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Direct calculation of correlated absorption amplitudes for Nd:LiYF ,
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The correlation contribution to the transition amplitudes are investigated in the case of Ng:IBYksing
many-body perturbation theory, we derive expressions for an effective dipole operator. The operators consid-
ered areQV'DOY, 0P DAY, 07D, andDQ? ;. In contrast to third-order spin-orbit and crystal-
field modified amplitudes, inclusion of correlation modifies the standard second-order amplitudes significantly.

A model cluster is optimized to experimental energy levels. This approach is then used to compute consistent
odd and even crystal-field parameters needed for theoretical absorption spectra. As expected, it is observed that
transitions occurring at small wavelengths are quite heavily influenced by correlation. The overall agreement
between experimental and theoretical spectra below 60Qatmmve 17000 cm?) is greatly improved when

correlation is taken into account.
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I. INTRODUCTION tions using the velocity form of the dipole operator in the
case of Eu irC,, andC;, symmetry were studied in Refs. 4

Rare-earth(RE) metals play a fundamentally important and 5. In Ref. 6, Smentek presents a survey of published
role in modern optical technology. A few examples are REfapproaches for one- and two-photon transitions. Various dis-
in laser materials, optical fiber amplifiers, and semiconduccussions by Reid and co-workers may also be found in Refs.
tors. What they all have in common is that the REs are in ong and 8. The general trend is that correlation probably is
way or another subject to a crystal fieldf) from their  quite important for the evaluation dtf transition intensi-
chemical environment leading to various optical propertiesties. This conclusion will also be emphasized in the present
Certain transitions can change dramatically from one hostvork.
material to another. In, for example, a RE-doped fiber ampli-
fier, there are always losses such as destructive up- Il. MBPT APPROACH FOR AN EFFECTIVE DIPOLE
conversion or energy transfée.g., high Er concentrations OPERATOR
accidental degeneracy that can lead to excited state absorp- o . .
tion, bad radiative or nonradiative transitions, amplified 1he basic dipole oscillator strength for a transitign
spontaneous emission, etc. The material or the chemical en= ¥t IS proportional to
vironments can certainly be altered, but in what direction? A P e[ (s DY )| 1)
good physical understanding requires, first, a knowledge of a* Vit (il Dgl ¥l
the electronic structure of the RE ion itself and, second &ee, e.g., Ref. 9. It is in general assumed that good, physical
knowledge of the chemical structure. It is important to testStark wave functions and energies for rare-eéotractinide
and develop reliable theoretical methods. A good foundatiorerystal ions can be obtained by diagonalizing the Hamil-
is, for example, crucial to enable us to optimize RE clustergonian
to give certain desired optical properties.

In a previous papémwe investigated second and third or- 1
der contributiongcf-cf and cf-spin-orbit perturbationso the H= 2 )
f-f transition amplitudes in the case of a few rare-earth ions
in YLF (LiYF,). Quite a good agreement between theory ¢
and experiment was achieved. It was shown that these third- +§i: %: Al iCrpl( 01, 1) )
order contributions are in practise small for YLF. The ques-

tion was then raised whether third-order correlation effectdn atomic units. The last term is a single-particle ansatz to
will also be unimportant. The present work will attempt to take into account the influence of the crystal field. The exact

address this rather intricate question. eigenfunctions oH are here denoted,. However, the size

It is nontrivial to usethe perturbed functions approach Of the calculation forces us to employ a limited basis set of
applied in the previous work, because of the two-particle-type angular functions foN equivalentf electrons. This
nature of the electron correlation. Here, we shall instead emeduction is usually accomplished by introducing an effec-
ploy the traditional many-body perturbation thegtBPT).  tive HamiltonianH,+¢; diagonalization then results in exact
Smentek-Mielczarek and Héssarlier studied third-order in- eigenvalues and the model functiof§ that are projections
tensity parametrization in the case of Pr in a variety of hostsof the exactiy, ; see Ref. 10. However, in a pufepace, all
LaAlO3, NdAIO; and LaCh. General discussions about cor- matrix elements y|D;| ) are identically zero due to par-
relation effects for several RE ions are available in Ref. 3jty. In order to estimate the transition intensities within this
also see references therein. Also, the correlation contribuspace, we can construct an effective dipole operatge. In
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the following we will make use of the wave operatdr,
defined by¢a=o¢g. We shall now show a simple, yet il-
lustrative, example of an effective operat® (s short for

1y.
Dy):
(D) =(QyPD|Q YD) = (yP|QTD O ).

