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Dispersion of the dielectric function of a charge-transfer insulator
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We study the problem of dielectric response in the strong-coupling regime of a charge-transfer insulator. The
frequency and wave-number dependence of the dielectric function«(q,v) and its inverse«21(q,v) is the
main object of consideration. We show that the problem, in general, cannot be reduced to a calculation within
the Hubbard model, which takes into account only a restricted number of electronic states near the Fermi
energy. The contribution of the rest of the system to the longitudinal response@i.e., to«21(q,v)] is essential
for the whole frequency range. With the use of the spectral representation of the two-particle Green’s function
we show that the problem may be divided into two parts: into the contributions of the weakly correlated
subsystem and the Hubbard subsystem. For the latter we propose an approach that starts from the correlated
paramagnetic ground state with strong antiferromagnetic fluctuations. We obtain a set of coupled equations of
motion for the two-particle Green’s function that may be solved by means of the projection technique. The
solution is expressed by a two-particle basis that includes the excitonic states with electron and hole separated
at various distances. We apply our method to the multiband Hubbard~Emery! model that describes layered
cuprates. We show that strongly dispersive branches exist in the excitonic spectrum of the ‘‘minimal’’ Emery
model (1/Ud5Up5tpp50) and consider the dependence of the spectrum on finite oxygen hoppingtpp and
on-site repulsionUp . The relationship of our calculations to electron-energy-loss spectroscopy is discussed.

DOI: 10.1103/PhysRevB.68.195106 PACS number~s!: 71.35.2y, 71.27.1a, 79.20.Uv, 74.72.2h
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I. INTRODUCTION

The importance of many-body effects for the descript
of dielectric response of insulating solids is generally
cepted. In the neighborhood of the fundamental absorp
threshold bound exciton lines and continuum excitons d
tically change the spectrum. Recently, it has been real
that the excitons in charge-transfer insulators~CTI! possess
unusual features connected with the strongly correlated c
acter of the antiferromagnetic~AFM! ground state in these
compounds. The most pronounced peculiarity consists in
existence of exciton branches with substantially larger d
persion compared with the one-particle excitations.1,2 This
behavior has a formal analogy with that of the Fren
exciton3 that acquires a finite effective mass although bo
electron and hole, have infinite masses,4 but in CTI it has a
completely different origin.

The experimental technique suitable for the observa
of the exciton dispersion is the electron-energy-loss spect
copy ~EELS!.5 What is actually measured in transmissi
EELS experiments is the partial cross section6,7 that may be
decomposed into an amplitude factor and a dynamic st
ture factor

d2s

dVdE
5

4

~a0!2q4
S~q,v!.
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The dynamic structure factor characterizes the linear
sponse of the whole electronic system onlongitudinal elec-
tric fields with the momentumq and frequencyv ~ the ionic
contribution may be neglected for the considered freque
range of the order of several eV!. Pronounced peaks in
S(q,v) are called excitons.8 They may correspond to dis
crete lines in the excitation spectrum of the solid or to re
nances in the continuum part of the spectrum.

For the theoretical description of excitonic features
conventional semiconductors and insulators the follow
scheme is used~the key references are Refs. 4,9–12!. First,
the quasiparticle excitation spectrum is foun
empirically4,9,12or from first principles.10,11It is essential that
the spectrum of theN-electron system consists mainly of
continuum of electron-hole pairs whose electron or hole q
siparticle excitations are close to eigenstates of the (N11)-
or (N21)-electron system, respectively, with definite qua
momentaandenergy.13 The quasiparticle spectrum is usual
obtained from the self-consistent-field~SCF! approach. Next,
the electron-hole interaction is taken into account. Then
problem for two quasiparticles interacting via the medium
solved. It is crucial that the ground state may be viewed as
occupied valence band that is separated from the first exc
state by an energy gap.

