kB

ueu
p2t8T

3
,

ke5
kB

2

e2

p2s0t0T

3
~18!

to the lowest order inT. We can read off that the Loren
numberL is equal top2/3 andZT→p2t82T2/3 ~when we
neglectk l). Hence,ZT will be small in metals at low tem-
perature because the Wiedemann-Franz law fixes the rat
conductivities, and the thermopower vanishes asT→0. If
0-3
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the Wiedemann-Franz rule holds at higher temperature
well, then one needs to find a thermopower larger th
pkB /A3ueu which is equal to 156mV/K in order to have
ZT.1 in a metal. There are no known metals that ha
thermopowers larger than 125mV/K and most metals are
one to two orders of magnitude smaller,5 so the only way to
find metals that are useful for thermoelectric power gene
tion or cooling is if the Wiedemann-Franz law does not ho

The situation in an insulator is quite different. If we a
sume thatt(v)5t0r int(v) with t0 a constant, and if we
choose a generic interacting density of states that incre
like a power law atT50,

r int~v!5u~v2Eg/2!C~v2Eg/2!a1u~2v2Eg/2!

3C8~2v2Eg/2!a8 ~19!

@with u(x) the unit step function,C andC8 constants, andEg
the insulating gap#, then the behavior of the transport coef
cients differs from Eq.~18!. The starting point is to note tha
the number of holes excited in the lower band is equal to
number of electrons in the upper band, and at low temp
ture the Fermi factors can be replaced by Boltzmann fact
resulting in

E
2`

0

dvr int~v!eb(v2Dm)5E
0

`

dvr int~v!e2b(v2Dm)

~20!

with the chemical potential written asm5m01Dm(T). In
this derivation, one needs to note that the interacting DO
temperatureT is r int@v1Dm(T)# and then to shift the inte
gration variable byv→v2Dm(T). Solving for Dm(T)
yields

Dm~T!'
T

2
lnF E

2`

0

dvr int~v!exp~bv!G
2

T

2
lnF E

0

`

dvr int~v!exp~2bv!G , ~21!

with m0 the chemical potential atT50, which lies in the
middle of the insulating gap~and is chosen to be the origi
here!. Using the form for the DOS in Eq.~19! then yields

Dm~T!52
a2a8

2
T ln T1

T

2
lnFC8G~a811!

CG~a11! G . ~22!

This form for Dm(T) plays an important role in the ther
mal transport of insulators@with a relaxation time approxi-
mated well byt(v)5t0r int(v)]. Indeed, an examination o
the L11 and L12 coefficients in an insulator, withT!Eg/2,
leads immediately to

L1252L11T
dDm

dT
, ~23!

which follows by taking the derivative of Eq.~20! with re-
spect toT and using the definitions forL11 and L12 in the
low-temperature limit. IfDm(T)50, as occurs at half filling,
then we immediately see thatS50 ~as we also know mus
19512
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hold due to particle-hole symmetry!. Furthermore, ifDm(T)
depends linearly onT, the thermopower approaches a co
stant asT→0. S can diverge if the low-temperature slop
diverges@like in the case whereDm(T) depends onT with a
power law less than 1~and greater than 0!#, but it seems
unlikely that one could find a circumstance whereS will
diverge like 1/T at low temperature and maintain the co
straintDm(0)50 ~note that this argument does not hold f
disordered insulators, which have localized states, so tha
DOS does not vanish at the Fermi level24!. Hence the quali-
tative temperature dependence of the thermopower in a
related insulator can be determined by the temperature
pendence of the chemical potential~at low T). Note that the
above arguments obviously hold for intrinsic semiconduct
as long as the ansatzt(v)5t0r int(v) holds.

If we use the generic insulator DOS in Eq.~19! and the
approximation thatt(v)5t0r int(v), then we find the fol-
lowing ~lowest-order! behavior for the transport in an insu
lator:

sdc52s0t0e2bEg/2ACC8Ta1a8G~a11!G~a811!,

S52
kB

2ueu H ~a2a8!~ ln T11!1 lnF CG~a11!

