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We study the problem of dielectric response in the strong-coupling regime of a charge-transfer insulator. The
frequency and wave-number dependence of the dielectric fune(ignw) and its inverses (g, ) is the
main object of consideration. We show that the problem, in general, cannot be reduced to a calculation within
the Hubbard model, which takes into account only a restricted number of electronic states near the Fermi
energy. The contribution of the rest of the system to the longitudinal respbeseos ~1(q,w)] is essential
for the whole frequency range. With the use of the spectral representation of the two-particle Green’s function
we show that the problem may be divided into two parts: into the contributions of the weakly correlated
subsystem and the Hubbard subsystem. For the latter we propose an approach that starts from the correlated
paramagnetic ground state with strong antiferromagnetic fluctuations. We obtain a set of coupled equations of
motion for the two-particle Green’s function that may be solved by means of the projection technique. The
solution is expressed by a two-particle basis that includes the excitonic states with electron and hole separated
at various distances. We apply our method to the multiband Hubtiarery model that describes layered
cuprates. We show that strongly dispersive branches exist in the excitonic spectrum of the “minimal” Emery
model (1U4=U,=t,,=0) and consider the dependence of the spectrum on finite oxygen happiagd
on-site repulsior,. The relationship of our calculations to electron-energy-loss spectroscopy is discussed.
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[. INTRODUCTION The dynamic structure factor characterizes the linear re-
sponse of the whole electronic system longitudinal elec-
The importance of many-body effects for the descriptiontric fields with the momentung and frequency ( the ionic
of dielectric response of insulating solids is generally ac-contribution may be neglected for the considered frequency
cepted. In the neighborhood of the fundamental absorptiorange of the order of several &VPronounced peaks in
threshold bound exciton lines and continuum excitons dras$(q,w) are called exciton$.They may correspond to dis-
tically change the spectrum. Recently, it has been realizedrete lines in the excitation spectrum of the solid or to reso-
that the excitons in charge-transfer insulat@®3 1) possess nances in the continuum part of the spectrum.
unusual features connected with the strongly correlated char- For the theoretical description of excitonic features in
acter of the antiferromagnetidFM) ground state in these conventional semiconductors and insulators the following
compounds. The most pronounced peculiarity consists in thécheme is usetthe key references are Refs. 4,9%1Rirst,
existence of exciton branches with substantially larger disth€ quasiparticle excitation ~ spectrum is found
persion compared with the one-particle excitatibhsthis ~ empirically’**or from first principles.’ "It is essential that
behavior has a formal analogy with that of the Frenkelth® Spectrum of thé\-electron system consists mainly of a
excitor? that acquires a finite effective mass although both continuum of electron-hole pairs whose electron or hole qua-
electron and hole, have infinite masédsyt in CTl it has a  SiParticle excitations are close to eigenstates of te ()-
completely different origin. or (N—1)-electron sgstem, respectively, with definite quasi-
The experimental technique suitable for the Observatioﬁnomentaandenergy? The quasiparticle spectrum is usually
of the exciton dispersion is the electron-energy-loss spectro@btained from the self-consistent-filiCH approach. Next,
copy (EELS).®> What is actually measured in transmission the electron-hole interaction is taken into account. Then the
EELS experiments is the partial cross sectibthat may be ~ Problem for two quasiparticles interacting via the medium is

decomposed into an amplitude factor and a dynamic strucs0lved. Itis crucial that the ground state may be viewed as an
ture factor occupied valence band that is separated from the first excited

state by an energy gap.
For the CTI the above scheme should be revised begin-

42 4 ning from the first step. The CTI has an odd number of
T ———S(q,). electrons per formula unit. That is why the SCF calculations
dQdE  (a,)%q* usually give ametallicground state for the CTl and a gapless
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excitation spectrum. More elaborate SCF methods such afouble occupancy and uncorrelated “oxygen” states; the un-
the unrestricted Hartree-Fock method or its modern versiodoped plane has one hole per unit cell, and is a quantum
LDA+U predict an AFM long-range order in the ground two-dimensional AFM insulator possessing no long-range or-
state and a gap in the excitation spectrum. Nevertheless, tifier at any finite temperature; the charge excitation corre-
nature of excitations and the ground-state fluctuations are néPonds to the transfer of a hole from copper to the adjacent
caught by these approaches. Let us recall that any CTI re2xygen site. In Sec. V, we discuss the solution of our equa-
mains insulating and shows excitonic features in optics andons within the small exciton basis and its dependence on
EELS spectra above the Metemperature, i.e., in theara-  vVarious parameters of the extended Emery model. We obtain
magnetic state (with short-range AFM correlations For ~ @n appreciable exciton dispersion and a rough, qualitative
strongly correlated systems the electron-electron interactioRgréement with the experimental spectra already within the
should be taken into account beyond the mean-field leveMinimal version of the Emery model.
This is possible within the framework of Hubbard-like mod-
els in the restricted subspace of orbitals close to the Fermi Il. DENSITY-DENSITY CORRELATION FUNCTION
level.

