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Optimizing the density-matrix renormalization group method using quantum information entropy
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In order to optimize the ordering of the lattice sites in the momentum space and quantum chemistry versions
of the density-matrix renormalization group~DMRG! method we have studied the separability and entangle-
ment of the target state for the one-dimensional Hubbard model and various molecules. By analyzing the
behavior of von Neumann entropy we have found criteria that help to fasten convergence. An initialization
procedure has been developed which maximizes the Kullback-Leibler entropy and extends the active space in
a dynamical fashion. The dynamically extended active space procedure reduces significantly the effective
system size during the first half-sweep and accelerates the speed of convergence of momentum space DMRG
and quantum chemistry DMRG to a great extent. The effect of lattice site ordering on the number of block
states to be kept during the RG procedure is also investigated.
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I. INTRODUCTION

The density-matrix renormalization-group~DMRG!
method1,2 has been widely used in recent years to stu
coupled fermionic and spin chain problems. Its applicat
got a new momentum during the past few years when it w
reformulated to models defined in momentum space3 ~MS-
DMRG! or to quantum chemistry calculations4,5 ~QC-
DMRG!. The properties of the Hubbard model6 and small
diatomic molecules7–10 have been studied using these me
ods. However, several new technical problems are raise
these versions of the DMRG that have to be solved to
crease the efficiency of the method and to stabilize its p
formance.

A main difference between MS-DMRG and homogeneo
lattice models studied by standard real-space DMRG w
periodic boundary condition is that in the latter case e
lattice site is equivalent and carries the same amount of
formation. In contrast to this,k points or molecular orbitals
lying closer to or further away from the Fermi surface ha
different information content. The method is very sensitive
the ordering of thek points or molecular orbitals and a
optimal ordering would have a major impact on the perf
mance of MS-DMRG.6,8–10 In fact the method can lose th
target state and converge to a local minimum if an inapp
priate ordering is used. It has also been found using the
namical block state selection~DBSS! approach9 that the
same accuracy can be achieved with more or less b
states, depending on the ordering.

The density matrices of composite systems, the separ
ity of states, and the nature of entanglement have been
tensively studied11–19 in the past few years. Since MS
DMRG represents a composite system with long-ran
interactions the results of quantum information theory can
used to understand the criteria of convergence of M
DMRG.

Another major feature that hindered the powerful appli
tion of MS-DMRG is the lack of the so-called infinite lattic
method which in the real-space version generates a relati
accurate starting configuration for the so-called finite latt
0163-1829/2003/68~19!/195116~19!/$20.00 68 1951
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method. In the initialization procedure proposed by Xian3

the environment blocks of various lengths were generate
advance of the finite lattice method. It is expected tha
better procedure can be developed to generate the env
ment blocks by taking into account the change of the sys
block states during the process of renormalization. This
also crucial for reaching faster the crossover between
environment error and the truncation error. Then using
DBSS approach the accuracy is controlled by the thresh
value of the truncation error fixed in advance of the calcu
tions. The procedure relies on finding the most import
states carrying the largest information. The space of th
states will be called active space~AS! following a similar
notation in quantum chemistry, namely, the CAS of the co
plete active space self-consistent field method used to de
the orbitals for the configuration-interaction~CI! treatment.
As it has been shown long ago20 in the multireference
configuration-interaction calculations the convergence
pends not only on the size of the active space but on o
constraints of the numerical treatment as well. It is, therefo
a very important task to develop a protocol that extends
active space more effectively.

From the point of view of synergetics DMRG can be i
terpreted as a dynamical system. In this analogy the resp
of a given model system to incident messages is studied
the change of the relative importance of messages is de
mined as the method converges to an attractor. Theref
besides the practical importance to improve the MS-DMR
procedure, the study of the interaction of the subsyst
blocks of DMRG as a function of the ordering of lattice sit
is a very interesting question from the point of view
information theory, synergetics, and quantum d
compression.21–24

Our aim in this paper is~1! to study the criteria of con-
vergence of MS-DMRG by analyzing the structure of t
superblock and subsystem density matrices and quant
used in quantum information theory,~2! to develop a more
efficient initialization procedure that collects the most impo
tant block states required to describe the total system
©2003 The American Physical Society16-1
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better way, and~3! to study the effect of ordering on quan
tum data compression.

The setup of the paper is as follows. In Sec. II we descr
the theoretical background of separability and entanglem
mutual entropy and relative importance of incident m
sages, and generation of information entropy. Numerical
vestigation of these quantities in the context of MS-DMR
and QC-DMRG is presented in Sec. III and optimization
ordering is shown in Sec. IV. Section V is devoted to t
main steps of a protocol that uses a dynamically exten
active space to improve the initialization procedure. It
shown how the Abelian point-group symmetry can be use
the framework of QC-DMRG. Numerical results obtain
for the one-dimensional~1D! Hubbard model and for variou
molecules are presented in Sec. VI. and the effect of orde
on quantum compression is also analyzed in some detail.
summary of our conclusions and future prospectives are
sented in Sec. VII.

II. THEORETICAL BACKGROUND

A. Separability versus entanglement

In general, if a finite system is divided into smaller su
systems~blocks! the Hamiltonian of the finite system is con
structed from terms acting inside the blocks and the inte
tion terms among the blocks. The Hilbert spaceG of
dimensionN of the system is formed from the direct produ
states of the subsystem basis states. In particular, ifG de-
scribes a composite system withm subsystems, then

G5 ^ i 51
m Gi , dimG5)

l 51

m

Nl5N. ~1!

If m52, then the system is called bipartite. In general, sta
of G can be pure states or mixed states described by
density matrix written as

r5(
i

pi uc i&^c i u, ~2!

where uc i& are eigenstates of the Hamiltonian acting onG
and ( i pi51. The density matrixr has the following prop-
erties:~i! Trr51, ~ii ! r is a positive operator, i.e., Tr(rP)
>0 for any projectorP, ~iii ! r can be represented by it
spectral decomposition as

r5 (
n51

N

anPn , (
n51

N

an51, an>0, ~3!

where Pn form a complete set of orthogonal projectors.
stater is called separable if it can be written in the form

r5(
i

pi ^ l 51
m r i

l , ~4!

wherer i
l are states onGl , thus the subsystems are either n

correlated or their correlation is purely classical.
In the density-matrix renormalization-group method p

posed by White1,2 the total system called the superblock h
two sitessl and sr with ql and qr degrees of freedom be
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tween the left and right blocksBl andBr of dimensionsMl
andMr , respectively. Thus the superblock can be conside
as a specially constructed composite system. Its config
tion is shown in Fig. 1.

The so-called target state (uCT&) of the superblock system
which is the eigenstate that one wants to calculate is form
from the direct product states of the blocks and the sites
can be a coherent or incoherent superposition of sev
eigenstates. In the first case one deals with a pure state, w
the latter corresponds to a mixed state. In this paper we
amine only the first case, i.e.,uCT& is chosen to be a pure
state.

