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Low-energy excitations of the Hubbard model on the Kagome´ lattice
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The Hubbard model on the Kagome´ lattice is investigated in a metallic phase at half filling. By introducing
anisotropic electron hopping on the lattice, we control geometrical frustration and clarify how the lattice
geometry affects physical properties. By means of the fluctuation exchange approximation, we calculate the
spin and charge susceptibilities, the one-particle spectral function, the quasiparticle renormalization factor, and
the Fermi velocity. It is found that geometrical frustration of the Kagome´ lattice suppresses the instability to
various ordered states through the strong reduction of the wave-vector dependence of susceptibilities, thereby
stabilizing the formation of quasiparticles due to the almost isotropic spin fluctuations in the Brillouin zone.
These characteristic properties are discussed in connection with the effects of geometrical frustration in the
strong-coupling regime.
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I. INTRODUCTION

Geometrically frustrated metallic systems have attrac
much interest since the discovery of the heavy fermion
havior in the transition-metal oxide LiV2O4.

1,2 This com-
pound has the spinel structure and the band calculat
show that the conduction bands are essentially compose
vanadium 3d orbitals, which are well separated from th
oxygen 2p bands. Therefore when low-energy properties
concerned, it is sufficient to consider only the vanadiumd
orbitals.3–6 The vanadium sublattice in the spinel structu
constitutes a network of corner-sharing tetrahedra, i.e.,
pyrochlore lattice, and this is a typical example of geome
cally frustrated three dimensional~3D! lattices. Various
works have revealed unusual low-energy properties of s
systems on the pyrochlore lattice, including the presenc
thermodynamic degeneracy of the ground states.7–13Another
metallic pyrochlore compound Y(Sc)Mn2 also exhibits the
heavy fermion behavior where an unusual feature has b
observed in the dynamical susceptibility.14,15 In both com-
pounds, no long-range order has been observed and
specific-heat coefficient is strongly enhanced at low temp
tures, similar to the lanthanide or actinide heavy-ferm
systems.

The heavy-fermion behavior in the lanthanide or actin
systems is, as well known, attributed to the Kondo effect a
the presence of localizedf orbital is essential to this
mechanism.16 However, in these transition-metal heav
fermion systems, 3d electrons are much more mobile thanf
electrons and the presence of local magnetic moment ha
been detected so far. It is highly nontrivial whether the en
mous mass enhancement is also attributed to the Kondo
fect, and there may exist another mechanism leading to
heavy fermionlike behavior. This indeed gives rise to a nu
ber of theoretical proposals on the mechanism of the for
tion of heavy quasiparticles. Among them, it has be
claimed that geometrical frustration plays an important r
0163-1829/2003/68~19!/195103~10!/$20.00 68 1951
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even in the metallic phase when the electron interactions
sufficiently large.17–28

The two-dimensional~2D! Kagomélattice is another geo-
metrically frustrated system, which may be regarded as a
analog of the pyrochlore lattice. Antiferromagnetic spin sy
tems on this lattice have been intensively studied and m
unusual properties have been found. For example, in thS
51/2 Heisenberg antiferromagnet, there exists a finite ene
gap between the singlet ground state and triplet excitatio
and a thermodynamic number of singlet excitations ex
within the singlet-triplet gap due to strong frustration.29–33

This level scheme of excitations is in common with that f
the spin systems on the 3D pyrochlore lattice, and it may
quite generic in geometrically frustrated systems. If electro
become itinerant, electron motion will be coupled to bo
spin-triplet and spin-singlet excitations. Therefore, quasip
ticles in this case may be renormalized in a different man
than other more conventional cases without frustration.
study this issue, we will investigate the correlation effects
the 2D Kagome´ lattice. The Kagome´ lattice is simpler than
the pyrochlore lattice due to the low dimensionality, but o
erwise its magnetic properties in the insulating phase ar
common with those in the pyrochlore lattice. Therefore,
study on a metallic Kagome´ system is a good starting poin
to investigate how geometrical frustration affects physi
properties in a metallic phase, and we expect that many
the results will hold in other frustrated systems including t
pyrochlore system.