The description of exciton physics in CTI is possible
within the framework of one-band modéfs;'’but more de-

The dynamic structure factor is related to the density-
density correlation function

tailed and realistic information may only be obtained from 1 (= L

the multiband HubbardEmery model that explicitly in- S(q,w)Eﬂ dte"“’t<nq(t)n_q(0))

cludes ligand ion degrees of freedom. For quasi-one- TS ==

dimensional cuprates the Emery model was considered in 1

Refs. 18—21. The phenomenon of spin-charge separation that = Wlqu(w), D

is characteristic to one dimension introduces a specific phys-
ics into the exciton formation. The mobility of a single elec- where
tron or hole in 1D is not suppressed by spin correlations and
the exciton dispersion is comparable with the one-particle - 1 + T
dispersion. ”q=\/—ﬁ 2 exp(—1g-r)(a; @ s—(arsars) (2

In quasi-two-dimensional cuprates the situation is differ- ’
ent. Due to AFM correlations the bandwidth of the one-is the electronic density operator in the localized basis, the
particle motion is of the order of the AFM exchange integralsummation runs over all lattice sitesand orbital sortss,
J which is considerably smaller than the bare hopgirgnd (- --) means the thermodynamic average. Fw>1 we
the exciton dispersion is of the ordertofThe authors of Ref. have
22 proposed a qualitative physical explanation of the large
exciton dispersion in layered cuprates: the propagation of an
electron-hole pair does not disturb the AFM background, in
contrast to the motion of a single electron or hole. Unfortu-
nately, the calculations of Ref. 22 dwt support this idea
since they give no dispersion in the absence of oxygen on- "
site_ Coulomb repqlsiorUp a_nd direct O-O hoppingd,,, N(q!w)E<<ﬁq|ﬁ—q>>:_if dteflwt<[ﬁq(t),ﬁiq(o)]>
which was also pointed out in Ref. 18. One should expect a 0
qualitative description of the EELS spectfalready within )
the “minimal” version of the Emery model (Uq=U, s the retarded Green’s function that defines the inverse di-
=t,,=0), which can be refined by taking into account ad-electric function
ditional parameters, e.gt,, or U,. On the contrary, the
authors of Ref. 22 had to assume quite unrealistic parameter 4re?
values to fit the experimental spectra. e 1(q,0)=1+ ——N(q0), (4)

In this paper we outline an approach to calculate the lon- ved

gitudinal and the transverse dielectric resporiSex. 1) for  with v, being the volume of the unit cell arethe electronic
CTI within the framework of the multiband Hubbard model charge. We neglect here the local field effeisupling with
(Sec. ll). Introducing an analogy to Wannier’s excitonic the Fourier components witly =q+G, G being a recipro-
representaticft we obtain a set of coupled equations of mo- cal lattice vector. The functionN(q,») describes the re-
tion for the two-particle Green’s function that may be solvedsponse to theinscreenedexternal potential. It requests the
by means of the projection technid@éSec. IV). It is sub-  account of the macroscopic electric field, i.e., the long-range
stantial that the method allows a systematic improvement obart of the Coulomb interaction. The latter is responsible for
approximations. In order to retain only the essential properthe splitting into longitudinal and transverse excitons for
ties of CTI we first consider the minimal version of the Em- small wave number which is ana|ogous to the Sp“tt'ng into
ery model describing the CuOplane of highT supercon-  |ongitudinal and transverse optical phondrihe response
ductors and their parent compounds. The model reflects thg the total,screenechotential is given b$?

main features of CTI: the existence of two kinds of states—

strongly correlated “copper” states with the prohibition of Ns(q,w)=¢e(q,w)N(q, ), (5)

