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Many-body aspects of positron annihilation in the electron gas

V. Apaja, S. Denk, and E. Krotscheck
Institut für Theoretische Physik, Johannes Kepler Universita¨t, A 4040 Linz, Austria

~Received 2 April 2003; published 24 November 2003!

We investigate positron annihilation in the electron gas as a case study for many-body theory, in particular,
the Fermi-hypernetted-chain Euler-Lagrange~FHNC-EL! method. We examine several approximation schemes
and show that one has to go up to the most sophisticated implementation of the theory available at the moment
in order to get annihilation rates that agree reasonably well with experimental data. Even though there is
basically just one number we look at, namely, the electron-positron pair-distribution function at zero distance,
it is exactly this number that dictates how the full pair distribution behaves: in most cases, it falls off monoto-
nously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a
dip are precursors to the formation of bound electron-positron pairs. The formation of electron-positron pairs
is indicated by a divergence of the FHNC-EL equations; from this we can estimate the density regime where
positrons must be localized. This occurs in our calculations in the range 9.4<r s<10, wherer s is the dimen-
sionless density parameter of the electron liquid.

DOI: 10.1103/PhysRevB.68.195118 PACS number~s!: 78.70.Bj, 71.10.Ca
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I. INTRODUCTION

The process of electron-positron annihilation has b
studied intensively for several decades. In recent years
itron annihilation spectroscopy has been routinely used
studying the electronic structures of solids. As far as
two-body process is concerned, the appropriate theore
framework is quantum electrodynamics. Differential cro
sections and annihilation rates have been examined for
particle systems such as positronium in much detail, and
be found in standard textbooks.1,2 Coincidence measure
ments ofg emission give the angular correlation of annih
lation radiation, which yields information about the electr
momenta. As the recent discovery of the electronically sta
bound positron-Li state showed,3 positrons in contact with
neutral atoms can also be an interesting few-body syst
Since then the list of atoms binding positrons has beco
long; the underlying calculations are usually performed us
either the stochastic variational method or the configurati
interaction method.

Annihilation of positrons in matter adds a many-body a
pect to the problem. The experimental annihilation rates
by now well established, we shall compare our results w
the data measured by Weisberg and Berko4 for alkali metals.
In his pioneering work, Ferrell5 gives intuitive formulas for
the annihilation rates. The simplest ‘‘many-body’’ metho
use single-particle wave functions; in this case, the only t
many-body effect is the Pauli exclusion principle acting b
tween electrons, butmany-body correlationsbetween the in-
teracting particles arenot taken into account. Qualitatively
correlations can be introduced by applying enhancement
tors as described by Brandt.6 A popular method for electron
structure calculations and, potentially, also for positr
systems7 is density-functional theory~DFT!. In particular,
there are numerous applications of DFT to defects in sol
In DFT one can write the annihilation rate in terms of t
electron and positron densities, and an enhancement fa8

to account for the excess electron density near the posit
in other words, to describe electron-positron correlations
0163-1829/2003/68~19!/195118~12!/$20.00 68 1951
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The enhancement factor has been the subject of m
recent studies.9–11 Once the enhancement factor is know
one can apply standard DFT under various approxim
schemes, such as the local-density approximation~LDA !,
generalized gradient approximation, or the weighted den
approximation. One can then also evaluate the partial a
hilation rates due to valence and core electrons. The den
functionals are derived from known properties of electr
gas or electron-positron mixtures, and their quality has b
tested only in the case of a positron-neutral atom bou
system.11 So far there have not been many attempts to f
mulate a microscopic many-body theory that deals with
inhomogeneouselectron gas. The first move in this directio
was made by Stachowiak and Boron´ski,12 who studied the
case of a spherical inhomogeneity in jellium.

Most of the many-body aspects of positron annihilati
rates are reflected in a single number, namely, the valu
the electron-positron distribution function,gIB(r ), at the ori-
gin. @As a convention, we shall label all two-body quantiti
that involve one positron~‘‘impurity’’ ! and one electron
~‘‘background’’! with a superscript IB.# The annihilation rate
of a positron inhomogeneouselectron gas can be written i
the form13

1

t
5

12

r s
3 gIB~0!3109 sec21, ~1.1!

wherer s is the familiar dimensionless density parameter
the electron gas. Ther s factor in formula~1.1! is merely a
geometric factor that takes into account the decreasing p
ability of finding an electron at the locations of the positr
due to decreasing electron density. The ‘‘enhancement
tor’’ gIB(0) accounts for electron-positron correlation
These can be strong in a metal, hencegIB(0) can be large.
The positron impurity is delocalized at lowr s and cannot
give rise to any appreciable local enhancement of the e
tron density. Instead, there is an increased probability
finding an electron near the positron: this tendency is visi
only in the pair correlations, not in the density. This expla
©2003 The American Physical Society18-1
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why annihilation rates computed using a homogeneous e
tron gas agree well with the experimental data up tor s;5.
On the other hand, the electron-density enhancement aro
a localized positron can be included, for example, in
spirit of LDA in DFT, where the electron-positron distribu
tion function computed for the homogeneous case is mu
plied with the spatially varying electron density.14–16

The calculation ofgIB(r ) is a matter of many-body phys
ics, and the problem of determininggIB(0) is evidently an
issue of short-rangedcorrelations. Quite appropriately,
was dealt with within the perturbation theory by solving t
electron-positron Bethe-Goldstone equation.8 Brown and
co-workers17,18 have also examined short-ranged electro
electron correlations in a Bethe-Goldstone theory a
pointed out the possibility of electron-positron pair formati
at low electron densities~large r s). The theory of positron
annihilation has been developed further by Boron´ski, Szotek,
and Stachowiak19 and Rubaszek and Stachowiak,20,21 and it
appears to be able to reproduce the observed annihila
rates in simple metals.