In this paper, we will investigate the effects of geomet
cal frustration of the Kagome´ lattice on physical properties
In particular, we focus on the possibility of magnetic inst
bility and its relationship to the nature of quasiparticles in
metallic phase. We employ the fluctuation exchange~FLEX!
approximation36–41for electron correlations and calculate th
spin and charge susceptibilities, and the one-particle spe
function. We will show that geometrical frustration of th
Kagomélattice indeed suppresses the instability to vario
ordered states and stabilizes the formation of quasipartic
©2003 The American Physical Society03-1
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This paper is organized as follows. In the following se
tion, the model and the method are described briefly, and
show the obtained results in Sec. III. A brief summary
given in Sec. IV.

II. MODEL AND METHOD

The original Kagome´ lattice is schematically shown in
Fig. 1~a!, which is given by a corner-sharing 2D network
triangles. This is topologically equivalent to the decora

FIG. 1. ~a! Original Kagome´ lattice and~b! decorated square
lattice which is topologically equivalent to~a!. Lattice points la-
beled bym51, 2, and 3 represent relative positions in each u
cell. t and t8 are hopping integrals.~c! and ~d! BZ of the original
Kagoméand decorated square lattices, respectively.A–D represent
the corresponding wave vectors in both lattices. Hexagon show
dash-dotted line in~c! is the first BZ of the Kagome´ lattice, which
is equivalent to the diamond shown by dotted line. Square show
dotted line in~d! represents the first BZ corresponding to the d
mond in ~c!.
ed
e
a
nd
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square lattice with specific diagonal bonds, as shown in F
1~b!, where the unit cell contains three sites. In the followi
discussions we will deal with the latter lattice, which mak
the analysis simpler, since its Brillouin zone~BZ! changes
from hexagon@Fig. 1~c!# to square,2p/a,kx ,ky,p/a
@Fig. 1~d!#, wherea is the lattice constant. In order to contro
geometrical frustration on the Kagome´ lattice, we here intro-
duce anisotropic hopping,t andt8, between nearest-neighbo
sites as shown in Fig. 1~b!. When t8/t51.0, the system is
equivalent to the original Kagome´ lattice. The advantage o
introducing this anisotropy is that it properly interpolates t
nonfrustrated lattice~small t8/t) to the fully frustrated lattice
(t8/t51) in the strong-coupling limitU/t→` at half filling,
where the system is reduced to the antiferromagnetic Hei
berg model. We expect that the effects due to the frustra
lattice geometry should show up even at weak or interme
ate values ofU/t. Hereafter, we call the decorated squa
lattice with t8/t51.0 (t8/tÞ1.0) isotropic Kagome´ ~aniso-
tropic Kagome´! lattice and the lattice constanta is taken to
be unity,a51.

Then we consider the Hubbard model on the isotrop
anisotropic Kagome´ lattice of Fig. 1~b!. The Hamiltonian is
given by

H5 (
k,m,m8,s

ek
mm8ckms

† ckm8s2m (
k,m,s

ckms
† ckms

1U(
i ,m

cim↑
† cim↑cim↓

† cim↓ , ~1!

whereckms (ckms
† ) represents the annihilation~creation! op-

erator of an electron at wave vectork with site indexm and
spins. Note that the lattice points are labeled by the posit
of each unit cell i together with the relative positionm
(51,2,3) in the cell, there exist three bands. Herem is the
chemical potential andU is the on-site Coulomb repulsion

The kinetic energyek
mm8 is given in the matrix form,

it

by

y
-

êk5S 0 22tcosS kx

2 D 22tcosS ky

2 D
22tcosS kx

2 D 0 22t8cosS kx2ky

2 D
22tcosS ky

2 D 22t8cosS kx2ky

2 D 0

D . ~2!
nt
ion
on

the

ent
In the following discussions, one hopping integral is fix
and taken as units of energy,t51. In the present study, w
focus on the half-filling case, in which geometrical frustr
tion in the strong-coupling regime is most prominent a
discuss how the system changes its characteristic prope
from the weak coupling to the strong-coupling regime.