C8G~a811!
G J ,

ke52s0t0e2bEg/2ACC8Ta1a8G~a11!G~a811!
kB

2

e2

Eg
2

4T
.

~24!

The Lorenz number then diverges likeL5Eg
2/4T2 at low

temperature. Note that the thermopower does not depen
T like Eg/2T which is often incorrectly quoted in the litera
ture ~it becomes a constant whena5a8 due to cancellations
in the odd integrand!.

In a correlated insulator, we must havea5a8, so the
thermopower becomes constant asT→0. This occurs be-
cause the interacting density of states develops a gap du
a large real part of the self-energy. Hence the band e
should have the same power law as that of the noninterac
system, which is determined by the Van Hove singular
and must be the same for the upper and the lower band e

Unfortunately the hypercubic lattice in large dimensio
does not behave like this generic insulator in the stro
coupling limit. This happens because the DOS never v
ishes for a finite range ofv, but rather approaches zer
exponentially for all nonzerov ~it is suppressed to zero pre
cisely at v50 and T50). Hence we need to analyze th
situation for the Gaussian DOS in more detail.

Inside the ‘‘gap region’’ of the DOS, the real part of th
self-energy is large, because the self-energy develops a
at v50 in a correlated insulator~which occurs for U
.1/A2w1(12w1) !. Similarly, the imaginary part of the
self-energy is very small. Hence, we can approximately
termine the Hilbert transformation in Eq.~5! as
0-4
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G~v!'
1

v1m2ReS~v!
1

1

2@v1m2ReS~v!#3
2 ipr@v

1m2ReS~v!#1 i ImS~v!F 1

@v1m2ReS~v!#2

1
3

2@v1m2ReS~v!#4G ~25!

by noting it has contributions from two sources:~i! the re-
gion around e50 and ~ii ! the region arounde5v1m
2ReS(v). We determine the self-energy by substituting t
asymptotic form for Green’s function into the functional r
lationship between the self-energy and Green’s function
termined by the quadratic equation of Brandt and Mielsch13

Simplifying to the lowest-order contributions, we finally d
termine that

ReS~v!'

U2w1~12w1!2
1

2

v1m2~12w1!U
~26!

and

ImS~v!

'2p
FU2w1~12w1!2

1

2G3

@v1m2~12w1!U#4
rF U2w1~12w1!2

1

2

v1m2~12w1!U
G

2p@U2w1~12w1!2 1
2 #d~v!. ~27!

Now the local self-energy of the correlated insulator ha
pole at v50, hence we learn thatm05(12w1)U for the
correlated insulator, and the interacting DOS is equal to z
at v50 ~andT50). Thed function contribution in Eq.~27!
arises from the pole in the self-energy. To lowest order,
find that the scattering time then satisfies

t~v!'
@v1m2~12w1!U#4

4p2@U2w1~12w1!2 1
2 #3

, ~28!

which is a quartic dependence on frequency in the ‘‘gap
gion’’ at T50 @sincem05(12w1)U]. This implies that for
the hypercubic lattice, the scattering time is much big
than what one would guess from the approximationt(v)
5t0r int(v) ~which would be exponentially small!.