If we combine theBld composite system to one sub
systemBL and dBr to another oneBR , then the so-called
superblock Hamiltonian for such a bipartite system cons
of interaction terms determined in the blocks, denoted asHL
andHR and interaction terms between the blocks denoted
HLR . The relative contribution of each term to the sup
block energy can be measured as

^Hi&5
^CTuHi uCT&

K CTU(
i

HiUCTL , ~5!

wherei[L,R,LR and( i^Hi&51.
Since the target state is a pure state it follows from

Schmidt decomposition that foruCT&PG5GL ^ GR , with
dimGL5ML , dimGR5MR , ML3MR5N,

uCT&5 (
i 51

r<min(ML ,MR)

v i uei& ^ u f i&, ~6!

where uei& ^ u f i& form a biorthogonal basiŝei uej&5^ f i u f j&
5d i j , and 0<v i<1 with the condition( iv i

251. If r .1
and in the range of a stater there exists auC& such that

L5^Cur21uC&21.
1

11max
iÞ j

~v iv j !
, ~7!

or alternatively

FIG. 1. Schematic plot of the system and environment block
DMRG. Bl andBr denote the left and right blocks of lengthsl and
r, and of dimensionsMl and Mr , respectively,d stands for the
intermediate sites (sl and sr) with ql and qr degrees of freedom
The blocksBL5Bld,BR5dBr have dimensionsML andMR , re-
spectively.
6-2
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L5^CuruC&.max
i

v i
2 , ~8!

then according to Ref. 14r is inseparable. Ifr has an eigen-
vector uC& corresponding to the eigenvalueL such that the
conditions in Eqs.~7! or ~8! hold, thenr is inseparable. In
our case for a pure stateuC&5uCT& and L51. Using sin-
gular value decomposition to generate the Schmidt coe
cients one can easily check if the conditions of Eqs.~7! or ~8!
hold or not for a given target state. The necessary condit
for a density matrix to be separable have been worked ou
Peres25 and Horodeckiet al.26

Even if the target state is a pure state, the left or ri
blocks or the individual sites can be in a mixed state
quantitative characterization of the degree of mixtures is p
vided by the von Neumann entropy. For a system with d
sity matrix r

S~r!52Tr~r ln r!. ~9!

The von Neumann entropy is zero for a pure state anS
5 ln N for a totally mixed state withr5(1/N)I , where I
denotes the identity matrix of dimensionN. Within the con-
text of DMRG von Neumann entropies of the subsystems
calculated using the reduced density matrices given asrL
5TrRr, rR5TrLr, r l5Trsl

TrRr, r r5TrLTrsr
r, rsl

5TrlTrRr, rsr
5TrLTrrr.

Alternatively, the so-called participation number

R~r!5
1

Tr~r2!
~10!

can be used to characterize the mixture. The participa
number varies from unity for pure states toN to the totally
mixed states and can be interpreted as an effective numb
the states in the mixture. The Renyi entropySq(r)
5@ ln(Trrq)#/(12q) with q.1 can also be used to measu
how much a given state is mixed.

A fundamental concept related to inseparability and n
locality of quantum mechanics is the entanglement. A typi
example of the maximally entangled pure state for two sp
1
2 particles is

uc&5
1

A2
u↑↓&6u↓↑&. ~11!

In order to measure the degree of entanglement between
blocks of DMRG one can make use of the entanglem
monotone defined asE:r(GL ^ GR)→R1 with ~i! E(r)50 if
r is separable,~ii ! E is convex, and~iii ! E is nonincreasing
~on average! under local quantum operations~quantum op-
erations on the left or right block! or classical communica
tions. A particular entanglement monotone, the entanglem
of formation27–29 is defined as

EF~r![min(
i

piS~TrRuc i&^c i u!, ~12!

where the minimum is taken over all the possible realizati
of the stater, TrR is a partial trace with respect to the rig
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block, S is the von Neumann entropy defined in Eq.~9!. For
a pure state, Eq.~12! can be easily calculated. A mixed sta
is entangled if it cannot be represented as a mixture of
torizable pure states and there has been a great effort to
termine a measure of entanglement for mixed states o
bipartite system.29–31In fact, according to Bennettet al.27 all
inseparable mixed states have nonzero ‘‘entanglement of
mation’’ which means that a nonzero amount of pure e
tangled states are needed to build them.

B. Mutual entropy and Kullback-Leibler entropy

In the DMRG procedure the complete Hilbert spaces
the blocks are truncated, thus they generate only a restri
subspace of the total Hilbert space. The various partitioni
of the finite system containingL lattice sites to subsystem
blocks are obtained by systematically changing the size
the left and right blocks~l! and (r ), respectively, withl 12
1r 5L as shown in Fig. 2. In our implementation, describ
later in the text, the first iteration step corresponds tol 51
and r 5L222 l and l is increased as long asl 5L23. The
renormalization procedure is used to obtain better configu
tions of the block states for a given partitioning yielding
more accurate description of the total system. In the forw
sweep the left and right blocks are called the system
environment blocks, respectively. In the backward sweep
right block becomes the system block and the left block
environment block. In the DMRG method, the renormaliz
states of the system block are selected from the eigenstat
the reduced density matrix of the system block having
largest eigenvalues. The reduced density matrix is form
from the target state asrL5TrRr andrR5TrLr for the left
and right subsystems, respectively, andr5uCT&^CTu is de-
termined by the diagonalization of the superblock Ham
tonian. It is thus evident that since the various possible p
titionings of the system have a strong effect on the struct
of HL ,HR ,HLR and on the density matrix of the superbloc
system, the structure of the reduced density matrix of
system block also depends on the environment block t
great extent. In this respect, states with largest eigenvalue

FIG. 2. The decomposition of the finite system to subsystem
a function of iteration steps corresponding to various partitionin
The shaded block represents the system block and the other b
stands for the environment block. The arrows indicate the forw
and backward sweeps.
6-3
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the reduced density matrix of the system block can be c
sidered as dominant states while states with smaller wei
as recessive states. The term recessive is used to indicat
such a block state gives no considerable contribution to
superblock wave function with that given environme
block, however, it is possible that it will provide a conside
able contribution when it interacts with an environme
block in a subsequent sweep of the finite lattice algorith
The Mmin parameter introduced in Ref. 9 ensures that th
recessive states are also carried on during the sweeping
cedure until they might become a dominant state.

For a given system block various environment blocks c
be constructed, and analogously to the genetic algorithm
can treat them as different species of a population with
ferent information content. Alternatively, we can think of th
environment blocks as sources of messages. A meaning
be attributed to a message if the response of the receive
our case the system block, is taken into account. Thus
can define the relative importance of messagev j as the ei-
genvalues of the reduced density matrix. In other wor
even if the environment block contains all the states of
restricted Hilbert space defined on ther 5L2 l 22 sites of
the environment block, its information content can be ve
small if the system block is truncated so much that a
taking into account the conservation of quantum numbers
Hilbert space of the total system~superblock! is reduced
drastically. The opposite treatment when the system bloc
considered as the source of messages and the environ
block as a receiver works in the same way. Therefore,
needs a protocol to measure the mutual information con
of the blocks.

