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Direct calculation of correlated absorption amplitudes for Nd:LiYF 4
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The correlation contribution to the transition amplitudes are investigated in the case of Nd:LiYF4. By using
many-body perturbation theory, we derive expressions for an effective dipole operator. The operators consid-
ered areVes

(1)†DVc f
(1) , Vc f

(1)†DVes
(1) , Ves2c f

(2)† D, andDVes2c f
(2) . In contrast to third-order spin-orbit and crystal-

field modified amplitudes, inclusion of correlation modifies the standard second-order amplitudes significantly.
A model cluster is optimized to experimental energy levels. This approach is then used to compute consistent
odd and even crystal-field parameters needed for theoretical absorption spectra. As expected, it is observed that
transitions occurring at small wavelengths are quite heavily influenced by correlation. The overall agreement
between experimental and theoretical spectra below 600 nm~above 17000 cm21) is greatly improved when
correlation is taken into account.

DOI: 10.1103/PhysRevB.68.195105 PACS number~s!: 78.20.Bh, 32.70.Cs, 78.40.2q
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I. INTRODUCTION

Rare-earth~RE! metals play a fundamentally importan
role in modern optical technology. A few examples are R
in laser materials, optical fiber amplifiers, and semicond
tors. What they all have in common is that the REs are in
way or another subject to a crystal field~cf! from their
chemical environment leading to various optical properti
Certain transitions can change dramatically from one h
material to another. In, for example, a RE-doped fiber am
fier, there are always losses such as destructive
conversion or energy transfer~e.g., high Er concentrations!,
accidental degeneracy that can lead to excited state ab
tion, bad radiative or nonradiative transitions, amplifi
spontaneous emission, etc. The material or the chemica
vironments can certainly be altered, but in what direction
good physical understanding requires, first, a knowledge
the electronic structure of the RE ion itself and, secon
knowledge of the chemical structure. It is important to t
and develop reliable theoretical methods. A good founda
is, for example, crucial to enable us to optimize RE clust
to give certain desired optical properties.

In a previous paper1 we investigated second and third o
der contributions~cf-cf and cf-spin-orbit perturbations! to the
f -f transition amplitudes in the case of a few rare-earth i
in YLF (LiYF 4). Quite a good agreement between theo
and experiment was achieved. It was shown that these th
order contributions are in practise small for YLF. The que
tion was then raised whether third-order correlation effe
will also be unimportant. The present work will attempt
address this rather intricate question.

It is nontrivial to usethe perturbed functions approac
applied in the previous work, because of the two-parti
nature of the electron correlation. Here, we shall instead
ploy the traditional many-body perturbation theory~MBPT!.
Smentek-Mielczarek and Hess2 earlier studied third-order in
tensity parametrization in the case of Pr in a variety of ho
LaAlO3 , NdAlO3 and LaCl3. General discussions about co
relation effects for several RE ions are available in Ref.
also see references therein. Also, the correlation contr
0163-1829/2003/68~19!/195105~6!/$20.00 68 1951
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tions using the velocity form of the dipole operator in th
case of Eu inC2v andC3v symmetry were studied in Refs.
and 5. In Ref. 6, Smentek presents a survey of publis
approaches for one- and two-photon transitions. Various
cussions by Reid and co-workers may also be found in R
7 and 8. The general trend is that correlation probably
quite important for the evaluation off -f transition intensi-
ties. This conclusion will also be emphasized in the pres
work.