For the CTI the above scheme should be revised be
ning from the first step. The CTI has an odd number
electrons per formula unit. That is why the SCF calculatio
usually give ametallicground state for the CTI and a gaple
©2003 The American Physical Society06-1
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excitation spectrum. More elaborate SCF methods such
the unrestricted Hartree-Fock method or its modern vers
LDA1U predict an AFM long-range order in the groun
state and a gap in the excitation spectrum. Nevertheless
nature of excitations and the ground-state fluctuations are
caught by these approaches. Let us recall that any CTI
mains insulating and shows excitonic features in optics
EELS spectra above the Ne´el temperature, i.e., in thepara-
magnetic state ~with short-range AFM correlations!. For
strongly correlated systems the electron-electron interac
should be taken into account beyond the mean-field le
This is possible within the framework of Hubbard-like mo
els in the restricted subspace of orbitals close to the Fe
level.

The description of exciton physics in CTI is possib
within the framework of one-band models,14–17but more de-
tailed and realistic information may only be obtained fro
the multiband Hubbard~Emery! model that explicitly in-
cludes ligand ion degrees of freedom. For quasi-o
dimensional cuprates the Emery model was considere
Refs. 18–21. The phenomenon of spin-charge separation
is characteristic to one dimension introduces a specific ph
ics into the exciton formation. The mobility of a single ele
tron or hole in 1D is not suppressed by spin correlations
the exciton dispersion is comparable with the one-part
dispersion.

In quasi-two-dimensional cuprates the situation is diff
ent. Due to AFM correlations the bandwidth of the on
particle motion is of the order of the AFM exchange integ
J which is considerably smaller than the bare hoppingt, and
the exciton dispersion is of the order oft. The authors of Ref.
22 proposed a qualitative physical explanation of the la
exciton dispersion in layered cuprates: the propagation o
electron-hole pair does not disturb the AFM background
contrast to the motion of a single electron or hole. Unfor
nately, the calculations of Ref. 22 donot support this idea
since they give no dispersion in the absence of oxygen
site Coulomb repulsionUp and direct O-O hoppingtpp ,
which was also pointed out in Ref. 18. One should expe
qualitative description of the EELS spectra1,2 already within
the ‘‘minimal’’ version of the Emery model (1/Ud5Up
5tpp50), which can be refined by taking into account a
ditional parameters, e.g.,tpp or Up . On the contrary, the
authors of Ref. 22 had to assume quite unrealistic param
values to fit the experimental spectra.

In this paper we outline an approach to calculate the l
gitudinal and the transverse dielectric responses~Sec. II! for
CTI within the framework of the multiband Hubbard mod
~Sec. III!. Introducing an analogy to Wannier’s exciton
representation23 we obtain a set of coupled equations of m
tion for the two-particle Green’s function that may be solv
by means of the projection technique24 ~Sec. IV!. It is sub-
stantial that the method allows a systematic improvemen
approximations. In order to retain only the essential prop
ties of CTI we first consider the minimal version of the Em
ery model describing the CuO2 plane of high-Tc supercon-
ductors and their parent compounds. The model reflects
main features of CTI: the existence of two kinds of states
strongly correlated ‘‘copper’’ states with the prohibition
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double occupancy and uncorrelated ‘‘oxygen’’ states; the
doped plane has one hole per unit cell, and is a quan
two-dimensional AFM insulator possessing no long-range
der at any finite temperature; the charge excitation co
sponds to the transfer of a hole from copper to the adjac
oxygen site. In Sec. V, we discuss the solution of our eq
tions within the small exciton basis and its dependence
various parameters of the extended Emery model. We ob
an appreciable exciton dispersion and a rough, qualita
agreement with the experimental spectra already within
minimal version of the Emery model.