Before proceeding further we recall a few definitions fro
classical information theory in order to describe von Ne
mann entropy and its connection to quantum informat
theory. Let us assume that there are two events~not indepen-
dent in general! described by two ensembles (XL,XR) and
two sets of probability distributions of the elements deno
as p(xL) and p(xR). We have used the labelsL and R to
indicate that the two events will later be related to t
DMRG blocks. The Shannon entropy32 for the two sets is
defined as

Si52(
j 51

Mi

p~xj
i !ln p~xj

i !, (
j

p~xj
i !51 ~13!

where i[L,R. It is worth noting that the entropy depend
only on the probability distributionp(xj

i ). The largest uncer-
tainty of an event corresponds to the uniform distributi
with p(xj

i )51/Mi whereMi is the number of elements. If th
state of the event is known exactly, thenS50 sincep(xj

i )
51 and allp(xj 8Þ j )50. Following the notation of Haken33

Eq. ~13! can be interpreted as an average of the quantity o
f j

S5(
j

p~xj ! f j , ~14!

where f j52 ln p(xj) and the weight isp(xj ). In this respect
f j is the information content of the state with indexj and
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p(xj ) is the probability or relative frequency. If under a di
ferent condition we find a new relative frequencyp(xj8),
then the change of information is

D j5 ln p~xj8!2 ln p~xj !. ~15!

To obtain the mean change of information, we average
~15! over the new distribution functionp(xj8) and obtain the
so called Kullback-Leibler information gain34,35 as

K„p~x8!,p~x!…5(
j

p~xj8!D j5(
j

p~xj8!ln
p~xj8!

p~xj !
,

~16!

where ( j p(xj )51 and ( j p(xj8)51. Equation~16! has an
important property, namely,

K„p~x8!,p~x!…>0. ~17!

If XL and XR are not independent of each other, then t
so-called mutual informationI (L,R) quantifies the correla-
tion between the two events, i.e., it gives the informati
aboutXL providedXR is known.I (L,R) is written as

I ~L,R!5SL1SR2SLR , ~18!

where the total entropySLR is calculated from the joint prob
ability distribution of the two eventsp(xj

L ,xj 8
R ) as

SLR52(
j , j 8

p~xj
L ,xj 8

R
!ln p~xj

L ,xj 8
R

!. ~19!

It is clear from Eq.~18! that I (L,R) is symmetric under the
interchange ofXL and XR and zero if and only if the two
events are completely uncorrelated, i.e., whenp(xL,xR)
5p(xL)p(xR).

The quantum analog of the Shannon entropy is the
Neumann entropy. In the context of DMRG it can be defin
with p(xj

i )5v j
i , wherev j

i are the eigenvalues of the reduce
density matrices of the subsystems. The two events can
related to the left and right subsystem blocks. Since the
get state was chosen to be a pure state it corresponds to
von Neumann entropy withSLR50, thusI (L,R)5SL1SR .
Recalling the Schmidt decomposition of Eq.~6! based on
singular value decomposition one easily obtains thatrL and
rR have the same set of nonzero eigenvalues (v i5v i

L

5v i
R) and

SL5SR5(
j

v j ln v j . ~20!

In what follows this will be denoted bySand it is one half of
the so-called mutual entropy. According to Eq.~12!, S is the
measure of entanglement formation. In order to describe
relationship between entanglement and mutual entropy
can use Wootters’s interpretation28 obtained in quantum in-
formation theory. Within the context of DMRG it can b
stated that for any pure target state the entanglement m
sures the amount of quantum information that must be
changed between the DMRG blocks in order to create
target state.
6-4
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For a given system block we can generate various e
ronment blocks representing ‘‘different conditions’’ and t
quantum analog of Eq.~16! called Kullback-Leibler entropy
or quantum relative entropy is written as

K~ruus![Tr~r ln r2r ln s!, ~21!

wherer ands are two reduced density matrices of the sy
tem blocks corresponding to two different environme
blocks.

In what follows S is defined by Eq.~20! and K by Eq.
~21!.

C. Information generation and annihilation

In the above treatment a so-called static situation w
considered where the DMRG system block has a given
with given lattice sites~orbitals! and we adjust the configu
ration space of the environment block. During the sweep
procedure of DMRG, however, the partitioning of lattic
sites changes and the system behaves dynamically. In
case for a given incident message~given ordering and con
figuration space of the environment block! the algorithm
drives the system to an attractor defined by the target s
As it has long been known, in a dynamical system, differ
incident messages can give rise to the same attracto
which case one can speak of redundancy of messages. O
other hand, it is possible that one incident message can
to two different attractors due to the fluctuation of the syst
or change of the intrinsic parameter of the system. This ef
doubles the original information. As an example, it w
found earlier9 that if the symmetry of the target state was n
restricted, then depending on the DMRG parameters
same ordering of lattice sites and initial conditions som
times gave rise to theStot

z 50 component of the triplet stat
or to the singlet state. Clearly the relative importance of
messagev j depends not only on the dynamical system b
also on the tasks it must perform. In order to determine
values ofv j of incident messages we have to consider
links between a message and the attractor into which
dynamical system is driven after receipt of this messa
Following again the notation of Haken a single message
drive the system via fluctuations into several different attr
tors which may occur with branching ratiosM jk with
(kM jk51. Then the relative importancev j is defined as

v j5(
k

L jkvk
(1)5(

k

M jk

(
j 8

M j 8k1e

vk
(1) , ~22!

wheree→0. If there are several systems coupled one a
the other, then for instance in a two-step procedure we ob

v j5(
k

L jk
(1)vk

(1)5 (
k1 ,k2

L jk1

(1)Lk1k2

(2) vk2

(2) . ~23!

It is worth to emphasize that the recursion fromv (n) to v
may depend on the path, namely, on the ordering of lat
sites or molecule orbitals. In such a way we obtain an in
ference of messages and the relative importance of mess
19511
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depends on the messages previously delivered to the
ceiver. In the general case, the relative importance of a m
sages will depend in a noncommuting way on the seque
of the messages. In this way the receiver~in our case the
system block! is transformed by messages again and ag
and clearly the relative importance of messages will be
function of the iteration step.

The meaning of Eq.~23! is that with a given task or
ensemble of tasks, this algorithm allows us to select the m
sage to be sent, namely, that with the biggestv j . Using the
relative importance of messages one can investigate the
formation entropy of subsequent states of the system,

S(0)52(
j

v j ln v j , S(1)52(
k

vkln vk , ~24!

whether a dynamical system annihilates, conserves, or
erates information. If(kvk51 and( jv j51, there is anni-
hilation of information if S(1),S(0) or generation of infor-
mation if S(1).S(0). A dynamical system can be ‘‘sensitive
or ‘‘insensitive’’ for a given message. As it was described
Haken33 it is an interesting problem to determine the min
mum number of bits required to realize a given attractor o
realize a given value of ‘‘relative importance.’’ TheMmin
parameter introduced in a previous work9 had the same
meaning. It is, however, a major task to determine tho
incident messages that have the largestv j in advance of the
calculations.