We find that in our calculations, the iterative approach
determining Green’s function fails once the absolute value
the self-energy is less than about 10213, because the numeri
cal precision of the computer does not allow them to
determined accurately~the difficult step is to construct th
self-energy from the difference of the inverse of the lo
Green’s function and the effective medium, where numer
precision is lost!. For accurate calculations, we need to
able to push the iterative approach to the point where we
match up with the asymptotic forms given above. Unfor
nately, the generalization of Eq.~28! to include fifth- and
sixth-order terms in v1m2(12w1)U will not join
19512
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smoothly to the regime where the absolute value of the s
energy is larger than 10213 ~the generalization appears to b
accurate whenuvu,0.02@2U2w1(12w1)21#). So we need
to find an additional extrapolation regime where the ima
nary part of the self-energy is small, but the real part of
self-energy is not yet very large. It turns out that we c
develop another expansion for the ratio of the imagin
parts of Green’s function to the self-energy when the ima
nary part of the self-energy is small compared to the size
the real part of the self-energy. We calculate the second p
of t(v) directly from the real parts of the self-energy an
Green’s function generated by the iterative algorithm. W
believe that the real parts of each are determined accura
in this regime even if the imaginary parts are not. In th
case, we do find smooth behavior for the relaxation time
all v.

There is an advantage of studying the Falicov-Kimb
model over the more popular Hubbard model,25 because the
Falicov-Kimball model can be tuned to have a met
insulator transition for any value ofw1, simply by choosing
U large enough and fixingre512w1 @m05(12w1)U#.
The Hubbard model has a metal-insulator transition only
half filling, where the thermopower vanishes due to partic
hole symmetry~this can be broken by introducing multiban
Hubbard models26!. Hence we can study effects of the co
related metal-insulator transition in the Falicov-Kimba
model, which are inaccessible in the single-band Hubb
model. Since real materials typically have complicated ba
structures, one does not expect them to be particle-hole s
metric except in very special circumstances. Once again,
Falicov-Kimball model can be viewed as a more gene
metal-insulator transition for making contact with real ma
rials. The only disadvantage is that the Falicov-Kimb
model is a non-Fermi-liquid except in ‘‘noninteracting’’ lim
its ~where it is a Fermi gas!.

III. NUMERICAL RESULTS

We present results atre512w1 for three different values
of U: ~i! U51 which is a strongly correlated metal that h
a dip or kink in the interacting DOS at the Fermi level;~ii !
U51.5 which undergoes a metal-insulator transition as
function ofw1; and~iii ! U52 which is a correlated insulato
with a sizable ‘‘gap region.’’

The effective scattering time and the interacting DOS
plotted in Fig. 1. We chooseU51, re512w1, and varyw1
~0.5, 0.4, 0.3, 0.2, and 0.1!. Note how the strong correlation
create a dip in both the interacting DOS and the relaxat
time near the Fermi level. Asw1 is made smaller, the scat
tering time becomes more asymmetric in frequency, wh
should yield larger thermopowers. Note that there is resid
scattering at the Fermi energy asv→0, which should pro-
duce a finite value for the dc conductivity atT50 ~recall the
Falicov-Kimball model is not a Fermi liquid in this regime!.
It is interesting to also point out thatt(v) approaches a
nonzero constant for largeuvu. This must occur because
small number of states are very effective in carrying curr
through the system; this effect will not occur in any syste
0-5
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with a finite bandwidth and will only affect very high
temperature properties.

We plot the dc conductivity, thermopower, and electro
contribution to the thermal conductivity in Fig. 2. The d

FIG. 1. ~a! Effective (T50) scattering time and~b! interacting
DOS for the Falicov-Kimball model atU51, re512w1, andw1

50.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1
~chain-triple-dotted!. Note how botht(v) and DOS develop dips a
the Fermi level; both functions are symmetric at half fillingw1

50.5. These plots have fixed the origin at theT→0 limit of the
chemical potential.

FIG. 2. ~a! dc conductivity~in units ofs0), ~b! thermopower~in
units ofkB /ueu), and~c! electronic contribution to the thermal con
ductivity ~in units of kB

