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In order to optimize the ordering of the lattice sites in the momentum space and quantum chemistry versions
of the density-matrix renormalization grodPpMRG) method we have studied the separability and entangle-
ment of the target state for the one-dimensional Hubbard model and various molecules. By analyzing the
behavior of von Neumann entropy we have found criteria that help to fasten convergence. An initialization
procedure has been developed which maximizes the Kullback-Leibler entropy and extends the active space in
a dynamical fashion. The dynamically extended active space procedure reduces significantly the effective
system size during the first half-sweep and accelerates the speed of convergence of momentum space DMRG
and quantum chemistry DMRG to a great extent. The effect of lattice site ordering on the number of block
states to be kept during the RG procedure is also investigated.
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[. INTRODUCTION method. In the initialization procedure proposed by Xing
the environment blocks of various lengths were generated in
The density-matrix renormalization-groufDMRG)  advance of the finite lattice method. It is expected that a
method? has been widely used in recent years to studybetter procedure can be developed to generate the environ-
coupled fermionic and spin chain problems. Its applicationment blocks by taking into account the change of the system
got a new momentum during the past few years when it wablock states during the process of renormalization. This is
reformulated to models defined in momentum sf)a(MS- also crucial for reaching faster the crossover between the
DMRG) or to quantum chemistry calculatidi’s (QC-  environment error and the truncation error. Then using the
DMRG). The properties of the Hubbard motleind small DBSS approach the accuracy is controlled by the threshold
diatomic molecules'® have been studied using these meth-yalue of the truncation error fixed in advance of the calcula-
ods. However, several new technical problems are raised bypons. The procedure relies on finding the most important
these versions of the DMRG that have to be solved 10 ingtates carrying the largest information. The space of these
crease the efficiency of the method and to stabilize its persiates will be called active spa¢as) following a similar

formance. notation in quantum chemistry, namely, the CAS of the com-

A main difference between MS-DMRG and homogeneog lete active space self-consistent field method used to define

lattice models studied by standard real-space DMRG wit he orbitals for the configuration-interacti@@l) treatment.

per_|od|c_ bo_undary condition is that in the latter case ea_cll\S it has been shown long afoin the multireference
lattice site is equivalent and carries the same amount of in-

formation. In contrast to this points or molecular orbitals configuration-interaction calculations the convergence de-

lying closer to or further away from the Fermi surface havepends not only on the size of the active space but on other

different information content. The method is very sensitive toconstraints of the numerical treatment as well. It is, therefore,

the ordering of thek points or molecular orbitals and an & Very important task to develop a protocol that extends the
optimal ordering would have a major impact on the perfor-active space more effectively.
mance of MS-DMRG:®~1%In fact the method can lose the ~ From the point of view of synergetics DMRG can be in-
target state and converge to a local minimum if an inapproterpreted as a dynamical system. In this analogy the response
priate ordering is used. It has also been found using the dyof a given model system to incident messages is studied and
namical block state selectiofDBSS approach that the the change of the relative importance of messages is deter-
same accuracy can be achieved with more or less blockined as the method converges to an attractor. Therefore,
states, depending on the ordering. besides the practical importance to improve the MS-DMRG
The density matrices of composite systems, the separabiprocedure, the study of the interaction of the subsystem
ity of states, and the nature of entanglement have been eklocks of DMRG as a function of the ordering of lattice sites
tensively studiett'° in the past few years. Since MS- is a very interesting question from the point of view of
DMRG represents a composite system with long-rangenformation theory, synergetics, and quantum data
interactions the results of quantum information theory can beompressioff*=2*
used to understand the criteria of convergence of MS- Our aim in this paper i$1) to study the criteria of con-
DMRG. vergence of MS-DMRG by analyzing the structure of the
Another major feature that hindered the powerful applica-superblock and subsystem density matrices and quantities
tion of MS-DMRG s the lack of the so-called infinite lattice used in quantum information theor§?) to develop a more
method which in the real-space version generates a relativebfficient initialization procedure that collects the most impor-
accurate starting configuration for the so-called finite latticetant block states required to describe the total system in a
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better way, and3) to study the effect of ordering on quan- 5| S
tum data compression. _ . m e e

The setup of the paper is as follows. In Sec. Il we describe
the theoretical background of separability and entanglement, M a o M,
mutual entropy and relative importance of incident mes-
sages, and generation of information entropy. Numerical in-
vestigation of these quantities in the context of MS-DMRG
and QC-DMRG is presented in Sec. Il and optimization of ‘
ordering is shown in Sec. IV. Section V is devoted to the M, Mp
main steps of a protocol that uses a dynamically extended
active space to improve the initialization procedure. It is  F|G. 1. Schematic plot of the system and environment block of
shown how the Abelian point-group symmetry can be used ilbMRG. B, andB, denote the left and right blocks of lengthand
the framework of QC-DMRG. Numerical results obtainedr, and of dimensions$/, and M, , respectively,® stands for the
for the one-dimensiondlLD) Hubbard model and for various intermediate sitess{ ands,) with g, andq, degrees of freedom.
molecules are presented in Sec. VI. and the effect of orderinghe blocksB, =B, ®,B;=®B, have dimension#1, andMg, re-
on quantum compression is also analyzed in some detail. Thepectively.
summary of our conclusions and future prospectives are pre-
sented in Sec. VII. tween the left and right blockB, and B, of dimensionsM,
andM, , respectively. Thus the superblock can be considered
as a specially constructed composite system. Its configura-
tion is shown in Fig. 1.

The so-called target stat€d( 1)) of the superblock system

In general, if a finite system is divided into smaller sub-which is the eigenstate that one wants to calculate is formed
systemgblocks the Hamiltonian of the finite system is con- from the direct product states of the blocks and the sites. It
structed from terms acting inside the blocks and the interacean be a coherent or incoherent superposition of several
tion terms among the blocks. The Hilbert spagGeof  eigenstates. In the first case one deals with a pure state, while
dimensionN of the system is formed from the direct product the latter corresponds to a mixed state. In this paper we ex-
states of the subsystem basis states. In particula#, de-  amine only the first case, i.d¥ ) is chosen to be a pure
scribes a composite system withsubsystems, then state.

If we combine theB,® composite system to one sub-
systemB, and @B, to another onéBg, then the so-called
superblock Hamiltonian for such a bipartite system consists
of interaction terms determined in the blocks, denote@{as
If m=2, then the system is called bipartite. In general, stategnd 1/, and interaction terms between the blocks denoted as
of G can be pure states or mixed states described by thgy . The relative contribution of each term to the super-
density matrix written as block energy can be measured as

Il. THEORETICAL BACKGROUND

A. Separability versus entanglement

G=0M.G, o|img:|f=[l N,=N. (1)

p=2mwmw, 2

where | ;) are eigenstates of the Hamiltonian acting @n
and 2;p;=1. The density matrixp has the following prop-
erties: (i) Trp=1, (ii) p is a positive operator, i.e., ToP)
=0 for any projectorP, (iii) p can be represented by its
spectral decomposition as

N

N
P= anPhp, E an=1, a,=0, 3
n=1

n=1

where P,, form a complete set of orthogonal projectors. A
statep is called separable if it can be written in the form

p=2 P&, (4)

wherep! are states 0@, thus the subsystems are either not
correlated or their correlation is purely classical.