III. NUMERICAL INVESTIGATION OF von NEUMANN
ENTROPY AND ENTANGLEMENT

The elements of information theory outlined in the pre
ous sections have been used in the DMRG studies of sys
described by the Hamiltonian

H5(
i j s

Ti j cis
† cj s1 (

i jkl ss8
Vi jkl cis

† cj s8
† cks8cls , ~25!

where Ti j denotes the matrix elements of the one-parti
Hamiltonian andVi jkl stands for the matrix elements of th
electron interaction operator. Depending on the structure
Ti j andVi jkl this Hamiltonian can describe a molecule or
usual fermionic model in solid-state physics, e.g., the H
bard or extended Hubbard models in one or higher dim
sions or, for example, coupled fermion chains. In the form
case a one-dimensional chain is built up from the molecu
orbitals that were obtained, e.g., in a suitable mean-field
MCSCF calculation and in the rest of the paper we use
numbering of orbitals corresponding to the output of the
calculations. In our solid-state physics applications the in
ces i , j ,k,l denote momenta withki5(2pn)/L,2L/2,n
<L/2. For the one-dimensional Hubbard modelTi j
522t cos(ki)d(i2j) and Vi jkl 5(U/L)d( i 1 j 2k2 l ). In
what followsU is given in units oft with t51. In the rest of
the paper Hartree-Fock~HF! orbitals denote filledki points
between the Fermi surfaces (6kF) in the limit of Vi jkl 50
where we use ‘‘Fermi surface’’ to denote sites where
occupation number of the sites drops to zeros forVi jkl 50.
The full CI ~FCI! energy is the exact solution of Eq.~25! for
6-5
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FIG. 3. Decay of orbital occu-
pation number obtained in the ful
CI limit and the corresponding or
dering of orbitals for the mol-
ecules studied in the paper.
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a finite chain with lengthL and for a given number of elec
trons with up and down spins. The relative error of the e
ergy is written as

Erel5
EDMRG2EFCI

EFCI
. ~26!

In our DMRG calculations we have used the DBSS appro
in which case the number of block states is selected dyna
cally according to the threshold value of the truncation er
TREmax set up in advance of the calculations. The other f
parametersMmin andMmax control the minimum and maxi
mum number of block states to be kept during the renorm
ization procedure, respectively. We have often used diffe
values ofMmin for the blocks, thus in what followsMl

min and
Mr

min stand for the left and right blocks, respectively.

A. Analysis on small molecules

First we have analyzed the density matrices and the
ergy of the subsystem blocks and the interaction between
subsystem blocks by carrying out test calculations on a v
small system, namely, the CH2 molecule by correlating 6
electrons on 13 orbitals. The system is so small that i
hardly expected that DMRG would not converge to the
tractor determined by the target state. In the ordering
relied on the occupation number of the orbitals obtained
the full CI calculation by theMOLPRO program package.36

This is plotted in Fig. 3 for a few selected test molecu
used in the present paper. The legend shows the corresp
ing orbitals with the original indices. It is worth mentionin
that for the CH2 molecule orbitals 1 and 10 are almost do
bly occupied while orbitals 2 and 8 are almost occupied w
up or down spins since the ground state is a triplet state
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In a first attempt to generate a good environment blo
we have put the orbitals with the largest occupation numb
to the right end of the chain. This corresponds to the follo
ing ordering:@7,12,4,9,6,5,11,13,3,8,2,10,1#. Our result ob-
tained for a truncation error TREmax51028 is shown in Fig.
4. In the subsequent panels we show the number of sele
block states, the relative error of the energy, the relative
ergy of the blocks and the interaction term, the mutual
tropy, the site and block entropies, and the site participa
numbers as a function of DMRG iteration step. The num
of iteration steps when the half-sweep ends are
10,19,28,37. It is evident from the figure that although d
pending on TREmax the number of selected block states flu
tuated, the energy did not converge to the FCI value. It w
trapped at some local minimum. This extreme situation
often been found in our previous studies. Investigating
third panel of the figure, it is obvious that the right bloc
alone provides all the contribution to the superblock Ham
tonian as (̂HR&.1) and the interaction between the bloc
vanishes (̂HLR&.0), except at the turning points. Due t
the lack of interaction of the blocks the mutual informatio
entropy of the blocks remained close to zero, thus no qu
tum information exchange was generated during the swe
ing procedure as can be seen on the fourth panel of the
ure. In order to analyze the information content of t
subsystems we have also plotted in the fifth panel the ca
lated entropies of the left and right blocks (Sl and Sr) and
the entropies of the two intermediate sites (Ssl

andSsr
). The

sixth panel shows the participation numbers of the two int
mediate sites (Rsl

andRsr
). It is clearly seen that sites lying

close to the Fermi surface have much larger von Neum
entropy (Ssl

,Ssr
) and larger participation number (Rsl

,Rsr
)

than orbitals where the occupation number is close to zer
6-6
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FIG. 4. Example for an order-
ing when relevant information of
the system is collected into on
DMRG block giving rise to van-
ishing interblock interactions and
very low entropy indicating high
separability of the target state an
lack of quantum information ex-
change between the blocks.
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2. ~This is determined by identifying the data points cor
sponding to the ordering and the partitioning of the comp
ite system for that given iteration step as was shown in F
2.! The meaning of site entropy and participation number
be explained very easily. In our case in the four-dimensio
basis states (0,↑,↓,↑↓) the maximally mixed state would
correspond toS5 ln 4 andR54. For those sites which lie
energetically far above~ below! the Fermi surface theu0&
(u↑↓&) basis state in the reduced density matrix of the s
would appear with very large probability and the remaini
three basis states with vanishing probability giving rise
S.0 andR.1. In contrast to this, the reduced density m
trices of sites lying close to the Fermi surface will have
more uniform eigenvalue spectrum corresponding to a fi
value of the entropy and a participation number larger th
unity. Analyzing the situation close to the turning points, w
have to recall that in this case thedBr subsystem contain
two lattice sites, but orbitals 1,10,2,8 are very importa
components of the wave function. Therefore, both s
19511
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systems contain important states and a finite quantum in
mation exchange between the blocks is necessary in ord
generate the target state. As a test we have flipped the o
ing and found a similar behavior, except that the peaks of
interaction terms and the entropies were shifted to the o
end of the chain.

As a next step, the interaction between the blocks w
maximized by putting the orbitals alternatively to the tw
ends with decreasing occupation number. This gives the
lowing ordering:@1,2,3,11,6,4,7,12,9,5,13,8,10#. Our result
is shown in Fig. 5. It can be seen that the convergence
came very fast and within one and a half sweeps~26 itera-
tions steps! the error margin set by TREmax was reached.
This means that the environment error was reduced sig
cantly within one full sweep. Investigating the third pan
one can see that there is always a strong interaction betw
the blocks aŝ HLR&.20.5 and both blocks provide equa
amount of energy for the total system as^HL&.^HR&
.0.7. Analyzing the separability and entanglement of
6-7
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FIG. 5. Same as Fig. 4 but fo
an ordering when relevant infor
mation of the system is shared be
tween DMRG blocks giving rise
to strong interblock interaction
and large quantum information
exchange between the blocks.
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target state the fourth panel shows that the system poss
large mutual entropy indicating a large entanglement an
large amount of quantum information exchange between
blocks. Another major difference compared to the results
tained for the previous ordering is that the block entrop
(Sl andSr) are always very large as can be seen in the fi
panel.

