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Many-body aspects of positron annihilation in the electron gas
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We investigate positron annihilation in the electron gas as a case study for many-body theory, in particular,
the Fermi-hypernetted-chain Euler-Lagrari§eINC-EL) method. We examine several approximation schemes
and show that one has to go up to the most sophisticated implementation of the theory available at the moment
in order to get annihilation rates that agree reasonably well with experimental data. Even though there is
basically just one number we look at, namely, the electron-positron pair-distribution function at zero distance,
it is exactly this number that dictates how the full pair distribution behaves: in most cases, it falls off monoto-
nously towards unity as the distance increases. Cases where the electron-positron pair distribution exhibits a
dip are precursors to the formation of bound electron-positron pairs. The formation of electron-positron pairs
is indicated by a divergence of the FHNC-EL equations; from this we can estimate the density regime where
positrons must be localized. This occurs in our calculations in the ranger 3410, wherer is the dimen-
sionless density parameter of the electron liquid.
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I. INTRODUCTION The enhancement factor has been the subject of many
recent studie®'* Once the enhancement factor is known,
The process of electron-positron annihilation has beene can apply standard DFT under various approximate
studied intensively for several decades. In recent years po§chemes, such as the local-density approximatiddA ),
itron annihilation spectroscopy has been routinely used fogeneralized gradient approximation, or the weighted density
studying the electronic structures of solids. As far as theapproximation. One can then also evaluate the partial anni-
two-body process is concerned, the appropriate theoretic&llation rates due to valence and core electrons. The density
framework is quantum electrodynamics. Differential crossfunctionals are derived from known properties of electron
sections and annihilation rates have been examined for twdas or electron-positron mixtures, and their quality has been
particle systems such as positronium in much detail, and caf¢sted only in the case of a positron-neutral atom bound
be found in standard textbook2. Coincidence measure- System:' So far there have not been many attempts to for-
ments ofy emission give the angular correlation of annihi- mulate a microscopic many-body theory that deals with an
lation radiation, which yields information about the electroninhomogeneouslectron gas. The first move in this direction
momenta. As the recent discovery of the electronically stabl&vas made by Stachowiak and Bostiy'” who studied the
bound positron-Li state showédpositrons in contact with case of a spherical inhomogeneity in jellium.
neutral atoms can also be an interesting few-body system. Most of the many-body aspects of positron annihilation
Since then the list of atoms binding positrons has becoméates are reflected in a single number, namely, the value of
long; the underlying calculations are usually performed usinghe electron-positron distribution functiog®(r), at the ori-
either the stochastic variational method or the configurationdin. [As a convention, we shall label all two-body quantities
interaction method. that involve one positron“impurity” ) and one electron
Annihilation of positrons in matter adds a many-body as-(*background”) with a superscript 18.The annihilation rate
pect to the problem. The experimental annihilation rates ar€f @ positron inhomogeneouslectron gas can be written in
by now well established, we shall compare our results wittthe for
the data measured by Weisberg and Bérfioo alkali metals.
In his pioneering work, Ferréligives intuitive formulas for 1 12 . 0)x 10 sec? 11
the annihilation rates. The simplest “many-body” methods T Eg (0) e (1.9
use single-particle wave functions; in this case, the only true
many-body effect is the Pauli exclusion principle acting be-whererg is the familiar dimensionless density parameter of
tween electrons, buhany-body correlationbetween the in-  the electron gas. The factor in formula(1.1) is merely a
teracting particles araot taken into account. Qualitatively, geometric factor that takes into account the decreasing prob-
correlations can be introduced by applying enhancement fa@bility of finding an electron at the locations of the positron
tors as described by BrantiA popular method for electron due to decreasing electron density. The “enhancement fac-
structure calculations and, potentially, also for positrontor” g'®(0) accounts for electron-positron correlations.
system$ is density-functional theoryDFT). In particular, These can be strong in a metal, her®®(0) can be large.
there are numerous applications of DFT to defects in solidsThe positron impurity is delocalized at low, and cannot
In DFT one can write the annihilation rate in terms of thegive rise to any appreciable local enhancement of the elec-
electron and positron densities, and an enhancement factdron density. Instead, there is an increased probability of
to account for the excess electron density near the positrofinding an electron near the positron: this tendency is visible
in other words, to describe electron-positron correlations. only in the pair correlations, not in the density. This explains
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why annihilation rates computed using a homogeneous eleéacludes the optimization of triplet correlations and the cal-
tron gas agree well with the experimental data upte5. culation of proper elementary diagrams, may be found in
On the other hand, the electron-density enhancement arourRef. 36. We have also recently examined a completely analo-
a localized positron can be included, for example, in thegous problem in helium liquids, namely, the calculation of
spirit of LDA in DFT, where the electron-positron distribu- Properties of*He impurities in®He.*” We shall then discuss
tion function computed for the homogeneous case is multithe impurity theory and derive the relevant Euler equations.
plied with the spatially varying electron denstfy:1® In the following sections, we WI|| Igad t_he reader through'a
The calculation ofy'®(r) is a matter of many-body phys- Sequence c_>f plausible approximations in order to determine
ics, and the problem of determinirgf®(0) is evidently an what does it take to get the p_hy5|cs rlght._ We will show that
issue of short-rangedcorrelations. Quite appropriately, it the very simple approximation of a mixture of charged
was dealt with within the perturbation theory by solving the P0SOns gives a reasonably good agreement with experimental
electron-positron Bethe-Goldstone equaflo@rown and data. However, a bosonic theory is unsatisfactmey se but
co-workerd”® have also examined short-ranged electrondt turns out that the first fermlonlc qorrectlons r_nake things
electron correlations in a Bethe-Goldstone theory andVorse and the agreement is lost. Finally, we will show that
pointed out the possibility of electron-positron pair formation Ny the full fermion theory produces results which agree
at low electron densitielarger,). The theory of positron 2adain with experimental data.
annihilation has been developed further by B@lanSzotek,

and Stachowiak and Rubaszek and Stachowf2K! and it Il. OPTIMIZED FERMI-HYPERNETTED-CHAIN
appears to be able to reproduce the observed annihilation METHOD
rates in simple metals. - .
With the advent of highly resummed variational tech- A. Variational wave function
niques, known as Fermi hypernetted ciR&ft (FHNC) and This section gives a brief survey of the variational theory

the optimization of the correlatioffs® by solving Euler-  of a bulk Fermi liquid; the reader is referred to Refs. 24 and
Lagrange equationdHNC-EL), a new generation of calcu- 36 for details of the theory and the diagrammatic definition
lations containing vastly richer diagrammatic structures tharf all technical quantities. Since no confusion can arise for
Bethe-Goldstone calculations was possible. As a physicallyhe time being, we will in this section not spell out the par-
relevant paradigm for a fermion mixture and electron-holeticle species.