In the density-matrix renormalization-group method pro-
posed by Whit&? the total system called the superblock has

A=(¥|p~Yw) >

(W H;|Py) ®)
> H ‘I’T>

(Hi)=
(¥

wherei=L,R,LR and=;(H;)=1.

Since the target state is a pure state it follows from the
Schmidt decomposition that fof¥;) e G=G, ® Gg, with
dimG =M, dimGg=Mg, M  XMg=N,

r<min(M_ ,Mg)

|Wr)= izl wile)®|f;), (6)

where|e)®|f;) form a biorthogonal basige;|e;)=(f;|f;)
=35, and O<w;<1 with the conditionS;w?=1. If r>1
and in the range of a stagethere exists a¥') such that

)

1+ ma)(wiwj) '
i#]

two sitess; ands, with g, and q, degrees of freedom be- or alternatively
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A=(W[pW)>mas?, ®) — > step

[Blodcoococooo] ;4

then according to Ref. 14 is inseparable. Ip has an eigen-

vector| V) corresponding to the eigenvalde such that the [ooloojcooooo] 2
conditions in Eqs(7) or (8) hold, thenp is inseparable. In

our case for a pure stat@)=|¥;) and A=1. Using sin- [ooglooclcoocoo|l 3
gular value decomposition to generate the Schmidt coeffi- .

cients one can easily check if the conditions of E@sor (8) .

hold or not for a given target state. The necessary conditions O O@ -3

for a density matrix to be separable have been worked out by
Pere$® and Horodeckkt al?® D
Even if the target state is a pure state, the left or right l[ocooodoood
blocks or the individual sites can be in a mixed state. A - o
quantitative characterization of the degree of mixtures is pro- FIG. 2. The decomposition of the finite system to subsystems as

vided by the von Neumann entropy. For a system with dend function of iteration steps corresponding to various partitionings.
sity matrix p The shaded block represents the system block and the other block

stands for the environment block. The arrows indicate the forward
S(p)=—Tr(pInp). 9) and backward sweeps.

The von Neumann entropy is zero for a pure state 8nd

=InN for a totally mixed state withp=(1/N)I, wherel 5 5re state, Eq12) can be easily calculated. A mixed state
denotes the identity matrix of dimensidh Within the con- 5 entangled if it cannot be represented as a mixture of fac-
text of DMRG von Neumann entropies of the subsystems argyjzaple pure states and there has been a great effort to de-

calculated using the reduced density matrices givem,as termine a measure of entanglement for mixed states of a
=Trep,  pr=TrLp,  p=TrsTrrp,  p=TrTlsp,  ps  pipartite systend?=3In fact, according to Bennegt al?” all

block, Sis the von Neumann entropy defined in Eg). For

=TnTrrp, ps =Tr . Trip. inseparable mixed states have nonzero “entanglement of for-
Alternatively, the so-called participation number mation” which means that a nonzero amount of pure en-
tangled states are needed to build them.
R(p)= 10
(p) Tr(p?) (10 B. Mutual entropy and Kullback-Leibler entropy

can be used to characterize the mixture. The participation " the DMRG procedure the complete Hilbert spaces of
number varies from unity for pure statesMoto the totally the blocks are truncated, thus they generate only a restricted
mixed states and can be interpreted as an effective number 8fPspace of the total Hilbert space. The various partitionings
the states in the mixture. The Renyi entrof(p) of the finite system containing lattice sites to subsystem
=[In(Trp%]/(1—q) with g>1 can also be used to measure blocks are obtained by systematically changing the sizes of
how much a given state is mixed. the left and right blocksl) and (), respectively, with +2

A fundamental concept related to inseparability and non-" =L as shown in Fig. 2. In our implementation, described
locality of quantum mechanics is the entanglement. A typicalater in the text, the first iteration step corresponds-td

example of the maximally entangled pure state for two spin@ndr=L—2—1 andl is increased as long ds-L —3. The
1 particles is renormalization procedure is used to obtain better configura-

tions of the block states for a given partitioning yielding a

1 more accurate description of the total system. In the forward
|py=—=[T1)=[1T). (1)  sweep the left and right blocks are called the system and
V2 environment blocks, respectively. In the backward sweep the

In order to measure the degree of entanglement between tfi§ht block becomes the system block and the left block the

monotone defined &8: p(G, ® Gr) — R, with (i) E(p)=0 if  States of the system block are selected from the eigenstates of

p is separable(ii) E is convex, andiii) E is nonincreasing the reduqed density matrix of the system bIocK hgving the
(on averaggunder local quantum operatioriguantum op- largest eigenvalues. The reduced density matrix is formed
erations on the left or right blogkor classical communica- from the target state gs =Trgp and pgr="Tr p for the left

tions. A particular entanglement monotone, the entanglemer@nd right subsystems, respectively, qnd [V r)(W] is de- ,
of formatiort’~%%is defined as termined by the diagonalization of the superblock Hamil-

tonian. It is thus evident that since the various possible par-
) titionings of the system have a strong effect on the structure
EF(P)Em'”Ei PiS(Trgl i) (el (120 of H, /Hg, M, and on the density matrix of the superblock
system, the structure of the reduced density matrix of the
where the minimum is taken over all the possible realizationsystem block also depends on the environment block to a
of the statep, Trg is a partial trace with respect to the right great extent. In this respect, states with largest eigenvalues of

195116-3



O. LEGEZA AND J. SQ.YOM PHYSICAL REVIEW B 68, 195116 (2003

the reduced density matrix of the system block can be conp(x;) is the probability or relative frequency. If under a dif-
sidered as dominant states while states with smaller weightgrent condition we find a new relative frequenpyx;),
as recessive states. The term recessive is used to indicate tlaén the change of information is

such a block state gives no considerable contribution to the

superblock wave function with that given environment Aj=Inp(x{)—Inp(x;). (19

block, however, it is possible that it will provide a consider- To obtain the mean change of information, we average Eq.

able contribution when it interacts with an environment 15 h distribution f . , d obtain th
block in a subsequent sweep of the finite lattice algorithm.( ) over the new distribution functiop(x;) and obtain the