II. DENSITY-DENSITY CORRELATION FUNCTION

The dynamic structure factor is related to the dens
density correlation function

S~q,v![
1

2pNE2`

`

dte2ıvt^n̂q~ t !n̂2q~0!&

5
1

p

1

exp~2bv!21
ImNq~v!, ~1!

where

n̂q5
1

AN
(
r ,s

exp~2ıq•r !~ar ,s
† ar ,s2^ar ,s

† ar ,s&! ~2!

is the electronic density operator in the localized basis,
summation runs over all lattice sitesr and orbital sortss;
^•••& means the thermodynamic average. Forbv@1 we
have

S~q,v!'2
1

p
ImN~q,v!,

where

N~q,v![^^n̂qun̂2q&&52 i E
0

`

dte2ıvt^@ n̂q~ t !,n̂2q~0!#&

~3!

is the retarded Green’s function that defines the inverse
electric function

«21~q,v!511
4pe2

vcq
2

N~q,v!, ~4!

with vc being the volume of the unit cell ande the electronic
charge. We neglect here the local field effects~coupling with
the Fourier components withq85q1G, G being a recipro-
cal lattice vector!. The functionN(q,v) describes the re-
sponse to theunscreenedexternal potential. It requests th
account of the macroscopic electric field, i.e., the long-ran
part of the Coulomb interaction. The latter is responsible
the splitting into longitudinal and transverse excitons
small wave number which is analogous to the splitting in
longitudinal and transverse optical phonons.9 The response
to the total,screenedpotential is given by25

Ns~q,v!5«~q,v!N~q,v!, ~5!
6-2



to
e
-

r-
lc
th
ub
io

t

th
a

e-

th

ite
m
al-
rre
k

of

ne

de-
i-

ra-

d

cy

er
er-

le

DISPERSION OF THE DIELECTRIC FUNCTION OF A . . . PHYSICAL REVIEW B68, 195106 ~2003!
then

«~q,v!512
4pe2

vcq
2

Ns~q,v!. ~6!

In the diagrammatic language the linear response to the
field may be expressed by the polarization operator wh
only irreducible graphs~which do not contain the contribu
tion of the macroscopic electric field! should be taken into
account.26,27 The random-phase approximation results in

N~q,v!5
Ns~q,v!

12
4pe2

vcq
2

Ns~q,v!

, ~7!

which follows from Eqs.~5! and~4! and isexactfor q→0, as
it was shown in Ref. 26.

The construction of Hubbard-like models for strongly co
related systems has an input from LDA band-structure ca
lations where the screening of the long-range part of
Coulomb interaction is already taken into account. The H
bard terms arise from the short-range residual interact
Thus, the density response functionNH(q,v) calculated
within the Hubbard model is an approximation toNs(q,v).14

In other words, it describes the motion of transverse~or
‘‘mechanical’’ by Agranovich’s28 terminology! excitons.

Using the spectral representation we may write

Ns~q,z!5E
0

`F2
1

p
ImNs~q,v8!G2v8dv8

z22v82
5E

0

v0
1E

v0

`

5NH~q,z!1N`~q,z!. ~8!

Here we bear in mind that the Hubbard model contributes
transitions in the low-frequency regionv,v0 with v0 of the
order of the bandwidth, and the electrons of the rest of
solid are excited only at higher energies. In zero approxim
tion we may assume that in the frequency regionv.v0 , the
electronic polarization of the rest of the solid follows imm
diately the external field

N`~q,z!'N`~q,0!.

In other words, the Hubbard model is embedded into
medium with dielectric permeability

«`~q!512
4pe2

vcq
2

N`~q,0!.

In fact, «` may have its own dispersion and may be qu
anisotropic for layered or quasi-one-dimensional co
pounds. In principle, it should be taken from, e.g., LDA c
culations~we have assumed that the rest of solid is unco
lated! or from experiment. It is obvious that the pea
positions of the loss function

L~q,v![2Im@«21~q,v!# ~9!

and their intensity strongly depend on the value of«`(q).
Usually, one neglects theq-dependence and the anisotropy
19510
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«` , but it is a crude approximation, as well as another o
which assumes«(q,0)5const~see the discussion in Sec. V!.
For a quantitative description of EELS experiments the
tailed knowledge of«`(q) is necessary. Then the total d
electric function is

«~q,v!5«`2
4pe2

vcq
2

NH~q,v![«`«H ~10!

and its inverse is

«21~q,v!5«`
21«H

21 .