Investigating the first panel of Fig. 5 one can see that
maximum number of block states selected dynamically w
often close to 250. Based on previous studies we expect
the Cuthill-McKee algorithm37 gives a better ordering in th
sense that a smaller number of block states have to be
lected to achieve the same accuracy. Our result for the or
ing @7,6,5,4,3,1,2,9,8,13,12,10,11# is shown in Fig. 6. It can
be seen that in fact the same accuracy was achieved as b
with a smaller subset of block states@max(M),130#. At the
same time the mutual entropy had usually large peaks w
the energy improved significantly. Analyzing the fifth an
sixth panels one sees that orbitals which have large ent
19511
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are now at the center of the chain and the site entropies
maxima where the mutual entropy had sharp peaks. In a
tion, compared to the two previous orderings it is evide
that the minimum ofR was at larger values. Looking at th
third and the fourth panel we can find an extended reg
with large interblock couplings but with small entropy. F
this region our result seems to indicate smaller entanglem
between the blocks, thus it might correspond to a more p
nounced finite classical interblock interaction with less qu
tum correlation between the blocks. Again the significant i
provement in the energy happens when the two blocks h
the same amount of intrablock energy with a large quant
information exchange between the blocks.

B. Analysis on larger molecules

In order to search for an optimal ordering method w
studied the quantities defined above for the molecules C2 ,
H2O, F2, and N2. We have found that in general the Cuthil
6-8
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FIG. 6. Same as Figs. 4 and
but for the Cuthill-McKee order-
ing.
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McKee ordering is not the best one. In the case of F2 mol-
ecule with 18 electrons on 18 orbitals DMRG did not co
verge at all, as can be seen in Fig. 7. The number of itera
steps when the half-sweep ends are at 15,28,41,54. It is
dent from the figure that the orbitals with larger participati
number and larger entropy appear close to the two end
the chain and the method performed rather badly. A la
number of block states were selected~we have cutMmax at
2000! and the result did not converge. Cuthill-McKee orde
ing resulted in a very similar distribution of site entropies
in the second example for the CH2 molecule. We have teste
this kind of entropy distribution for the other molecules
well using larger basis sets and obtained very slow con
gence or lack of convergence. Therefore, the good con
gence obtained in the second example for CH2 molecule was
due to the short chain length.

C. Analysis on the 1D Hubbard chain

We have done similar calculations on the 1D Hubba
model for various band fillings, chain lengths, andU values.
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Figure 8 shows six different orderings of thek values for a
half-filled L514 chain. The first panel corresponds to t
natural ordering, where the values2p,ki<p follow each
other with increasingki , the doubly filled states of the HF
state are on the sites 4,5,6,7,8,9,10, the others are empty
states at the Fermi energy are on the sites 4,10. In the se
panel the ordering of sites with negative and positive m
menta was reversed. In the third panel sites counted from
Fermi surface were ordered to one side of the chain simila
to the first example used for CH2. In the fourth ordering the
Fermi points were moved to the two ends of the chain si
larly to the second example used for CH2. The fifth and sixth
panels show our attempts to place the sites near the F
surface to the center of the chain as in the third example
the CH2 molecule.

We have found similar results as for the molecule
namely, the third ordering gave the worst result. For smalU
values (U.0.5,1) the method did not converge even
Mmin5800 was used. The fourth ordering gave very lar
6-9
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FIG. 7. Result for F2 molecule
correlating 18 electrons on 18 or
bitals using Cuthill-McKee order-
ing.

FIG. 8. Examples for various
orderings ofki points for the half-
filled Hubbard chain withL514.
Doubly filled sites in the HF limit
in the natural ordering are
4,5,6,7,8,9,10.
195116-10
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FIG. 9. Site entropySi ob-
tained for the half-filled Hubbard
chain with L514 using ordering
shown on the sixth panel withU
50.5,1,2,4.
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mutual entropy in almost all iteration steps and althoug
very large subset of block states was selected, the con
gence was still very slow. It required six to seven sweeps
a half-filled chain withL514, U51, and TREmax51026.
The best performance was obtained for the fifth and s
orderings. The first two orderings gave stable but consid
ably slower convergence.

We have carried out several calculations with ch
lengths up to 30 sites for various fillings andU values and
found again that good convergence is obtained if the bl
entropies are not very small for several iteration steps wh
values depend on the various model parameters. As an
ample the distribution of site entropy for the half-filled Hu
bard model withL514 using the sixth ordering is shown i
Fig. 9. Data points have been taken fromSsl

and Ssr
by

carrying out an additional full sweep after the DMR
method has converged. As can be seen, largerU values gave
larger values of site entropies which means more mi
states. In addition, for increasingU values, where sites lying
further away from the Fermi surface become more importa
we have found that DMRG blocks had finite interacti
strength for all iteration steps but, of course, the numbe
maximally selected block states has increased significa
As an indication for anL514 half-filled chain a 1025 abso-
lute error of the energy has been reached with maxM)
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.400–500 forU50.5, while the system selected out d
namically more than 2000–2500 states to reach an accu
of 1024 for U54. For L518 these numbers are 600–70
and 3000–3500, respectively. This fact questions the e
ciency of MS-DMRG whenU is comparable to or larger tha
the band width. We expect that for the largeU limit real-
space DMRG should provide more accurate results.

We have also found that the best ordering is a function
the filling. This is because the algorithm will converge on
if there is a finite interaction between the blocks for seve
iteration steps, and therefore both blocks must contain s
with large entropies. For half-filling the best ordering is th
shown on the sixth panel in Fig. 8. For lower filling, how
ever, this ordering can lead to a situation shown in the fi
example for the CH2 molecule. As an example for the 6/1
Hubbard chain forU50.5 the ordering scheme of panel 6
Fig. 8 leading to @9,8,10,7,11,6,12,5,13,4,14,3,15,2,16
17,18# the DMRG method is trapped by a local attract
since for several steps one block contains all the impor
sites and there is no interaction between the blocks. If s
with large entropies are placed at the center of the chain a
the natural ordering or for the ordering@2,1,4,3,
6,5,8,7,9,11,10,13,12,15,14,17,16,18#, the DMRG method
converged to the desired accuracy within two sweeps.
6-11



n
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FIG. 10. Result for F2 mol-
ecule correlating 18 electrons o
18 orbitals using our numerically
optimized ordering.
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last two orderings also lead to the reduction of block ent
pies and the number of selected block states for severa
eration steps.