The M i, parameter introduced in Ref. 9 ensures that thes&® called Kullback-Leibler information gaih® as
recessive states are also carried on during the sweeping pro-

cedure until they might become a dominant state. K(p(x'),p(x))= >, p(X-')AJ:Z p(X!)mLXJ'),
For a given system block various environment blocks can i ! ] T p(xg)
be constructed, and analogously to the genetic algorithm we (16)

can treat them as different species of a population with dif'whereE-p(x-)z 1 and3 p(x/)=1. Equation(16) has an
ferent information content. Alternatively, we can think of the importar{t pré)perty namJer )

environment blocks as sources of messages. A meaning can
be attributed to a message if the response of the receiver, in K(p(x"),p(x))=0. 17

our case the system block, is taken into account. Thus one " ]

can define the relative importance of messageas the ei- If X" and X" are not independent of each other, then the
genvalues of the reduced density matrix. In other wordsS0-called mutual informatio(L,R) quantifies the correla-
even if the environment block contains all the states of thd!On betheen_the two events, I.e,, it gives the information
restricted Hilbert space defined on theL—I—2 sites of @boutX™ providedX™ is known.I(L,R) is written as

the environment block, its information content can be very _ B

small if the system block is truncated so much that after H(L.R)=S +S~ Sk, (18)

taking into account the conservation of quantum numbers th@here the total entrop$, y is calculated from the joint prob-
Hilbert space of the total systersuperblock is reduced  gpility distribution of the two eventp(ij,ij,) as

drastically. The opposite treatment when the system block is
considered as the source of messages and the environment

block as a receiver works in the same way. Therefore, one Sir= —Z (X} ,ij,)In (X} ,XjR,)- (19
needs a protocol to measure the mutual information content 1y’
of the blocks. It is clear from Eq.(18) that!l(L,R) is symmetric under the

Before proceeding further we recall a few definitions frominterchange ofXx" and XR and zero if and only if the two
classical information theory in order to describe von Neu-eyents are completely uncorrelated, i.e., whefx",x?)
mann entropy and its connection to quantum information=p(x)p(xR).
theory. Let us assume that there are two evémts indepen- The quantum analog of the Shannon entropy is the von
dent in generaldescribed by two ensembleX(,X®) and  Neumann entropy. In the context of DMRG it can be defined
two sets of probability distributions of the elements denotedytp p(x}) = w} ' wherew} are the eigenvalues of the reduced
as P(XL) and p(x%). We have used the labelsand R to  gensity matrices of the subsystems. The two events can be
indicate that the two events will later be related to theyg|ated to the left and right subsystem blocks. Since the tar-
DMRG blocks. The Shannon entrdfyfor the two sets i get state was chosen to be a pure state it corresponds to zero
defined as von Neumann entropy wit§ g=0, thusl(L,R)=S, + Sg.

M; Recalling the Schmidt decomposition of E@) based on
i i i _ singular value decomposition one easily obtains fhaand
1 PN P(X)), 2,: P(x)=1 (13 pr have the same set of nonzero eigenvalueb,‘,:(w!'
=ol) and

Si=-.
=

wherei=L,R. It is worth noting that the entropy depends

only on the probability distributiom)(x}). The largest uncer-

tainty of an event corresponds to the uniform distribution S =S=2 ojno;. (20

with p(x}) = 1/M; whereM; is the number of elements. If the .

state of the event is known exactly, th&s0 sincep(x!) In what follows this will be denoted b$and it is one half of

=1 and allp(x;.;)=0. Following the notation of Hakéh  the so-called mutual entropy. According to Efj2), Sis the

Eg. (13) can be interpreted as an average of the quantity oveneasure of entanglement formation. In order to describe the

f; relationship between entanglement and mutual entropy we
can use Wootters's interpretatfdrobtained in quantum in-
formation theory. Within the context of DMRG it can be

S:; P(x))fj, (14 stated that for any pure target state the entanglement mea-
sures the amount of quantum information that must be ex-
wheref; = —Inp(x;) and the weight i9p(x;). In this respect changed between the DMRG blocks in order to create the

f; is the information content of the state with indgpand  target state.
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For a given system block we can generate various envidepends on the messages previously delivered to the re-
ronment blocks representing “different conditions” and the ceiver. In the general case, the relative importance of a mes-
guantum analog of Eq16) called Kullback-Leibler entropy sages will depend in a noncommuting way on the sequence

or quantum relative entropy is written as of the messages. In this way the receiver our case the
system block is transformed by messages again and again
K(pllo)=Tr(pInp—plno), (21)  and clearly the relative importance of messages will be a

function of the iteration step.
The meaning of Eq(23) is that with a given task or
ensemble of tasks, this algorithm allows us to select the mes-

wherep and o are two reduced density matrices of the sys-
tem blocks corresponding to two different environment

blocks. . . .
In what follows S is defined by Eq(20) andK by Eqg. sage to .be sent, namely, that with the blgggpi Using the .
21). relative importance of messages one can investigate the in-

formation entropy of subsequent states of the system,

C. Information generation and annihilation ©) E | ) E |
L . S = — wilnw;, S*'=- win wy, 24
In the above treatment a so-called static situation was T ) ! o TRk 24

considered where the DMRG system block has a given SiZ\?vhether a dynamical system annihilates, conserves, or gen-
with given lattice sitegorbital9 and we adjust the configu- tes inf y tion. I y ~1 and> _i there i  0rg
ration space of the environment block. During the sweeping o-c> Information. k.‘"k(_l) ar(lo) j@j= <, Nereis-anni-
procedure of DMRG, however, the partitioning of lattice ilation of information if S*/<S"”) or generation of infor-

H . i if g(1) (0) i “ e An
sites changes and the system behaves dynamically. In thﬁEa“t_'on 'fS_ _ >,,S : A(_jynam|cal system can be sensitive
case for a given incident messaggven ordering and con- or “insensitive” for a given message. As it was described by

figuration space of the environment blgcte algorithm Haker?® it is an interesting problem to determine the mini-

drives the system to an attractor defined by the target stat&!u™ numb_er of bits reqwr“ed o rea!lze agiven ?ttractor orto
As it has long been known, in a dynamical system, diﬁeren{eal'ze a given value Qf relatlvg importance.” THd
incident messages can give rise to the same attractor, parameter mtroduced N a previous workad the.same
which case one can speak of redundancy of messages. On aning. It is, however, a major task to determine those
other hand, it is possible that one incident message can leddcident messages that have the largesin advance of the

to two different attractors due to the fluctuation of the systenfalculations.

or change of the intrinsic parameter of the system. This effect

doubles the original information. As an example, it was Il NUMERICAL INVESTIGATION OF von NEUMANN

found earlie? that if the symmetry of the target state was not ENTROPY AND ENTANGLEMENT

restricted, then depending on the DMRG parameters the g glements of information theory outlined in the previ-

same ordering of lattice sites and initial conditions some+, ;g sections have been used in the DMRG studies of systems

times gave rise to th&,;=0 component of the triplet state yascribed by the Hamiltonian

or to the singlet state. Clearly the relative importance of the

messageaw; depends not only on the dynamical system but

also on the tasks it must perform. In order to determine the H:;T TiiCiToCia‘F__ > , ViJkICiTaCjTa'Cko'Clm (25

values ofw; of incident messages we have to consider the . koo

links between a message and the attractor into which thehere T;; denotes the matrix elements of the one-particle

dynamical system is driven after receipt of this messagetHamiltonian andVj;,, stands for the matrix elements of the