For the dielectric function of the Hubbard model«H , the
usual sum rule holds

E
0

`

vIm«H~q,v!dv52E
0

`

vIm«H
21~q,v!dv

5
p

2

4pe2

«`vcq
2
^†@ n̂q ,ĤH#,n̂2q‡&,

whereĤH is the Hubbard model Hamiltonian and the ope
tor n̂q acts in the subspace of orbitals which enter intoĤH
@i.e., the summation overs in Eq. ~2! is restricted to these
orbitals#. Then for the total dielectric function approximate
by Eq. ~10! we have

2E
0

`

vIm«21~q,v!dv5
p

2

4pe2

«`
2 vcq

2
^†@ n̂q ,ĤH#,n̂2q‡&

5
1

«`
2 E0

`

vIm«~q,v!dv. ~11!

The factor 1/«`
2 arises due to the negligence of the frequen

dependence of«` .

III. MODEL HAMILTONIAN AND DENSITY OPERATOR

As we have mentioned in the Introduction, we consid
the minimal Emery model that exhibits the essential prop
ties of layered cuprates (1/Ud5Up5tpp50). Then the total
Hamiltonian in hole notation reads

ĤH5Ĥ01V̂, ~12!

where

Ĥ05D(
r ,g

p̄r ,g
† p̄r ,g , V̂5t (

R,a,g
~ p̄R¿aa ,g

† Z̄R
0g1Z̄R

g0p̄R¿aa ,g!,

and where the Fermi operatorp̄r ,g annihilates a hole at siter
of the oxygen sublattice with spin projection indexg, the
Hubbard projection operatorZ̄R

0g5d̄Rg(12nRḡ) annihilates
a hole with spin indexg on a singly occupiedcopper site,
whered̄Rg is the corresponding Fermi operator. The doub
occupancy of copper sites is thus excluded from Eq.~12!. Ĥ0
includes the on-site energies (D5ep2ed , ed is taken as zero
of energy!, V̂ is thep-d hybridization,a5x,2x,y,2y char-
6-3
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acterizes the direction of a nearest-neighbor vectora; the
phase factors inV̂ are absorbed into the definition of th
operatorsp̄r ,s ,Z̄R

0g , they do not change the exciton dispe
sion.

Taking the limit Ud /D→` considerably simplifies the
consideration and is a good approximation for weakly dop
compounds in a wide range of valuesUd /D.2 ~see, e.g.,
Ref. 29!. The conditionsUp5tpp50 are introduced for sim-
plicity and may be easily relaxed~see the Appendix!, then
the Hubbard on-site term forp-orbitals and the direct O-O
hopping of the formt̂ pp52tpp(^ i , j &,gp̄r i ,g

† p̄r j ,g are added to

Ĥ0 .
It is well known that the Hamiltonian~12! has an insulat-

ing ground state and is equivalent to the nearest-neigh
AFM Heisenberg model in the low-energy region. It mea
that charge fluctuations inV̂ are strongly suppressed and th
holes are localized. This fact becomes more apparent if
make a canonical transformation of operators of the form

Âe f f5exp~2Ŝ!Âexp~Ŝ!5Â1@Â,Ŝ#1•••,

where

Ŝ52
t

D (
R,aÄ6x,6y,g

~pR¿aa ,g
† ZR

0g2ZR
g0pR¿aa ,g!.

Then ĤH becomes

Ĥe f f'Ĥ024t(
R,g

ZR
gg

1t (
R,a1,a2,g

pR1aa1 ,g1

† pR1aa2 ,g2
~ZR

00dg1g2
1ZR

g2 ,g1!

2t (
R,a,g1

ZR1ga

g10 ZR
0g11 Ĵs ~13!

~see also Ref. 30 for the notation!. Herep andZ mean trans-
formed operators,Ĵs is the AFM copper-copper superex
change interaction, andg points to neighboring copper site
Strictly speaking, Hamiltonian~13! is obtained under the
condition t/D!1, and its parameters aret5t2/D and the
AFM exchangeJ}t4/D3. Nevertheless, it may be applied
a wider ranget/D,1 with renormalized values oft andJ.