liquids, positronic impurities and electron-positron mixtures  The Jastrow-Feenberg thedtyor a Fermi liquid assumes
have been studied quite extensively. Kallio, Piétiém, and  a trial wave function of the form

Lanttd®®?’ used the so-called “quasiboson” approximation

for the wave function of the electronic background, which Vo1, ... N)=F(rq, ... r0)®o(1, ... N), (2.2
maps the formalism to an effective boson theory. Closest to
our approach are the calculations by Laffttand Saarel&’ 1
Compared with the former one, the present work has anim-  F(r , ... ry) =exps| Us(Ti,T)
proved diagrammatic summation and, in particular, a more 2| 1=i<)

consistent treatment of the antisymmetry of the wave func-

tion. Lanttd® employs a simplified version of the Euler equa- + Us(Fi 1T+ - |

tion which corresponds to our FHNC//0 approximation to be 1<i<]<k=N

discussed in Sec. IV A, but the energy and the structure func- (2.2
tions are evaluated in the FHNC/0 approximafiband thus

violates identities(2.14), (2.24, and (3.6). Saarel® modi-  dy(1,... N) is a model wave function, normally a Slater
fied the Euler-Lagrange equation of the pair-distributiondeterminant of plane waves. Theorrelation functions
function of a chargedBose system by adding aad hoc  u,(r,,...r,) are made unique by imposing theuster

electron-electron potential, such that the equation reproducgsoperty

the exact free-fermion distribution in the limit of infinite den-

sity. Although oversimplified and phenomenological, this ap- Up(Fq, ... T)—0 as |ri—ri|—o. (2.3
proach gives)'®(0) close to the values obtained by Stachow- 3 " b

iak and LacH’ and Bordski and Nieminert? Stachowiak  wave function(2.2) is not exact; one way to see this is by
et al. have used the HNC theory in combination with arealizing that the nodes of the wave functi¢h?) are iden-
Hartree-Fock-type approximation and a self-consistent peftcal to those of the model functio®y(1, ... N). In the

turbation of a Jastrow stafe:° _ ~ parlance of Monte Carlo simulations this would be called a
The present work should be considered as an exercise fiked-node approximation.

basic microscopic many-body techniques. We shall first out-
line the most complete version of the optimized FHNC-EL
theory?* We will pay special attention to the full functional
optimization of correlation functions, which removes allam- Two components are essential for the execution of the
biguity from the optimization process. The technical detailsJastrow-Feenberg variational theory: The first is the develop-
of our theory for a one-component electron system are dement of cluster-expansion and resummation methods for the
scribed in Ref. 24, a more recent application®tde, which  pair-distribution function in the homogeneous case,

B. Fermion HNC equations
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~N(N-1) f dBrg- - d3ry|Wo(L, ... N)J?

2

(r) :
fd3r1..-o|~°'rN|~If0(1,...,N)|2

(2.9

wherer =r ,=|r,—r,|; spin summations are tacitly implied.
The second component of the theory is thgimizationof
the correlation functions by minimization of the total energy,

g (Wo|H|¥o)q _ 2.9
SUn(ry, ... ) (PolWo)
for the Hamiltonian
N hz ,
H==2 o Vit & oln-rh. @8

where in our case(r)=e?/r is the Coulomb interaction.
Let us first turn to the pair-distribution functiay(r), spe-

cifically to the FHNC equations determinirgfr) from a

given pair-correlation functionu,(r). Pair correlations are

the most important ones, and in the case of electrons one

PHYSICAL REVIEW B58, 195118 (2003

1—Xad k) = Xae(k)

Ngd(K)= - - - —1-X(k),
A 0T [1+ Kol k) Xed ) o)
N (k)= de(k)Jrzzxde(k)tX%(k):l +1- X K),
[1—XgeK) 7= [1+ Xed K) 1Xga(K)
_ o TRIr=X(k)
k)= — X (k)| —— ] .
Ned k==Xl = 55 (2.8

We have above used the convention of defining a
dimensionless Fourier transform ai(k)z[f(r)]f(k)
=p[d3f(r)e".

The pair-distribution function can then be constructed
from the above quantities:

1
g(r)=[1+rdd(f)]+ - ;Lz(r)+Nee(f)+Eee(f)

+[1+ Ngdr)+Egdr)]? (2.9

usually neglects triplet correlations altogether. JUStiﬁC&tiOl’Trhe static structure function is equa”y important as the pair-

for this stems from the study of triplet correlations in the
two- and three-dimensional charged Bose®gasd verified
by Monte Carlo calculation® note that triplet correlations
arenot the same as propagator correctiSnghich have oc-

casionally been confused with the Feynman-Cohen backflow.

The FHNC equations are a set of four configuration-spac

and four momentum-space equations formulated in terms of

“nodal” Nj(r) and “non-nodal” diagramsx;(r) that are, in
turn, characterized by their exchange structufi}
e{dd,de,ee,cc Input to the equations is the pair-correlation
function u,(r), the Slater exchange functiof{x) = 3(sinx
—xcosx)/xC, and a set of “elementary diagram&j(r) that
must be calculated one by ofre.