1
S(g,@)~~ —ImN(d,w),

where
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then £, but it is a crude approximation, as well as another one

which assumes(q,0)=const(see the discussion in Sec).V

For a quantitative description of EELS experiments the de-

e(g0)=1- v_qus(q*“’)' ©  tailed knowledge ofe..(q) is necessary. Then the total di-
¢ electric function is

In the diagrammatic language the linear response to the total

field may be expressed by the polarization operator where 4e

2

2

only irreducible graphgwhich do not contain the contribu- 8(Q,0)=8,— o Nu(Q,0) =z (10
tion of the macroscopic electric fielgdhould be taken into d
account®?’ The random-phase approximation results in  and its inverse is
M) Ns(q, ) - e Mg w)=etey "t
(G)= 47re? ' For the dielectric function of the Hubbard modsl,, the
1-——>Ny(q,0) usual sum rule holds
vcq
yvhich follows from Eqs(5) and(4) and isexactfor g—0, as fwwlmsH(q,w)dw= _ fxwlmsgl(q,w)dw
it was shown in Ref. 26. 0 0
The construction of Hubbard-like models for strongly cor- )

related systems has an input from LDA band-structure calcu- 7 4me S AT
lations where the screening of the long-range part of the =3 8mch2<[[nq' nln_ql),

Coulomb interaction is already taken into account. The Hub- .

bard terms arise from the short-range residual interactionrwhereH,, is the Hubbard model Hamiltonian and the opera-
Thus, the density response functidfy(q,) calculated tor n, acts in the subspace of orbitals which enter iftg
within the Hubbard model is an approximationNg(q, w). [i.e., the summation oves in Eq. (2) is restricted to these

In other words, it describes the motion of transvefse  orpitals|. Then for the total dielectric function approximated
“mechanical” by Agranovich’$® terminology excitons. by Eqg.(10) we have

Using the spectral representation we may write

o

1 !
—;ImNS(q,w )

Ns(q,2)=f

0

» 1 w 4me? N A A
20'do’ :jwoJrj“’ —fo wlme (q,w)dw=Emﬂ[nq,HH],nqu
2_ 2 0 wg e

z
1 ©

=Nu(9,2)+N.(q,2). (8) =—2L wlme(q,0)dw. (11

Here we bear in mind that the Hubbard model contributes t

2 . .
transitions in the low-frequency regian< w, with w, of the QI'he factor 1¢Z arises due to the negligence of the frequency

order of the bandwidth, and the electrons of the rest of th&él€pendence of...

solid are excited only at higher energies. In zero approxima-

tion we may assume that in the frequency region ,, the 11l. MODEL HAMILTONIAN AND DENSITY OPERATOR
electronic polarization of the rest of the solid follows imme-
diately the external field

oo

As we have mentioned in the Introduction, we consider
the minimal Emery model that exhibits the essential proper-
N..(9,2)~N..(q,0). ties of layered cuprates (14=U,=t,,=0). Then the total
Hamiltonian in hole notation reads
In other words, the Hubbard model is embedded into the

medium with dielectric permeability Hy=Hy+V, (12
42 where
Sm(q):l_ 2 Nm(qao) . o
o A=A PPy V=tS (Phea 287+ ZPrta, )
In fact, e, may have its own dispersion and may be quite ny Ria,y

anisotropic for layered or quasi-one-dimensional com- . — - .
pounds. In principle, it should be taken from, e.g., LDA cal- and where the Fermi operatpy,, annihilates a hole at site

culations(we have assumed that the rest of solid is uncorrepf the oxygen sublattice with Spin projection index the

lated or from experiment. It is obvious that the peak Hubbard projection operatafg’=dg,(1—ng,) annihilates

positions of the loss function a hole with spin indexy on asingly occupiedcopper site,
- wheredg,, is the corresponding Fermi operator. The double
L(d,@)=—Im[z"(q,0)] ©) occupancy of copper sites is thus excluded from&8). H,
and their intensity strongly depend on the valuesofq).  includes the on-site energieA € €, — €4, €q Is taken as zero

Usually, one neglects thpdependence and the anisotropy of of energy, V is thep-d hybridization,a=x, —x,y, —y char-
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acterizes the direction of a nearest-neighbor veetothe . 1 _ _
phase factors iV are absorbed into the definition of the ”q:\/_ﬁ[g;r exp(—19-R)(Zg7—(ZR"))
operatorspr,(,,zgy, they do not change the exciton disper-

sion.