Encouraged by this, one could ident®'DQ as a candidate
for Dqss. Unfortunately, this operator contains unlinked dia-

grams and also suffers from problems with orthogonality.
Instead we will follow a more suitable approach, for example.

that proposed by Duan and Réfd:

Det=(QTQ)"20'DO. (3)

This operator is linked and does not have orthogonality prob-

lems. By using the standard expansi@n=37_,Q® 10 we
write the non-vanishing terms of E¢3) up to third order

(D& does not contribute to the amplitudes
D@I=Dal+ 0D @
DE=00Do®+ 0 DaW+0@" D+DO@ .
(5

The subindicesf andesdenote crystal field and electrostatic
interactions. The wave operatafs") can be obtained using
the linked-diagram theorem for open shell systéhiEo ob-

tain explicit expressions fab%; andD{}, we use the sec-
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tors of normal form. This leads to a great number of zero-,
one- and two-particle operators. They are available by re-
quest from the authors. The zero-particle operators do not
contribute to the transition amplitude. The second-order op-
eratorD(ff was discussed in a previous papéfo second
order, MBPT andthe perturbed functions approactffec-
tively yield the same result. For third-order contributions we
shall focus on mixing of intraelectron correlations with the
crystal field. Other third-order effects such as spin-orbit or
‘higher crystal-field interactions have previously been studied
in Refs. 1 and 14, and references therein.

The electrostatic interactions result in 82 nonvanishing
one-particle operators fd (). These, along with the con-
tributions fromD{3}, can be written in the one-particle pa-
rametrization scheme of Reid and Richard$on,

EAKUWP( D%\ (p+q),1—qltp),  (6)

wherex=2,4,6 andt=\=*+1. This is accomplished by ap-
plying the theorems of Jucyet al® or EI Baz and Casttf
for separable diagrams.

Because of space restrictions, here we shall list only one
contribution toA . We leta denote a core orbitat, ands
denote excited or valence orbitals, amdand n denote va-
lence orbitals only. Note thad; is a single-particle energy.

ond quantized form of the operators and apply Wick'sTwo of the diagrams representing parts of ng) Doty

theorent®*3for products of creation and annihilation opera-

r#4f

operator can be expressed as

(mary; |fS><S|hcf|n><r|d|a>+<5f|r11|na><m|hcf|f><a|d|5>

- E ajnan

mn

>

ars

The contributionAAA to AA for even\ can then be ob-

(€41t €5~

€ — €s)( €41~ €;)

(1,]|CH|1p) is a reduced matrix element of a renormalized

tained after srmphfrcatron and a recoupling of the ang“""‘rspherrcal harmonicC,q= \(4m/(2k+1)Y,q. The summa-

terms:

k(| 1
I k
t 1 A\ . A N

o Ir]<|s||ck|||><n||ck|||a><l||c:t|||r>

nel, #4f

X(llICYIry X

NanyNg

|

R¥(sr,4fa)H!(4f,r)H(a,s)
€ —€5)(€q5—€) .

)

AAL=2(20+1)(2t+1) A, > (—1)
kil

a” S

X

(€a5+ €a—

tion over the radial integrals in Eq7) will be further de-
scribed in Sec. .

DS;} also contains two-particle operators, which are ab-
sent in the Judd-Ofelt formulatioh® This operator contains
31 nonvanishing two-particle operators; these can be ex-
pressed in a parametrization scheme similar to the one-
particle case by recoupling the angular momensad 1 of
the crystal field and dipole operator, respectively, to form a
tensor operator product of rank

D, ASEN(—1)%\ (p+q),1-qltp)

klkzktp

HereR* denotes the standard electrostatic Slater integral and

H' is defined by

Ht(i,j):f Pnilipnjljrtdr-

x{uf(1)uke(2)}p. -

Here 0<k;,k,<6, 0=\ <12, and kt<13. Note that a
different parametrization is used in, e.g., Ref. &:
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‘ ‘ N limit R=R(M—x) is approximated by calculating(M)
Dy= >, Tk U DUA(2) )54 g for a few grids and then applying repeated extrapolations. In
kikoAtp . . . .
order to be able to use grids with as few points as possible, a
However, from anab initio point of view, the choice is a logarithmic discretizatiom =e* of Eq. (10) is used?® Here
matter of taste. The oscillator strengths can finally be calcu2.3x 10 ®<r=<150 a.u. and the logarithmic step lengths