The coordinate-space equations are

I (1) =Xgo(r) + Ngo(r) =exg ua(r) + Ngo(r) + Eqq(r)]—1,

Xad 1) =[1+Tyor) J[Nge(r) + Eqer) ] = Ngdr),

Xed ) =[1+Tyqr)]| — %LZ(I’)—I—NEE(I’)-FEQE(I’) —Nedr)

+[1+T a1 IINge(r) +Ead 1) 1%,

1
Xed1)= = —Tad1)L(1)+Ecdr), (2.7
where v is the degree of degeneracy of the single-particl
states, L(r) =€ (kgr) = v[Ne(r) + Ec(r)], and ke is the
Fermi wave number. The nodal quantitib(r) are con-
structed in momentum space according to

Xad k)

Ny(K)= - — —
) TR0 e[ 1 Rk K) X K

—Xad( k),

€

distribution function and has the relatively simple form

S(k)=1+[g(r)—11%(k)
B 1+ Xod k)
[1—Xge K12 —[1+Xed k) IXad K)

For further reference, we also introduce the quantity

(2.10

e

1-Xgd k)

Syk)= — — — (2.11
) R0 [+ Xed K Xl K
and note the relationship
Tk = Xad k) 212

[1-Xad k)= [1+Xed k) TXad( k)
Representatiofi2.9) of g(r) contains an explicit factor

1+Tg(r)=exgus(r)+Nggr)+Egq(r)]. (2.13

This form is therefore the natural choice when working in
coordinate space and focusing on the strong short-range cor-
relation structure. On the other hand, when we consider the
static structure functio®(k), expression2.10 is the more
useful one.

The nave implementatiof?*?of the FHNC equations, re-
ferred to as FHNC/0 approximation, would suggest, in anal-
ogy to the boson theory, to start with the omission of the
elementary diagramg(r) and include these, order by or-
der, asquantitativeimprovements as the theory is moved to
the next level. In the FHNC/n approximation one keeps el-
ementary diagrams up to thepoint diagram. Howeve?
such a procedure violates the exact features
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Xqk)=0(k) as k—0%, where

(2.14
1+X.dk)=Se(k)+0O(k?) as k—0*.

ﬁZ
UJF(r):U(r)_mVZUZ(r) (2.19
, . L is the Jackson-Feenberg effective interaction.
These properties originate from the Pauli principle and are
particularly important for the optimization problethThey
imply the cancellation of elementary and nonelementary ex-
change diagrams; in other words there exist classes of so- The formal manipulations to derive an Euler equation for
called elementary exchange diagrams that must not be néhde optimal pair correlations are almost identical to the ones
glected. One can deal with this problem by systematicallycarried out for bosons. The variation with respect to the pair-
including groups of “de” and “ee” diagrams that satisfy correlation function consists of two terms: One comes from
these identitie$*FHNC//n classification schentd or by ap-  the variation with respect to the pair correlation function
proximately including the necessary long-wavelength correcu,(r) appearing in the Jackson-Feenberg interactigir)
tions to the FHNC/n schem@HNC//C approximationas and the second one is due to the variation of the pair-
described and justified in Refs. 24 and 36. distribution function with respect ta,(r) andthe variation
of Tye:
C. Background energy calculation 2

D. Fermion Euler equations

o9 28 T
T8uy(r)  p duy(r) N

h
The first step in deriving the Euler equations is the calcu- HVZQ(YFJ d3r v e’
lation of the energy functional. An important manipulation is

the use of thelackson-Feenber@F identity =g’'(r). (2.20
FV2F=1(V2F24+F2V2)+ 1F2[V [V, InF]] The contribution from the first term on the right-hand side of
Eqg. (2.20 to g’(r) is calculated in complete analogy to the
—z[V.[V.F2], (2159 Bose case by replacing, in turn, each correlation line

exgux(ri)]—1 by expux(rj)lvsrij;). The second term is
¥alculated recalling the graphical construction schemg,pf
described above, and applying the same procedure to a
N#2p grgphical expansiqn cg(r)_. Thus, the co'ntripution'tg’(r)

am J d3rg(r)V2u,(r)+ Ty, (2.16 originating fromT ;¢ is obtained by replacmg ig(r), inturn,
ev;ary conznected pair of exchange !|r{é($ijl§F)€(rikkF) py
HereT¢ is the kinetic energy of the free Fermi gas anglis ~ (7°78m)Vi€(rijke) €(ricke). Following this construction

a kinetic energy term that is solely due to exchanges. We ca$cheme, one derives a set of eight linear equations, the
write this term as FHNC' equations, corresponding to the eight FHNC equa-

tions (2.7) and(2.8),>*in which the Jackson-Feenberg effec-
ol[Vi.[Vi,F2]]|®0) tive potential and the differentiated exchange functions act as
driving terms.

which shows that the expectation value of the kinetic energ
can be divided into three parts,

<-T->:TF_

n2 o (@
Ty= am Z

2
(@ F* o) To derive a form of the fermion Euler equations which is
2 useful for a numerical implementation, we write the Euler

= mf d3rV§p1(r). (2.1 equation(2.20 in momentum space as

1 ! —
With V, we mean(indicated by the subscrigt) a gradient 2t(K)[S(k) = 1]+ S'(k) =0, (2.2

operator that acts on the Slater determinant only. Operationyheret(k)=7#2k?/2m. S'(k) is a linear combination of the
ally, Eq. (2.17 is to be understood as follows: First, one

calculates—disregarding the fact that the density ig " nodal quantities; (k).
uniform—a cluster expansion of the one-body dengitr). IS(K)
The operatoV? then differentiateshe exchange lines only S'(k)=_ mxﬂ(k% (2.22
that are attached, in such a cluster expansion, to the external '] < {ad de.ep O
point. This replaces the incoming and outgoing exchang
e ) 0 et St 7 5,0 aalogous o e consiucton g1 rom () de-
limit of the uniform system and integrates over the Configu_scrlbed above. Next, we define three effective interactions in
. ; the dd, de, and ee channels as
ration space of the last particle.
Combining Egs(2.16 and (2.17) with the potential en-
ergy provides us with the starting point for further manipu-
lations,

%here?(i}(k) are constructed from the non-nodal quantities

Vad K) =Xjo(K) = 3t(K) Xgq(K),

Vad k) =X3dK), 2.23
E Te »p T
N=WF+EJ d3l’9(r)vJF(r)+ﬁ:, (2.18 ve&k):’)\‘(ée(k)‘*'%t(k)')v(e(‘(k).
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The quantityV4(k), defined in Eq(2.23, may be identified
with the “direct interaction” of the Babu-Brown thedtyof

the quasiparticle interaction. From Eq&.14), the effective
interactions inherit the long-wavelength properties

Vadk)=0(k) as k—0%,

(2.29

Vedk)=0(k?) as k—0".