We can thus conclude that DMRG converges only if t
block entropies and mutual entropies are not very small,
at the same time it is not a good strategy to choose an or
ing with which the entropy is large for all iteration step
There is an optimal configuration in which case the blo
entropies are large for several iteration steps but small
erwise. This can be achieved by moving sites with larg
entropies close to each other and closer to the center o
chain.

IV. OPTIMIZING ORDERING

It is very important to emphasize that according to E
~23! the dynamics of the system depends very much on
path it evolves, thus on the way it receives incident messa
and the renormalized block states are formed. In DMRG
initial wave function does not point in the direction of th
attractor and it is rotated systematically in the multidime
sional space by the transformation matrices during e
renormalization step. The sequence of rotation, howeve
not commuting, therefore, as it has been seen in the calc
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tions presented above, the ordering has a great impact on
structure of renormalized states. For fermionic models
optimal ordering following from our earlier considerations
a function of the filling andU value and is obtained if site
with large entropies are placed close to each other at
center of the chain.

It is a far more complicated task to find the optimal o
dering in quantum chemistry. In order to search for an op
mal ordering we have carried out a kind of brute force c
culation for the F2 molecule. We have run QC-DMRG usin
64 block states for one half-sweep, then permuted two or
als and monitored the obtained energy values. If an orde
produced a better result, it was kept and a next ordering
obtained by permuting again two sites. For the F2 molecule
one calculation took some 8 s CPU time and more tha
50 000 permutations were carried out. Our result for the b
ordering is shown in Fig. 10. It can be seen that the sites w
largest entropy are close to the center of the chain but s
sites with finite entropy are close to the two ends of t
chain. This configuration is in agreement with what has be
found for the Hubbard chain. It provides finite interactio
between the blocks for several steps but the largest infor
tion exchange between the blocks occurs when the su
6-12
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block composite system is close to a symmetric configu
tion. We have investigated the other test molecules as
and obtained similar results. It is worth mentioning that fo
given molecule the ordering that produced the best per
mance at the end of the first half-sweep also gave the fa
convergence using more sweeps.

As a summary of our result, we have obtained the follo
ing rule to generate a good ordering, which, of course, co
still be not the optimal one.

Step 1.The Cuthill-McKee ordering is used and a DMR
calculation with some 100 block states is run and the en
pies, participation numbers, and orbital occupation numb
are determined.

Step 2.The orbitals with largest entropies~largest partici-
pation numbers, closest to the Fermi surface! are moved to
the center of the chain and the remaining orbitals are dist
uted along the chain with decreasing entropies counted f
the two ends of the chain.

This method guarantees a finite interblock coupling
several steps but reduces the number of block states.
worth mentioning that ifqr<Mr

min or ql<Ml
min then the

sweeping procedure can be turned back, since the rema
part of the sweeping will not improve the environment. A
calculations in the rest of the paper were obtained follow
this rule.

V. THE INITIALIZATION PROCEDURE

Besides ordering, the optimal performance of DMRG
strongly effected by the initial conditions or in other wor
by the initial block configurations. Looking at Fig. 6 one c
see that in the first three iteration steps the mutual entropS
was exactly zero,Rsl

andRsr
was unity (R2150) while in

the second sweep at the same partitioning their values
came larger indicating a better environment block. In ad
tion, for the first three iteration steps the eigenvalue spect
of the reduced density matrix of the system block (rL) had
one eigenvalue of unity which according to Eq.~8! means
that the superblock eigenstate was separable. For the se
sweep all eigenvalues were less than unity indicating that
target state became nonseparable. Since the subsystem
pies and related quantities depend on other subsystems
suggests that a better initialization procedure can be obta
if one starts with a larger mixture by increasing the blo
entropies. This also leads to the decrease of the volum
separable basis states of the target state. We have also f
that the entropy of the blocks must be larger than a crit
value.

The standard initialization procedure outlined by Xian
when subsystem blocks of various lengths~describing vari-
ous partitions! are generated in advance of the finite latti
algorithm, does not guarantee this in general for the fi
sweep. Therefore, it is crucial to develop a method that c
structs the environment blocks by taking into account
change of the renormalized system block basis states,
which increases the block entropies above a threshold v
during the initialization procedure. In this section we pres
a procedure to generate the system and environment bl
giving largev j eigenvalues, i.e., block entropies.
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A. The dynamically extended active space procedure

Let us consider first the partitioning where the left blo
~system block! contains one lattice site and the right bloc
~environment! L23 lattice sites as was shown in Fig. 2. Th
system block containsMl5q states and the right block con
tainsMr states when the conservation laws of total quant
numbers are taken into account. The various configurati
of the right block interact differently with the left block
Since the density matrix of the system block depen
strongly on the interaction between the two blocks the ini
configurations of the right block have a strong effect on
renormalized block states of the left block. In order to gu
antee the convergence of DMRG the mutual entropy sho
possess a finite value, thus one needs a method that m
mizes the Kullback-Leibler entropy given by Eq.~21!, i.e., a
protocol to optimize the right block configuration in advan
of the calculation to have largest von Neumann entropy.

It is known for the Hubbard model that for smallU all the
interesting physical properties are determined by sites tha
close to the6kF Fermi points. They give also the large
contribution to the correlation energy. The most importa
excitations are shown in Fig. 11. As the strength ofU is
increased, this region gets larger and sites further away f
the Fermi points will also contribute to the correlation ener
and other physical properties. We can thus expect that
basis states formed from the sites around6kF will corre-
spond to a larger mixture~severalv j will be large! and we
can form the incident message from these states. In orde
achieve this we define a so-called AS vector, a concept
herited from quantum chemistry which simply contains t
most important sites in a descending order with respec
their expected importance. For the Hubbard chain this ve
is AS[@kF ,2kF ,kF11,2kF21,kF21,2kF11, . . .#. In
QC-DMRG the AS vector is constructed in a self-consist
way. First the AS vector is defined to include only the H
orbitals and a quick calculation is performed with some 1
block states using one or two sweeps. Next the AS vecto
defined by taking orbitals with largest values of site entrop
in a descending order.

We have confirmed numerically that the entropy of t
environment block (Sr) can be increased by using sites lyin
around the Fermi points. Once a good AS vector is est
lished, the question arises how to construct the configura

FIG. 11. Dispersion relation of the 1D Hubbard chain. Arrow
indicate the most probable electron-hole excitations with small m
mentum transfer in the smallU limit.
6-13
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space, i.e., how to fill the sites given by the elements of
AS vector? Therefore, one needs a protocol that extends
timally the active space in order to achieve fast convergen
In the following we describe the details of the dynamica
extended active space~DEAS! procedure which takes into
account the change of the partitioning of the DMRG sup
block and the renormalization procedure of the system blo

Let us assume that we have a given ordering and we h
a starting partitioning withl 51 andr 5L2221 as is shown
in Fig. 2.

Step 1.An AS vector is defined and another vector~HF
vector! is defined which contains the filled Hartree-Fock o
bitals.