Following again the notation of Haken a single message caglectron interaction operator. Depending on the structure of

drive the system via fluctuations into several different attracT;; andV;, this Hamiltonian can describe a molecule or a

tors which may occur with branching ratio®l;  with usual fermionic model in solid-state physics, e.g., the Hub-

2iMj=1. Then the relative importanae; is defined as bard or extended Hubbard models in one or higher dimen-
sions or, for example, coupled fermion chains. In the former

1 My (1) case a one-dimensional chain is built up from the molecular
“’izzk: Ljkok :Ek: O, (22 orbitals that were obtained, e.g., in a suitable mean-field or

E M+ e MCSCEF calculation and in the rest of the paper we use the
i’ numbering of orbitals corresponding to the output of these

the other, then for instance in a two-step procedure we obtaif€s i..k,| denote momenta wittk;=(2n)/L,—L/2<n
<L/2. For the one-dimensional Hubbard moddt;

=—2tcosk)di—j) and Vi, =(U/L)S(i+j—k—=1). In
“’J:; L}&)w(kl)=k2k LELE, o). (23)  what followsU is given in units oft with t=1. In the rest of
1 the paper Hartree-FodiHF) orbitals denote filledk; points
It is worth to emphasize that the recursion frasf” to between the Fermi surfacestkg) in the limit of V=0
may depend on the path, namely, on the ordering of latticevhere we use “Fermi surface” to denote sites where the
sites or molecule orbitals. In such a way we obtain an interoccupation number of the sites drops to zeros\gg =0.
ference of messages and the relative importance of messaggse full Cl (FCI) energy is the exact solution of E(5) for
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Orbitals ordered accoding to the legend

a finite chain with length. and for a given number of elec- In a first attempt to generate a good environment block,
trons with up and down spins. The relative error of the eniwe have put the orbitals with the largest occupation numbers
ergy is written as to the right end of the chain. This corresponds to the follow-
ing ordering:[7,12,4,9,6,5,11,13,3,8,2,1Q,10ur result ob-
Epvre— Erci tained for a truncation error TRE,= 108 is shown in Fig.
Erel:T' (20 4. Inthe subsequent panels we show the number of selected

block states, the relative error of the energy, the relative en-
In our DMRG calculations we have used the DBSS approaclergy of the blocks and the interaction term, the mutual en-
in which case the number of block states is selected dynamiropy, the site and block entropies, and the site participation
cally according to the threshold value of the truncation erromumbers as a function of DMRG iteration step. The number
TRE, .« St up in advance of the calculations. The other freeof iteration steps when the half-sweep ends are at
parameterdvl i, andM 5, control the minimum and maxi- 10,19,28,37. It is evident from the figure that although de-
mum number of block states to be kept during the renormalpending on TRE, . the number of selected block states fluc-
ization procedure, respectively. We have often used differenfuated, the energy did not converge to the FCI value. It was

min

values oM, for the blocks, thus in what follows;"" and  trapped at some local minimum. This extreme situation has

M™" stand for the left and right blocks, respectively. often been found in our previous studies. Investigating the
third panel of the figure, it is obvious that the right block

A. Analysis on small molecules alone provides all the contribution to the superblock Hamil-

tonian as (Hg)=1) and the interaction between the blocks

First we have analyzed the density matrices and the en,iches (H_r)=0), except at the turning points. Due to
ergy of the subsystem blocks and the interaction between th@. ek of interaction of the blocks the mutual information

subsystem blocks by carrying out test calculations on a Ve%ntropy of the blocks remained close to zero, thus no quan-

small system, namely, the GHnolecule by correlating 6 . tum information exchange was generated during the sweep-

electrons on 13 orbitals. The system is so small that it Shg procedure as can be seen on the fourth panel of the fig-
hardly expected that DMRG would not converge to the at-

i X ure. In order to analyze the information content of the
tractor determined by the target state. In the ordering V\.'Psubsystems we have also plotted in the fifth panel the calcu-

relied on the occupation number of the orbitals obtained iNated entropies of the left and right blocks, and S,) and

thg fg" Cl calcglatiqn by thevoLPRO program package. the entropies of the two intermediate sit& @ndSg ). The
This is plotted in Fig. 3 for a few selected test molecules . [ T

used in the present paper. The legend shows the corresporﬁi)-(th, pangl shows the participation numbers of th? two jnter-
ing orbitals with the original indices. It is worth mentioning Mmediate sitesRs andRs ). Itis clearly seen that sites lying

that for the CH molecule orbitals 1 and 10 are almost dou- close to the Fermi surface have much larger von Neumann
bly occupied while orbitals 2 and 8 are almost occupied withentropy Ss,Ss) and larger participation numbeR({,Rs )
up or down spins since the ground state is a triplet state. than orbitals where the occupation number is close to zero or
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lteration step

2. (This is determined by identifying the data points corre-systems contain important states and a finite quantum infor-
sponding to the ordering and the partitioning of the composmation exchange between the blocks is necessary in order to
ite system for that given iteration step as was shown in Figgenerate the target state. As a test we have flipped the order-
2.) The meaning of site entropy and participation number caring and found a similar behavior, except that the peaks of the
be explained very easily. In our case in the four-dimensionainteraction terms and the entropies were shifted to the other
basis states (0,|,7|) the maximally mixed state would end of the chain.

correspond tcS=In4 andR=4. For those sites which lie As a next step, the interaction between the blocks was
energetically far abové below) the Fermi surface th¢0) maximized by putting the orbitals alternatively to the two
(I71)) basis state in the reduced density matrix of the siteends with decreasing occupation number. This gives the fol-
would appear with very large probability and the remaininglowing ordering:[1,2,3,11,6,4,7,12,9,5,13,8 JL00ur result
three basis states with vanishing probability giving rise tois shown in Fig. 5. It can be seen that the convergence be-
S=0 andR=1. In contrast to this, the reduced density ma-came very fast and within one and a half swe& itera-
trices of sites lying close to the Fermi surface will have ations steps the error margin set by TRk, was reached.
more uniform eigenvalue spectrum corresponding to a finite'his means that the environment error was reduced signifi-
value of the entropy and a participation number larger tharcantly within one full sweep. Investigating the third panel
unity. Analyzing the situation close to the turning points, weone can see that there is always a strong interaction between
have to recall that in this case ti@B, subsystem contains the blocks agH, g)=—0.5 and both blocks provide equal
two lattice sites, but orbitals 1,10,2,8 are very importantamount of energy for the total system &%{ )=(Hg)
components of the wave function. Therefore, both sub==0.7. Analyzing the separability and entanglement of the
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target state the fourth panel shows that the system possess#e now at the center of the chain and the site entropies had
large mutual entropy indicating a large entanglement and amaxima where the mutual entropy had sharp peaks. In addi-
large amount of quantum information exchange between thdon, compared to the two previous orderings it is evident
blocks. Another major difference compared to the results obthat the minimum ofR was at larger values. Looking at the
tained for the previous ordering is that the block entropieghird and the fourth panel we can find an extended region
(S andS;) are always very large as can be seen in the fifthwith large interblock couplings but with small entropy. For
panel. this region our result seems to indicate smaller entanglement
Investigating the first panel of Fig. 5 one can see that théetween the blocks, thus it might correspond to a more pro-
maximum number of block states selected dynamically wer@ounced finite classical interblock interaction with less quan-
often close to 250. Based on previous studies we expect thatm correlation between the blocks. Again the significant im-
the Cuthill-McKee algorithrf gives a better ordering in the provement in the energy happens when the two blocks have
sense that a smaller number of block states have to be sthe same amount of intrablock energy with a large quantum
lected to achieve the same accuracy. Our result for the ordemformation exchange between the blocks.
ing[7,6,5,4,3,1,2,9,8,13,12,10, ]l shown in Fig. 6. It can
be seen that in fact the same accuracy was achieved as before