2s0 /e2) for the Falicov-Kimball model at
U51, re512w1, and w150.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-
dotted!, 0.2 ~dotted!, and 0.1~chain-triple-dotted!.
19512
conductivity is fairly flat as a function ofT over a wide
temperature range, and is enhanced, asw1 is made smaller
~and the particle-hole asymmetry is enhanced!. The ther-
mopower decreases like 1/T at high temperature, increases
w1 decreases, and then has a crossover to linear beha
below T'0.25t* . The slope of the low-temperature linea
behavior increases as the particle-hole asymmetry increa
The thermal conductivity is linearly increasing at high tem
perature, and has a characteristic linear behavior that se
below T'0.4t* ~often with a different slope than the high
temperature regime!. This behavior is typical of a metal tha
has significant scattering. Note that at low temperature
might expect the Wiedemann-Franz law to hold, while
high temperature, the Lorenz number may become cons
with T ~since the ratio of the conductivities decreases linea
with T).

The Lorenz number and thermoelectric figure of merit a
plotted in Fig. 3. Note how the Lorenz number approach
p2/3 as T→0. This follows whenevert(v)Þ0 at v50,
whenever the interacting DOS at the chemical potentia
nonzero, or if the relaxation time behaves as a power law
the temperature dependence of the chemical potential aT
→0 is slow enough. The constant value ofL at highT oc-
curs because the dc conductivity becomes flat and the e
tronic contribution to the thermal conductivity is linear
high T. What is interesting is the moderate temperature p
in L with the linear decrease toward the Fermi-liquid val
asT→0. This occurs because the system has strong sca
ing, which produces deviations from the Wiedemann-Fra
law at moderateT. What is unfortunate is that an enhanc
ment ofL leads to a reduction inZT. The peak in the figure
of merit is large and increases in magnitude asw1 decreases
mainly due to the enhancement of the thermopower. But
figure of merit rapidly decreases at lowT and indicates that

FIG. 3. ~a! Lorenz number and~b! thermoelectric figure of merit
for the Falicov-Kimball model atU51, re512w1, andw150.5
~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1
~chain-triple-dotted!.
0-6
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strongly scattering metals of this type cannot be used
thermoelectric applications at low temperature~and here the
peak value is too low to be of practical use and would like
be reduced when the lattice contribution to the thermal c
ductivity is included!.

Next we show the evolution of the relaxation time and t
interacting DOS as we move into the correlated insula
regimeU51.5. Here the self-energy develops a pole atv
50 for w1.0.333, which produces a narrow region of e
ponentially small DOS inside a ‘‘gap region,’’ but the po
disappears for small enoughw1, and the system has stron
scattering, but is still metallic asT→0. This is difficult to
see in the above figure~Fig. 4! because we are not plottin
the ‘‘gap region’’ on a logarithmic scale. We expect that t
transport properties may differ depending on the value ofw1
for U51.5, but it should not be too dramatic because
metallic phase has very strong scattering.

The transport coefficients are plotted in Fig. 5. These lo
similar to those in Fig. 2 except that now the conductiv
vanishes asT→0 for the insulating phases and the therm
conductivity approaches zero faster than linearly for the
sulators as well. In addition, we find a low-T sign change in
the thermopower. Our calculations become inaccurate aT
→0, so we cannot definitively say whether the thermopow
vanishes or is finite atT50. Furthermore, as we examin
larger values ofU we find that there is another sign change
even smallerT leading to a large positive thermopower
very low temperature~up to a value ofU'1.7) for largerU
there no longer is a sign change inS(T) but the low-
temperature peak becomes even more apparent~see theU

FIG. 4. ~a! Effective (T50) scattering time and~b! interacting
DOS for the Falicov-Kimball model atU51.5, re512w1, and
w150.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and
0.1 ~chain-triple-dotted!. Now t(v) has a quartic dependence o
frequency, and the DOS becomes exponentially small in the ‘‘
region.’’ The ‘‘gap’’ fills in for w1,0.333~which is difficult to see
in the figure!, so we expect the transport behavior to be different
small w1.
19512
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52 case below!. Our calculations are not accurate enough
investigate that region (T!0.002) in detail.