II. MBPT APPROACH FOR AN EFFECTIVE DIPOLE
OPERATOR

The basic dipole oscillator strength for a transitionc i
→c f is proportional to

Pq}n i f u^c i uDq
1uc f&u2; ~1!

see, e.g., Ref. 9. It is in general assumed that good, phys
Stark wave functions and energies for rare-earth~or actinide!
crystal ions can be obtained by diagonalizing the Ham
tonian

H5(
i

S 2
1

2
¹ i

22
Z

r i
D1(

i , j

1

r i j
1(

i
j~r i !l i•si

1(
i

(
tp

Atpr i
tCtp~u i ,f i ! ~2!

in atomic units. The last term is a single-particle ansatz
take into account the influence of the crystal field. The ex
eigenfunctions ofH are here denotedca . However, the size
of the calculation forces us to employ a limited basis set
f-type angular functions forN equivalentf electrons. This
reduction is usually accomplished by introducing an effe
tive HamiltonianHe f f ; diagonalization then results in exa
eigenvalues and the model functionsca

0 that are projections
of the exactca ; see Ref. 10. However, in a puref space, all
matrix elementŝc i

0uDq
1uc f

0& are identically zero due to par
ity. In order to estimate the transition intensities within th
space, we can construct an effective dipole operatorDe f f . In
©2003 The American Physical Society05-1
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the following we will make use of the wave operator10

defined byca5Vca
0 . We shall now show a simple, yet il

lustrative, example of an effective operator (D is short for
Dq

1):

^c i uDuc f&5^Vc i
0uDuVc f

0&5^c i
0uV†DVuc f

0&.

Encouraged by this, one could identifyV†DV as a candidate
for De f f . Unfortunately, this operator contains unlinked d
grams and also suffers from problems with orthogonal
Instead we will follow a more suitable approach, for exam
that proposed by Duan and Reid:11

De f f5~V†V!21V†DV. ~3!

This operator is linked and does not have orthogonality pr
lems. By using the standard expansionV5( i 50

` V ( i ),10 we
write the non-vanishing terms of Eq.~3! up to third order
(De f f

(1) does not contribute to the amplitudes!:

De f f
(2)5DVc f

(1)1Vc f
(1)†D ~4!

De f f
(3)5Ves

(1)†DVc f
(1)1Vc f

(1)†DVes
(1)1Vc f2es

(2)† D1DVc f2es
(2) .

~5!

The subindicescf andesdenote crystal field and electrostat
interactions. The wave operatorsV ( i ) can be obtained using
the linked-diagram theorem for open shell systems.10 To ob-
tain explicit expressions forDe f f

(2) andDe f f
(3) , we use the sec

ond quantized form of the operators and apply Wic
theorem12,13 for products of creation and annihilation oper
la

an

19510
.
e

-

tors of normal form. This leads to a great number of zer
one- and two-particle operators. They are available by
quest from the authors. The zero-particle operators do
contribute to the transition amplitude. The second-order
erator De f f

(2) was discussed in a previous paper.1 To second
order, MBPT andthe perturbed functions approacheffec-
tively yield the same result. For third-order contributions w
shall focus on mixing of intraelectron correlations with th
crystal field. Other third-order effects such as spin-orbit
higher crystal-field interactions have previously been stud
in Refs. 1 and 14, and references therein.

The electrostatic interactions result in 82 nonvanish
one-particle operators forDe f f

(3) . These, along with the con
tributions fromDe f f

(2) , can be written in the one-particle pa
rametrization scheme of Reid and Richardson,15

D15(
ltp

Atp
l Ut1p

(l) ~21!q^l~p1q!,12qutp&, ~6!

wherel52,4,6 andt5l61. This is accomplished by ap
plying the theorems of Jucyset al.16 or El Baz and Castel17

for separable diagrams.
Because of space restrictions, here we shall list only

contribution toAtp
l . We let a denote a core orbital,r and s

denote excited or valence orbitals, andm and n denote va-
lence orbitals only. Note thate i is a single-particle energy
Two of the diagrams representing parts of theVc f

(1)†DVes
(1)

operator can be expressed as
2(
mn

am
† an (

ars

rÞ4 f
^maur 12

21urs&^suhc fun&^r udua&1^srur 12
21una&^muhc fur &^audus&

~e4 f1ea2e r2es!~e4 f2e r !
.

ed

b-

ex-
ne-

a

The contributionDAtp
l to Atp

l for even l can then be ob-
tained after simplification and a recoupling of the angu
terms:

DAtp
l 52~2l11!~2t11!21/2Atp (

klal r l s
~21!kH l l r 1

l a l s kJ
3H t 1 l

l l l r
J ^ l suuĈkuu l &^ l r uuĈkuu l a&^ l uuĈtuu l r&

3^ l auuĈ1uu l s& (
nanrns

nr l rÞ4 f
Rk~sr,4f a!Ht~4 f ,r !H1~a,s!