In order to study electron correlations in the model,
-

ies

employ the FLEX approximation, which is a self-consiste
perturbation method with respect to the Coulomb interact
U. The FLEX approximation is a conserving approximati
based on the idea of Baym and Kadanoff,34,35 and has been
successfully used to describe electron correlations in
high-Tc cuprates and other correlated electron systems.36–41

In our three-band system, it is convenient to repres
3-2
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LOW-ENERGY EXCITATIONS OF THE HUBBARD MODEL . . . PHYSICAL REVIEW B 68, 195103 ~2003!
Green’s functionĜ and the effective interactionV̂ in the 3
33 matrix form corresponding to three sites in the unit ce
As far as there is no spin order, the Green’s function a
other quantities are diagonal in spin space, and we drop
spin index. The self-energy within the FLEX approximatio
is written as

Ŝ~k!5
T

N8
(

q

tV̂~2q!Ĝ~k1q!, ~3!

where T is the temperature,k[(k,ivn), and q[(q,in l),
with vn5(2n21)pT and n l52lpT, and N85N/3 is the
number of total unit cells, withN being the number of tota
sites. The effective interaction is given by

V̂~q!5UÎ 1U2x̂~q!1
3

2
U2x̂~q!$@ Î 2Ux̂~q!#212 Î %

1
1

2
U2x̂~q!$@ Î 1Ux̂~q!#212 Î %, ~4!

x̂~q!5
2T

N8
(

k
Ĝ~k1q!Ĝ~k!, ~5!

whereÎ is the unit matrix. The Dyson equation for the reno
malized Green’s function reads

Ĝ~k!215ĝ~k!212Ŝ~k!, ~6!

whereĝ(k) is the bare Green’s function defined as

ĝ~k!5@~ ivn1m! Î 2 êk#21. ~7!

By numerically iterating the procedures of Eqs.~3!–~6!, we
obtain the renormalized Green’s function.

In order to investigate the spin and charge response o
system, we introduce the generalized susceptibilityx̂8(q),
whose element is defined by

xm1m2 ,m3m4
8 ~q!5E

0

b

dtein lt ^rm1m2
~q,t!rm3m4

† ~q,0!&,

~8!

where rmm8(q,t)[(1/AN8)( ie
iq•Ricim

† (t)cim8(t) is the
generalized polarization at imaginary timet. Ri represents
the position of the unit celli. It should be noted that gene
alized susceptibilityx̂8 is in the 939 matrix form and is
diagonal for the spin sector. Within the FLEX approxim
tion, the generalized susceptibility is obtained as

xm1m2 ,m3m4
8 ~q!

5
2T

N8
(

k
Gm2m4

~k1q!Gm3m1
~k!

3e2 ik•(rm1
2rm3

)ei (k1q)•(rm2
2rm4

), ~9!

whererm (m51 –3) is a relative lattice position in each un
cell @Fig. 1~b!#. The spin and charge susceptibilities,x̂ (s) and
19510
.
d
he

he

x̂ (c), are the response of spin-triplet and spin-singlet po
izations, respectively, and their matrix element is given b

xm1m2 ,m3m4

(s,c) ~q!5$x̂8~q!@ Î 7Ûx̂8~q!#21%um1m2 ,m3m4
,

~10!

where the7 sign should read2 for the spin and1 for the
charge susceptibilities, respectively. The element ofÛ is

Um1m2 ,m3m4
5Udm1 ,m2

dm3 ,m4
dm1 ,m3

. ~11!

III. RESULTS

We numerically iterate the above-mentioned procedure
Eqs.~3!–~6! until the calculatedĜ(k)’s converge within de-
sired accuracy. The summations are efficiently carried ou
using the fast Fourier transform withN85642 points in thek
summation and 2048 Matsubara frequencies in thevn sum-
mation.