with a smaller subset of block statemax(M)<130]. At the
same time the mutual entropy had usually large peaks when In order to search for an optimal ordering method we

the energy improved significantly. Analyzing the fifth and studied the quantities defined above for the molecules,CH
sixth panels one sees that orbitals which have large entropyl,O, F,, and N. We have found that in general the Cuthill-

B. Analysis on larger molecules
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McKee ordering is not the best one. In the case phiol- Figure 8 shows six different orderings of tkevalues for a

ecule with 18 electrons on 18 orbitals DMRG did not con-half-filled L=14 chain. The first panel corresponds to the
verge at all, as can be seen in Fig. 7. The number of iterationatural ordering, where the valuesm<k;< 7 follow each
steps when the half-sweep ends are at 15,28,41,54. Itis evther with increasing;, the doubly filled states of the HF
dent from the figure that the orbitals with larger participationstate are on the sites 4,5,6,7,8,9,10, the others are empty. The
number and larger entropy appear close to the two ends Qfiates at the Fermi energy are on the sites 4,10. In the second
the chain and the method performed rather badly. A Iarg(fbanel the ordering of sites with negative and positive mo-
number of block states were select@ee have cutM ., at . :

menta was reversed. In the third panel sites counted from the

2000 and the result did not converge. Cuthill-McKee order—F Csurf dered t ide of the chain similarl
ing resulted in a very similar distribution of site entropies as" ' SUrtace were ordered to one side ot the chain similarly

in the second example for the Giholecule. We have tested O the first example used for GHIn the fourth ordering the
this kind of entropy distribution for the other molecules asFermi points were moved to the two ends of the chain simi-
well using larger basis sets and obtained very slow convedarly to the second example used for £Hhe fifth and sixth
gence or lack of convergence. Therefore, the good convepanels show our attempts to place the sites near the Fermi
gence obtained in the second example for,@kblecule was surface to the center of the chain as in the third example for

due to the short chain length. the CH, molecule.
) ) We have found similar results as for the molecules,
C. Analysis on the 1D Hubbard chain namely, the third ordering gave the worst result. For stdall

We have done similar calculations on the 1D Hubbardvalues U=0.5,1) the method did not converge even if
model for various band fillings, chain lengths, ddd/alues. M ,;;=800 was used. The fourth ordering gave very large
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filled Hubbard chain with_= 14.
Doubly filled sites in the HF limit
in the natural ordering are
4,5,6,7,8,9,10.



OPTIMIZING THE DENSITY-MATRIX . .. PHYSICAL REVIEW B 68, 195116 (2003

0.05 T T T T T
(v U-05]
0.04 - v v
_0.03- v oV .
0.02- v v T
L v v |
0.01 v v v v
0 v 1 1 1 1 1 1 A4
0 2 4 6 8 10 12 1
02 T T T T T
v U=t
v v
[ AN v v -
v v
v v
o v Y ¥ ! ! ! ! Yy ¥ y FIG. 9. Site entropyS, ob-
0 2 4 6 8 10 12 14 tained for the half-filled Hubbard
06 : : : : : chain with L=14 using ordering
v U=2 shown on the sixth panel with
04 =0.5,1,2,4.
L v i
— v v v
w v v
021 1
v v
v v
0 Ava Y v 1 1 1 1 1 3
0 2 4 6 8 10 12 14
1 T T T v T
v
08l v v v U=4
0.6 -
»
A\
041 v 4
v v
02r- -
v v v
0 v 1 v | 1 | 1 | Y
0 2 4 6 8 10 12 14

mutual entropy in almost all iteration steps and although a=400-500 forU=0.5, while the system selected out dy-
very large subset of block states was selected, the convefamically more than 2000—2500 states to reach an accuracy
gence was still very slow. It required six to seven sweeps fopf 1074 for U=4. ForL =18 these numbers are 600—700

1 in withl = - —10°6 . : ! )
a half-filled chain withL =14, U=1, and TRE,.~=10"".  and 3000-3500, respectively. This fact questions the effi-
The best performance was obtained for the fifth and S'X”biency of MS-DMRG wher is comparable to or larger than
orderings. The first two orderings gave stable but considefg,o pand width. We expect that for the largelimit real-
abl\)llvslor\]/ver conve_r%encet. | calculati ith chai space DMRG should provide more accurate results.
len tis uaV?o %Zi(t)ms?tesoflér jssilglrf; fiﬁﬁ\cz Z&n:a“\j\gs aﬁ daln We have also found that the best ordering is a function of
fougd aga?in that good convergence isgobtained if the bloc the filling. This is because the algorithm will converge only

: : : If there is a finite interaction between the blocks for several
entropies are not very small for several iteration steps whos eration steps, and therefore both blocks must contain sites

values depend on the various model parameters. As an ex-, . - o
ample the distribution of site entropy for the half-filled Hub- with large entropies. For half-filling the best ordering is that
shown on the sixth panel in Fig. 8. For lower filling, how-

bard model withL =14 using the sixth ordering is shown in ) , b i :
Fig. 9. Data points have been taken frdBg and S, by  €Ver this ordering can lead to a situation shown in the first
carrying out an additional full sweep aftler the rDMRG example for Fhe Chimolecule. As an example for the 6/1.8
method has converged. As can be seen, lddyealues gave H.ubbard chgln fotd =0.5 the ordering scheme of panel 6 in
larger values of site entropies which means more mixedd- 8 leading 10[9,8,10,7,11,6,12,5,13,4,14,3,15,2,16,1,
states. In addition, for increasingvalues, where sites lying 17,18 the DMRG method is trapped by a local attractor
further away from the Fermi surface become more importantSince for several steps one block contains all the important
we have found that DMRG blocks had finite interaction Sites and there is no interaction between the blocks. If sites
strength for all iteration steps but, of course, the number ofvith large entropies are placed at the center of the chain as in
maximally selected block states has increased significantlghe natural ordering or for the orderind2,1,4,3,