~e4 f1ea2e r2es!~e4 f2e r !
.

~7!

HereRk denotes the standard electrostatic Slater integral
Ht is defined by

Ht~ i , j !5E Pni l i
Pnj l j

r tdr.
r

d

^ l auuĈkuu l b& is a reduced matrix element of a renormaliz
spherical harmonicCkq5A(4p/(2k11)Ykq . The summa-
tion over the radial integrals in Eq.~7! will be further de-
scribed in Sec. III.

De f f
(3) also contains two-particle operators, which are a

sent in the Judd-Ofelt formulation.9,18 This operator contains
31 nonvanishing two-particle operators; these can be
pressed in a parametrization scheme similar to the o
particle case by recoupling the angular momentat and 1 of
the crystal field and dipole operator, respectively, to form
tensor operator product of rankl:

D25 (
k1k2ltp

Atp
(k1k2)l

~21!q^l~p1q!,12qutp&

3$uk1~1!uk2~2!%p1q
l .

Here 0<k1 ,k2<6, 0<l<12, and 1<t<13. Note that a
different parametrization is used in, e.g., Ref. 5:
5-2
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D25 (
k1k2ltp

Tk1k2l$uk1~1!uk2~2!%p1q
l .

However, from anab initio point of view, the choice is a
matter of taste. The oscillator strengths can finally be ca
lated from

Pq}n i f u^c i
0uD11D2uc f

0&u2. ~8!

III. RADIAL CONTRIBUTION

All contributions to Atp
l or Atp

(k1k2)l are associated with
radial terms which require intensive computational effor
The magnitudes of all these radial contributions are crucia
order to understand how important the influence of elect
correlation actually is for transition intensities. We shall no
show how the radial contribution in the example above@Eq.
~7!#, here denoted byR, is calculated:

R5 (
nanrns

nr l rÞ4 f
Rk~sr,4f a!Ht~4 f ,r !H1~a,s!

~e4 f1ea2e r2es!~e4 f2e r !
.

By defining the one- and two-particle perturbed functions

r t~4 f→ l r ;r 2!5 (
nr8

nr8 l rÞ4 f

Pn
r8
~r 2!

Ht~4 f ,r 8!

e4 f2e r 8

,

rk~4 f ,nal a→ l sl r ;r 1r 2!

5(
nrns

Pns
~r 1!Pnr

~r 2!
Rk~sr,4f a!

e4 f1ea2e r2es
,

we can writeR as a summation over integrals for the pe
turbed functions:

R5(
na

E E rk~r 1r 2!r t~r 2!Pna
~r 1!r 1dr1dr2 . ~9!

It can be seen by inspection that all contributions toAtp
l and

Atp
(k1k2)l have radial parts which can be calculated using p

turbed functions. These can be obtained, as initially dem
strated by Sternheimeret al.19 by solving one- or two-
particle inhomogeneous Schro¨dinger equations.10,20,21 Here
we shall instead employ the method of Salomonson
Öster22 which is better for numerical evaluation~more
memory efficient!. They utilized the fact that the eigenfunc
tions of a discretized Hamiltonian

F2
1

2

d2

dr2
1

l ~ l 11!