lated from used in the extrapolation scheme were 0.2, 0.1, 0.05, 0.025,
0 N and 0.0125. Further, the second derivative was approximated
Pq“”if|<¢i |D1+Dofyr)|%. 8 by the central three-point formula and the potentiaZ/r
+u(r) was chosen as the converged relativistic Hartree-
Ill. RADIAL CONTRIBUTION Fock 4f potential from Cowan’s prografRCNZ® The result-

o \ (kKgko\ . _ing tridiagonal matrices were diagonalized using the
All contributions to Ay, or A *"*" are associated with | APACK routine DSTEVR* This procedure was then ap-
radial terms which require intensive computational efforts.plied for the radial contributions to all 103 operators.
The magnitudes of all these radial contributions are crucial in

order to_ understand_ how impqr'tant_ the ir?f'luence of electron IV CRYSTAL EIELD OPTIMIZATION
correlation actually is for transition intensities. We shall now
show how the radial contribution in the example abpkq. In order to compute intensities, access to consistent odd
(7)], here denoted bR, is calculated: crystal field parameter€CFPS is a necessity. Standard en-
ol st ergy level fittings usually result in good even _pgrameters.
"% RK(sr4fa)HY(4f,r)HY(a,s) The odd parameters, however, are in general difficult to de-
R= nine (€t €a— € —€s)(€gr—€;) termine. In order to test the correlated expressions above,

o ) _ and to see the influence on theoretical spectra, we shall use
By defining the one- and two-particle perturbed functions an unorthodox approach where a consistent set of parameters

s is determined for an optimized environment corresponding to
nr r

. H'(4f,r") the crystal field, but also to some extent to correlation and to
plaf =l r)= > Po(rg)———, charge transfer. Explicitly, the optimization of a model clus-
ng €ai™ € ter is carried out with respect to the energy levels. We shall
v then use the optimized parameters to compute consistent odd
p(4f.nala—= 14l irarp) CFP needed for the correlated oscillator strengths. We set up
R(sr,4fa) the model cluster by considering the nearest ligands out to a
=> P, (r)P, (r,)————, certain cut off distanceR,; with the rare-earth ion in the
T T €t T 66 center. This environment is represented by a charge density
we can writeR as a summation over integrals for the per-n(R) which perturbs thef levels. The parameterd,, are
turbed functions: then calculated according to
R=2 f fpk(rlrz)Pt(rz)P (rorqdrydry. (9) A,.=(—1)P1 n(R) R
R a p=(—1) o1 Coplfr9)dR,

It can be seen by inspection that all contributions{\fp and

Ak whereR, ¢, and¢ are spherical coordinates of a surrounding
tp

have radial parts which can be calculated using pergharge density element. The coordinate system used is de-
turbed functions. These can be obtained, as initially demonscribed in Ref. 1. To simplify, we shall here only consider the
strated by Sternheimeet al!® by solving one- or two- expansion

particle inhomogeneous Schiinger equationd®2%2! Here

we shall instead employ the method of Salomonson and

Ostef? which is better for numerical evaluatiofmore Ap=~(—1)PF1 [q;R "t
memory efficient They utilized the fact that the eigenfunc- !
tions of a discretized Hamiltonian + R;t*Z(H 1)IC— (8, ¢)), (12)
1d> 1(1+1) Z where the dipole momenj;=«jE; is computed self-
g2t o7 THu) |Py=e€nPn (100 consistently as in Ref. 1. We have here disregarded higher

moments and the sum is carried out for the surrounding
are complete. On a grid withl internal points we obtaiM  ligands at distanceR; out toR.;. Optimization is done by
eigenvectors. These span the entire functional space on thearying the chargeg; (charge transfgrand the dipole polar-
grid, which means that any discretized function on the saméabilities «; within physical ranges. The relation between
grid can be written exactly as an unique linear combinatiorstandard even crystal field paramet@&g and A, is ex-
of the P, functions. Therefore, by generatia§j solutions to  pressed aB;,= p;A;, (t=2,4, and 6, wherep, accounts for
Eq. (10) for a grid with M points, we can directly perform an effective expansion of the radiadunction and shielding.
the summations in the expressions fbandp* and integrate  The p, parameters are optimized within certain allowed
according to Eq(9) to obtain an estimat®(M) to R. The  ranges. The effective Hamiltoniasee Ref. 1
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TABLE |. Optimized parameters for Nd:YLFEX, ¢, a, 8, v, x 10* x 10*
T', ando are in units of cm®. The optimized dipole polarizabil- = == aal
iies and the parameteps are expressed in Aand atomic units, - - '
respectively. For comparison we also list crystal ion polarizabilities = = 4.2r
(within bracket$ by Schmidtet al. (Ref. 30 using the Watson = = 4 = N
sphere model. Th&;, parameters(in cm™1) are obtained from —_— —_— agl —_—
Bip=pAl"; see Table II. 1 = = :
e — = a8y
Parameter Parameter Parameter 2z —_— 3.4)
j=
F2 729303 T? 2749  a,+ 0.041(0.0321 LZ’ T 321
F4 523795 T° 96.3  ays+ 1.14(0.87) 3l
Fo 35169.6 T* 1423 ar  0.47(0.73) _ = »al
£ 874.2 TS  -2953 p, 0.81 o5 '
a 20.7 T 3524  p, 4.23 L 267
B -559.7 T8 174.6 Pe 54.8 - 24}
y 15200 N 149 o 26.1 = ool = oo
B2o 367.0 Bo —7623 Ba 13134 FIG. 1. Experimental and optimized theoretical energy levels in
Bso -0.2 ReBg, 1030.9 ImBgy 160.8 cm ! for Nd:YLF.