With the advent of highly resummed variational tec
niques, known as Fermi hypernetted chain22,23 ~FHNC! and
the optimization of the correlations24,25 by solving Euler-
Lagrange equations~FHNC-EL!, a new generation of calcu
lations containing vastly richer diagrammatic structures th
Bethe-Goldstone calculations was possible. As a physic
relevant paradigm for a fermion mixture and electron-h
liquids, positronic impurities and electron-positron mixtur
have been studied quite extensively. Kallio, Pietila¨inen, and
Lantto26,27 used the so-called ‘‘quasiboson’’ approximatio
for the wave function of the electronic background, whi
maps the formalism to an effective boson theory. Closes
our approach are the calculations by Lantto28 and Saarela.29

Compared with the former one, the present work has an
proved diagrammatic summation and, in particular, a m
consistent treatment of the antisymmetry of the wave fu
tion. Lantto28 employs a simplified version of the Euler equ
tion which corresponds to our FHNC//0 approximation to
discussed in Sec. IV A, but the energy and the structure fu
tions are evaluated in the FHNC/0 approximation23 and thus
violates identities~2.14!, ~2.24!, and ~3.6!. Saarela29 modi-
fied the Euler-Lagrange equation of the pair-distributi
function of a chargedBose system by adding anad hoc
electron-electron potential, such that the equation reprodu
the exact free-fermion distribution in the limit of infinite den
sity. Although oversimplified and phenomenological, this a
proach givesgIB(0) close to the values obtained by Stacho
iak and Lach30 and Boron´ski and Nieminen.14 Stachowiak
et al. have used the HNC theory in combination with
Hartree-Fock-type approximation and a self-consistent p
turbation of a Jastrow state.31–35

The present work should be considered as an exercis
basic microscopic many-body techniques. We shall first o
line the most complete version of the optimized FHNC-E
theory.24 We will pay special attention to the full functiona
optimization of correlation functions, which removes all am
biguity from the optimization process. The technical deta
of our theory for a one-component electron system are
scribed in Ref. 24, a more recent application to3He, which
19511
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includes the optimization of triplet correlations and the c
culation of proper elementary diagrams, may be found
Ref. 36. We have also recently examined a completely an
gous problem in helium liquids, namely, the calculation
properties of4He impurities in3He.37 We shall then discuss
the impurity theory and derive the relevant Euler equatio
In the following sections, we will lead the reader through
sequence of plausible approximations in order to determ
what does it take to get the physics right. We will show th
the very simple approximation of a mixture of charg
bosons gives a reasonably good agreement with experime
data. However, a bosonic theory is unsatisfactoryper se, but
it turns out that the first fermionic corrections make thin
worse and the agreement is lost. Finally, we will show th
only the full fermion theory produces results which agr
again with experimental data.

II. OPTIMIZED FERMI-HYPERNETTED-CHAIN
METHOD

A. Variational wave function

This section gives a brief survey of the variational theo
of a bulk Fermi liquid; the reader is referred to Refs. 24 a
36 for details of the theory and the diagrammatic definiti
of all technical quantities. Since no confusion can arise
the time being, we will in this section not spell out the pa
ticle species.

The Jastrow-Feenberg theory38 for a Fermi liquid assumes
a trial wave function of the form

C0~1, . . . ,N!5F~r1 , . . . ,rN!F0~1, . . . ,N!, ~2.1!

F~r1 , . . . ,rN!5exp
1

2F (
1< i , j <N

u2~r i ,r j !

1 (
1< i , j ,k<N

u3~r i ,r j ,r k!1•••G .
~2.2!

F0(1, . . . ,N) is a model wave function, normally a Slate
determinant of plane waves. Thecorrelation functions
un(r1 , . . . ,rn) are made unique by imposing thecluster
property

un~r1 , . . . ,rn!→0 as ur i2r j u→`. ~2.3!

Wave function~2.2! is not exact; one way to see this is b
realizing that the nodes of the wave function~2.2! are iden-
tical to those of the model functionF0(1, . . . ,N). In the
parlance of Monte Carlo simulations this would be called
fixed-node approximation.

B. Fermion HNC equations

Two components are essential for the execution of
Jastrow-Feenberg variational theory: The first is the deve
ment of cluster-expansion and resummation methods for
pair-distribution function in the homogeneous case,
8-2
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g~r !5
N~N21!

r2

E d3r 3•••d3r NuC0~1, . . . ,N!u2

E d3r 1•••d3r NuC0~1, . . . ,N!u2
,

~2.4!

wherer 5r 125ur12r2u; spin summations are tacitly implied
The second component of the theory is theoptimizationof
the correlation functions by minimization of the total energ

d

dun~r1 , . . . ,rn!

^C0uHuC0&q

^C0uC0&
50 ~2.5!

for the Hamiltonian

H52(
i 51

N
\2

2m
¹ i

21 (
1< i , j <N

v~ ur i2r j u!, ~2.6!

where in our casev(r )5e2/r is the Coulomb interaction.
Let us first turn to the pair-distribution functiong(r ), spe-

cifically to the FHNC equations determiningg(r ) from a
given pair-correlation functionu2(r ). Pair correlations are
the most important ones, and in the case of electrons
usually neglects triplet correlations altogether. Justificat
for this stems from the study of triplet correlations in t
two- and three-dimensional charged Bose gas39 and verified
by Monte Carlo calculations;40 note that triplet correlations
arenot the same as propagator corrections36 which have oc-
casionally been confused with the Feynman-Cohen backfl

The FHNC equations are a set of four configuration-sp
and four momentum-space equations formulated in term
‘‘nodal’’ Nij (r ) and ‘‘non-nodal’’ diagramsXij (r ) that are, in
turn, characterized by their exchange structure$ ij %
P$dd,de,ee,cc%. Input to the equations is the pair-correlatio
function u2(r ), the Slater exchange function,(x)53(sinx
2xcosx)/x3, and a set of ‘‘elementary diagrams’’Eij (r ) that
must be calculated one by one.41

The coordinate-space equations are

Gdd~r !5Xdd~r !1Ndd~r !5exp@u2~r !1Ndd~r !1Edd~r !#21,

Xde~r !5@11Gdd~r !#@Nde~r !1Ede~r !#2Nde~r !,

Xee~r !5@11Gdd~r !#F2
1

n
L2~r !1Nee~r !1Eee~r !G2Nee~r !

1@11Gdd~r !#@Nde~r !1Ede~r !#2,

Xcc~r !52
1

n
Gdd~r !L~r !1Ecc~r !, ~2.7!

where n is the degree of degeneracy of the single-parti
states, L(r )5,(kFr )2n@Ncc(r )1Ecc(r )#, and kF is the
Fermi wave number. The nodal quantitiesNij (r ) are con-
structed in momentum space according to

Ñdd~k!5
X̃dd~k!

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
2X̃dd~k!,
19511
,

ne
n

w.
e
of

e

Ñde~k!5
12X̃de~k!2X̃dd~k!

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
212X̃de~k!,

Ñee~k!5
X̃dd~k!12X̃de~k!1X̃ee~k!21

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
112X̃ee~k!,

Ñcc~k!52X̃cc~k!F l̃ ~k!/n2X̃cc~k!

12X̃cc~k!
G . ~2.8!

We have above used the convention of defining
dimensionless Fourier transform asf̃ (k)[@ f (r )#F(k)
[r*d3r f (r )eik•r.

The pair-distribution function can then be construct
from the above quantities:

g~r !5@11Gdd~r !#H 2
1

n
L2~r !1Nee~r !1Eee~r !