2r 2
2

Z

r
1u~r !GPnl5enlPnl ~10!

are complete. On a grid withM internal points we obtainM
eigenvectors. These span the entire functional space on
grid, which means that any discretized function on the sa
grid can be written exactly as an unique linear combinat
of thePnl functions. Therefore, by generatingall solutions to
Eq. ~10! for a grid with M points, we can directly perform
the summations in the expressions forr t andrk and integrate
according to Eq.~9! to obtain an estimateR(M ) to R. The
19510
-

.
n
n

r-
n-

d

hat
e
n

limit R5R(M→`) is approximated by calculatingR(M )
for a few grids and then applying repeated extrapolations
order to be able to use grids with as few points as possibl
logarithmic discretizationr 5ex of Eq. ~10! is used.22 Here
2.331026<r<150 a.u. and the logarithmic step lengthsDx
used in the extrapolation scheme were 0.2, 0.1, 0.05, 0.
and 0.0125. Further, the second derivative was approxim
by the central three-point formula and the potential2Z/r
1u(r ) was chosen as the converged relativistic Hartr
Fock 4f potential from Cowan’s programRCN.23 The result-
ing tridiagonal matrices were diagonalized using t
LAPACK routine DSTEVR.24 This procedure was then ap
plied for the radial contributions to all 103 operators.

IV. CRYSTAL FIELD OPTIMIZATION

In order to compute intensities, access to consistent
crystal field parameters~CFPs! is a necessity. Standard en
ergy level fittings usually result in good even paramete
The odd parameters, however, are in general difficult to
termine. In order to test the correlated expressions ab
and to see the influence on theoretical spectra, we shall
an unorthodox approach where a consistent set of param
is determined for an optimized environment corresponding
the crystal field, but also to some extent to correlation and
charge transfer. Explicitly, the optimization of a model clu
ter is carried out with respect to the energy levels. We sh
then use the optimized parameters to compute consistent
CFP needed for the correlated oscillator strengths. We se
the model cluster by considering the nearest ligands out
certain cut off distance (Rcut) with the rare-earth ion in the
center. This environment is represented by a charge den
n(RW ) which perturbs thef levels. The parametersAtp are
then calculated according to

Atp5~21!p11E n~RW !

Rt11
Ct2p~u,w!dRW ,

whereR,u, andw are spherical coordinates of a surroundi
charge density element. The coordinate system used is
scribed in Ref. 1. To simplify, we shall here only consider t
expansion

Atp'~21!p11(
j

@qjRj
2t21

1m jRj
2t22~ t11!#Ct2p~u j ,w j !, ~11!

where the dipole momentm j5a jEj is computed self-
consistently as in Ref. 1. We have here disregarded hig
moments and the sum is carried out for the surround
ligands at distancesRj out to Rcut . Optimization is done by
varying the chargesqj ~charge transfer! and the dipole polar-
izabilities a j within physical ranges. The relation betwee
standard even crystal field parametersBtp and Atp is ex-
pressed asBtp5r tAtp (t52,4, and 6!, wherer t accounts for
an effective expansion of the radialf function and shielding.
The r t parameters are optimized within certain allow
ranges. The effective Hamiltonian~see Ref. 1!
5-3
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He f f5 (
k52,4,6

f kF
k1(

i
j~r i !l i•si1aL21bG~G2!

1gG~R7!1 (
i 52,3,4,6,7,8

t iT
i1(

i
(
tp

BtpCtp~u i ,f i !

is then repeatedly diagonalized using the softw
lanthanide,25 until optimized Stark energies are obtained~ex-
perimental energies from Ref. 26!. All parameters are varied
simultaneously. Besides variations of the usual free ion s
orbit and correlation parameters (j,F2,F4,F6,a,b,g,
T2,T3,T4,T6,T7,T8), we also vary (qj ,a j ,r t). This optimi-
zation problem is nonlinear so it is slightly more involved
obtain solutions compared to standard matrix formulatio
Here we have chosen to apply a global optimization meth
adaptive simulated annealing; see Ref. 27. We are appl
this model to Nd:LiYF4; see Ref. 1 for more details. W
form the model cluster of radiusRcut530 with ligand posi-
tions obtained from Ref. 28 and with the RE ion at the o
gin. For neutrality we also requireqLi1qY14qF50, thus
reducing the number of free parameters to 21. Althoug
would be desirable to use a larger value forRcut , this choice
is beneficial for computational speed and is mainly appro
mate for lower order parameters only, i.e.,A20 in YLF (A1p
[0 in S4 symmetry!. After a series of convergence tests, w
found that this approximation is good within a few perce
Initially we allowed the effective charges to vary but foun
that optimal values were actually obtained very near the
mal charges. The optimization was then continued by us
formal charges thus reducing the number of parameter
19. In Table I we tabulate the resulting optimized parame
values. The quality of a fit is often measured in terms ofs,
defined by