whereN is the number of energy levels aRdis the number
‘ ) of free parameters used. Here we obtained quite a good fit,

Herr= ;46 fFR+ > &l si+ al?+ BG(Gy) o=26.1 cm ! (19 parametejswhich can be compared with

’ ' the valueoc=27.6 cmi'! in Ref. 26 where instead a direct

. variation of By, was carried outa total of 27 parameters

+7G(R7)+i_2;‘G78tiTI+Z tz BipCip(0i.b1)  were employed in that wolk We have thus optimized a
I P model cluster that gives good agreement with the experimen-

. . ) ) tal energy levels; see Fig. 1. Equati@il) can now be used
is then repeatedly diagonalized using the softwargo, generating either even or odd crystal field parameters; see
lanthanide” until optimized Stark energies are obtaired-  Taple II. In Sec. V we shall use these odd parameters, con-

perimental energies from Ref. PG\l parameters are varied gjsient with the optimized even parameters, to compute cor-
simultaneously. Besides variations of the usual free ion spingg|ated transition intensities.

orbit and correlation parametersé,E2 F4 F% a,B,7,
T2,T3,T4,T%,T7,T8), we also vary ¢; ,; ,p,). This optimi-
zation problem is nonlinear so it is slightly more involved to
obtain solutions compared to standard matrix formulations. By using the radial integrals and the optimized crystal
Here we have chosen to apply a global optimization methodfjeld, we can now calculate the contributions to the intensity
adaptive simulated annealing; see Ref. 27. We are applying

this model to Nd:LiYR; see Ref. 1 for more details. We TABLE II. A, parameters given in atomic units for Nd:YLF.

form the model cluster of raditR,,= 30 with ligand posi-  The first parameter sét)? is taken from Table IIl of Ref. INote
tions obtained from Ref. 28 and with the RE ion at the Ori_that all the odd parameters have changed sign due to typographical

gin. For neutrality we also requira,; +qy+4q-=0, thus errors in Ref. 1 The second set is optimized using the procedure
. Li Y F— Y,

reducing the number of free parameters to 21. Although ifjescr'bedF'en fth,j presen;.wortk' Q!szrametﬁrtshatremrxtat_eg IiRthe
would be desirable to use a larger value Ry, this choice ipg?;mh( ef. 31 according toe™'P“Ay, such that ImA,,=0 (a

is beneficial for computational speed and is mainly approxi- i
matg for lower order parameters only, i.8gin YLF (A tp ReA%d ImA?Ad ReA! Im A2P!
=0 in S, symmetry. After a series of convergence tests, we
found that this approximation is good within a few percent.10  2.00<10 2 - - -

Initially we allowed the effective charges to vary but found 11  4.17x10°3  2.63x10 2 - -

V. SIMULATION OF ABSORPTION SPECTRA

that optimal values were actually obtained very near the for20  3.44< 103 - 2.059< 103 -
mal charges. The optimization was then continued by usin@2 2.04<107* —1.05x10"% 7.52<10°* 3.34x10°*
formal charges thus reducing the number of parameters too —1.83x10°3 - —8.22x1074 -
19. In Table | we tabulate the resulting optimized parametens 2.90<10°3 - 1.42x10°3 _
values. The quality of a fit is often measured in termsrof 55 —1.40x10°3 —3.79x10°°5 —5.87x10°% 7.42x10°8
defined by 60 4.85<10°° - —1.94x10°8 -