. T A /AT A
Taking the limit Ug/A— considerably simplifies the +2 Xl =199 Ps (Pi,Psa)) | (14

consideration and is a good approximation for weakly doped
compounds in a wide range of valublg/A>2 (see, e.g., (sruns over O sublattiges transformed to
Ref. 29. The conditiondJ ,=t,,=0 are introduced for sim-

plicity and may be eaS|Iy relaxe@ee the Appendix then - 1

the Hubbard on-site term fqs-orbitals and the direct O-O ”q:\/_ﬁ{ ;T exp—1q-R)

hopping of the fornfppz —tppEO'j),yEri ’YEJ_ .y are added to

HO " . . . +ZgOpR+aa,a) +
It is well known that the Hamiltoniafl2) has an insulat-

ing ground state and is equivalent to the nearest-neighbor
AFM Heisenberg model in the low-energy region. It means

that charge fluctuations i are strongly suppressed and that

t
T T

a=*X,*ty

> exd—19-(R+a,)]

R,a=+Xx,+y

pR+a a-pR+a N A[(ZUO+Zg+2a)pR+a N

holes are localized. This fact becomes more apparent if we
make a canonical transformation of operators of the form +H.c]|{. (15
Acri=exp — S)Aexp(S)=A+[A,S]+ - -, Note that in the second line of E4L5) (in the sum over the
oxygen sublatticg a, lies only in the same cell aR. Col-
where lecting the terms surrounding a Cu site, we have
ASZ_l 2 (Ph+a yZ(r)ey_deopma y)- n=n +i12 exp—1q-R) 2, (pt 79
A Ra=5%+y,y @’ “ a ' \/N Ags g a=*tx,*y pR+a"'U R
ThenH, becomes +zg°pR+aH Jll—exp—1g-a,)]
Hepi=Ho— 47>, 2% “ho— — “1g- t
eff 0 T% R Ng+ \/_ A exp( Iq R)agiy (vaanr '/’R’aa)
t 00 Y X[1—exp —1g9-a,)], (16)
- TR a%Z y pR+aal'71pR+aa2'72(ZR 57172+Z|;2 1) [ q a )]
R where the operator
—r > 710 714 (13
Ria.71 e I#R QEE ZlgopR+aa,y (17)
Y

(see also Ref. 30 for the notatipiHerep andZ mean trans-

formed operatorsf].S is the AFM copper-copper superex-
change interaction, anglpoints to neighboring copper sites. .
Strictly speaking, Hamiltoniar{13) is obtained under the ~_ - _ T
conditiont/A<1, and its parameters are=t?/A and the Na= JN RE;, X —19-R)(Z"—(Z&"))
AFM exchangel=t%/A%. Nevertheless, it may be applied in
a wider range/A <1 with renormalized values aof and J. t — —
The advantage of using the effective Hamiltoniéir) +§;‘ eXp—105)(Ps Ps.o~ (Ps.oPso)) |- (18)
instead of the bare one, E(.2), consists in excluding irrel-
evant zero-point charge fluctuations. Then the coupling ofAs we have mentioned above, the effective Hamiltoriis)
carriers with spin fluctuations which governs the low-energyconserves the number of particles in every band. Therefore
physics of CTI becomes apparent. It is essential that the eh,=0 gives no contribution tdl,;. Having operatot16) we
fective Hamiltonian(13) does not contain transitions be- may proceed with the calculation of the density-density re-
tween p- and Z-states, in other words, it never creates asponse functiorf3).
particle-hole state out of the dielectric state. In this sense it
rese_mbl_es the star_ting H_amiltonian for_ the transverse gxciton IV ELECTRON-HOLE PAIR DYNAMICS
motion in conventional insulators. This allows us to intro-
duce an analog of Wannier’s excitonic representation for the The problem of the dielectric functiofi0) calculation is
description of the electron-hole pair dynamics. thus reduced to the calculation of the two-particle Green’s
The bare density operator function

annihilates an electron-hole pair with minimal distance, and
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Nu (g, 0)=((Dq+ il |q)T+q>_q>>w Heisenberg antiferromagnet. The correlation functions may
e thus be calculated from the Heisenberg model.
=<<<I>q|<bg>>w+(<<b_q|<bfq)>_w (19 System(24) may be solved numerically. Then we find the

eigenvectors
where

t Wi=2 6(@)Bq,, (26)
Oq=1 2 (1-exp(—19-a,) 0. _ _

“ where \ is the number of the branch in the spectrum. In
order to calculatdNy(q,w) within our basis, we should ex-