1@11Nde~r !1Ede~r !#2J . ~2.9!

The static structure function is equally important as the p
distribution function and has the relatively simple form

S~k!511@g~r !21#F~k!

5
11X̃ee~k!

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
. ~2.10!

For further reference, we also introduce the quantity

Sd~k!5
12X̃de~k!

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
~2.11!

and note the relationship

G̃dd~k!5
X̃dd~k!

@12X̃de~k!#22@11X̃ee~k!#X̃dd~k!
. ~2.12!

Representation~2.9! of g(r ) contains an explicit factor

11Gdd~r !5exp@u2~r !1Ndd~r !1Edd~r !#. ~2.13!

This form is therefore the natural choice when working
coordinate space and focusing on the strong short-range
relation structure. On the other hand, when we consider
static structure functionS(k), expression~2.10! is the more
useful one.

The naı¨ve implementation23,42of the FHNC equations, re
ferred to as FHNC/0 approximation, would suggest, in an
ogy to the boson theory, to start with the omission of t
elementary diagramsEij (r ) and include these, order by o
der, asquantitativeimprovements as the theory is moved
the next level. In the FHNC/n approximation one keeps
ementary diagrams up to then-point diagram. However,22

such a procedure violates the exact features
8-3
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X̃de~k!5O~k! as k→01,
~2.14!

11X̃ee~k!5SF~k!1O~k2! as k→01.

These properties originate from the Pauli principle and
particularly important for the optimization problem.25 They
imply the cancellation of elementary and nonelementary
change diagrams; in other words there exist classes of
called elementary exchange diagrams that must not be
glected. One can deal with this problem by systematica
including groups of ‘‘de’’ and ‘‘ee’’ diagrams that satisf
these identities~‘‘FHNC//n classification scheme22! or by ap-
proximately including the necessary long-wavelength corr
tions to the FHNC/n scheme~FHNC//C approximation! as
described and justified in Refs. 24 and 36.

C. Background energy calculation

The first step in deriving the Euler equations is the cal
lation of the energy functional. An important manipulation
the use of theJackson-Feenberg~JF! identity

F¹2F5 1
2 ~¹2F21F2¹2!1 1

2 F2
†“,@“, ln F#‡

2 1
4 @“,@“,F2##, ~2.15!

which shows that the expectation value of the kinetic ene
can be divided into three parts,

^T̂&5TF2
N\2r

8m E d3rg~r !¹2u2~r !1TJF. ~2.16!

HereTF is the kinetic energy of the free Fermi gas andTJF is
a kinetic energy term that is solely due to exchanges. We
write this term as

TJF[
\2

8m (
i

^F0u@“ i ,@“ i ,F2##uF0&

^F0uF2uF0&

[
\2N

8m E d3r¹,
2r1~r !. ~2.17!

With “, we mean~indicated by the subscript,) a gradient
operator that acts on the Slater determinant only. Operat
ally, Eq. ~2.17! is to be understood as follows: First, on
calculates—disregarding the fact that the density
uniform—a cluster expansion of the one-body densityr1(r ).
The operator¹,

2 then differentiatesthe exchange lines onl
that are attached, in such a cluster expansion, to the exte
point. This replaces the incoming and outgoing excha
lines ,(ur2r i ukF),(ur2r j ukF) at the reference point by
(\2/8m)¹ r

2,(ur2r i ukF),(ur2r j ukF). Finally, one takes the
limit of the uniform system and integrates over the config
ration space of the last particle.

Combining Eqs.~2.16! and ~2.17! with the potential en-
ergy provides us with the starting point for further manip
lations,

E

N
5

TF

N
1

r

2E d3rg~r !vJF~r !1
TJF

N
, ~2.18!
19511
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where

vJF~r !5v~r !2
\2

4m
¹2u2~r ! ~2.19!

is the Jackson-Feenberg effective interaction.

D. Fermion Euler equations

The formal manipulations to derive an Euler equation
the optimal pair correlations are almost identical to the o
carried out for bosons. The variation with respect to the p
correlation function consists of two terms: One comes fr
the variation with respect to the pair correlation functi
u2(r ) appearing in the Jackson-Feenberg interactionvJF(r )
and the second one is due to the variation of the p
distribution function with respect tou2(r ) and the variation
of TJF:

\2

4m
¹2g~r !5E d3r 8vJF~r 8!

dg~r 8!

du2~r !
1

2

r

d

du2~r !

TJF

N

[g8~r !. ~2.20!

The contribution from the first term on the right-hand side
Eq. ~2.20! to g8(r ) is calculated in complete analogy to th
Bose case by replacing, in turn, each correlation l
exp@u2(rij)#21 by exp@u2(rij)#vJF(r i j ). The second term is
calculated recalling the graphical construction scheme ofTJF
described above, and applying the same procedure
graphical expansion ofg(r ). Thus, the contribution tog8(r )
originating fromTJF is obtained by replacing ing(r ), in turn,
every connected pair of exchange lines,(r i j kF),(r ikkF) by
(\2/8m)¹ i

2,(r i j kF),(r ikkF). Following this construction
scheme, one derives a set of eight linear equations,
FHNC8 equations, corresponding to the eight FHNC equ
tions ~2.7! and~2.8!,24 in which the Jackson-Feenberg effe
tive potential and the differentiated exchange functions ac
driving terms.

To derive a form of the fermion Euler equations which
useful for a numerical implementation, we write the Eu
equation~2.20! in momentum space as

1
2 t~k!@S~k!21#1S8~k!50, ~2.21!

wheret(k)[\2k2/2m. S8(k) is a linear combination of the
non-nodal quantitiesX̃i j8 (k),

S8~k!5 (
i j P$dd,de,ee%

]S~k!

]Xij~k!
X̃ij8~k!, ~2.22!

where X̃ij8(k) are constructed from the non-nodal quantiti

X̃ij (k) analogous to the construction ofg8(r ) from g(r ) de-
scribed above. Next, we define three effective interaction
the dd, de, and ee channels as

Ṽdd~k!5X̃dd8 ~k!2 1
2 t~k!X̃dd~k!,

Ṽde~k!5X̃de8 ~k!, ~2.23!

Ṽee~k!5X̃ee8 ~k!1 1
2 t~k!X̃ee~k!.
8-4
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The quantityṼdd(k), defined in Eq.~2.23!, may be identified
with the ‘‘direct interaction’’ of the Babu-Brown theory43 of
the quasiparticle interaction. From Eqs.~2.14!, the effective
interactions inherit the long-wavelength properties

Ṽde~k!5O~k! as k→01,
~2.24!