The plots of the Lorenz number and of the thermoelec
figure of merit in Fig. 6 show a number of interesting fe
tures. First, note the very large increase inL as T→0 for
cases withw1 close to 0.5. This behavior occurs at half fil
ing because this case is qualitatively different from all oth
cases at low temperature. At half filling, the chemical pote
tial is always atU/2 and has no temperature dependen

p

r

FIG. 5. ~a! dc conductivity,~b! thermopower, and~c! electronic
contribution to the thermal conductivity for the Falicov-Kimba
model atU51.5, re512w1, and w150.5 ~solid!, 0.4 ~dashed!,
0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1~chain-triple-dotted!.

FIG. 6. ~a! Lorenz number and~b! thermoelectric figure of merit
for the Falicov-Kimball model atU51.5, re512w1, and w1

50.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1
~chain-triple-dotted!.
0-7
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Hence the system always has a pseudogaplike behavio
the DOS, with it vanishing only at the Fermi level. For a
other cases, the chemical potential depends onT. Hence, at
finite T, the DOS at the chemical potential is nonzero a
only vanishes exactly atT50. This makes the low-
temperature behavior away from half filling depend de
cately on the temperature dependence of the chemical po
tial and the power-law behavior of the relaxation time. W
cannot go to low-enough temperature to see if all cases a
from half filling result in thep2/3 limit, but asw1 is made
small enough our temperature window is large enough to
that effect. Hence there is a low-T downturn toL far enough
off of half filling. Second, at high temperature,L continues
to have doping dependence and approaches a constant v
Finally, the values of the thermoelectric figure of merit a
enhanced at moderate temperature for loww1 and become
larger than 1 over a small range ofT; asw1 is made smaller,
the peak inZT increases in magnitude and moves to lowerT.

We plot the relaxation time and interacting DOS for t
caseU52 in Fig. 7. Now all dopings have well-define
‘‘gap regions,’’ but the size of the ‘‘gap’’ is still relatively
small and the chemical potential is placed asymmetrically
what we would call by eye the ‘‘gap region’’ of the DOS
Note that the effective relaxation time is quartic at low fr
quency for all fillings here.

The transport coefficients are plotted in Fig. 8 forU52.
Both the electrical and thermal conductivities behave as
pected, with exponentially small values at lowT ~but the
‘‘gap’’ decreases asw1 decreases, so the exponent is dop
dependent!. The thermopower now has a visible low
temperature peak. The peak height moves out to largerT and
the peak broadens asU is increased and asw1 is decreased
We expect this will have a significant impact onZT.

The Lorenz number becomes huge~but does not appear t

FIG. 7. ~a! Effective (T50) scattering time and~b! interacting
DOS for the Falicov-Kimball model atU52, re512w1, andw1

50.5 ~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1
~chain-triple-dotted!.
19512
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diverge! in the correlated insulator at half filling, but now
visibly has the low-T peak and return top2/3 asT→0 away
from half filling ~Fig. 9!. The thermoelectric figure of meri
has a sharp peak at low temperature, whose width and p
location increase with an increase ofU and a decrease ofw1.
Note that the low-T peak is associated with the sharp drop
L at low temperature, which seems to occur only when o
has pseudogap behavior and a chemical potential that m

FIG. 8. ~a! dc conductivity,~b! thermopower, and~c! electronic
contribution to the thermal conductivity for the Falicov-Kimba
model atU52, re512w1, andw150.5 ~solid!, 0.4 ~dashed!, 0.3
~chain-dotted!, 0.2 ~dotted!, and 0.1~chain-triple-dotted!. Note the
very low-temperature peak inS(T).