The advantage of using the effective Hamiltonian~13!
instead of the bare one, Eq.~12!, consists in excluding irrel-
evant zero-point charge fluctuations. Then the coupling
carriers with spin fluctuations which governs the low-ene
physics of CTI becomes apparent. It is essential that the
fective Hamiltonian~13! does not contain transitions be
tween p- and Z-states, in other words, it never creates
particle-hole state out of the dielectric state. In this sens
resembles the starting Hamiltonian for the transverse exc
motion in conventional insulators. This allows us to intr
duce an analog of Wannier’s excitonic representation for
description of the electron-hole pair dynamics.

The bare density operator
19510
d
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n̂q5
1

AN
F(

R,s
exp~2ıq•R!~ Z̄R

ss2^Z̄R
ss&!

1(
s

exp~2ıq•s!~ p̄s,s
† p̄s,s2^ p̄s,s

† p̄s,s&!G ~14!

(s runs over O sublattice! is transformed to

n̂q5
1

AN
H(

R,s
exp~2ıq•R!FZR

ss1
t

D (
a56x,6y

~pR1aa,s
† ZR

0s

1ZR
s0pR1aa,s!G1 (

R,a51x,1y
exp@2ıq•~R1aa!#

3FpR1aa,s
† pR1aa,s2

t

D
@~ZR

s01ZR12aa

s0 !pR1aa ,s

1H.c.#G J . ~15!

Note that in the second line of Eq.~15! ~in the sum over the
oxygen sublattice!, aa lies only in the same cell asR. Col-
lecting the terms surrounding a Cu site, we have

n̂q5ñq1
1

AN

t

D (
R,s

exp~2ıq•R! (
a56x,6y

~pR1aa ,s
† ZR

0s

1ZR
s0pR1aa,s

!@12exp~2ıq•aa!#

5ñq1
1

AN

t

D (
R

exp~2ıq•R! (
a6x,6y

~cR,aa

† 1cR,aa
!

3@12exp~2ıq•aa!#, ~16!

where the operator

cR,a[(
g

ZR
g,0pR1aa ,g ~17!

annihilates an electron-hole pair with minimal distance, a

ñq[
1

AN
F(

R,s
exp~2ıq•R!~ZR

ss2^Z̄R
ss&!

1(
s

exp~2ıq•s!~ps,s
† ps,s2^ p̄s,s

† p̄s,s&!G . ~18!

As we have mentioned above, the effective Hamiltonian~13!
conserves the number of particles in every band. There
ñq50 gives no contribution toNH . Having operator~16! we
may proceed with the calculation of the density-density
sponse function~3!.

IV. ELECTRON-HOLE PAIR DYNAMICS

The problem of the dielectric function~10! calculation is
thus reduced to the calculation of the two-particle Gree
function
6-4
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NH~q,v!5^^Fq1F2q
† uFq

†1F2q&&v

5^^FquFq
†&&v1^^F2quF2q

† &&2v ~19!

where

Fq[
t

D (
a

~12exp~2ıq•aa!#cq,a ,

cq,a5
1

AN
(
R

exp~2ıq•R!cRa , ~20!

and where we used again the conservation of particle n
bers in the electron and the hole subsystem that exclu
anomalous Green’s functions such as^^FquFq&&v .

The equation of motion

v^^FquFq
†&&v5^@Fq ,Fq

†#&1^^@Fq ,Ĥe f f#uFq
†&&v

~21!

generates more complex operators

jR,a,b5 (
g1 ,g2

ZR1ga

g1g2 ZR
g2,0pR1ga1ab ,g1

, ~22!

which annihilate states with an increasing separation
tween electron and hole, accompanied by spin fluctuatio
The set of equations of motion will generate states co
sponding to electrons and holes that are more and more s
rated and dressed by spin fluctuations. These states fo
set similar to the excitonic representation for conventio
insulators.4,9,23 The complication that arises in CTI consis
in the strong interaction of both electron and hole with AF
fluctuations. The effect of this interaction leads to a stro
renormalization of the one-particle bandwidth, but it is p
tially canceled when electron and hole follow each other

The set of coupled equations, Eq.~21!, may be approxi-
mately solved by means of the projection technique.
choose an operator basisBq,i and the definition of the scala
product^@Bq,i ,Bq,j

† #&. Within the operator subspace spann
by this basis we are looking for the approximate solution
the eigenvalue problem:

@Cq ,Ĥ#5EqCq , Cq5(
i

ci~q!Bq,i . ~23!