As an indication for ar. = 14 half-filled chain a 10°® abso-  6,5,8,7,9,11,10,13,12,15,14,17,16,1&8he DMRG method
lute error of the energy has been reached with mBx( converged to the desired accuracy within two sweeps. The
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last two orderings also lead to the reduction of block entrotions presented above, the ordering has a great impact on the
pies and the number of selected block states for several istructure of renormalized states. For fermionic models the
eration steps. optimal ordering following from our earlier considerations is
We can thus conclude that DMRG converges only if thea function of the filling andJ value and is obtained if sites
block entropies and mutual entropies are not very small, bufith large entropies are placed close to each other at the
at the same time it is not a good strategy to choose an ordegenter of the chain.
ing with which the entropy is large for all iteration steps. |t js a far more complicated task to find the optimal or-
There is an optimal configuration in which case the blockyering in quantum chemistry. In order to search for an opti-
entropies are large for several iteration steps but small oths, ordering we have carried out a kind of brute force cal-

erwise. This can be achieved by moving sites with larges{, ,.ation for the & molecule. We have run QC-DMRG using

entropies close to each other and closer to the center of the, )\ -\ "<t -tes for one half-sweep, then permuted two orbit-
chain. ’

als and monitored the obtained energy values. If an ordering
produced a better result, it was kept and a next ordering was
obtained by permuting again two sites. For thenfolecule
It is very important to emphasize that according to quone calculation took soem8 s CPU time and more than

(23) the dynamics of the system depends very much on th@0 000 permutations were carried out. Our result for the best
path it evolves, thus on the way it receives incident message¥dering is shown in Fig. 10. It can be seen that the sites with
and the renormalized block states are formed. In DMRG thdargest entropy are close to the center of the chain but some
initial wave function does not point in the direction of the sites with finite entropy are close to the two ends of the
attractor and it is rotated systematically in the multidimen-chain. This configuration is in agreement with what has been
sional space by the transformation matrices during eacfound for the Hubbard chain. It provides finite interaction
renormalization step. The sequence of rotation, however, ibetween the blocks for several steps but the largest informa-
not commuting, therefore, as it has been seen in the calculéion exchange between the blocks occurs when the super-

IV. OPTIMIZING ORDERING
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block composite system is close to a symmetric configura-
tion. We have investigated the other test molecules as well
and obtained similar results. It is worth mentioning that for a
given molecule the ordering that produced the best perfor-
mance at the end of the first half-sweep also gave the fastest
convergence using more sweeps. . =

As a summary of our result, we have obtained the follow- B 1 ) (
ing rule to generate a good ordering, which, of course, could
still be not the optimal one.

Step 1.The Cuthill-McKee ordering is used and a DMRG ; ;

calculation with some 100 block states is run and the entro- K¢ " Ke
pies, participation numbers, and orbital occupation numbers
are determined. FIG. 11. Dispersion relation of the 1D Hubbard chain. Arrows

Step 2.The orbitals with largest entropi€kargest partici- indicate the most probable electron-hole excitations with small mo-
pation numbers, closest to the Fermi surfagee moved to  mentum transfer in the small limit.
the center of the chain and the remaining orbitals are distrib-
uted along the chain with decreasing entropies counted from A The dynamically extended active space procedure

the two ends of the chain. Let us consider first the partitioning where the left block
This method guarantees a finite interblock coupling for(system block contains one lattice site and the right block
several steps but reduces the number of block states. It '(%nvironmenlL—S lattice sites as was shown in Fig. 2. The
worth mentioning that ifq"<M™" or g'<sM"" then the  system block containdl,=q states and the right block con-
sweeping procedure can be turned back, since the remaininginsM, states when the conservation laws of total quantum
part of the sweeping will not improve the environment. All humbers are taken into account. The various configurations
calculations in the rest of the paper were obtained followingof the right block interact differently with the left block.
this rule. Since the density matrix of the system block depends
strongly on the interaction between the two blocks the initial
V. THE INITIALIZATION PROCEDURE COﬂfigUl’&tiOﬂS of the right block have a strong effect on the
renormalized block states of the left block. In order to guar-
Besides ordering, the optimal performance of DMRG isantee the convergence of DMRG the mutual entropy should
strongly effected by the initial conditions or in other words possess a finite value, thus one needs a method that maxi-
by the initial block configurations. Looking at Fig. 6 one can mizes the Kullback-Leibler entropy given by EQ1), i.e., a
see that in the first three iteration steps the mutual ent®py protocol to optimize the right block configuration in advance
was exactly zeroRg andRs was unity R—1=0) while in  of the calculation to have largest von Neumann entropy.
the second sweep at the same partitioning their values be- It is known for the Hubbard model that for smallall the
came larger indicating a better environment block. In addiinteresting physical properties are determined by sites that lie
tion, for the first three iteration steps the eigenvalue spectrumlose to thex kg Fermi points. They give also the largest
of the reduced density matrix of the system blogk)(had  contribution to the correlation energy. The most important
one eigenvalue of unity which according to E§) means excitations are shown in Fig. 11. As the strengthlbfis
that the superblock eigenstate was separable. For the secomgreased, this region gets larger and sites further away from
sweep all eigenvalues were less than unity indicating that ththe Fermi points will also contribute to the correlation energy
target state became nonseparable. Since the subsystem entod other physical properties. We can thus expect that the
pies and related quantities depend on other subsystems, thiasis states formed from the sites arouh&g will corre-
suggests that a better initialization procedure can be obtainezpond to a larger mixturéseveralw; will be large) and we
if one starts with a larger mixture by increasing the blockcan form the incident message from these states. In order to
entropies. This also leads to the decrease of the volume @fchieve this we define a so-called AS vector, a concept in-
separable basis states of the target state. We have also fouherited from quantum chemistry which simply contains the
that the entropy of the blocks must be larger than a criticamost important sites in a descending order with respect to
value. their expected importance. For the Hubbard chain this vector
The standard initialization procedure outlined by Xiang,is AS=[kg,—Kkg,ke+1,—ke—1ke—1,—ke+1,...]. In
when subsystem blocks of various lengtdescribing vari- QC-DMRG the AS vector is constructed in a self-consistent
ous partitiong are generated in advance of the finite latticeway. First the AS vector is defined to include only the HF
algorithm, does not guarantee this in general for the firsorbitals and a quick calculation is performed with some 100
sweep. Therefore, it is crucial to develop a method that conblock states using one or two sweeps. Next the AS vector is
structs the environment blocks by taking into account thedefined by taking orbitals with largest values of site entropies
change of the renormalized system block basis states, and a descending order.
which increases the block entropies above a threshold value We have confirmed numerically that the entropy of the
during the initialization procedure. In this section we presenenvironment block &) can be increased by using sites lying
a procedure to generate the system and environment blocksound the Fermi points. Once a good AS vector is estab-
giving largew; eigenvalues, i.e., block entropies. lished, the question arises how to construct the configuration
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r=11 matching the left block are determined. According to &),