Step 2.Based on the ordering the AS and HF vectors
reordered and for the given partitioning the elements of
AS and HF vectors belonging to the right block are det
mined.

Step 3.The q3 bases states of theBldd subsystem are
formed and their quantum numbers are determined.

Step 4.On the site given by the first element of the A
vector the basis states (0,↑,↓,↑↓) are formed and the HF
sites are filled according to the HF configuration except
this site if it is in the HF vector. An example is shown in Fi
12 for the half-filled Hubbard chain using the original orde
ing and Mr

min58. The quantum numbers of the obtain
states are determined and those which have a matching
ponent with any of theBldd basis states satisfying the co
servation of total quantum numbers are kept. Next the fi
two elements of the AS vector are taken and the same
cedure is repeated untilMr

min many states are selected.
this way one makes sure that states of the environment b
have a matching component with the system block, thus t
all produce contribution to the mutual entropy.

Step 5.One iteration step of the standard DMRG proc
dure is carried out. In the next step then procedures of s
2–5 are repeated by forming again theMl3q3q states of
the Bldd subsystem and theMr states of the right block

FIG. 12. Example for a right block configuration space obtain
by the DEAS procedure for the half-filled Hubbard chain withL
514, N↑5N↓57, Mr

min58, l 51, r 511 and HF vector
[@4,5,6,7,8,9,10# and AS vector[@4,10,3,11,5,9#. The numbers in
the first row label the site indices along the chain.
19511
e
p-
e.

r-
k.
ve

e
e
-

r

m-

st
o-

ck
y

-
ps

matching the left block are determined. According to Eq.~6!,
in order to allow the possibility ofMl3q nonzero eigenval-
ues of the reduced density matrixrL , Mr is determined as
max(Ml ,Mr

min).
Step 6.Close to the turning points it can happen that f

the selected statesMr,Mr
min thus the excluded states cou

never be recovered during later steps of the method. In o
to avoid such a problem allqr states are selected for th
environment block ifMr,Mr

min .
This procedure ensures that the size of the active spac

extended dynamically as the system evolves and the
block is correlated from the very beginning with the mo
important states defined by the AS vector. In addition, as
size of the left and right blocks changes the second ste
the procedure adjusts the AS vector so that only those
ments are taken into account which belong to that given ri
block.

As an example, Fig. 13 shows the density-matrix spec
the calculated mutual entropyS, environment block entropy
Sr , and Kullback-Leibler entropyK for three specially con-
structed right blocks withMr

min564 for the half-filled Hub-
bard chain withU51, L514 using the original ordering. In
the first example we have formed the right block basis sta
from the sites lying close to the right-hand side of the ch
as in the standard initialization procedure. The second
ample corresponds to a similar construction but the Hartr
Fock sites were doubly filled. In the third example the rig
block was set up according to the method described abov
is evident from the figure that in the first example one eig
value of the reduced density matrix was one giving rise
zero mutual and environment block entropies and separa
ity of the superblock eigenstate. The second example co
sponds to a finite but very small entropy while the entropy
increased for the third example. It is thus clear that a be
environment block can be constructed by using the AS v
tor.

B. Reducing the effective chain length
during the initialization procedure

Once theMr states of the environment block are foun
taking into account the conservation laws of the quant
numbers, many sites will remain unfilled as can be seen
the example shown in Fig. 12. If the right block configur
tion space is represented by anMr3r matrix then those
columns~sites! which contain only the empty state~labeled
as E! are not active, since the action of creation and ann
lation operators on such empty sites gives no matrix e
ments. Therefore thei , j ,k,l summation indices of Eq.~25!
can be restricted only to the remaining nonempty sites giv
rise to a much smaller effective size of the chain.

The nonempty sites fall into two further categories. Tho
columns ~sites! which contain only doubly filled sites~D!
and those called active sites~A! which contain various basis
states (0,↓,↑,↓↑). Several steps of the DMRG matrix alge
bra can be restricted to the active sites only and vari
restrictions are also given if an index corresponds to a d
bly filled site. For example, the matrix algebra for quadra
auxiliary operators having the formciacj b with a,b corre-

d
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FIG. 13. The reduced density-matrix eige
value spectrum, the mutual von Neumann e
tropy S, environment block entropySr , and
Kullback-Leibler K entropy calculated for three
specially constructed environment blocks for th
half-filled Hubbard chain withU51 andL514
using the original ordering.
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sponding to up or down spins, or the formci↑
† cj↓ , have to be

carried out only for the active sites. Therefore, the constr
tion of auxiliary operators3 containing various combination
of one, two, three, and four fermion operators can be
tained in a much faster way. This is especially important
the quadratic auxiliary operators since their multiplicati
during the diagonalization of the superblock Hamiltonian
the most time-consuming part of the MS-DMRG. It is wor
mentioning that the auxiliary operators generated by the
block states have be to calculated for the empty sites as w
because during the backward sweep the structure of the
block might change and nonzero matrix elements in the
perblock Hamilton operator could be generated.

This procedure has the advantage that when doubling
number of sites~doing a calculation on a larger basis set!, the
computational time will not increase significantly during t
first half-sweep and a much larger subset of block sta
~largerMr

min) can be used very efficiently to generate a b
ter environment block. For optimal ordering this gives
much faster convergence and due to the better environm
the crossover between the environment and truncation e
can be reached within a few steps. After the end of the fi
half-sweepMl

min5Mr
min can be used.

C. Application of Abelian point-group symmetry
in QC-DMRG

When the DMRG procedure is applied in quantum che
istry to calculate the energy of molecules the use of Abe
point-group symmetry reduces the dimension of the Hilb
space to be considered. Before proceeding with the num
cal results we show how to use this symmetry in QC-DMR
The irreducible representation of each molecular orbita
generated by standard quantum chemistry programs, suc
the MOLPRO program36 package. The quantum numbers
the irreducible representations are very similar to the m
mentum quantum numberski used in MS-DMRG. TheKi
19511
-

-
r

ft
ll,
ht

u-

he

s
-

nt
or
st

-
n
rt
ri-
.
s
as

-

quantum number operator for an orbital defined on
(0,↓,↑,↓↑) basis states in QC-DMRG is written as

Ki5kiS 1

0

0

1
D 1S 0

1

1

0
D , ~27!

whereki can take values from 1 to 8 according to the sy
metry of the orbital. The symmetry quantum number ope
tor for basis states of two orbitals is determined by using
standard character table as

Ki j 5T~Ki ,K j !, ~28!

with

T51
1 2 3 4 5 6 7 8

2 1 4 3 6 5 8 7

3 4 1 2 7 8 5 6

4 3 2 1 8 7 6 5

5 6 7 8 1 2 3 4

6 5 8 7 2 1 4 3

7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

2 . ~29!

Using Eq. ~28! we can determine the symmetry quantu
numbers of all the left and right block bases states, and f
given target state we can restrict the number of electrons
the total symmetry (Ktot) as

Ktot5T~KL,KR!, ~30!

whereKtot again can take values between 1 and 8. Dur
the renormalization procedure, the symmetry quantum nu
6-15
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FIG. 14. The relative error as a function o
iteration step for theL518 half-filled Hubbard
chain for U50.5,1,2,4 using the DEAS proce
dure.
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ber operators are renormalized in a similar way as the
ticle number operators and they are assigned to the
renormalized block states.