64 2.3%104 3.08<10° 858<10°°  1.34x10°°

N (B i~ o) 72 320<10° —1.90<10°° 6.09x10°7 -8.26x10°7

o= \/2 L1t~ i exp) 76 6.51x10° —8.67x10°® 1.70x10°° —2.76x10°°®
i

N—P
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Calc. unpolarized uncorrelated spectrum for Nd:YLF Calc. unpolarized correlated spectrum for Nd:YLF

Absorption coefficient (Arbitrary units)
Absorption coefficient (Arbitrary units)

wr.erei) B W

300 400 500 600 700 800 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

FIG. 2. Theoretical unpolarized uncorrelated absorption spec- FIG. 3. Theoretical unpolarized correlated absorption spectrum
trum for Nd:YLF. for Nd:YLF.

parameters from the correlated dipole operators. Theoretic

values of theAt‘p andAt(klkm for Nd:YLF are available on ¢ "N ASA |SB's Database Laséy (20+ m)/3]. We ob-
request from the authofghousandg It should be noted that gerye that the theoretical spectra are essentially identical

the dipole operators were generated using thesdativistic  apove 600 nm, indicating that correlation effects for these
Hartree-Fock potential, and thus the main part of the spheripangs are insignificant. This region is also in very nice agree-
cal correlation is already accounted for. It is well known thatent with experiment. At wavelengths below 600 nm, the
the Hartree-Fock method is very efficient with regard t0 ac-qgreement between the theoretical uncorrelated spectrum
counting for spherical correlation. By taking the Hartree-(Fig_ 2) and the experimental spectruffig. 4) is poor. How-

Fock level as the point of departure, we omit all sphericalgyer, we see that the transitions below 600 nm are greatly
corrections to the operators arising in MBPT. It is thus benmproved by correlation interactioffig. 3. This is not sur-

eficial to remove the terms witk=0 in the expansion of yising since these final states are those closest to the excited

ecljjisplayed in Fig. 4. This experimental data are available

r, as well as the effective potential defined by configurations. The overall agreement between Figs. 3 and 4
occ is convincing, indicating that the determinég, parameters
iloliy=(il—uli)+ ialr =Yia)—(ialr=daid). in Table Il are probably of high standard. The low magni-
(ileli)=(i=ulp 2a (ialrsz]ja) = (ialrsz]aj)) tudes of the uncorrelated oscillator strengths below 600 nm

were also noted in the previous warlost of these transi-
To proceed, the oscillator strengths of H§) are then

calculated for transitions from the ground state to the excited .

states using the optimized Stark wave functions and energie: 5*1° . . , . .
described in Sec. IV. The ground state is also assumed to b Exp. unpolarized spectrum for Nd:YLF

thermally populated at 300 K; see E() in Ref. 1. An
unpolarized absorption spectrum is generated using 4k

1
uxmi}lmgfaﬁmn

whereL(\) is a Lorentzian function:

Absorption coefficient (per M)

! r
Lo 2
( )_ ; 1 2 " 4
(N=Ng)2+| 5T kﬂ
: AT
In Figs. 2 and 3, we display the uncorrelatesethod in Ref. essene L . A .
1) and the present correlated theoretical absorption spectre §00 400 500 600 700 800

Wavelength
respectively. The full width at half maximum parameier avelength (nm)

used in the Lorentzian broadening was chosen as 1.5 nm. An FIG. 4. Experimental unpolarized absorption spectrum for
experimental plot of an unpolarized absorption spectrum iNd:YLF.
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tions mainly depend o, and Az,. However, the point

symmetryS, for the rare-earth ion site in YLF rendefs,

PHYSICAL REVIEW B8, 195105 (2003

designed optical properties desired in technological applica-
tions. For example, work is now in progress to find efficient

=0. In the previous paper it was argued that perhaps thehemical rare-earth clusters that can be doped into optical
dynamic environment causes the symmetry to break, allowfibers for use as efficient fiber amplifiers. It should also be
ing the use of a nonzero value fé,. The present work noted that the correlated approach presented here can be fur-
shows that these low oscillator strengths are greatly rectifiether improved. One possibility is to revert to “exact” solu-

by taking electron correlation into account. A dynamical ex-tions of the Schrdinger equation, often used for light atoms.
planation can nevertheless not be discarded, although This type of approach is presently being investigated by us
would seem that its contribution is considerable smaller thaffior Pr, Nd, and Er. The advantage of an “exact” approach

previously thought.

VI. CONCLUSION

compared to MBPT is actually its greater simplicity. Al-
though we feel that such an approach is interesting at a fun-
damental level, it is probably less so from a technological
point of view.

We have formulated a theory for correlated transition am-

plitudes. We also suggest an unorthodox but consistent ap-
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