This leads, as usual for a nonorthonormal basis, to the g
eralized eigenvalue problem

(
i

ci~q!Li , j~q!5E(
i

ci~q!Si j ~q!, ~24!

where overlap and Liouvillean matrices

Si j [^@Bi ,Bj
†#&5^Bi ,Bj

†&,

Li j [^†@Bi ,Ĥ#,Bj
†
‡&5^@Bi ,Ĥ#,Bj

†& ~25!

depend only on spin-spin correlation functions for the syst
without electron-hole pairs, which is equivalent to t
19510
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Heisenberg antiferromagnet. The correlation functions m
thus be calculated from the Heisenberg model.

System~24! may be solved numerically. Then we find th
eigenvectors

Cq
l5(

i
ci

l~q!Bq,i , ~26!

where l is the number of the branch in the spectrum.
order to calculateNH(q,v) within our basis, we should ex
pand

Fq5(
l

gl~q!Cq
l . ~27!

Then one obtains

^^FquFq
†&&v5(

l
ugl~q!u2^^Cq

lu~Cq
l!†&&v

5(
l

ugl~q!u2~v2Eq
l!21, ~28!

with

ugl~q!u25S t

D D 2U(
i ,a

ci
l~q!Sia@12exp~ ıq•aa!#U2

,

~29!

and finally

«~q,v!5«`2
4p2e2

vcq
2 (

l
ugl~q!u2@~v2Eq

l!21

2~v1Eq
l!21#. ~30!

Let us note that the projection technique allows us to i
prove the chosen approximation step by step by enlarging
basis set.

V. RESULTS AND DISCUSSION

We have restricted ourself to the minimal basis that
scribes the electron-hole pair with minimal distance. The
sis contains operators~17! and ~22! with b52a. Then
problem ~23! has the dimension 838. The overlap and Li-
ouvillean matrices are given in the Appendix. Spin-spin c
relation functions were taken from the spherically symme
treatment of anS5 1

2 Heisenberg AFM model on the squa
lattice.31 For a low-temperatureT50.1J and a vanishing
frustration parameterp50.01 they have the following value

^ŜR•ŜR¿g&520.33, ^ŜR•ŜR1gx1gy
&50.20, ^ŜR•ŜR12g&

50.17. For the on-site energy difference andp-d hopping
we took the valuesD53.6 eV andt51.3 eV, which are
characteristic to all cuprates.

Figure 1 shows the dispersion of the imaginary part of
dielectric function«2(q,v)[Im«(q,v). The oxygen on-site
repulsion and the O-O hopping were neglected. We
strongly dispersive branches both in the@110# and in the
@100# directions.

As we have mentioned above, the comparison with
EELS experiment may have only qualitative character wi
out a detailed knowledge of the background dielectric c
6-5
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stant«`(q). Figure 2 shows the graphs for the loss functi
„multiplied by @«`(0)#2 in order to have approximately th
same normalization as«2(q,v) according to Eq.~11!… under
the assumption that22

«~q,v50!'«~q50,v50!54.83. ~31!

Then the value of«` was obtained from Eq.~30!. In this case
the dispersion in the loss function reproduces essentially
dispersion in«(q,v). The peaks are slightly shifted to highe

FIG. 1. The imaginary part of dielectric function«2(q,v)
[Im«(q,v) as a function of frequencyv and wave vectorq along
two symmetry directions. For each direction the curve numben
corresponds toqx5pn/10a, a being the lattice constant,n50 for
the bottom curve. The parameters areD53.6 eV andt51.3 eV,
oxygen on-site repulsionUp and O-O hoppingtpp were neglected.