Ṽee~k!5O~k2! as k→01.

Using representation~2.10! for the calculation ofS8(k)
via Eq.~2.22! and eliminatingXij8(k) in favor of Vij (k) let us
rewrite

S8~k!5S2~k!Ṽdd~k!12S~k!Sd~k!Ṽde~k!1Sd
2~k!Ṽee~k!

1 1
2 t~k!@Sd

2~k!2S~k!#. ~2.25!

Inserting this expression forS8(k) in the Euler equation
~2.21! let us expressS(k) in terms of the three effective
interactionsṼij (k).

The second step in the derivation of the Euler equatio
to eliminate the pair-correlation functionu2(r ) by using the
FHNC equation~2.7!,

2
\2

4m
@11Gdd~r !#¹2u2~r !

52
\2

4m
¹2Gdd~r !1

\2

m
u“A11Gdd~r !u2

1
\2

4m
@11Gdd~r !#@¹2Ndd~r !1¹2Edd~r !#.

~2.26!

Using Eq.~2.26!, one can rewrite the effective interaction
Vij (r ) in coordinate space entirely in terms of the distributi
functions, the yet unspecified sets of elementary diagra
Eij (r ) and their ‘‘primed’’ counterpartsEij8(r ). The resulting
equations are lengthy and not very illuminating; they ha
been spelled out in Refs. 24 and 36. For the purpose
comparison with the impurity results, we display the coor
nate space form of the direct interaction

Vdd~r !5@11Gdd~r !#Fv~r !1
\2

4m
¹2Edd~r !1Edd8 ~r !G

1
\2

m
u“A11Gdd~r !u21Gdd~r !wI~r !, ~2.27!

wI~r !5
\2

4m
¹2Ndd~r !1Ndd8 ~r !. ~2.28!

To calculate the effective interactionsṼij (k) @( i j )
P$dd,de,ee,cc%# @or X̃ij8(k)] and the fermion analog of the
induced potentialwI(r ), one must also calculate the prime
analogs of the nodal diagramsNij (r ). These quantities may
be found in Refs. 24 and 36; they are needed for the num
cal optimization, but we will not need them in the furth
discussion. The dd-elementary diagrams have no special
19511
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tures; their omission can cause quantitative changes in
final answer, but, unlike the de and ee elementary diagra
does not change the analytic structure and the propertie
the solutions.

III. IMPURITY CORRELATIONS

In this section, and further on, we must also spell out
particle species, which may be an electron~background par-
ticle, referred to by a superscript ‘‘B’’ ! or a positron~impu-
rity particle, referred to by a superscript ‘‘I ’’ !. It is not nec-
essary to label those quantities that were introduced in
preceding section and that refer only to background partic
We will keep the formulation general in the sense that
impurity massmI is arbitrary, as well as the interaction be
tween an impurity~positron! and a background~electron!
particle. The Hamiltonian for the full system including th
impurity is given by

HI52
\2

2mI
“0

22(
j 51

N
\2

2m
“ j

21(
j 51

N

v IB~ ur02r j u!

1 (
j ,k51
j ,k

N

v~ ur j2r ku!. ~3.1!

As a convention, the impurity particle coordinate isr0. In the
present case of a positron in an electron gas, the impu
background interactionv IB(r ) only differs in the overall sign
from the background-background interactionv(r ), which is
simply the repulsive Coulomb potential. The impurity ma
mI is equal to the background massm, but for a better insight
into the problem it is helpful to keepmI .

The formulation of the FHNC-EL equations for a sing
impurity follows essentially the same path as the formulat
of the background equations, namely,~1! define a variational
wave function

C0
IB~0,1, . . . ,N!5expF1

2 (
i 51

N

u2
IB~r0 ,r i !GC0~1, . . . ,N!;

~3.2!

~2! derive a set of FHNC equations;~3! derive the corre-
sponding Euler equation using the ‘‘prime equation’’ tec
nique; and~4! reformulate the Euler equation in terms
distribution functions, thereby eliminating any reference
the correlation functionu2

IB(r i j ).
Compared to finite-concentration mixtures, the derivat

is simplified because there are no exchanges connecte
impurity coordinates.

A. FHNC equations for one impurity

The ~F!HNC technique is well established in earlier wor
so there is no need to go through the details of the der
tions here. The aspect that distinguishes fermions fr
bosons are the combinatorial rules and long-wavelen
properties discussed above. In a mixture, exchanges can
take place between particles of the same species; this im
in the dilute limit that exchanges occur only between ba
8-5
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ground particles. Moreover, in the dilute limit of a mixtu
only oneimpurity can occur in each diagrammatic quantit

Since the impurity cannot be involved in any exchan
we have only two FHNC equations: The equations desc
ing the parallel connections between external coordinates

Gdd
IB~r !5Xdd

IB~r !1Ndd
IB~r !

5exp@u2
IB~r !1Ndd

IB~r !1Edd
IB~r !#21,

Xde
IB~r !5@11Gdd

IB~r !#@Ede
IB~r !1Nde

IB~r !#2Nde
IB~r !, ~3.3!

while the chain connections are best written in moment
space,

Ñdd
IB~k!5@Sd~k!21#X̃dd

IB~k!1G̃dd~k!X̃de
IB~k!,

Ñde
IB~k!5@S~k!2Sd~k!#X̃dd

IB~k!1@Sd~k!21

2G̃dd~k!#X̃de
IB~k!. ~3.4!

From these quantities, we can construct the impur
background distribution function

gIB~r !5@11Gdd
IB~r !#@11Nde

IB~r !1Ede
IB~r !#. ~3.5!

The long-wavelength properties corresponding to identi
~2.14! apply only for the background coordinates. Since
exchange structures ofXde

IB(r ) and Xde(r ) are the same, we
have the long-wavelength limit

X̃de
IB~k!5O~k! as k→01. ~3.6!

To abbreviate the equations, we found it convenient to de
the quantity

X̃IB~k![X̃dd
IB~k!1

Sd~k!

S~k!
X̃de

IB~k!. ~3.7!

A few relations are useful in the derivation of the resulti
equations:

SIB~k![@gIB~r !21#F~k!5S~k!X̃dd
IB~k!1Sd~k!X̃de

IB~k!

5S~k!X̃IB~k!,

G̃dd
IB~k!5Sd~k!X̃dd

IB~k!1G̃dd~k!X̃de
IB~k!

5Sd~k!X̃IB~k!2
X̃de

IB~k!

11X̃ee~k!
, ~3.8!

G̃dd~k!5
Sd

2~k!

S~k!
2

1

11X̃ee~k!
.