4 5678 910111213 14| in order to allow the possibility oM, X q nonzero eigenval-
10000000000 ues of the reduced density matyx , M, is determined as
1 ( M B \ \ /\,/ N .
0BIGOD®OOOCO max(, M;"). o
2 - i EE A Step 6.Close to the turning points it can happen that for
3 % % % % g % @ 8 x (Q 9 the selected stated, <M """ thus the excluded states could
4 % @ \@) DODOMD O (i ;) never be recovered during later steps of the method. In order
5 PHOOOD C DO ;’5) to avoid such a problem alj’ states are selected for the
";’ DBDDDOD O DO = A environment block iV, <M™".
M DRDDDDODO 5 O This procedure ensures that the size of the active space is
' - extended dynamically as the system evolves and the left

ADDDDDAAEE E| block is correlated from the very beginning With .the most

E — Ermply sfes |r_nportant states deflr_1ed by the AS vector. In addition, as the

D — Doubly filled sites size of the left and right blocks changes the second step of

A = Active sites the procedure adjusts the AS vector so that only those ele-

) ] ) _ments are taken into account which belong to that given right

FIG. 12. Example for a right block configuration space obtainedp|qci .

bylzhe 5 EAS prgcew[ﬁnfo; thel hi”'ﬁ"edl'l"“bbg‘rdl_fgam whith As an example, Fig. 13 shows the density-matrix spectra,
s =L My =9, 1=4, 1= an VECIOr  the calculated mutual entroy environment block entropy
Sl o sion iy oy T £ SO LSO S e
' structed right blocks wittM"'"=64 for the half-filled Hub-

. . . _ bard chain withd=1, L= 14 using the original ordering. In
space, i.e., how to fill the sites given by the elements of theyq first example we have formed the right block basis states
AS vector? Therefore, one needs a protocol that extends Oz, the sites lying close to the right-hand side of the chain
timally the active space in order to achieve fast convergenceg i the standard initialization procedure. The second ex-
In the fO”OW"_‘g we describe the details of t_he dynam!cally ample corresponds to a similar construction but the Hartree-
extended active spad®EAS) procedure which takes into oy sites were doubly filled. In the third example the right
account the change of the partitioning of the DMRG supery|o. \as set up according to the method described above. It
block and the renormalization procedure of the system blocks eyigent from the figure that in the first example one eigen-

Let us assume that we have a given ordering and we havg, e of the reduced density matrix was one giving rise to
a starting partitioning with=1 andr =L —2—1 as is shown ;¢4 mytual and environment block entropies and separabil-
in Fig. 2. , , ity of the superblock eigenstate. The second example corre-

Step 1.An AS vector is defined and another vectotE 004 10 a finite but very small entropy while the entropy is
vectoy is defined which contains the filled Hartree-Fock or-jncreased for the third example. It is thus clear that a better

bitals. ) environment block can be constructed by using the AS vec-
Step 2.Based on the ordering the AS and HF vectors ar

reordered and for the given partitioning the elements of the
AS and HF vectors belonging to the right block are deter-

B. Reducing the effective chain length

mined.
Step 3.The g° bases states of th, @ ® subsystem are during the initialization procedure
formed and their quantum numbers are determined. Once theM, states of the environment block are found,

Step 4.0n the site given by the first element of the AS taking into account the conservation laws of the quantum
vector the basis states (0/,7]) are formed and the HF numbers, many sites will remain unfilled as can be seen on
sites are filled according to the HF configuration except forthe example shown in Fig. 12. If the right block configura-
this site if it is in the HF vector. An example is shown in Fig. tion space is represented by &M Xr matrix then those
12 for the half-filled Hubbard chain using the original order- columns(site which contain only the empty stat&beled
ing and M""=8. The quantum numbers of the obtainedas B are not active, since the action of creation and annihi-
states are determined and those which have a matching conation operators on such empty sites gives no matrix ele-
ponent with any of thé, @ @ basis states satisfying the con- ments. Therefore thgj,k,| summation indices of Eq25)
servation of total quantum numbers are kept. Next the firstan be restricted only to the remaining nonempty sites giving
two elements of the AS vector are taken and the same praise to a much smaller effective size of the chain.
cedure is repeated unt¥;"'" many states are selected. In  The nonempty sites fall into two further categories. Those
this way one makes sure that states of the environment bloatolumns (site9 which contain only doubly filled site¢D)
have a matching component with the system block, thus thegnd those called active sité&) which contain various basis
all produce contribution to the mutual entropy. states (0,,7,/7T). Several steps of the DMRG matrix alge-

Step 5.0ne iteration step of the standard DMRG proce-bra can be restricted to the active sites only and various
dure is carried out. In the next step then procedures of stepgstrictions are also given if an index corresponds to a dou-
2-5 are repeated by forming again thgx gXxq states of bly filled site. For example, the matrix algebra for quadratic
the B;®@® subsystem and th#l, states of the right block auxiliary operators having the form .c;; with a,8 corre-
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sponding to up or down spins, or the fonﬁcjl, have to be quantum number operator for an orbital defined on the
carried out only for the active sites. Therefore, the construc(0,],7,] 1) basis states in QC-DMRG is written as

tion of auxiliary operatorscontaining various combinations

of one, two, three, and four fermion operators can be ob-

tained in a much faster way. This is especially important for

the quadratic auxiliary operators since their multiplication K=k
during the diagonalization of the superblock Hamiltonian is

the most time-consuming part of the MS-DMRG. It is worth

mentioning that the auxiliary operators generated by the left

block states have be to calculated for the empty sites as wellyherek; can take values from 1 to 8 according to the sym-
because during the backward sweep the structure of the rightetry of the orbital. The symmetry quantum number opera-
block might change and nonzero matrix elements in the sutor for basis states of two orbitals is determined by using the

(27)

m O O
+
o R K

perblock Hamilton operator could be generated. standard character table as
This procedure has the advantage that when doubling the
number of sitegdoing a calculation on a larger basis)séte Kij =7(K; ,Kj), (28)

computational time will not increase significantly during the i,
first half-sweep and a much larger subset of block states
(largerM™™" can be used very efficiently to generate a bet-

ter environment block. For optimal ordering this gives a
much faster convergence and due to the better environment
the crossover between the environment and truncation error
can be reached within a few steps. After the end of the first

half-sweepM""=M™" can be used. T=

(29)
C. Application of Abelian point-group symmetry
in QC-DMRG

When the DMRG procedure is applied in quantum chem- 8 7

istry to calculate the energy of molecules the use of Abelian = . :

point-group symmetry reduces the dimension of the HilbertZSiNg Ed. (28) we can determine the symmetry quantum
space to be considered. Before proceeding with the numerUmMbers of all the left and right block bases states, and for a
cal results we show how to use this symmetry in QC-DMRG.g'Ve” target state we can restrict the number of electrons and
The irreducible representation of each molecular orbital idN€ total symmetryKiq) as

generated by standard quantum chemistry programs, such as Kooi=T(K",KR) (30)

the MOLPRO prograni® package. The quantum numbers of tot A

the irreducible representations are very similar to the mowhereK,,; again can take values between 1 and 8. During
mentum quantum numbeks used in MS-DMRG. TheK; the renormalization procedure, the symmetry quantum num-

~N o 0o WODN P
o 01O W b~ P DN
» 01 0 NN P B~ W
O N 00O P, N W b
W N P 00N O O
W A P N N 00O 01O
N P B W O 01 0 N
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ber operators are renormalized in a similar way as the partant to emphasize that after the fitsecond sweep the cal-
ticle number operators and they are assigned to the newulated momentum distribution(mk):(Ei,ac;raci,) for U
renormalized block states. =1(U=4) agreed up to three digits with the values obtained
by real-space DMRG with periodic boundary condition.