FIG. 2. The loss function L(q,v)[2Im@«21(q,v)#
„multiplied by @«`(0)#2 in order to have aproximately the sam
normalization as«2(q,v)… for the same parameters as in Fig. 1 a
under the assumption that«(q,v50)'«(q50,v50)54.83.
19510
e

energies. In fact, assumption~31! implies that the dispersion
of N`(q,v) should follow the dispersion ofNH(q,v) in
such a way that

«~q,v50!512
4pe2

vcq
2

@NH~q,0!1N`~q,0!#5const,

as it follows from Eqs.~8! and ~6!.
In general, the interplay ofNH(q,v) andN`(q,v) should

be more complex. In order to demonstrate the strong dep
dence on the value of«` , we plot in Fig. 3 the same grap
assuming a constant value«`52 for all q’s. We see a quali-
tative difference with Fig. 2 and may conclude that the d
pendence of the loss function on«` is nontrivial. For quasi-
one-dimensional compounds a large value of«`;8 was
taken in Refs. 19 and 20. This means that the rest of the s
strongly screens the long-range part of the Coulomb inte
tion between electrons that enter the Hubbard model. For
situation the poles of«(q,v) are very close to the poles o
«21(q,v) and the shape of the loss function is close to
shape of«2(q,v). Note also that always«(q,0).«` as fol-
lows from Eqs.~10! and ~30!, and with«`58 one will re-
ceive unrealistically large«(q,0).

Let us now show some examples for the dependenc
the dielectric function on various parameters of the mod
For the reasons outlined above, from now on we consi
only figures for«2(q,v). As it was mentioned in Sec. III, the
model ~12! may be generalized in order to include a fini
Hubbard repulsionUp on the oxygen site and a direc
oxygen-oxygen hoppingtpp .

The dependence ontpp is not very strong fortpp,t. Let
us recall that the addition of the O-O hopping to Hamiltoni
~13! within the parameter rangetpp5(0.3–0.4)t is essential
to describe correctly the angle-resolved photoemission s
troscopy of layered cuprates.30,32Figure 4 shows«2(q,v) for
tpp50.4t, andUp50. We see that the main difference fro

FIG. 3. The loss function for constant«`52 for all q and the
parameter set of Fig. 1.
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Fig. 1 consists in the redistribution of spectral weight b
tween the different branches of the spectrum.

The spectrum demonstrates a much stronger depend
on Up . Figure 5 displays«2(q,v) for Up54 eV. We have
an almost vanishing dispersion of the lower branches. Le
pay attention to the fact thatUp does not affect the single
hole motion. Due to that reason its value is experimenta
not well established. Our results show that the dielec
function dispersion is very sensitive to this parameter.

Now let us discuss a very important peculiarity of o
figures, namely the absolute position of the intensive pe
in the spectrum of«2(q,v). At G point @q5(0,0)# we have
one peak with the energyEG5D14t'5.5 eV. Let us esti-
mate the edge of the electron-hole continuum. It correspo
to the energy that is needed for the excitation of electron
hole which are independent of each other. The operator
annihilates such a state is

FIG. 4. «2(q,v) for tpp50.4t andUp50. The other parameter
are the same as in Fig. 1.

FIG. 5. «2(q,v) for tpp50 andUp54 eV. The other param-
eters are the same as in Fig. 1.
19510
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ds
d
at

Cq
e2h5ek1qhÀk , @Cq

e2h ,Ĥe f f#5~ek1q
e 1e2k

h !Cq
e2h ,

where ek
e52(24t2ek

t2J) corresponds to the energy of
single-electron quasiparticle, which will be a complex sp
polaron corresponding to the coherent motion in the
called t-J model, which describes theZ subsystem in Eq.
~13! in the absence of holes~with t t-J5t). ek

h5D2ek
s is the

energy of the coherent motion of the Zhang-Rice sing
dressed by spin fluctuations. The minimal energy that o
needs to excite such a pair is

Emin
e2h'D2emin

s 2~24t2emin
t-J !;D22.2t'2.6 eV.

Here we have taken into account that the minimum of
spectrum in thet-J model isemin

t2J;22t and that the Zhang-
Rice singlet energy isemin

s ;24.2t.30 This result indicates
that for layered cuprates the excitonic feature is immer
into the electron-hole continuum and represents a reson
rather than a discrete level. Of course, for the final conc
sion more detailed calculations should be performed wit
an enlarged basis set.