B. Euler equations for one impurity

For the determination of existence and stability of t
solutions of the optimization problem, it is again useful
formulate the Euler equation in momentum space; the in
sion of the appropriate classes of elementary exchange
grams always guarantees the proper short-distance beha
19511
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Useful abbreviations aret I(k)5\2k2/2mI and the Feynman
spectrum of the background,\v(k)5t(k)/S(k). The formal
Euler equation for the impurity-background correlations is44

in analogy to Eq.~2.21!,

1
4 @ t I~k!1t~k!#SIB~k!1S8IB~k!50. ~3.9!

The remaining manipulations are to carry out the primi
operation on the impurity FHNC equations and to formula
the equations in a reasonably plausible form. This can
done in many ways, and the ultimate choice of the formu
tion depends to some extent on the iteration path adopted
the numerical solution. Formally, we can define—in analo
to X̃IB(k) introduced above and to Eqs.~2.23!—

ṼIB~k![X̃ 8IB~k!2 1
4 @ t~k!1t I~k!#X̃ IB~k! ~3.10!

and rewrite the impurity Euler equation~3.9! as

X̃ IB~k!522
Ṽ IB~k!

t I~k!1\v~k!
. ~3.11!

This representation of the Euler equation is formally iden
cal to the Euler equation for impurities in Bose liquids. O
course, we still need to derive working formulas for calc
lating the quantityṼ IB(k).

C. Induced interactions

From definitions~3.10! and ~3.7!, we can write formally

Ṽ IB~k!5Ṽdd
IB~k!1

Sd~k!

S~k!
Ṽde

IB~k!1S Sd~k!

S~k! D 8
X̃de

IB~k!

5Ṽdd
IB~k!1

Sd~k!

S~k!
Ṽde

IB~k!2
X̃de

IB~k!

11X̃ee~k!
F Ṽde~k!

1
Sd~k!

S~k!
Ṽee~k!G1

t~k!

2

Sd~k!

S~k!

X̃de
IB~k!X̃ee~k!

11X̃ee~k!

~3.12!

with @note that we deviate for convenience and consiste
with definition ~3.10! slightly from definitions~2.23!#

Ṽdd
IB~k!5X̃dd8

IB~k!2 1
4 @ t I~k!1t~k!#X̃dd

IB~k!,
~3.13!

Ṽde
IB~k!5X̃de8

IB~k!2 1
4 @ t I~k!1t~k!#X̃de

IB~k!.

The calculation ofVdd
IB(r ) is identical to the one for boson

and mixtures:

Vdd
IB~r !5@11Gdd

IB~r !#@v IB~r !1DVe
IB~r !#

1F \2

2m
1

\2

2mI
G u“A11Gdd

IB~r !u2

1Gdd
IB~r !wI

IB~r ! ~3.14!

with the induced interaction
8-6
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w̃I
IB~k!5Ñ

dd

8IB
~k!2 1

4 @ t I~k!1t~k!#Ñdd
IB~k! ~3.15!

and the elementary-diagram correction

DVe
IB~r !5F \2

8m
1

\2

8mI
G¹2Edd

IB~r !1Edd8
IB~r !. ~3.16!

Finally, we need

Vde
IB~r !5Ede8

IB~r !@11Gdd
IB~r !#1Gdd8

IB~r !@Ede
IB~r !1Nde

IB~r !#

1Gdd
IB~r !Nde8

IB~r !1S \2

8mI
1

\2

8mD¹2Xde
IB~r !, ~3.17!

where the de-elementary diagrams must be chosen to g
antee the propertyṼde

IB(k)→0 ask→01, cf. Eq. ~3.6!.
For the calculation of the remaining ingredients, it is mo

convenient to start with the effective interaction of correla
basis functions theory

Ṽeff
IB~k!5G̃dd8

IB~k!2 1
4 @ t I~k!1t~k!#G̃dd

IB~k!. ~3.18!

Again, using background and impurity Euler equations, o
can write this quantity as

Ṽeff
IB~k!52

1

2 F t I~k!1
t~k!

11X̃ee~k!
G G̃dd

IB~k!

2
1

11X̃ee~k!
F Ṽde

IB~k!1SIB~k!Ṽde~k!

1G̃dd
IB~k!Ṽee~k!1

1

2
~ t I~k!1t~k!!X̃de

IB~k!G . ~3.19!

From this, we can obtain, for example, the induced inter
tion

w̃I
IB~k!5Ṽeff

IB~k!2Ṽdd
IB~k! ~3.20!

and, of course,G̃dd8
IB(k) which is needed for the de equatio

and Ñde8
IB(k) which is now easily obtained from

Ñde8
IB~k!5S8IB~k!2G̃dd8

IB~k!2X̃de8
IB~k!

52 1
4 @ t I~k!1t~k!#@SIB~k!1G̃dd

IB~k!1X̃dd
IB~k!#

2Ṽeff
IB~k!2Ṽde

IB~k!.

With this, we have derived a complete set of equations
can be solved by iteration.

D. Impurity energetics

Another physical quantity of interest is the chemical p
tential of the positron impurity, which is the energy gained
lost by adding one impurity particle into the liquid, i.e., th
energy difference

m I5EN112EN5
^C I uHI uC I&

^C I uC I&
2

^CuHuC&

^CuC&
. ~3.21!
19511
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In the calculation of the impurity chemical potential fro
definition ~3.21! we must include, besides the explicit term
containing impurity distribution functions, also thechanges
in the background distribution and correlation functions d
to the presence of an impurity. These changes are of
order of 1/N and therefore cause a change of order unity
the positron correlation energy. For brevity, we suppress h
the contribution from triplet calculations; these correctio
are already discussed in Ref. 37. The impurity chemical
tential is, at the pair-correlation level, given by

m I5rE d3r F @gIB~r !21#v IB~r !2gIB~r !S \2

8mI

1
\2

8mD¹2u2
IB~r !G1

r2V

2
DH E d3r F @g~r !21#v~r !

2
\2

4m
g~r !¹2u2~r !G J 1DTJF, ~3.22!

whereD ’s in the second line of Eq.~3.22! indicate that we
take the difference of the expressions calculated for the
systemminusthe same expression for the pure backgrou

The pair correlations between background and impu
particles are determined by optimization. Having a relatio
ship between the pair-distribution functionsgi j (r ) and the
pair-correlation functionsu2

i j (r ) allows us tochoosewhich
one of these four quantities should we consider to be
independent ones. The most convenient choice is to use
‘‘dressed’’ correlation functionsGdd(r ) andGdd

IB(r ), since all
other diagrammatic quantities can be defined in terms
these functions, whereasu2(r ) appears explicitly only in the
coordinate space equation~2.7!. In other words, we conside
u2(r ) as a functional ofGdd(r ), the impurity densityr I , and
r. As mentioned earlier, the consideration is further simp
fied by the fact that the impurity cannot be involved in a
exchange.