A. Free-electron properties

We start with the noninteracting caseU/t50. By using an
orthogonal transformation, the kinetic term of the Ham
tonian is diagonalized at eachk. The result for the isotropic
caset8/t51.0 is given by

Ek1,252tF16A118cosS kx

2 D cosS ky

2 D cosS kx2ky

2 D G ,
Ek352t, ~12!

where1 and 2 signs correspond to the lowest band,Ek1 ,
and the middle band,Ek2 , respectively. While the larges
eigenvalue forms a flat band over the whole BZ, the low
two dispersive bands are symmetric with respect tov5
21.0, and touch each other atk56(2p/3,22p/3) with
linear dispersions. Let us define the density of states~DOS!
including the chemical potential, asD(v)5(1/N)(k,a1/(v
1m2Eka), and they are shown in Fig. 2~a! for severalt8.
For the isotropic caset8/t51.0, ad-function peak appears a
v;1.5 (v1m52) due to the flat bandEk3 . In the aniso-
tropic case, the dispersion of the three bands is modified,
the main change is that the highest band is now dispers
leading to the broadening of thed-function part of the DOS.
However, the qualitative change in the DOS around
Fermi level,v50, is quite small. Shown in Fig. 2~b! is the
Fermi surface for the corresponding cases. Whent8/t51.0,
the shape of the Fermi surface is most isotropic. Since
lattice structure is transformed, it seems Ast8 decreases, the
Fermi surface is elongated along theky5kx direction, and
becomes more anisotropic. Although the Fermi surfa
seems anisotropic even for the isotropic Kagome´ lattice in
Fig. 2~b!, this is an apparent feature due to the modifi
coordinate system@Fig. 1~b!#, which was introduced for our
convenience. For reference, we show in Fig. 2~c! the Fermi
surface for the original Kagome´ lattice, from which we can
indeed see that the Fermi surface is almost isotropic
t8/t51.0 ~solid line!.
3-3
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Once the free-electron Hamiltonian is diagonalized, it
easy to calculate the susceptibility using Eq.~9!. Since the
unit cell contains three atoms, there are nine independ
modes of polarization concerning the site degrees of freed
in the unit cell, and each of them has both spin-singlet a
spin-triplet branches. Correspondingly, the susceptibility i
939 matrix at eachq, and its largest eigenvalue is the dom
nant response. As we are considering the noninteracting
(U/t50) at the moment, the response of spin-singlet po
ization is always degenerate with that of spin-triplet pol
ization. Of course, they start to differ, upon switching on t
electron correlations, which will be discussed in a later p
In Fig. 3, we show the largest eigenvalue of the static s
~or charge! susceptibilityx̂8(q,0) in the Brillouin zone, for
the isotropic caset8/t51.0. For the original Kagome´ lattice,
the susceptibility should have the exact sixfold rotatio
symmetry in the BZ. However, since in our treatment t
original Kagome´ lattice is transformed into the topologicall
equivalent decorated square lattice~isotropic Kagome´ lat-

FIG. 2. ~a! DOS, and~b! and~c! Fermi surfaces of theisotropic/
anisotropic Kagome´ lattice and the original Kagome´ lattice of the
noninteracting system (U/t50) at half filling for various hopping
amplitude;t8/t51.0 ~solid line!, 0.8 ~dashed line!, and 0.6~dotted
line!.

FIG. 3. ~Color! ~a! Largest eigenvalues of the static susceptib

ity x̂8(q,0) at half filling for U/t50. ~b! Contour plot of~a!. The
circles indicate the location of the peak values. The temperatu
T/t50.1.
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tice!, the susceptibility has a distorted symmetry. Then
largest values of the susceptibility are located atq'
6(0.4p,20.4p), 6(0.4p,0.8p), and 6(0.8p,0.4p), and
this is due to nesting behavior. Although there is no stro
nesting because of the rather isotropic Fermi surface, w
the Fermi surface touches itself in a BZ at several points
a given nesting vector, this enhances the susceptibility. S
conditions are illustrated in Fig. 4~a!, where the arrows de
note the corresponding nesting vectors. It is seen that th
vectors indeed give rise to large values of the susceptibi
The results for the anisotropic cases are also shown in
left panels of Fig. 6, and they can also be explained by
Fermi-surface nesting.