Summarizing the calculated spectra we may state a rou
qualitative, agreement with the experimental curves1,2 al-
ready within the minimal version of the Emery model a
using a minimal basis set~Figs. 1–3!. One may note a re-
markable influence of the background dielectric function«`

~Figs. 2 and 3!. We found that additional parameters, e.g.,tpp
or Up act in different ways. That might improve a futur
parameter fit of the experimental curves. But the present
curacy is not sufficient for a reliable fit, which has to b
reserved for the future.

In this work we have not taken into account the inters
Coulomb repulsion which leads to electron-hole attracti
This term has a twofold influence on the position of t
excitonic feature. On one hand, it leads to an effective
crease of the fundamental gap and on the other hand it
tributes to the electron-hole binding. These tendencies
opposite to each other and should be thoroughly explore
a separate investigation.
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APPENDIX

Here we give the formulas for matrices~25! for the
Hamiltonian ~12! that also includes a finite oxygen on-si
repulsionUp and a direct O-O hoppingtpp . The effective
Hamiltonian may be generally derived by the following pr
cedure. Let be

Ĥ5Ĥ01V̂, Ĥ05(
m

um&Em^mu, V̂5(
m

un&tnm^mu,

~A1!
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then the canonical transformation with the operator

Ŝ5(
m

un&
tnm

Em2En
^mu ~A2!

gives @Ĥ0 ,Ŝ#52V̂, and finally up to the second order

Ĥe f f5exp~2Ŝ!Ĥexp~Ŝ!5H01
1

2
@V̂,Ŝ#

5
1

2 (
m

un&S tn jt jm

Em2Ej
1

tn jt jm

En2Ej
D ^mu. ~A3!

Within the operator basis containing Eqs.~17! and ~22!
we have the following equations of motion for the Ham
tonian containing finiteUp ,tpp :

@cR,a ,Ĥ#5E0cR,a1t(
b

cR,b1tujR,a,2a

1@tujR1ga ,2a,a2~tu2t!cR1ga ,2a#

2tpp (
bÞa,2a

cR,b ,

@jR,a,2a ,Ĥ#5E0jR,a,2a1tjRa,2a

1t (
bÞa

ZR1ga

g1 ,g2ZR
g2,0pR1ab ,g1

2tpp (
bÞa,2a

ZR1ga

g1 ,g2ZR
g2,0pR1ab ,g1

1tucR,a1tucR1ga ,2a

2~tu2t!jR1ga ,2a,a .

Heretu[t2/(D1Up) andE05D14t12(t2tu) . It is con-
venient to introduce the notation
.

on

19510
v r[ (
g,g1 ,g2 ,•••

^Z0
g,g1Zg

g1 ,g2
•••Zr

gr ,g
&.

For r up to the third neighborsv r is expressed via two poin
correlation functions

vg5
1

2
1^ŜR•ŜR1g&,

vga1gb
5

1

4
12^ŜR•ŜR1g&1^ŜR•ŜR1ga1gb

&. ~A4!

The Liouvillean and overlap matrices ink-space are then

^$jka,2a ,ckb
† %&5dabvg , ~A5!

^$@cka ,Ĥ#,ckb
† %&5dab~t1tuvg!1~t2tpp!~12dab!

3~12da,2b! ~A6!

1da,2b@t1exp~ ık•ga!

3~tuvg2tu1t!#, ~A7!

^$@jka,2a ,Ĥ#,ckb
† %&

5dab~tu1tvg!1~t2tpp!vg~12dab!~12da,2b!

1da,2b$tvg1exp~ ık•ga!@tu2~tu2t!vg#%, ~A8!

^$@jka,2a ,Ĥ#,jkb,2b
† %&

5@dab~t1tuvg!1~12dab!~12da,2b!

3~t2tpp!vgb1ga
#1da,2b$tv2g1exp~ ık•ga!

3@tuvg2~tu2t!#%. ~A9!
ev.
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