s5A(
i

N
~Ei , f i t2Ei ,exp!

2

N2P
,

TABLE I. Optimized parameters for Nd:YLF.Fk, j, a, b, g,
Ti , ands are in units of cm21. The optimized dipole polarizabil-
ities and the parametersrk are expressed in Å3 and atomic units,
respectively. For comparison we also list crystal ion polarizabilit
~within brackets! by Schmidt et al. ~Ref. 30! using the Watson
sphere model. TheBtp parameters~in cm21) are obtained from
Btp5r tAtp

opt ; see Table II.

Parameter Parameter Parameter

F2 72930.3 T2 274.9 aLi1 0.041~0.0321!
F4 52379.5 T3 96.3 aY31 1.14 ~0.87!
F6 35169.6 T4 142.3 aF2 0.47 ~0.731!
j 874.2 T6 –295.3 r2 0.81
a 20.7 T7 352.4 r4 4.23
b –559.7 T8 174.6 r6 54.8
g 1520.0 N 149 s 26.1

B20 367.0 B40 –762.3 B44 1313.4
B60 –0.2 ReB64 1030.9 ImB64 160.8
19510
e
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whereN is the number of energy levels andP is the number
of free parameters used. Here we obtained quite a good
s526.1 cm21 ~19 parameters!, which can be compared with
the values527.6 cm21 in Ref. 26 where instead a direc
variation of Btp was carried out~a total of 27 parameters
were employed in that work!. We have thus optimized a
model cluster that gives good agreement with the experim
tal energy levels; see Fig. 1. Equation~11! can now be used
for generating either even or odd crystal field parameters;
Table II. In Sec. V we shall use these odd parameters, c
sistent with the optimized even parameters, to compute
related transition intensities.

V. SIMULATION OF ABSORPTION SPECTRA

By using the radial integrals and the optimized crys
field, we can now calculate the contributions to the intens

s

FIG. 1. Experimental and optimized theoretical energy levels
cm21 for Nd:YLF.

TABLE II. Atp parameters given in atomic units for Nd:YLF
The first parameter setAtp

old is taken from Table III of Ref. 1~Note
that all the odd parameters have changed sign due to typograp
errors in Ref. 1!. The second set is optimized using the proced
described in the present work. All parameters are rotated in thR
approach~Ref. 31! according toe2 ipaAtp such that ImA4450 (a
534°).

tp ReAtp
old Im Atp

old ReAtp
opt Im Atp

opt

10 2.0031022 - - -
11 4.1731023 2.6331022 - -
20 3.4431023 - 2.05931023 -
32 2.0431024 21.0531024 7.5231024 3.3431024

40 21.8331023 - 28.2231024 -
44 2.9031023 - 1.4231023 -
52 21.4031023 23.7931025 25.8731024 7.4231026

60 4.8531026 - 21.9431028 -
64 2.3931024 3.0831025 8.5831025 1.3431025

72 3.2031026 21.9031026 6.0931027 28.2631027

76 6.5131025 28.6731026 1.7031025 22.7631026
5-4
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parameters from the correlated dipole operators. Theore
values of theAtp

l and Atp
(k1k2)l for Nd:YLF are available on

request from the authors~thousands!. It should be noted tha
the dipole operators were generated using the 4f relativistic
Hartree-Fock potential, and thus the main part of the sph
cal correlation is already accounted for. It is well known th
the Hartree-Fock method is very efficient with regard to
counting for spherical correlation. By taking the Hartre
Fock level as the point of departure, we omit all spheri
corrections to the operators arising in MBPT. It is thus be
eficial to remove the terms withk50 in the expansion of
r 12

21 as well as the effective potential defined by

^ i uvu j &5^ i u2uu j &1(
a

occ

~^ iaur 12
21u ja&2^ iaur 12

21ua j&!.