Using representatiof2.10 for the calculation ofS' (k)
via Eq.(2.22 and eliminatingX; (k) in favor of V;(k) let us
rewrite

S’ (k) = S?(K)Vgo(K) +2S(K) Sy(k) Ve K) + Si(K) Ved k)
+3t(K)[Si(k)— S(K) 1. (2.25

Inserting this expression fo®’ (k) in the Euler equation
(2.21) let us expressS(k) in terms of the three effective

interactionsV; (k).

The second step in the derivation of the Euler equation is H'=

to eliminate the pair-correlation functian(r) by using the
FHNC equation2.7),

h2
- m[lJerd(r)]Vzuz(r)

12 12
== 2V ad )+ |V V1+Tog(r))?

ﬁZ
+ m[1+rdd(r)][V2Ndd(r)+V2Edd(r)]-

(2.26

PHYSICAL REVIEW B58, 195118 (2003

tures; their omission can cause quantitative changes in the
final answer, but, unlike the de and ee elementary diagrams,
does not change the analytic structure and the properties of
the solutions.

IIl. IMPURITY CORRELATIONS

In this section, and further on, we must also spell out the
particle species, which may be an electfbackground par-
ticle, referred to by a superscripB” ) or a positron(impu-
rity particle, referred to by a superscript™). It is not nec-
essary to label those quantities that were introduced in the
preceding section and that refer only to background particles.
We will keep the formulation general in the sense that the
impurity massm, is arbitrary, as well as the interaction be-
tween an impurity(positror) and a backgroundelectron
particle. The Hamiltonian for the full system including the
impurity is given by

N 2 N

- —VJ-Z+J§=:1 v'®(Iro—ryl)

i=1 2m

N
+.E v(|rj—|’k|). (31)
j,k=1

j<k

As a convention, the impurity particle coordinate s In the
present case of a positron in an electron gas, the impurity-
background interaction'®(r) only differs in the overall sign
from the background-background interactiofr), which is
simply the repulsive Coulomb potential. The impurity mass
m, is equal to the background masshbut for a better insight
into the problem it is helpful to keem, .

The formulation of the FHNC-EL equations for a single

Using Eq.(2.26, one can rewrite the effective interactions impurity follows essentially the same path as the formulation
V;(r) in coordinate space entirely in terms of the distribution©f the background equations, namef}) define a variational
functions, the yet unspecified sets of elementary diagramgave function

Ejj(r) and their “primed” counterpartEi}(r). The resulting

equations are lengthy and not very illuminating; they have B _ }
been spelled out in Refs. 24 and 36. For the purpose of Vo (0.1, N)=ex 2
comparison with the impurity results, we display the coordi-

nate space form of the direct interaction

ﬁ2
Vad(r) =[1+Tgq(r)Jjv(r)+ mszdd(r)+Eéd(r)

2
+%|V\/1+Fdd(r)|2+Fdd(r)W|(r), (2.27

hZ

W|(r):mV2Ndd(r)+Néd(r)- (2.28

To calculate the effective interaction§/ij(k) [(i))

N
u'ZB(rO,ri)}\Ifo(l, ¥
(3.2

(2) derive a set of FHNC equation§3) derive the corre-
sponding Euler equation using the “prime equation” tech-
nique; and(4) reformulate the Euler equation in terms of
distribution functions, thereby eliminating any reference to
the correlation functions’(r;;).

Compared to finite-concentration mixtures, the derivation
is simplified because there are no exchanges connected to
impurity coordinates.

2=

A. FHNC equations for one impurity

The (F)HNC technique is well established in earlier work,

e{dd,de,ee,dd [or X{(k)] and the fermion analog of the so there is no need to go through the details of the deriva-
induced potentialv,(r), one must also calculate the primed tions here. The aspect that distinguishes fermions from
analogs of the nodal diagranh;(r). These quantities may bosons are the combinatorial rules and long-wavelength
be found in Refs. 24 and 36; they are needed for the numerproperties discussed above. In a mixture, exchanges can only
cal optimization, but we will not need them in the further take place between particles of the same species; this implies
discussion. The dd-elementary diagrams have no special feax the dilute limit that exchanges occur only between back-
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ground particles. Moreover, in the dilute limit of a mixture Useful abbreviations arg(k)=%2k?/2m, and the Feynman
only oneimpurity can occur in each diagrammatic quantity. spectrum of the backgrounfiw(k) =t(k)/S(k). The formal
Since the impurity cannot be involved in any exchangeEuler equation for the impurity-background correlation&'is,
we have only two FHNC equations: The equations describin analogy to Eq(2.21),
ing the parallel connections between external coordinates are
5 5 5 3t (k) +t(k)]SB(k)+S'"B(k)=0. (3.9
I ge(r)=Xgo(r) +Negr)
The remaining manipulations are to carry out the priming
=exguy(r)+Ngy(r) +Eg(r)]-1, operation on the impurity FHNC equations and to formulate
the equations in a reasonably plausible form. This can be
XN =[1+ TN IEg(r) +Ng(r)1-Ngi(r), (3.3 done in many ways, and the ultimate choice of the formula-
ion depends to some extent on the iteration path adopted for

while the chain connections are best written in momentu . . . .
he numerical solution. Formally, we can define—in analogy

space. ~ to X*®(k) introduced above and to EqR.23—
Ngig(k) =[Sg(k) = 11X5(k) + g k) Xk, PRI =T B (0 — Lt +4, (TR (3.10
= —3 | :
Nea(k) =[S(K) = Sq(k) IXge(K) + [ Sy(k) — 1 and rewrite the impurity Euler equatidB.9) as
~Tad ) IXE(K). (3.4 3 DB
From these quantities, we can construct the impurity- XB(k)= —ZW- (3.13

background distribution function
" . . . This representation of the Euler equation is formally identi-
go(r)=[1+Tg(r)][1+Ngr)+Eg(r)]. (3.5 cal to the Euler equation for impurities in Bose liquids. Of