1 pand
Faa= 75 2 exp(—19-R)Yrq, (20
_ _ _ D=2 gha)Vy. 27)
and where we used again the conservation of particle num- A
bers in the electron and the hole subsystem that excludeghen one obtains
anomalous Green'’s functions such@®,|®)),, -
The equation of motion
| (@)= 1@ X TY),

o((DgDN),=([@g, DI +(([ g, Her]|P])., o1

= |gN@A(w—E) (28)
generates more complex operators A
with
ERwp= E 77172 272'0p , (22) t)2 2
PR, TRYeTR TR oM @P=| 5] |2 cl@Su1-exig-al] ,

which annihilate states with an increasing separation be- (29
tween electron and hole, accompanied by spin fluctuations, 4 finally
The set of equations of motion will generate states corre-

sponding to electrons and holes that are more and more sepa- A2e2

rated and dressed by spin fluctuations. These states form a  &(0, @) =&.— > > N [(w—Ep !

set similar to the excitonic representation for conventional veq® A

insulators®®?* The complication that arises in CTI consists —(0+EN7Y), (30)

in the strong interaction of both electron and hole with AFM o ] ]

fluctuations. The effect of this interaction leads to a strong-€t Us note that the projection technique allows us to im-

renormalization of the one-particle bandwidth, but it is par-Prove the chosen approximation step by step by enlarging the

tially canceled when electron and hole follow each other. basis set.
The set of coupled equations, E&1), may be approxi-

mately solved by means of the projection technique. We

choose an operator badig; and the definition of the scalar e have restricted ourself to the minimal basis that de-

product([ B, ,B{;1). Within the operator subspace spannedscribes the electron-hole pair with minimal distance. The ba-

by this basis we are looking for the approximate solution ofsis contains operator§l7) and (22) with 8=—a. Then

V. RESULTS AND DISCUSSION

the eigenvalue problem: problem (23) has the dimension 88. The overlap and Li-
ouvillean matrices are given in the Appendix. Spin-spin cor-
. relation functions were taken from the spherically symmetric
[\I,an]:ququ \I}qzzi: Ci(q)Bq,i (23) I " ! v P I Y 5y !

treatment of arS=3 Heisenberg AFM model on the square
_ _ lattice3! For a low-temperaturdf=0.1J and a vanishing
Th'? Iegds_, as uTuaI forb? nonorthonormal basis, to the geRrsiration parameten=0.01 they have the following values
eralized eigenvalue problem P & 2 5 2
g P (5 Sreg)=—033, (Sx-8rigg)=020, (5x-5rizg
=0.17. For the on-site energy difference god hopping

2 Ci(Q)Li,j(q):Ezi ci(a)S;(a), (24 we took the values\=3.6 eV andt=1.3 eV, which are
characteristic to all cuprates.
where overlap and Liouvillean matrices Figure 1 shows the dispersion of the imaginary part of the
dielectric functione,(q,w)=Ime(q,w). The oxygen on-site
sz<[Bi,B;r])=<Bi,BjT , repulsion and the O-O hopping were neglected. We see
strongly dispersive branches both in thELO] and in the
Lij=([[B;,H1,B/))=([B; ,A1,B] (25 ~ [100] directions.

As we have mentioned above, the comparison with the
depend only on spin-spin correlation functions for the systenEELS experiment may have only qualitative character with-
without electron-hole pairs, which is equivalent to theout a detailed knowledge of the background dielectric con-
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FIG. 1. The imaginary part of dielectric function,(q,w) FIG. 3. The loss function for constaat.=2 for all g and the