Since we need the chemical potentialm I only to leading
order in the impurity density, the optimization conditions f
the background can be used to simplify expression~3.22! for
the chemical potential~again at the two-body correlatio
level!:

1

2
DH E d3r 1d3r 2r~r1 ,r2!FV~ ur12r2u!

2
\2

8m
~¹1

21¹2
2!u2~r1 ,r2!G J

52
1

2E d3r 1d3r 2r~r1 ,r2!
\2

8m
~¹1

21¹2
2!Du2~r1 ,r2!.

~3.23!

In particular, sinceTJF can be expressed entirely in terms
the Gdd(r i j ) and exchange functions, there is no rearran
ment correction from this term. The changeDu2 is now ex-
pressed as a functional of the impurity quantities,
8-7
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Du2~r ![Du2@r I ,gIB,u2
IB#5E d3r 0r I

du2~r1 ,r2!

dr I
.

~3.24!

Furthermore using the HNC equation we find, again in HN
approximation, that

Du2~r1 ,r2!52E d3r 0r I
dNdd~r1 ,r2!

dr I
. ~3.25!

The variations are carried out forfixed pair-distribution func-
tions.The change in the sum of nodal diagrams has a sim
expression in the momentum space,

r I
dÑdd~k!

dr I
5@X̃dd

IB~k!#2. ~3.26!

The HNC equations~2.7! and~3.3! are now used to elimi-
nate the pair-correlation functionsu2(r ) andu2

IB(r ) from the
chemical potential~3.22!. Using the HNC equations and Eq
~3.26! one finds after some algebraic manipulations

mHNC
I 5rE d3r FgIB~r !v IB~r !1F \2

2mI
1

\2

2mG u“AgIB~r !u2G
1

1

4E d3k

~2p!3r
@ t~k!1t I~k!#$SIB~k!@Ñdd

IB~k!

1Ẽdd
IB~k!#2@Ñde

IB~k!1Ẽde
IB~k!#G̃dd

IB~k!%

1
1

4E d3k

~2p!3r
t~k!@S~k!21#@X̃dd

IB~k!#2. ~3.27!

The expression given above must be supplemented
corrections originating from ‘‘proper’’ elementary diagram
and triplet correlations~see Ref. 37! if appropriate.

IV. SIMPLIFICATIONS

The FHNC-EL equations for the background, and ev
more for the impurity, are admittedly complicated and
little appeal. The reason is that the exchange structure all
for many different ways of coupling.

We recall, however, that the original motivation for deri
ing these equations is a symmetric treatment of short-
long-ranged correlations, and the stability criteria provid
by the optimization. One is therefore tempted to reduce
FHNC-EL equations to a level that contains theminimal
amount of self-consistency and is, nevertheless, optimiza
An appealing feature of such a simplified theory is that
equations are hardly more complicated than those of
Bose theory; they are also readily applied to the much m
demanding problem of inhomogeneous systems, where
solution of the full set of FHNC-EL equations is a rath
unpleasant and still incomplete task.45 In this connection, we
need to recall two things: First, positron annihilation ra
are directly connected to short-ranged correlations, cf.
~1.1!. Second, it is far from straightforward to deduce sho
ranged correlations in an inhomogeneous geometry from
19511
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A. FHNCÕÕ0 for the background

The FHNC//0 approximation is, by construction, themini-
mum approximation that is~a! correct for both short- and
long-range correlations and~b! permits optimization. The
FHNC//0 approximation for the background amounts to
noring all de quantities and using 11X̃ee(k)5SF(k), where

SF~k!5H 3k

4kF
2

k3

16kF
2

, k,2kF

1, k>2kF

~4.1!

is the static structure function of the noninteracting Fer
gas.

Consistent with this approximation, we leave out eleme
tary diagrams; they may be put in at the end on a term-
term basis. The FHNC equations~2.7! and ~2.8! collapse to
three equations:

Xdd~r !5exp@u2~r !1Ndd~r !#212Ndd~r !,

Ñdd~k!5
X̃dd

2 ~k!SF~k!

12SF~k!X̃dd~k!
, ~4.2!

S~k!5
SF~k!

12SF~k!X̃dd~k!
.

Equations~4.2! are exact in the long-wavelength limit, bu
can be applied also at finite momenta. In the same appr
mation, we obtain from Eq.~2.21!,

S~k!5
SF~k!

A112
SF

2~k!

t~k!
Ṽdd~k!

,

Vdd~r !5@11Gdd~r !#v~r !1
\2

m
u¹A11Gdd~r !u2

1Gdd~r !wI~r !, ~4.3!

w̃I~k!52
\2k2

4m F 1

SF~k!
2

1

S~k!G
2F2

S~k!

SF~k!
11G .

For further reference, we also mention that, in the same
proximation,

G̃dd8 ~k!5
1

2
t~k!G̃dd~k!F12

2

SF~k!G . ~4.4!

B. FHNCÕÕ0 for the impurity

Leaving the FHNC equations of Sec. III A unchanged b
identifying 11X̃ee(k)5SF(k) and S(k)/Sd(k)5SF(k) and
ignoring Ṽde(k) and Ṽee(k), the impurity Euler equations
reduce to
8-8
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Ṽ IB~k!5Ṽdd
IB~k!1

Ṽde
IB~k!

SF~k!
2

t~k!

2

X̃de
IB~k!

SF
2~k!

@SF~k!21#.

~4.5!

The induced interaction is

w̃I
IB~k!52

1

2 F t I~k!1
t~k!

SF~k!G G̃dd
IB~k!2

1

SF~k!F Ṽde
IB~k!

2
1

2
@ t I~k!1t~k!#X̃de

IB~k!G2Ṽde
IB~k!. ~4.6!

The de8 equation does not simplify significantly, note esp
cially that it is not legitimate to omit the elementary e
change diagrams.

Let us finally also ignore all impurity de8 quantities. The
Euler equation~3.11! remains the same, we only need
replaceX IB→Xdd

IB andV IB→Vdd
IB . We can write it also as

SIB~k!522
S~k!Ṽdd

IB~k!

t I~k!1\v~k!
, ~4.7!

Vdd
IB~r !5

\2

m
u¹A11Gdd

IB~r !u21@11Gdd
IB~r !#v IB~r !

1Gdd
IB~r !wI

IB~r !. ~4.8!

The induced interaction is

w̃I
IB~k!52Ṽdd

IB~k!2
1

2 F t~k!

SF~k!
1t I~k!G G̃dd

IB~k!