The long-wavelength properties corresponding to identitie§ o_urse, we still _ngeIg to derive working formulas for calcu-
(2.14 apply only for the background coordinates. Since thelating the quantityl (k).
exchange structures of(r) and Xq(r) are the same, we

have the long-wavelength limit C. Induced interactions
< From definitions(3.10 and(3.7), we can write formall
XE(k)=0(k) as k—0". (3.6 5319 and(3.9 y
To abbreviate the equations, we found it convenient to define 3,18}y — 1B/} +- Sk~ g T Sd(k)) 'S8
the quantity VI =Vagk) S(k) Vae(k) S(K) Xae(K)
- . Su(k)<, - Su(K) Xak) o
AB(K)=Xig(K) + = Xee(k). 3. =ViRK) + - Vik) — ————| Vgd k
() =XGK) + g7 Xaelk) (3.7 0+ 50 Ve~ i Vel
A few relations are useful in the derivation of the resultin < <
equations: ’ n ik)\”/ e(k)} N t(k) Su(k) X oK) Xed K)
~ ~ S(k) " 2 S(K) 14X dk)
S®(k)=[g"°(r) — 117 (k) = Sk Xg(k) + Se( k) X k) (3.1
=S(k)A®(K), with [note that we deviate for convenience and consistency

~ _ _ _ with definition (3.10 slightly from definitions(2.23)]
T k) = Sy(k) X K) + T (k) Xie( k) B B B
VEk) =X (k) — 1t (k) + (k) 1X k),

S -
= Sy(k) X'B(K) — —=——, (3.8 N - N (3.13
1+ Xedk) Viia(k) =X (k) = [t (k) + (k) IXg(k).
- Si(k) 1 The calculation olV$(r) is identical to the one for bosons
Lao(k) = and mixtures:

Sk 1+X (k)

Vel 1) =[1+Tg(N)][0'"®(r) +AVE(r)]
B. Euler equations for one impurity

R
For the determination of existence and stability of the +omt o |V 1+Tg(r)|?
solutions of the optimization problem, it is again useful to '
formulate the Euler equation in momentum space; the inclu- +TB(r)wiB(r) (3.14

sion of the appropriate classes of elementary exchange dia-
grams always guarantees the proper short-distance behaviith the induced interaction
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~ ~'IB ~
Wl =R_ (k)= 3t (k) +t0INE®K) (319
and the elementary-diagram correction
1B ﬁz ﬁz 2B 1B
AVe (r)y= %-Fs—rnl \Y Edd(r)+Edd (r). (3.1

Finally, we need
V() =ELB(N[1+ TR+ TLB(NIERN +NE(r)]
2 2

+F:1%(r)Né¢|eB(r)+(8—ml+ am

V2XE(r), (3.1

where the de-elementary diagrams must be chosen to guar-

antee the property £(k)—0 ask—0", cf. Eq.(3.6).

For the calculation of the remaining ingredients, it is most

PHYSICAL REVIEW B58, 195118 (2003

In the calculation of the impurity chemical potential from
definition (3.21) we must include, besides the explicit terms
containing impurity distribution functions, also tlehanges

in the background distribution and correlation functions due
to the presence of an impurity. These changes are of the
order of 1N and therefore cause a change of order unity in
the positron correlation energy. For brevity, we suppress here
the contribution from triplet calculations; these corrections
are already discussed in Ref. 37. The impurity chemical po-
tential is, at the pair-correlation level, given by

2
u'=pf dgr[[g'%)—1]u'B<r>—g'B<r>(8h—m

2

h 2
)VZU'ZB(r)

Q
+p7AU d3r[[g(r)—1]v(r)

+_
8m

convenient to start with the effective interaction of correlated

basis functions theory

VEB(k) =T 4B (k) — [t (k) +t(K) (k). (3.18

h2
- mg(r)Vzuz(r)

]—I—ATJF, (3.22

whereA'’s in the second line of Eq.3.22 indicate that we

Again, using background and impurity Euler equations, ongake the difference of the expressions calculated for the full

can write this quantity as

t(k)

le(k):_l R
of 2 1+ Xod k)

ty(k) + Tk

_ B IB(1\Y
1+~>~(ee(k)[vde(k)+3 (K)Vad k)

+flfa<k>vee(k>+%(t.(k)ﬂ(k))i'd%(k). (3.19

systemminusthe same expression for the pure background.
The pair correlations between background and impurity
particles are determined by optimization. Having a relation-
ship between the pair-distribution functiogd(r) and the
pair-correlation functionsij (r) allows us tochoosewhich
one of these four quantities should we consider to be the
independent ones. The most convenient choice is to use the
“dressed” correlation function$ y(r) andI'l(r), since all
other diagrammatic quantities can be defined in terms of
these functions, whereas(r) appears explicitly only in the
coordinate space equatié®.7). In other words, we consider

From this, we can obtain, for example, the induced interacy,(r) as a functional of 44(r), the impurity density', and

tion
wiP(k) = Vigg(k) = Vig(k) (3.20

1B

p. As mentioned earlier, the consideration is further simpli-
fied by the fact that the impurity cannot be involved in any
exchange.

Since we need the chemical potentiel only to leading

and, of coursel’ 4 (k) which is needed for the de equation, order in the impurity density, the optimization conditions for

and N2 (k) which is now easily obtained from
Nig (k) =5""8(k) — T4 (k) — X5 (k)
__1 IB T 1B ¥'B
== 2[4 (K) +t(K) J[S™ (k) +I'gg(k) +Xgg(k) ]

—VEK) - VEK).

the background can be used to simplify expres$®a2) for
the chemical potentialagain at the two-body correlation
level):

1 3 3
EA d rld rzp(rlarZ) V(|rl_r2|)

With this, we have derived a complete set of equations that h2 H

can be solved by iteration.

D. Impurity energetics

Another physical quantity of interest is the chemical po-
tential of the positron impurity, which is the energy gained or
lost by adding one impurity particle into the liquid, i.e., the

energy difference

(W'HPY (PH|W)
ety ey - 82

MIZEN+1_EN:

~agm Vit V2)ua(ryry)

10 5 3 h? 2, v2
:—EJ d°r,d rzp(l’l.l’z)%(vﬁ"vz)AW(rl'rz)'
(3.23

In particular, sinceT ;- can be expressed entirely in terms of
the I'yy(r;;) and exchange functions, there is no rearrange-
ment correction from this term. The chande, is now ex-
pressed as a functional of the impurity quantities,
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s L AUy sults on the homogeneous electron as.
Auy(r)=Auy[p’,g9 ,Uz]zf d°rop T
p

(3.29

Furthermore using the HNC equation we find, again in HNC
approximation, that

A. FHNC//0 for the background

The FHNC//0 approximation is, by construction, tinai-
mum approximation that iga) correct for both short- and
long-range correlations antb) permits optimization. The
FHNC//0 approximation for the background amounts to ig-

Auy(ry,rp)= —f d%ﬂﬂw. (3.25  noring all de quantities and using+X.{ k) = S¢(k), where
op
3
The variations are carried out fiixed pair-distribution func- 3_k — k_ k< 2Kg
tions. The change in the sum of nodal diagrams has a simple Se(k)=1 4K 16k2 4.7
expression in the momentum space, 1, k=2k
I5Ndd(k) SIB 2 is the static structure function of the noninteracting Fermi
p 5—p|:[de(k)] . (3.26 gas.