=Ime(qg,w) as a function of frequency and wave vectoq along parameter set of Fig. 1.
two symmetry directions. For each direction the curve number

corresponds ta),=n/10a, a being the lattice constam=0 for o argies. In fact, assumptigBl) implies that the dispersion

the bottom curve. Tlh.e garar';egrg ﬁfe‘?-e ev a”dt=1-|3 etV;j of N..(q,®) should follow the dispersion oNy(q,) in
oxygen on-site repulsiot), and O-O hoppind,,, were neglected. "2 way that

stante..(q). Figure 2 shows the graphs for the loss function

(multiplied by[&.,(0)]? in order to have approximately the . Ame
same normalization as,(q,w) according to Eq(11)) under &(0,0=0)=1- v.q2
the assumption th ¢

2

[Ny(0,0)+N..(q,0) ] =const,

as it follows from Eqs(8) and(6).
e(q,w=0)~e(q=0,0=0)=4.83. 31 In general, the interplay df,4(q,») andN..(g,») should
be more complex. In order to demonstrate the strong depen-
Then the value of., was obtained from Eq30). In this case  dence on the value af.,, we plot in Fig. 3 the same graph
the dispersion in the loss function reproduces essentially thg@ssuming a constant valge =2 for all g’s. We see a quali-
dispersion ire (g, »). The peaks are slightly shifted to higher tative difference with Fig. 2 and may conclude that the de-
pendence of the loss function @n is nontrivial. For quasi-

200 . . . one-dimensional compounds a large valuesgf~8 was
taken in Refs. 19 and 20. This means that the rest of the solid
strongly screens the long-range part of the Coulomb interac-
tion between electrons that enter the Hubbard model. For this
situation the poles 0f(q,w) are very close to the poles of
¢ 1(g,w) and the shape of the loss function is close to the
shape ofe,(q,w). Note also that always(q,0)>¢., as fol-
lows from Egs.(10) and (30), and withe,,=8 one will re-
ceive unrealistically large(q,0).

Let us now show some examples for the dependence of
the dielectric function on various parameters of the model.
For the reasons outlined above, from now on we consider
only figures fore,(q, ). As it was mentioned in Sec. lll, the
model (12) may be generalized in order to include a finite
Hubbard repulsionU, on the oxygen site and a direct
oxygen-oxygen hopping,, .

The dependence dn, is not very strong fot,,<7. Let
us recall that the addition of the O-O hopping to Hamiltonian

FIG. 2. The loss function L(g,w)=—Im[e %(q )] (13) within the parameter rangg,=(0.3-0.4) is essential
(multiplied by [¢.,(0)]2 in order to have aproximately the same t0 describe correctly the angle-resolved photoemission spec-
normalization ag:,(q,w)) for the same parameters as in Fig. 1 and troscopy of layered cupraté$**Figure 4 shows,(q, ») for
under the assumption tha{g,w=0)~¢(q=0,0=0)=4.83. tpp=0.47, andU,=0. We see that the main difference from

[100]

150

100

Loss function

[110] e

50

2 4 <]
Energy loss
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200 T T

Ve "= ghoy, [V " Hepl= (€ g+ et )WE™,

where eg=—(—47— eL‘J) corresponds to the energy of a
single-electron quasiparticle, which will be a complex spin-
polaron corresponding to the coherent motion in the so-
called t-J model, which describes th# subsystem in Eq.
(13) in the absence of holdsvith t"7= 7). eE=A— € is the
energy of the coherent motion of the Zhang-Rice singlet,
dressed by spin fluctuations. The minimal energy that one
needs to excite such a pair is

-
o4
o

100

ES "~A—€ —(—47— € )~A—2.2r~2.6 eV.

min min min

(9]
o

Imaginary part of dielectric function

Here we have taken into account that the minimum of the
spectrum in thé-J model ise' ~—27 and that the Zhang-

min
Rice singlet energy is5,,~—4.2r.%° This result indicates
0 2 4 8 8 that for layered cuprates the excitonic feature is immersed
Energy loss (eV) into the electron-hole continuum and represents a resonance

rather than a discrete level. Of course, for the final conclu-
FIG. 4. £5(q, ) for t,,=0.4r andU,=0. The other parameters  sion more detailed calculations should be performed within
are the same as in Fig. 1. an enlarged basis set.