5
1

2
SIB~k!S t~k!

S2~k!
2

t~k!

SF
2~k!

1
t I~k!

S~k!
2

t I~k!

SF~k!D ~4.9!

and finally

G̃dd
IB~k!5

SIB~k!

SF~k!
. ~4.10!

We can apply the above sequence of simplifications
two ways: One way is to use the FHNC//0 approximation
the background only, keeping all impurity equations inta
This might be a possible strategy for calculating annihilat
rates in inhomogeneous geometries, the good agreemen
tween thegIB(0) values in this approximation with th
Monte Carlo data of Ortiz47 provides encouragement that th
is perhaps a pragmatic way to attack this problem.

The second level of approximation is to also omit the
diagrams in the impurity equations. We note thatboth strat-
egies include the self-consistent summation of ring and
der diagrams,48,49 both strategies also maintain ‘‘perfe
screening’’SIB(k)51. The FHNC//0 approximation provide
for bulk electrons an accuracy that is only marginally wo
than the full theory,45 and one might hope that the same
true for electron-positron mixtures. However, since the ab
approximation omits the self-consistent summation of
ementary exchange diagrams, the pair distribution func
19511
-

n
r
.
n
be-

e

-

e

e
l-
n

and the structure function become inconsistent. A simple
proximation forgIB(r ) would be

gIB~r !'11Gdd
IB~r !. ~4.11!

Adding the simplest exchange term would lead to a differ
approximation,

gIB~r !'@11Gdd
IB~r !#@11C~r !#, ~4.12!

whereC̃(k)5G̃dd
IB(k)@SF(k)21#. This is acceptable in a sys

tem with repulsive interactions since 11Gdd
IB(r ) is small at

the origin. However, the opposite is true for the electro
positron case because bothgIB(r ) and 11Gdd

IB(r ) become
large at the origin, thus enhancing any small error that mi
be made in calculating the exchange corrections. We will
in the following section that this effect can be quite drama

V. ANNIHILATION RATES

The central quantity of interest of our calculation is t
positron annihilation rate~1.1!, hence, our primary questio
is what does it take to gett right? To examine this question
we have carried out the following sequence of calculations
increasing complexity.

~1! Charged bosons: Positive impurity in a charged Bo
gas.

~2! FHNC//0 : The basic version of the FHNC-EL theo
for both the background and the impurity. This means we
Eqs. ~4.2!–~4.4! for the background and Eqs.~4.7!–~4.10!
for the impurity. The motivation for this approximation i
that it is the simplest one that contains fermionic correctio
satisfies all exact short- and long-wavelength properties,
can therefore be optimized.

~3! FHNC//0b: The full impurity FHNC-EL equations on
the simplified background. The motivation for this approx
mation is that there is evidence that a simplified treatmen
the background electrons could be appropriate, in fact,
energetics of the bulk electron gas predicted by this appr
mation is not significantly worse than the energetics p
duced by the full theory.45 However, electrons and positron
are strongly correlated and, thus, the same approxima
might not be adequate for electron-positron correlatio
Since the treatment of the impurity correlations is identica
the one of the full FHNC-EL theory to be described belo
the comparison of the results from this calculation with t
ones from the next more sophisticated one examines the
sitivity of the results to the background correlations.

~4! FHNC//C0: The full solution of the FHNC-EL equa
tions for the electrons and the positronic impurity, includi
corrections that guarantee the long-wavelength limit~3.6!
but without proper elementary diagrams.

~5! FHNC//C5: As FHNC//C0, but including fourth- an
fifth- order proper elementary diagrams as described in R
36.

Table I lists a comparison of our results for the prima
quantity, gIB(0), in the simplest charged boson calculatio
~see also Ref. 29!, our most sophisticated FHNC//C5 calcu
lation, and a few important earlier calculations.8,19,28,30,47At
high densities, one has reasonable agreement wherea
8-9
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agreement becomes worse at lower densities. The com
son of different methods should serve to identify the sou
of these discrepancies. Among the various calculations,
variational Monte Carlo calculations of Ortiz47 have pro-
duced consistently the lowest values forgIB(0); incidentally,
these values are quite close to our FHNC//0b results.

Figure 1 shows the annihilation ratest21 computed using
the approximations listed above. More appropriately, o
should refer to these numbers as ‘‘partial annihilation rat
because we have neglected the effect of core electrons. S50

obtains, for example, 5% core contribution for Li and 30
for Cs, whereas more recent work51,52 arrives at even large
core corrections. We conclude first that, in the experim
tally accessible density range, the charged boson approx
tion is not as bad as one might expect. Inclusion of the s
plest fermion corrections~FHNC//0! yields, on the other
hand, far too high annihilation rates. This failure is rath

TABLE I. The table compares the primary quantity of intere
gIB(0), for the ‘‘charged boson’’ approximation~Bosons! and the
FHNC//C5 approximation, with the values obtained by Kaha
~Ref. 8!, Boroński, Szotek, and Stachowiak~BSS! ~Ref. 19!, Lantto
~Ref. 28!, Stachowiak, and Lach~SL! ~Ref. 30!, and Ortiz~Ref. 47!.

r s Kahana BSS Lantto SL Ortiz Bosons FHNC//C

1 2.16 2.29 2.06 2.40 2.076
2 2.21 3.76 4.05 3.96 3.39 4.55 3.983
3 2.67 6.91 7.40 7.29 7.00 8.25 7.658
4 3.17 13.6 13.2 13.6 11.70 14.71 14.455
5 23.0 24.2 17.69 26.08 26.225
6 40.1 46.18 45.640
8 93.9 64.00 143.30 126.063

FIG. 1. Experimental and theoretical annihilation rates for va
ous materials. The experimental points are, from left to right, for
metals Al, Zn, Mg, Li, Na, K, Rb, and Cs~Refs. 4, 53, and 54!,
without core corrections. The theoretical curves correspond to v
ous levels of implementation of the~F!HNC-EL theory as labeled in
the figure. In the level of sophistication the order from simple
complex is charged bosons, FHNC//0, FHNC//0b, FHNC//C
FHNC//C5 ~see main text for definitions!. The positronium decay
rate is (500 ps)21523109 s21.
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r

surprising, because the approximation already includes
self-consistent summation of both ring and ladd
diagrams,48,49and is thus beyond standard perturbative tre
ments that include only one of the classes of diagrams o
incomplete self-consistency scheme.