Consistent with this approximation, we leave out elemen-

The HNC equation€2.7) and(3.3) are now used to elimi- t@ry diagrams; they may be put in at the end on a term-by-
nate the pair-correlation functions(r) andul®(r) from the €M basis. The FHNC equatiof2.7) and (2.8) collapse to

chemical potentia(3.22. Using the HNC equations and Eq. three equations:

(3.26) one finds after some algebraic manipulations Xol 1) = X Un(1) + Ngg(r)]— 1= Ngg(1),
2 hZ
| — dB[ 1B 1B +|—+ —||V 1B 2} _ ’)“(2 k k
MHNC Pf rig=(rjv=(r) 2m 2m| Vg (1) Ndd(k)_M 2

1S (KXl k)

i f d—sk[t<k>+t (k) {SBK)[NfHK)
4] 27)%p ! ad K Se(k)
S(

LRk [NE(k) + BB (k) T'B(K)) T 1= S (Xl k)

1 d3k _ Equations(4.2) are exact in the long-wavelength limit, but
+ ZJ Wt(k)[S(k)—l][X!j%(k)]z. (3.27  can be applied also at finite momenta. In the same approxi-
p mation, we obtain from Eq2.21),
The expression given above must be supplemented by Se(K)
corrections originating from “proper” elementary diagrams S(k)= ,
and triplet correlationgsee Ref. 3Yif appropriate. SE(k)_
1+2 o Vgd(K)

IV. SIMPLIFICATIONS

2
The FHNC-EL equations for the background, and even —T14 +ﬁ_ T2
more for the impurity, are admittedly complicated and of Vad 1) =[1+Tad D)o (1) + 2 VV1+ Tag(r)|

little appeal. The reason is that the exchange structure allows
for many different ways of coupling.
We recall, however, that the original motivation for deriv-

+ga(r)w(r), 4.3

ing these equations is a symmetric treatment of short- and (K= — nAkl 1 1 2 ZS(k) +1}

long-ranged correlations, and the stability criteria provided : 4m | Se(k)  S(k) Se(k) '

by the optimization. One is therefore tempted to reduce thi&_ . .

FHNC-EL equations to a level that contains thenimal or f_urth_er reference, we also mention that, in the same ap-
amount of self-consistency and is, nevertheless, optimizablé’.rox'mat'on’

An appealing feature of such a simplified theory is that the 1

equations are hardly more complicated than those of the féd(k)=—t(k)'l~“dd(k)[l——} (4.4)
Bose theory; they are also readily applied to the much more 2 Sr(k)

demanding problem of inhomogeneous systems, where the
solution of the full set of FHNC-EL equations is a rather B. FHNC//0 for the impurity

unpleasant and still incomplete takin this connection, we . .
need to recall two things: First, positron annihilation rates Leaving the FHNC equations of Sec. Ill A unchanged but

are directly connected to short-ranged correlations, cf. Eqdentifying 1+$<ee(k)~: Sr(k) and S(k)/Sy(k)=Se(k) and
(1.1). Second, it is far from straightforward to deduce short-ignoring Vy{k) and V{k), the impurity Euler equations
ranged correlations in an inhomogeneous geometry from reeduce to
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VB t(k) XB(k) and the structure function become inconsistent. A simple ap-
VB(k)=VE(k)+ SR 2 200 200 [Se(k)—1]. proximation forg'®(r) would be
S2
(4.5 gB(r)=~1+Tr). (4.11)
The induced interaction is Adding the simplest exchange term would lead to a different
approximation,
1B t(k) IB IB
wi(k)=— '(k)+SF(k) i K) — S Vie(K) (N=[1+Tg(rI[1+C(n)], (4.12

whereC(k) = F (k)[SF(k) 1]. Thisis acceptable in a sys-
- _[tl(k)+t(k)]x (k)} V(). (46 tem with repulswe interactions since+T"5(r) is small at
the origin. However, the opposite is true for the electron-
The dé equation does not simplify significantly, note espe-positron case because bogf(r) and 14+T8(r) become
cially that it is not legitimate to omit the elementary ex- large at the origin, thus enhancing any small error that might
change diagrams. be made in calculating the exchange corrections. We will see
Let us finally also ignore all impurity dequantities. The in the following section that this effect can be quite dramatic.
Euler equation(3.11) remains the same, we only need to

replaceX'®— X2, and V'®—V!E,. We can write it also as V. ANNIHILATION RATES
The central quantity of interest of our calculation is the
S(k) Vi k) . = 1 . :
SBk)=—2———— 4.7 positron annihilation ratél.1), hence, our primary question
(k) +hw(k)’ is what does it take to get right? To examine this question,
we have carried out the following sequence of calculations of
B e A TTB 2 B increasing complexity.
Vdd(r)_ |V LT gD+ 1+ T 1) o () (1) Charged bosons: Positive impurity in a charged Bose
gas.
+Tgnw(r). (4.8 (2) FHNCI//0 : The basic version of the FHNC-EL theory

for both the background and the impurity. This means we use

Egs. (4.2—(4.4) for the background and Eq$4.7)—(4.10

for the impurity. The motivation for this approximation is
t,(k)}f“g%( k) that it is the simplest one that contains fermionic corrections,

satisfies all exact short- and long-wavelength properties, and

The induced interaction is

t(k)

B
k)=—V8B(k) —
wi (k) #(3) [ F(k)
can therefore be optimized.
- ESIB( ) t2(k) _ + Lo _ tk) (4.9 (3) FHNC//0b: The full impurity FHNC-EL equations on
Sk SE(k)y  S(k) Se(k) the simplified background. The motivation for this approxi-
mation is that there is evidence that a simplified treatment of

and finally the background electrons could be appropriate, in fact, the
B energetics of the bulk electron gas predicted by this approxi-
d(k)_ S=(k) 4.10 mation is not significantly worse than the energetics pro-