FIG. 9. ~a! Lorenz number and~b! thermoelectric figure of merit
for the Falicov-Kimball model atU52, re512w1, andw150.5
~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!, 0.2 ~dotted!, and 0.1
~chain-triple-dotted!.
0-8
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sharply away from the point where the DOS vanishes a
nite T. Nevertheless, the peak is rather striking and d
show thatZT.1 is possible at low temperature in an a
electronic system. Since the electronic contribution to
thermal conductivity exponentially decreases at low te
perature, while the lattice contribution decreases as a c
power law~when one is well below the Debye energy!, we
expect that at very low temperatures the thermal conducti
will be dominated by a lattice contribution, and if this co
tribution is significantly larger than the electronic contrib
tion, then the low-T peak inZT must go away.

We blow up theZT plots for the low-temperature regio
in Fig. 10. Note how one can find a sharp peak with
enhancedZT at low temperature when one is close to t
metal-insulator transition. AsU is increased, the magnitud
of the peak increases and broadens, but it is pushed to hi
values of temperature. We expect that the lattice contribu
to the thermal conductivity may significantly reduce th
peak, or may even destroy it, but in both cases, the ther
conductivity at the low-T peak (T'0.01) is about 1024 the
value at room temperature (T'0.05) and perhaps the lattic
thermal conductivity could be low enough such that it wou
not significantly interfere with the peak. Note further that
a given value ofU we seem to be able to push the peak
lower temperature and larger magnitude simply by shift
w1 closer to 0.5. It seems like one could get these p
values to be as large as desired and to occur at any tem
ture, but our series of calculations show that finding la
regions of temperature whereZT.1 at low temperature is

FIG. 10. Blowup of the low-temperature region for the therm
electric figure of merit with~a! U53 and ~b! U52. The curves
correspond tow150.4625~solid!, 0.4 ~dashed!, 0.3 ~chain-dotted!,
0.2 ~dotted!, and 0.1~chain-triple-dotted!; the w150.4625 case is
only shown in panel~a!. Note how the peak can be pushed to ve
low T and to reasonably high values whenU is tuned to lie closer to
the criticalU of the metal-insulator transition. The peak generica
moves to higherT, increases in magnitude, and broadens asU is
increased.
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elusive, even if we neglect the lattice contribution to t
thermal conductivity.

We conclude our presentation of results by showing w
happens when the system is forced to be metallic by push
the electronic chemical potential away from the ‘‘gap r
gion.’’ We start with the strongly correlated metal atU51
and w150.2, but we vary the total concentration to be 0
~solid!, 0.9 ~dashed!, 1.0 ~chain-dotted!, 1.05 ~dotted!, and
1.1 ~chain-triple-dotted!. The relaxation time and the inter
acting density of states can be read off of thew150.2 curves
in Fig. 1, with the only change an overall shift of the orig
for the different electronic fillings. The transport coefficien
are plotted in Fig. 11. As expected, the system is least c
ductive when the filling is equal to 1~corresponding to the
chemical potential at the ‘‘kink’’ in the interacting DOS!. The
thermopower is enhanced as we approach a total filling o
from below.

The Lorenz number and thermoelectric figure of merit a
plotted in Fig. 12. Note how the peak in the Lorenz numb
only occurs for total fillings larger than about 0.85, and ho
it gets larger and moves to higher temperature as the e
tronic filling increases. This has an obvious effect onZT: we
find ZT is enhanced as the total filling approaches 1 fro
below. The magnitude of the enhancement can be signific
~over 50%! and since these metallic systems are more c
ductive, the electronic contribution to the thermal conduct
ity can be larger than the lattice contribution over a wid
range ofT. Note also that the sign change inS at low tem-
perature for fillings of 1 and 1.05 greatly reduceZT at low
temperature as expected. Still, we do not findZT.1 for
these metallic cases.