) ) ) o ] Summarizing the calculated spectra we may state a rough,
Fig. 1 consists in the redistribution of spectral weight be‘qualitative, agreement with the experimental cuheal-
tween the different branches of the spectrum. ready within the minimal version of the Emery model and

The spectrum d_emonstrates a much stronger dependengging a minimal basis séFigs. 1-3. One may note a re-
onU,. Figure 5 displays:,(q,w) for U,=4 eV. We have  markable influence of the background dielectric function
an almost vanishing dispersion of the lower branches. Let UgFigs. 2 and 3 We found that additional parameters, etg,
pay attention to the fact that, does not affect the single or y  act in different ways. That might improve a future

hole motion. Due to that reason its value is experimentallyyarameter fit of the experimental curves. But the present ac-

function dispersion is very sensitive to this parameter. reserved for the future.

~ Now let us discuss a very important peculiarity of our | this work we have not taken into account the intersite
figures, namely the absolute position of the intensive peakgoulomb repulsion which leads to electron-hole attraction.
in the spectrum 0é,(q, ). At T point[q=(0,0)] we have  This term has a twofold influence on the position of the
one peak with the energyr=A+47~5.5 eV. Let us esti-  excitonic feature. On one hand, it leads to an effective in-
mate the edge of the electron-hole continuum. It correspondsrease of the fundamental gap and on the other hand it con-
to the energy that is needed for the excitation of electron angljpytes to the electron-hole binding. These tendencies are

hole which are independent of each other. The operator thafpposite to each other and should be thoroughly explored in
annihilates such a state is a separate investigation.
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APPENDIX

Here we give the formulas for matricg®5) for the
Hamiltonian (12) that also includes a finite oxygen on-site
repulsionU, and a direct O-O hopping,,. The effective
Hamiltonian may be generally derived by the following pro-
cedure. Let be

50 r

Imaginary part of dielectric function

Energy loss (eV)

H=Hy+V, Hy=> |[ME (m[|, V=" |n)t,.(ml,
FIG. 5. &,(q,w) for t,,=0 andU,=4eV. The other param- 0 0 Em: | En | %: | o |

eters are the same as in Fig. 1. (A1)
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then the canonical transformation with the operator

53 In)

m

th
Em_ En

(m| (A2)
gives[Hy,S]=—V, and finally up to the second order

N A - 1 ..
Heff=exq—S)HeX[(S)=H0+E[V,S]

1 thiti thits
:_z |n> njtjm + njtjm
24 "\En—E  E.FE

(ml. (A3)

Within the operator basis containing Eq47) and (22)
we have the following equations of motion for the Hamil-
tonian containing finiteJ , ,tp,:

[Yra HI=Eothr.at T% Ur T TubR a—a
+[TU§R+ga,fa,a_(Tu_ T)‘r//R+ga,fa]

—thp X 3 Yrp

ppﬁ;ﬁa,f

[SR,Q,—M !H]: EOé:R,a,—a+ TgRa,—a
Y1:¥2572.0
+ Tﬁza ZR+gaZR pR+a,8,71

Y1:¥25 720
aZR+gaZR pR*%vh

—tpp E

BFa,—
+ 7R ot Tu‘ﬂRJrga,fa
_(Tu_ T)§R+ga,—a,a'

Herer,=t*(A+U,) andEg=A+47+2(7—17,) . Itis con-
venient to introduce the notation

PHYSICAL REVIEW B 68, 195106 (2003

>

YY1 Y2,

= Vi Y1771,72 Yeo Y
W= (zy7zJv .z ),

Forr up to the third neighbors, is expressed via two point
correlation functions

1 . .
wg:§+<SR'SR+g>a

1 P A A
wga+gB:Z+2<SR'SR+Q>+<SR'SR+QH+QB>' (A4)

The Liouvillean and overlap matrices kispace are then

{ka—a i gh) = Supwrg, (A5)

(W A1 gty = Bup( T+ Tyg) + (7= tpp) (1= ,p)

X(1=6,,-p) (AB)
+ 6, gl THexpik-g,)
X(Tyog— Tyt 7)1, (A7)

<{[§ka,—a!ﬂ]idllﬁ}>
=8op5( Tyt Tg) + (T tpp) 0g(1=84p) (1= 64, p)

+ 84, gl Tog+exp(IK-g,)[ 7,— (7y— T wgl}, (A8)
<{[§ka,—a!ﬂ]v§lﬁ,—ﬁ}>
:[5aﬂ(7+ Tuwg)+(1_ 5aﬁ)(l_ 5(1,—B)
X (T—tpp)wgBJrga]-l- O — gl TWog+EXAIK-Q,)
X[Tuwg_(Tu_T)]}- (A9)
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