Se(k) ' duced by the full theor§? However, electrons and positrons

are strongly correlated and, thus, the same approximation
We can apply the above sequence of simplifications immight not be adequate for electron-positron correlations.
two ways: One way is to use the FHNC//0 approximation forSince the treatment of the impurity correlations is identical to
the background only, keeping all impurity equations intact.the one of the full FHNC-EL theory to be described below,
This might be a possible strategy for calculating annihilationthe comparison of the results from this calculation with the
rates in inhomogeneous geometries, the good agreement benes from the next more sophisticated one examines the sen-
tween theg'®(0) values in this approximation with the sitivity of the results to the background correlations.
Monte Carlo data of OrtfZ provides encouragement that this ~ (4) FHNC//CO: The full solution of the FHNC-EL equa-
is perhaps a pragmatic way to attack this problem. tions for the electrons and the positronic impurity, including
The second level of approximation is to also omit the decorrections that guarantee the long-wavelength lifBi6)
diagrams in the impurity equations. We note thath strat-  but without proper elementary diagrams.
egies include the self-consistent summation of ring and lad- (5) FHNC//C5: As FHNC//CO, but including fourth- and
der diagramé®%® both strategies also maintain “perfect fifth- order proper elementary diagrams as described in Ref.
screening”S'®(k)=1. The FHNC//O approximation provides 36.
for bulk electrons an accuracy that is only marginally worse Table | lists a comparison of our results for the primary
than the full theory® and one might hope that the same is quantity, g'®(0), in the simplest charged boson calculation
true for electron-positron mixtures. However, since the abovésee also Ref. 29 our most sophisticated FHNC//C5 calcu-
approximation omits the self-consistent summation of eldation, and a few important earlier calculatidis:?23%4"At
ementary exchange diagrams, the pair distribution functiorigh densities, one has reasonable agreement whereas the
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TABLE I. The table compares the primary quantity of interest, surprising, because the approximation already includes the
g'®(0), for the ‘charged boson” approximatiofBosons and the
FHNC//CS approximation, with the values obtained by Kahanagiagramg'®4°and is thus beyond standard perturbative treat-
(Ref. 8, Bororski, Szotek, and StachowidBSS (Ref. 19, Lantto
(Ref. 28, Stachowiak, and LactBL) (Ref. 30, and Ortiz(Ref. 47).

self-consistent summation of both ring and ladder

ments that include only one of the classes of diagrams or an
incomplete self-consistency scheme.
The main reason for the failure of the FHNC//O approxi-

r¢ Kahana BSS Lantto SL Ortiz Bosons FHNC//C5 . -

mation can be traced to the way exchange corrections were
1 216 229 206 240 2.076 included(see the discussion in the end of Sec).I®@n the
2 221 376 405 396 339 455 3.983 level FHNC//Ob this problem is solved by including the full
3 267 691 740 729 7.00 8.25 7.658 FHNC summation for the impurity correlations, while leav-
4 3.17 136 132 136 11.70 14.71 14.455 ing the background correlations at the FHNC//O level. In-
5 23.0 242 17.69 26.08 26.225 deed, there is some improvement. The annihilation rates
6 40.1 46.18 45.640 come out lower than those predicted by the more sophisti-
) 93.9 64.00 14330 126.063 cated approaches to be discussed below. But, in fact, when

core corrections are included, agreement of the FHNC//Ob
approximation with experiments is not too bad. The full

agreement becomes worse at lower densities. The compafiiiNC summation FHNC//CO brings us back up, and ulti-
son of different methods should serve to identify the sourcdn@t€ly the inclusion of proper elementary diagrams on level
of these discrepancies. Among the various calculations, thEHNC//CS produces reasonable agreement with the experi-
variational Monte Carlo calculations of Oftizhave pro- mental annihilation rates when core corrections are omitted.
duced consistently the lowest values §3¥(0); incidentally, Evidently g'°(0) is extremely sensitive to the description
these values are quite close to our FHNC//0b results. of the background electron liquid, as can be seen in the large
Figure 1 shows the annihilation rates® computed using difference between the full FHNC//0, the FHNC//Ob, and the

the approximations listed above. More appropriately, ond HNC//CO results. We conclude t_herefore that any simplis;ic
should refer to these numbers as “partial annihilation rates'réatment of background correlations should be viewed with

because we have neglected the effect of core electron&® Sofnuch reservation. . . _

obtains, for example, 5% core contribution for Li and 30% !N discussing the possible theoretical refinements one
for Cs, whereas more recent wetk? arrives at even larger should finally comment on the importance of triplet correla-
core corrections. We conclude first that, in the experimen{ions. Since the proper elementary diagrams have an impact,
tally accessible density range, the charged boson approxim@Nn€ might expect the same to be true for triplets as well. In
tion is not as bad as one might expect. Inclusion of the simth€ case of h"ehum liquids, triplets h"?‘VGH been mostly de-
plest fermion correctiondFHNC//0) yields, on the other scribed in the “convolution approximation” outlined in Ref.

hand, far too high annihilation rates. This failure is rather?4- Recently, the treatment has also been found to be ad-
equate for a problem analogous to the present one, namely,

the calculation of the energetics of*ale impurity in 3He.%’
The next systematic improvement to the method of Ref. 44
has also been examinétbut for helium liquids it was found
. to be insignificant. Unfortunately, the same is not true for
positronic impurities in the electron gas. We have tried the

10 T T T T T T

-

FHNC//0
S s —~"" FHNC//C5

1 (10%)

o]

N ’_,.f-"'éha.rged bosons

2 3 4 5 6 7

FIG. 1. Experimental and theoretical annihilation rates for vari-
ous materials. The experimental points are, from left to right, for the

metals Al, Zn, Mg, Li, Na, K, Rb, and C&Refs. 4, 53, and 54

without core corrections. The theoretical curves correspond to vari
ous levels of implementation of tH€)HNC-EL theory as labeled in

same approach here and found that the convolution approxi-

mation is manifestly inadequate for this case. It appears that
the derivation of triplet HNC equatiorfsis necessary for a
satisfactory treatment. We are not aware of a successful
implementation of this program for bosons, much less for
fermions or mixtures, and must leave this question open for
the time being. The variational Monte Carlo calculations of
Ortiz*" support our view that triplet correlations are unimpor-
tant.