In the following, we will study the effects of geometrica
frustration of the isotropic/anisotropic Kagome´ lattice in-
cluding the Coulomb interactionU. Of course, the strength
of electron correlation is characterized by the ratio of t
Coulomb interaction to the kinetic energy, but the latter
insensitive to the hopping anisotropyt8/t and therefore the
strength is essentially given by the ratioU/t. This is because
the change in the total bandwidth and the DOS at the Fe
energy is small. We show the change in the bandwidth a
function of t8 in Fig. 5. Although the bandwidth decreas
slightly with decreasing hoppingt8, its change is very small
Even att8/t50, the total bandwidth is 4A2t'5.66t, which
is about 94% of that of the isotropic case (t8/t51.0). This
enables us to systematically discuss electron correlations
to U by using the anisotropic model.

B. Magnetic properties

We now turn to study electron correlations in th
isotropic/anisotropic Kagome´ lattice, and let us start with
magnetic properties. Shown in Fig. 6 is the Coulomb int
action dependence of the maximum eigenvalues of the s
spin susceptibilityx̂ (s)(q,0) for three typical values oft8. We
first discuss the isotropic case (t8/t51.0). ForU/t50, the
largest values of the susceptibility are located at the
points in the BZ,q'6(0.4p,20.4p), 6(0.4p,0.8p), and
is

FIG. 4. ~Color! ~a! Nesting of the Fermi surface. Each sol
ellipse depicts the Fermi surface in the extended BZ scheme. N
ing vectors are defined by the shift of the Fermi surface such
the shifted ones~shown by dotted ellipse! touch the original at
severalq points. Two examples of the nesting vectors are shown
arrows in the figure.~b! Contour plot of the largest eigenvalues

x̂8(q,0). The curve is a guide to eyes.
3-4
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6(0.8p,0.4p). With increasingU, the susceptibility is en-
hanced in the whole BZ. However, itsq dependence is re
duced in contrast to the unfrustrated cases. In particular,
found that the susceptibility for variousq’s besides the
above-mentioned six points are also strongly enhanced
increasingU, so that theq dependence of the spin suscep
bility is weakened and spin fluctuations become more iso
pic in the BZ. We also show the susceptibility for anisotrop
casest8/t50.8 and 0.6 in Fig. 6. Although the~distorted!
sixfold symmetry is lost due to hopping anisotropy, the s

FIG. 5. Thet8 dependence of the total bandwidth at nonint
acting system. The inset shows the magnification.
19510
is

th

-

n

susceptibility atU/t50 still has large values at specificq
positions, which are also able to be expected by the nes
picture similar tot8/t51.0 case. When we switch onU, the
peaks in theq dependence atU/t50 gradually grow and this
enhancement is more remarkable for smallert8. For ex-
ample, fort8/t50.6, the peak positions in the intermediateU
region areq;6(0.5p,20.5p), which implies that the sys-
tem prefers the spin configuration with the period of twi
the original unit cell.

We note here that just att8/t50, a flat band is located a
the Fermi level at half filling. It is known that this gives ris
to the so-called flat-band ferromagnetic ground state.42 The
nature of the ferromagnetism in this case has been well s
ied, so that we do not give detailed discussions for the ca
t8/t!1.0.

In order to discuss the instability to spin ordered states
is instructive to compare the FLEX results with those calc
lated by the random-phase approximation~RPA!. Shown in
Fig. 7~a! is the inverse of the largest value of the spin su
ceptibility x̂ (s)(q,0) within the whole BZ. Note that the cor
respondingq, which gives the largestx̂ (s)(q,0), changes
continuously depending on the Coulomb interaction, te
perature, etc. When this value becomes zero, the corresp
ing spin order, i.e., spin-density wave~SDW!, appears. Both
results of the FLEX approximation and the RPA show th
the dominant spin susceptibility is suppressed with incre
ing t8, indicating the suppression of spin order. Note that
RPA spin susceptibility diverges at a finiteU/t for all t8, and

-

s-

.