Similar results were found for the molecules studied. Re-
sults for the CH molecule for fillings(number of electrons/
number of orbitals 6/13 and 6/23, HO for 8/24, N, for

In order to demonstrate the efficiency of the DEAS pro-10/26, and k for 18/18 are shown in Fig. 15. In all cases the
cedure we have studied the 1D Hubbard chain for variou®\S vector was determined in a self-consistent way by first
fillings, orderings,U values, and chain lengths. We have running a quick full sweep with some 64 block states and
found that for small in the range 0.1-1 MS-DMRG con- then it was constructed based on the decay of the site entropy
verges much faster than with the ordinary initialization pro-values described in the preceding section. In all cases we
cedure. Performing calculations on half-filled lattices up tohave used the modified Cuthil-McKee ordering, according
30 sites the error margin set by TRE~=10"° has been to the method described in Sec. IV. It is clear from the figure
reached within one and a half or two sweeps. As the strengtthat the DMRG with the DEAS procedure converged very
of U increased the procedure selected out more block statdast and usually 90—99 % of the correlation energy was ob-
but the method still converged much faster. As an exampletiained within the first one-half sweep. Therefore, the cross-
Fig. 14 shows the result obtained for the half-filleé&=18  over between the environment and the truncation error can
chain forU=0.5,1,2,4. In order to obtain an absolute errorbe reached much faster and the accuracy of the method is
of 1074, TRE, ., Was fixed to 10° andM ,;, was chosen as finally determined by TRE,yas was shown in Ref. 9. As an
400 and we used the ordering shown in the sixth panel oéxample for CH for 6/13 filling the 10 8 accuracy that was
Fig. 8. ForU =4 we have cut the maximum number of block shown in Fig. 6 was reached in 13 iteration steps with the
states at 2500 giving a maximum value of the truncationDEAS procedure using the same parameter sets. o~
error of the order of 10% The AS vector is 10 & accuracy that was shown in Fig. 10 was reached in 23
[13,5,14,4,12,6,15,3,11,7,16..] and the HF vector is iteration steps.
[5,6,7,8,9,10,11,12,13It can be seen in the figure that in all It is very important to mention that besides the very fast
cases the desired accuracy was obtained within two sweeg®nvergence, if an optimal ordering is obtained and a good
in contrast to the results obtained by Nishimetoal® using initial condition is used, then the number of block states can
the standard initialization procedure. It is even more imporbe reduced significantly during the process of renormaliza-

VI. NUMERICAL RESULTS USING OPTIMIZED
ORDERING AND DEAS
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tion and finally a block can describe the total system veryTherefore, it seems to be promising to examine the separa-
accurately. As an example we have $ét,,,=4 and the bility of reduced density matrices and their effect on the
energy of the ChHl molecule with 13 orbitals was obtained number of block states. A more detailed study of the relation-
after the second sweep up to seven digit accuracy Mith ship between site entropies and the dimension of the Hilbert
=21, M,=4, dimG=107 and for K 18/18 up to five digit space of the superblock Hamiltonian based on Suchmacher
accuracy withM;=120, M, =4, dimG=220 in contrast to gquantum data compression is in progress.

the dimensions of the exact solution which are 230230 and
9075135300 calculated, respectively, by theLYZ[(2L
—N)!N!] formula. The same was obtained for the half-filled

Hubbard model up to four digit accuracy with=18, U We have studied the effect of ordering of lattice sites in
=1/2 is M| =280, M;=4 dimg=562. This feature is ex- the momentum space version of the density-matrix
pected to have a close relationship to quantum dat@normalization-grougMS-DMRG) method by solving the
compressioff** where the relationship between the dimen-1p Hubbard chain and various molecules. This was done by
sion of the Hilbert space and site entropies is given as  ca|culating site and block entropies, the separability and en-
tanglement of the target state. Our findings are listed below.
log,(dimG)=S(®p;). (31 (1) We have shown that thie sites or molecular orbitals

VII. SUMMARY AND FUTURE PROSPECTIVES
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lying closer to the Fermi surface have larger informationspace in a dynamical fashion resulting in a very accurate set
content and correspond to a larger mixture described by af renormalized block states and a very fast convergence. For
larger von Neumann entropy and participation number. the models that have been studied 90—99 % of the correlation
(2) We have shown that if all the sites with large entropy€nergy was obtained within the first half-sweep.
are placed close to one end of the chain then this improper (5) We have shown that MS-DMRG is very sensitive to
ordering can lead to vanishing mutual entropy, lack of enthe ordering and the initial conditions. A good starting con-
tanglement and quantum information exchange between tHféguration and an optimized ordering can result in very accu-
system block and environment block. This prevents thd@t€ blocks with very limited number of block states which
method from converging to the target state. Therefore, thatill describes the system with the accuracy determined in

: ; : dvance.
proposal by Xiang to place the highly correlated sites a! .
close as possible is not a sufficient condition alone. We expect that DMRG can be a very good candidate for a

(3) If lattice sites with large entropy are moved to the two new method on quantum data compression and on guantum

ends of the chain the block entropies can be maximized giv]i:]rgé fnogg\?gﬁizsi;;gjrn%hicghﬁssristgaerjr??éit?; (;)arggkr’gsge'
ing rise to a larger entanglement, but the convergence of th . X . .
g g g g Since MS-DMRG describes a composite system with

method can still be very slow or the method does not con-

verge at all. Numerical results indicate that if these sites ar%ong-rang_e Interactions 1t Is expected_that the method _could
moved to the center of the chain, then a very fast converP€ used in the context of nonextensive thermodynamics to

gence can be obtained with a much smaller subset of bIocﬁtUdy models for which the subadditivity of the subsystem
ntropy does not hold. This would allow one to investigate

states. We have found that the mutual entropy has sha . 0 .
peaks when the most active sites are just between the syste allis entropy, nonextensive mutual entropy, and quantum
and environment blocks when the energy also improves Siggntanglelment by using the generalized Kullback-Leibler
nificantly. Furthermore, in order to have a finite interactionemmm/'I
bgtween the blocks some sites with smaller but finite. entro- ACKNOWLEDGMENTS
pies have to be placed close to the ends of the chain. This
keeps the block entropy above a critical value for several This research was supported in part by the Fonds der Che-
iteration steps. We have shown that these conditions are ofnischen Industrie and the Hungarian Research FDTHA)
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