The main reason for the failure of the FHNC//0 appro
mation can be traced to the way exchange corrections w
included~see the discussion in the end of Sec. IV!. On the
level FHNC//0b this problem is solved by including the fu
FHNC summation for the impurity correlations, while lea
ing the background correlations at the FHNC//0 level.
deed, there is some improvement. The annihilation ra
come out lower than those predicted by the more soph
cated approaches to be discussed below. But, in fact, w
core corrections are included, agreement of the FHNC/
approximation with experiments is not too bad. The f
FHNC summation FHNC//C0 brings us back up, and u
mately the inclusion of proper elementary diagrams on le
FHNC//C5 produces reasonable agreement with the exp
mental annihilation rates when core corrections are omit

Evidently gIB(0) is extremely sensitive to the descriptio
of the background electron liquid, as can be seen in the la
difference between the full FHNC//0, the FHNC//0b, and t
FHNC//C0 results. We conclude therefore that any simplis
treatment of background correlations should be viewed w
much reservation.

In discussing the possible theoretical refinements
should finally comment on the importance of triplet corre
tions. Since the proper elementary diagrams have an imp
one might expect the same to be true for triplets as well
the case of helium liquids, triplets have been mostly d
scribed in the ‘‘convolution approximation’’ outlined in Re
44. Recently, the treatment has also been found to be
equate for a problem analogous to the present one, nam
the calculation of the energetics of a4He impurity in 3He.37

The next systematic improvement to the method of Ref.
has also been examined,55 but for helium liquids it was found
to be insignificant. Unfortunately, the same is not true
positronic impurities in the electron gas. We have tried
same approach here and found that the convolution appr
mation is manifestly inadequate for this case. It appears
the derivation of triplet HNC equations56 is necessary for a
satisfactory treatment. We are not aware of a succes
implementation of this program for bosons, much less
fermions or mixtures, and must leave this question open
the time being. The variational Monte Carlo calculations
Ortiz47 support our view that triplet correlations are unimpo
tant.

From now on we show only the FHNC//C5 result an
occasionally the FHNC//0 result for reference. The ne
quantity of interest is the positron correlation energy~or
chemical potential! ~3.21!. Our results are shown in Fig. 2
they are consistent with earlier calculations of Arponen a
Pajanne9 and Lantto,28 although our results are somewh
higher. The present results also show a drop of the chem
potential towards lower densities; a similar drop has be
reported by Hodges and Stott.57

It has been argued that, in the low-density limit~larger s),
the correlation energy should go towards the binding ene
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of the free positronium of20.524 eV. Evidently, our calcu
lation does not show such an asymptotic behavior and
hasten to point out that it should not. The Jastrow-Feenb
function used in Eqs.~2.2! and ~3.2! describes a state in
which the positron is delocalized, so it isnot a valid descrip-
tion of one positronium atom andN free electrons. Hence
the present theory is inapplicable to a system with bou
electron-positron pairs. It has, however, the desirable fea
that the Euler equation ceases to have a solution at the p
where the system cannot be in the state described by the
wave function. In the present case, this happens at the
sity where the positronmustbe localized. This feature of th
theory does not preclude that the free positronium is
physical low-density limit; the theory simply makes no sta
ment about this limit.

The appearance of a positronium atom is, on one ha
signaled by a very largegIB(0). Moreover, recall that we

FIG. 2. The calculated positron correlation energies as func
of r s in the FHNC//C0~dashed line! and the FHNC//C5~solid line!
approximation. Also shown are the theoretical results of Lan
~Ref. 28!, Arponen and Pajanne~AP! ~Ref. 9!, and Boron´ski and
Stachowiak~BS! ~Ref. 34!.

FIG. 3. The figure shows our calculated electron-positron p
distribution functiongIB(r ) for r s51,2, . . . ,9. Thefunction with
the lowest value ofgIB(0) corresponds to the highest electron de
sity. Notice the logarithmic scale ingIB(r ).
19511
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solve the Euler equation with the boundary conditi
gIB(r )→1, as r→`. If there were a bound state, the
AgIB(r ) should have a node at some finite distance.
course—as argued above—the theory will not allow us
reach this point, but one should expect precursor phenom
as one approaches the density of positronium formation. F
ure 3 shows indeed both effects: As we decrease the den
gIB(0) increases. In addition to this, a ‘‘dip’’ forms at a
intermediate distance. At the highestr s value shown in Fig.
3, r s59, we havegIB(r ) as low as 0.042. With decreasin
density the dip drops rapidly, and finally the pair-distributio
function becomes unphysically negative atr s'9.4. Also
gIB(0) diverges, atr s510, but because of both diagram
matic approximations and numerical limitations one can
expect these instabilities to show up at exactly the same d
sity. We conclude that our calculations predict positroniu
formation at 9.4<r s<10. For comparison, in the mid 1970
Lowy and Jackson18 found the positronium limit atr s>6.2,
while a decade later Pietila¨inen and Kallio26 obtained
r s>8.

Slightly different information is contained in the stat
electron-positron structure functionSIB(k), depicted in Fig.
4. In the long-wavelength limit, charge conservation impl
SIB(01)51; this property is a rigorous feature of the op
mized structure function in any level of the FHNC-EL a
proximations. As the density decreases, we see thatSIB(k)
develops a peak atk'3.2(a0r s)

21. Such a peak reflects a
oscillatory structure in the pair distribution function.

VI. SUMMARY

We have presented in this work calculations of electro
positron correlations in simple metals. Technically, we ha
used the most complete summation of diagrams within
Jastrow-Feenberg theory. We have shown that such a hi
summed theory is indeed necessary for a reasonably reli
prediction of the relevant quantities. The omission of trip
correlations is an unsatisfactory point, but progress towar
fully consistent summation of three-body~F!HNC equations

n

o

r-

-

FIG. 4. The figure shows our calculated electron-positron str
ture functionSIB(k) for r s52,3, . . . ,9. The lowestcurve corre-
sponds to the lowestr s ~highest electron density!.
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and the corresponding Euler equation is not in sight. In a
event, we have demonstrated that one might have to do e
more, but one must definitely not do less than what was d
in our work to obtain a conclusive answer.

Our results are, from a pragmatic point of view, somew
disappointing in the sense that the system is evidently m
more complicated than the bulk electron gas at metallic d
sities. Bulk electrons at metallic densities are one of the s
plest systems to be treated within microscopic many-b
theory, and simple approximation provide already reas
ableq agreement with exact results. The reason for this p
lem is evidently the large value of the pair-distribution fun
tion at the origin, which causes poor convergence
diagrammatic summations. On the other hand, the FHNC
approximation seems to provide reasonable agreement
s

e

d
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experiments when core corrections are included. With su
cient caution, since better agreement with experiments d
not indicate a better theoretical treatment, one might be a
to use this version of the theory in a nonuniform enviro
ment and obtain reasonable annihilation rates for positron
simple metal surfaces.45
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