Finally, we examine a strongly correlated insulator w
U53 andw150.2. We do not plot the relaxation time an
DOS here, because it is similar to what is seen forU52, but

- FIG. 11. ~a! dc conductivity,~b! thermopower, and~c! electronic
contribution to the thermal conductivity for the Falicov-Kimba
model atU51, w150.2, andre1w150.8 ~solid!, 0.9 ~dashed!,
1.0 ~chain-dotted!, 1.05 ~dotted!, and 1.1~chain-triple-dotted!.
0-9
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with a somewhat larger ‘‘gap region.’’ The transport coef
cients are plotted in Fig. 13. Here we see a marked differe
between the metallic cases, with total filling not equal to
and the insulating case where it equals 1. In particular, the
conductivity rises asT decreases, as expected for a metal,
it is exponentially suppressed in the insulator. The therm
conductivity is similar, with well-developed linear regime
for the metallic systems~that are better defined for filling

FIG. 12. ~a! Lorenz number and~b! thermoelectric figure of
merit for the Falicov-Kimball model atU51, w150.2, andre

1w150.8 ~solid!, 0.9 ~dashed!, 1.0 ~chain-dotted!, 1.05 ~dotted!,
and 1.1~chain-triple-dotted!.

FIG. 13. ~a! dc conductivity,~b! thermopower, and~c! electronic
contribution to the thermal conductivity for the Falicov-Kimba
model atU53, w150.2, andre1w150.8 ~solid!, 0.9 ~dashed!,
1.0 ~chain-dotted!, 1.05 ~dotted!, and 1.1~chain-triple-dotted!.
19512
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less than 1! and ‘‘gapped’’ behavior for the insulator. Th
thermopower has quite interesting behavior. For fillings le
than 1, we see a dramatic enhancement in the lo
temperature thermopower as we approach the insulator.
fillings above 1, we see the thermopower has a sign cha
This sign change is easy to understand. When the total fil
lies in the range between 1 and 1.1, the electronic chem
potential lies in the lower half of the upper Hubbard band
low temperature. Hence at lowT, the thermopower should
appear to be electronlike~negative!. But asT is increased,
the influence of the gap becomes smaller, and the sys
looks overall holelike because the chemical potential is in
top part of the overall ‘‘band structure.’’ The crossover tem
perature should be of the order of the size of the ‘‘gap
gion.’’ In addition to this sign change, we see a large e
hancement of the high-temperature thermopower as
filling increases. This is also expected because the chem
potential is moving higher and higher in the band.

We end with the Lorenz number and thermoelectric figu
of merit for U53 andw150.2 in Fig. 14. The behavior her
is also quite interesting. The Lorenz number is monotonic
total filling less than 1, but then shows a large peak a
filling of 1. When the filling increases further, it develops
lower-temperature dip below a higher-temperature peak. T
low-temperature dip can be advantageous to thermoele
properties, but unfortunately the thermopower is too lo
~since it passes through zero! in this region to create a larg
ZT ~note that the dip inL could have useful applications fo
conducting electricity without conducting as much heat as
a conventional metal!. Nevertheless, we do see interesti
phenomena in theZT curves as well. As we approach a tot
filling of 1, the low-temperature peak gets pushed close
T50, and it remains at a fairly high value, above 1; then
separates into a low-temperature peak and a hig

FIG. 14. ~a! Lorenz number and~b! thermoelectric figure of
merit for the Falicov-Kimball model atU53, w150.2, andre

1w150.8 ~solid!, 0.9 ~dashed!, 1.0 ~chain-dotted!, 1.05 ~dotted!,
and 1.1~chain-triple-dotted!.
0-10
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temperature peak, with the low-temperature peak eventu
disappearing and the high-temperature peak being pu
out to very high temperatures. The behavior here is q
complex.

IV. CONCLUSIONS

We have examined the thermal transport properties of
Falicov-Kimball model in a binary-alloy picture. By fixing
the ion concentration as a function of temperature, we fo
the renormalized energy level of the localized particles to
at the chemical potential asT→0, which is believed to be
advantageous for thermal transport. Indeed, we find sig
cant regions of parameter space withZT.1 at moderate
temperature, and in the correlated insulators we also fin
small region of parameter space withZT.1 at low tempera-
ture. Our calculations neglect the lattice contribution to
thermal conductivity, which should have a limited effect
the moderate temperature calculations, but can destroy
low-temperature peaks inZT if the lattice thermal conduc
tivity is too big.