To proceed, the oscillator strengths of Eq.~8! are then
calculated for transitions from the ground state to the exc
states using the optimized Stark wave functions and ener
described in Sec. IV. The ground state is also assumed t
thermally populated at 300 K; see Eq.~2! in Ref. 1. An
unpolarized absorption spectrum is generated using

L~l!l0
2 (

q521

1

Pq}E a~l!dl,

whereL(l) is a Lorentzian function:

L~l!5
1

p

1

2
G

~l2l0!21S 1

2
G D 2 .

In Figs. 2 and 3, we display the uncorrelated~method in Ref.
1! and the present correlated theoretical absorption spe
respectively. The full width at half maximum parameterG
used in the Lorentzian broadening was chosen as 1.5 nm
experimental plot of an unpolarized absorption spectrum

FIG. 2. Theoretical unpolarized uncorrelated absorption sp
trum for Nd:YLF.
19510
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displayed in Fig. 4. This experimental data are availa
from NASA LSB’s Database Lasers29 @(2s1p)/3#. We ob-
serve that the theoretical spectra are essentially iden
above 600 nm, indicating that correlation effects for the
bands are insignificant. This region is also in very nice agr
ment with experiment. At wavelengths below 600 nm, t
agreement between the theoretical uncorrelated spec
~Fig. 2! and the experimental spectrum~Fig. 4! is poor. How-
ever, we see that the transitions below 600 nm are gre
improved by correlation interaction~Fig. 3!. This is not sur-
prising since these final states are those closest to the ex
configurations. The overall agreement between Figs. 3 an
is convincing, indicating that the determinedAtp parameters
in Table II are probably of high standard. The low magn
tudes of the uncorrelated oscillator strengths below 600
were also noted in the previous work.1 Most of these transi-

c- FIG. 3. Theoretical unpolarized correlated absorption spect
for Nd:YLF.

FIG. 4. Experimental unpolarized absorption spectrum
Nd:YLF.
5-5
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tions mainly depend onA1p and A3p . However, the point
symmetryS4 for the rare-earth ion site in YLF rendersA1p
[0. In the previous paper it was argued that perhaps
dynamic environment causes the symmetry to break, all
ing the use of a nonzero value forA1p . The present work
shows that these low oscillator strengths are greatly recti
by taking electron correlation into account. A dynamical e
planation can nevertheless not be discarded, althoug
would seem that its contribution is considerable smaller t
previously thought.

VI. CONCLUSION

We have formulated a theory for correlated transition a
plitudes. We also suggest an unorthodox but consistent
proach for the treatment of the crystal field. Excellent agr
ment with the experimental spectrum for Nd:YLF
observed. It is expected that this approach will also work
other near ionic laser crystals. If this approach turns ou
yield good results in future simulations, it may be especia
useful in finding interesting rare-earth clusters with cert
n

19510
e
-

d
-
it
n

-
p-
-

r
o
y
n

designed optical properties desired in technological appl
tions. For example, work is now in progress to find efficie
chemical rare-earth clusters that can be doped into op
fibers for use as efficient fiber amplifiers. It should also
noted that the correlated approach presented here can be
ther improved. One possibility is to revert to ‘‘exact’’ solu
tions of the Schro¨dinger equation, often used for light atom
This type of approach is presently being investigated by
for Pr, Nd, and Er. The advantage of an ‘‘exact’’ approa
compared to MBPT is actually its greater simplicity. A
though we feel that such an approach is interesting at a
damental level, it is probably less so from a technologi
point of view.
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