VI. NUMERICAL RESULTS USING OPTIMIZED
ORDERING AND DEAS

In order to demonstrate the efficiency of the DEAS p
cedure we have studied the 1D Hubbard chain for vari
fillings, orderings,U values, and chain lengths. We ha
found that for smallU in the range 0.1–1 MS-DMRG con
verges much faster than with the ordinary initialization p
cedure. Performing calculations on half-filled lattices up
30 sites the error margin set by TREmax.1025 has been
reached within one and a half or two sweeps. As the stren
of U increased the procedure selected out more block st
but the method still converged much faster. As an exam
Fig. 14 shows the result obtained for the half-filledL518
chain forU50.5,1,2,4. In order to obtain an absolute err
of 1024, TREmax was fixed to 1025 andMmin was chosen as
400 and we used the ordering shown in the sixth pane
Fig. 8. ForU54 we have cut the maximum number of bloc
states at 2500 giving a maximum value of the truncat
error of the order of 1024. The AS vector is
@13,5,14,4,12,6,15,3,11,7,16, . . . # and the HF vector is
@5,6,7,8,9,10,11,12,13#. It can be seen in the figure that in a
cases the desired accuracy was obtained within two sw
in contrast to the results obtained by Nishimotoet al.6 using
the standard initialization procedure. It is even more imp
19511
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tant to emphasize that after the first~second! sweep the cal-
culated momentum distribution̂nk&5^( i ,acia

† cia& for U
51(U54) agreed up to three digits with the values obtain
by real-space DMRG with periodic boundary condition.

Similar results were found for the molecules studied. R
sults for the CH2 molecule for fillings~number of electrons/
number of orbitals! 6/13 and 6/23, H2O for 8/24, N2 for
10/26, and F2 for 18/18 are shown in Fig. 15. In all cases th
AS vector was determined in a self-consistent way by fi
running a quick full sweep with some 64 block states a
then it was constructed based on the decay of the site ent
values described in the preceding section. In all cases
have used the modified Cuthill-McKee ordering, accordi
to the method described in Sec. IV. It is clear from the figu
that the DMRG with the DEAS procedure converged ve
fast and usually 90–99 % of the correlation energy was
tained within the first one-half sweep. Therefore, the cro
over between the environment and the truncation error
be reached much faster and the accuracy of the metho
finally determined by TREmax as was shown in Ref. 9. As a
example for CH2 for 6/13 filling the 1028 accuracy that was
shown in Fig. 6 was reached in 13 iteration steps with
DEAS procedure using the same parameter sets. For F2 the
1028 accuracy that was shown in Fig. 10 was reached in
iteration steps.

It is very important to mention that besides the very fa
convergence, if an optimal ordering is obtained and a go
initial condition is used, then the number of block states c
be reduced significantly during the process of renormali
6-16
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FIG. 15. Percentage of correla
tion energy as a function of itera
tion step obtained by the DEAS
procedure for the CH2 , H2O, N2 ,
F2 molecules.
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tion and finally a block can describe the total system v
accurately. As an example we have setMmin54 and the
energy of the CH2 molecule with 13 orbitals was obtaine
after the second sweep up to seven digit accuracy withMl
521, Mr54, dimG5107 and for F2 18/18 up to five digit
accuracy withMl5120, Mr54, dimG5220 in contrast to
the dimensions of the exact solution which are 230 230
9 075 135 300 calculated, respectively, by the (2L)!/ @(2L
2N)!N! # formula. The same was obtained for the half-fille
Hubbard model up to four digit accuracy withL518, U
51/2 is Ml5280, Mr54 dimG5562. This feature is ex-
pected to have a close relationship to quantum d
compression21,23 where the relationship between the dime
sion of the Hilbert space and site entropies is given as

log2~dimG!5S~ ^ ir i !. ~31!
19511
y

d
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-

Therefore, it seems to be promising to examine the sep
bility of reduced density matrices and their effect on t
number of block states. A more detailed study of the relati
ship between site entropies and the dimension of the Hilb
space of the superblock Hamiltonian based on Suchma
quantum data compression is in progress.

VII. SUMMARY AND FUTURE PROSPECTIVES

We have studied the effect of ordering of lattice sites
the momentum space version of the density-ma
renormalization-group~MS-DMRG! method by solving the
1D Hubbard chain and various molecules. This was done
calculating site and block entropies, the separability and
tanglement of the target state. Our findings are listed bel

~1! We have shown that theki sites or molecular orbitals
6-17
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lying closer to the Fermi surface have larger informati
content and correspond to a larger mixture described b
larger von Neumann entropy and participation number.

~2! We have shown that if all the sites with large entro
are placed close to one end of the chain then this impro
ordering can lead to vanishing mutual entropy, lack of e
tanglement and quantum information exchange between
system block and environment block. This prevents
method from converging to the target state. Therefore,
proposal by Xiang to place the highly correlated sites
close as possible is not a sufficient condition alone.

~3! If lattice sites with large entropy are moved to the tw
ends of the chain the block entropies can be maximized
ing rise to a larger entanglement, but the convergence of
method can still be very slow or the method does not c
verge at all. Numerical results indicate that if these sites
moved to the center of the chain, then a very fast conv
gence can be obtained with a much smaller subset of b
states. We have found that the mutual entropy has sh
peaks when the most active sites are just between the sy
and environment blocks when the energy also improves
nificantly. Furthermore, in order to have a finite interacti
between the blocks some sites with smaller but finite en
pies have to be placed close to the ends of the chain.
keeps the block entropy above a critical value for seve
iteration steps. We have shown that these conditions are
ten not satisfied when using the Cuthill-McKee algorithm

~4! We have developed an initialization procedure wh
gives finite block entropies even during the first half-swe
of MS-DMRG and reduces the volume of separable ba
states of the target state. This method extends the ac
m

hy
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space in a dynamical fashion resulting in a very accurate
of renormalized block states and a very fast convergence.
the models that have been studied 90–99 % of the correla
energy was obtained within the first half-sweep.

~5! We have shown that MS-DMRG is very sensitive
the ordering and the initial conditions. A good starting co
figuration and an optimized ordering can result in very ac
rate blocks with very limited number of block states whi
still describes the system with the accuracy determined
advance.

We expect that DMRG can be a very good candidate fo
new method on quantum data compression and on quan
error correction27,38,39 in which case the fidelity can be de
fined in advance by TREmax. This research is in progress.

Since MS-DMRG describes a composite system w
long-range interactions it is expected that the method co
be used in the context of nonextensive thermodynamics
study models for which the subadditivity of the subsyste
entropy does not hold. This would allow one to investiga
Tsallis entropy,40 nonextensive mutual entropy, and quantu
entanglement by using the generalized Kullback-Leib
entropy.41
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