We showed that generically, in a correlated insulatorS
approaches a constant or vanishes asT→0 andL→` asT
→0. Our analysis for the thermopower emphasized a r
tionship betweenS and the temperature dependence of
chemical potential, which appears to be general for syst
that display a true gap@under the assumption thatt(v)
5t0r int(v)]. The generic dependences ofS and L at low
temperature imply that the generic thermoelectric figure
merit would be small at low temperature. But in the infinit
dimensional hypercubic lattice, the noninteracting DOS i
Gaussian, which implies that the system really possess
pseudogap in the correlated insulator, with the interact
DOS exponentially small in the ‘‘gap region.’’ This has
significant effect on the thermal transport because the re
ation time is not exponentially small within the ‘‘gap region
and, in particular, it can produce a low-temperature peak
ZT that moves to lower temperature asw1 approaches 0.5
and asU is tuned to lie closer to the metal-insulator tran
tion. If we took the hopping energy scalet* to be of the
order of 0.5 eV, then the low-temperature peak inZT can
easily occur below 50 K@see Fig. 10 where the peak in pan
~b! lies at aboutT50.01]. The key issue is whether or n
the lattice thermal conductivity would wash out this effec

One question to ask, then, is can one find a way to in
duce an exponentially small DOS into the gap region o
correlated insulator~if they do not appear in the bulk sys
tem!? The answer is yes, and it can be done by crea
heterostructures of the correlated material and metals.
metallic DOS will ‘‘leak’’ into the correlated insulator, with a
characteristic length scale, and create small subgap D
within the system. Hence we believe the heterostructure
of Mao and Bedell8 or Rontani and Sham7 can indeed allow
one to get large peaks in the low-temperature figure of m
~if the exponentially small DOS also leads to a much lar
‘‘effective’’ scattering time which is not obvious!. Since a
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heterostructure will also reduce the lattice thermal cond
tivity, it is possible that the low-temperature peak could
realized, but it is likely to require a careful tuning of th
correlation gap, and the thicknesses of the metallic and
related layers of the heterostructure. One also has to be
to maintain the correlated behavior within the thin layers
the heterostructure.

Another potential way to create states within the gap
simply via a thermal rearrangement of the DOS within t
bulk system asT increases. In the Falicov-Kimball mode
the interacting DOS isT independent, but in other correlate
systems~such as the Hubbard or periodic Anderson mode!
the correlated DOS does depend onT. It would be interesting
to see if the creation of an exponentially small DOS v
thermal activation could allow for a peak in the low
temperature thermoelectric figure of merit~but this cannot be
studied with the Falicov-Kimball model or particle-ho
symmetric versions of the Hubbard model!. Note, however,
that having a nonzero ‘‘subgap’’ DOS is only a necessary
not sufficient requirement for the low-temperature peak
ZT.

The situation at moderate temperature is much m
promising. We find that generically the thermoelectric figu
of merit has a peak at intermediate values ofT ~which can be
very high temperatures ift* is of the order of 0.5 eV!, with
a potentially large magnitude. We found that the figure
merit usually improved when the electronic filling wa
pushed higher in the band, and that there was no mag
need to tune the electronic chemical potential to lie in
gap region; rather the enhancement was generic in correl
systems.

We finally note that our scattering timet(v) is never
close in appearance to ad function in this system. It can
develop large asymmetry with a large peak lying at one s
of the chemical potential, but the peak width is always lar
and determined by the effective bandwidth of the conduct
electrons. This is, of course, because we have no hybrid
tion in this model, which precludes the appearance of a sh
Abrikosov-Suhl resonance in the DOS and the similar form
tion of such a structure int(v). It would be interesting to
see how the situation could change if hybridization was
cluded, but this requires significantly more sophisticated
merical efforts.
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