From now on we show only the FHNC//C5 result and
occasionally the FHNC//O result for reference. The next
quantity of interest is the positron correlation ener@y
chemical potential (3.21). Our results are shown in Fig. 2;
they are consistent with earlier calculations of Arponen and
Pajanné and Lanttd?® although our results are somewhat
higher. The present results also show a drop of the chemical

the figure. In the level of sophistication the order from simple topotential towards lower densities; a similar drop has been
complex is charged bosons, FHNC//0, FHNC//Ob, FHNC//CO,reported by Hodges and Stdtt.

FHNC//C5 (see main text for definitionsThe positronium decay

rate is (500 ps)t=2x10° s~ 1.

It has been argued that, in the low-density litérger),
the correlation energy should go towards the binding energy
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-0.40 T T T ]_,8 T : . :
_______ 1.6 | |
045 | Ll _
Z 050 L2 i
S~ 210N |
ES FHNC-EL//C5 > 0s | _

e FHNC-EL//CO - 7 o

g Lantto - :
0.60 |/ Ap 1 04 | |
/ BS _— 02} |

0.65 Ls . . . 00 . .
2 3 4 5 6 0 : . A —
h k(o)

FIG. 2. The calculated positron correlation energies as function F|G. 4. The figure shows our calculated electron-positron struc-
of rg in the FHNC//CO(dashed lingand the FHNC//C8solid line)  tyre functionS®(k) for r¢=2,3,...,9. The lowesturve corre-

approximation. Also shown are the theoretical results of Lanttosponds to the lowest, (highest electron density
(Ref. 28, Arponen and Pajann@\P) (Ref. 9, and Bordiski and

Stachowiak(BS) (Ref. 34. solve the Euler equation with the boundary condition

o . 9'®(r)—1, asr—. If there were a bound state, then
of the free positronium of-0.524 eV. Evidently, our calcu- \/W should have a node at some finite distance. Of
lation does not show such an asymptotic behavior and Wgqrse_as argued above—the theory will not allow us to
hastgn to pomt. out that it should not. The .Jastrow—Feen_bergaach this point, but one should expect precursor phenomena
function used in Eqs(2.2) and (3.2) describes a state in 55 gne approaches the density of positronium formation. Fig-
which the positron is delocalized, so itnsta valid descrip- e 3 shows indeed both effects: As we decrease the density,
tion of one positronium atom and free electrons. Hence, (?'B(O) increases. In addition to this, a “dip” forms at an

the present theory is inapplicable to a system with boungiermediate distance. At the highestvalue shown in Fig.

electron-positron pairs. It has, however, the desirable featurg . _ g \\a haveg'®(r) as low as 0.042. With decreasing
S 1 . .

that the Euler equation ceases to have a solut.ion at the pOiB nsity the dip drops rapidly, and finally the pair-distribution
where the system cannot be in the state described by the tri nction becomes unphysically negative at~9.4. Also

wave function. In the present case, this happens at the deBTB(O) diverges, atr.=10, but because of both diagram-
. . . . 1 S 1

tSrI]ty wh%re the pfs'troTL:jStbti I?ctahllze;d. This fﬁatu_re Of_theih matic approximations and numerical limitations one cannot
eory does not preciude that the Iree posironium 1S ey, nect these instabilities to show up at exactly the same den-

physical low-density limit; the theory simply makes no State'sity. We conclude that our calculations predict positronium

ment about this limit. . . ormation at 9.4<r,<10. For comparison, in the mid 1970s
The appearance of a positronium atom is, on one han

. rowy and Jacksaff found the positronium limit at=6.2,
signaled by a very largg®(0). Moreover, recall that we \ic 5 decade later Pistitten and Kallig® obtained

r<=8.
1000.000 T : : T T T T Slightly different information is contained in the static
electron-positron structure functid®(k), depicted in Fig.
4. In the long-wavelength limit, charge conservation implies

100.000
SB(0+)=1; this property is a rigorous feature of the opti-
mized structure function in any level of the FHNC-EL ap-
__ 10000 proximations. As the density decreases, we see ${¥k)
& develops a peak &~3.2(aors) 1. Such a peak reflects an
E 1.000 oscillatory structure in the pair distribution function.
0.100 VI. SUMMARY
We have presented in this work calculations of electron-
0.010 1 L L 1 L L 1 positron correlations in simple metals. Technically, we have
0 1 . (agr) 3 4 used the most complete summation of diagrams within the
S.

Jastrow-Feenberg theory. We have shown that such a highly

FIG. 3. The figure shows our calculated electron-positron pair-Summed theory is indeed necessary for a reasonably reliable
distribution functiong'®(r) for r¢=1,2, ...,9. Thefunction with  prediction of the relevant quantities. The omission of triplet
the lowest value 0§'®(0) corresponds to the highest electron den-correlations is an unsatisfactory point, but progress towards a
sity. Notice the logarithmic scale ig'®(r). fully consistent summation of three-body)HNC equations
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and the corresponding Euler equation is not in sight. In anyexperiments when core corrections are included. With suffi-

event, we have demonstrated that one might have to do everent caution, since better agreement with experiments does
more, but one must definitely not do less than what was dongot indicate a better theoretical treatment, one might be able
in our work to obtain a conclusive answer. to use this version of the theory in a nonuniform environ-

Our results are, from a pragmatic point of view, somewhaiment and obtain reasonable annihilation rates for positrons in
disappointing in the sense that the system is evidently muchimple metal surfaces.

more complicated than the bulk electron gas at metallic den-
sities. Bulk electrons at metallic densities are one of the sim-
plest systems to be treated within microscopic many-body
theory, and simple approximation provide already reason-
ableqg agreement with exact results. The reason for this prob- This work was supported, in part, by the Austrian Science
lem is evidently the large value of the pair-distribution func- Fund under Project No. P12832-TPH. Extensive discussions
tion at the origin, which causes poor convergence ofand communications with H. Sormann and the communica-
diagrammatic summations. On the other hand, the FHNC//Obon of unpublished results by G. Ortiz are gratefully
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