FIG. 6. ~Color! The maximum
eigenvalues of the static spin su

ceptibility x̂ (s)(q,0) for three typi-
cal U values. Upper, middle, and
lower panels correspond tot8/t
51.0, 0.8, and 0.6, respectively
The temperatureT/t is 0.1.
3-5



ca
th
uc
m

bl
s
i

ar

se

as

pera-
er-
with
le
is

pti-
ion
e

of
sed
uite

ling
the

let
is
epti-
r

o

re.

the

p-
ry
er-

re
ent
al

u-
i-
l

m-

lcu-
ree

ree
the

e

in
-

t
tu
f
ox
e

Y. IMAI, N. KAWAKAMI, AND H. TSUNETSUGU PHYSICAL REVIEW B 68, 195103 ~2003!
the divergence is even enhanced, as seen in the con
shape of the lines, due to the multiband structure. On
other hand, the enhancement in the FLEX results is m
weaker at largeU/t and the spin susceptibility does not see
to diverge. The behavior of the FLEX results is more relia
in the intermediateU/t region, since mode-mode coupling
are completely neglected in the RPA and the instability
overestimated. In particular, the suppression is most rem
able around the isotropic pointt8;t, and we may conclude
that no spin order is realized for the isotropic Kagome´ lattice
within the FLEX approximation. For reference, the inver

FIG. 7. ~a! The inverse of the largest eigenvalue of the sp
susceptibility for allq in the whole BZ as a function of the Cou
lomb interactionU for varioust8. Solid ~dashed! lines represent the
results of the FLEX approximation~RPA!. ~b! The inverse of larges
eigenvalues of the spin susceptibility as a function of tempera
T/t for several values oft8. U/t is 2.5. ~c! Largest eigenvalues o
the spin and charge susceptibilities calculated by the FLEX appr
mation as a function ofU/t. Solid ~dashed! lines denote the charg
~spin! sector, respectively. In both~a! and ~c!, all of the data are
normalized by the value atU/t50.0 and the temperatureT/t
50.1.
19510
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of the largest value of the spin susceptibility is also plotted
a function of temperature in Fig. 7~b!. As should be ex-
pected, these values are suppressed with decreasing tem
ture, but remain finite even at low temperatures. Furth
more, as the system approaches the isotropic model
t8/t;1.0, the susceptibility becomes smaller in the who
temperature region, indicating that the SDW instability
suppressed for the isotropic model.

Summarizing the magnetic properties, the spin susce
bility is enhanced in the presence of the Coulomb interact
in the whole BZ, but geometrical frustration of the Kagom´
lattice has a strong effect to reduce theq dependence of the
susceptibility and to suppress the instability to any type
the SDW order. Although the present calculations are ba
on a weak-coupling approach, the obtained results are q
consistent with properties expected in the strong-coup
regime, the frustrated Heisenberg spin system, where
magnetic order is suppressed due to strong frustration.

We have so far discussed the instability of spin-trip
polarization, but the instability in the spin-singlet channel
even weaker. The largest eigenvalues of the charge susc
bility x̂ (c)(q,0) in the BZ are always smaller than that fo
x̂ (s)(q,0) within the FLEX approximation and there is n
indication of charge order@charge-density wave~CDW!# or
current-carrying state@shown in Fig. 7~c!#. Thus we do not
give detailed discussions on the charge susceptibility he

C. One-particle spectral function

We now discuss the one-particle spectral function and
total spectral density, which are defined by

A~k,v!52
1

3p (
m

ImGmm~k,v1 id!, ~13!

r~v!5
1

N8
(

k
A~k,v!, ~14!

whered is a small adiabatic constant.
In order to obtain dynamical quantities in the FLEX a

proximation, the analytic continuation from the imagina
Matsubara frequency to the real frequency is usually p
formed by using the Pade´ approximation or the maximum
entropy method. However, it is known that this procedu
sometimes encounters numerical difficulties. In the pres
study, we directly calculate the spectral function in a re
frequency formulation without resorting to analytic contin
ation. ~Our formulation is similar to those used in the prev
ous works,37–39but simpler from the viewpoint of numerica
techniques.! We need a small but finite adiabatic constantd
for Green’s function, but its effects can be corrected syste
atically and we have checked that the Pade´ approximation43

reproduces similar results. We show here the results ca
lated by our real frequency technique, since they are f
from numerical errors due to analytic continuation.

Figure 8 shows the one-particle spectral function for th
distinct wave vectors close to the Fermi surface. Since
shape of Fermi surface changes witht8, we have chosen
proper wave vectorsk, which should be closer to the thre

re

i-
3-6
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typical Fermi points listed in the caption. All the spect
shown consist of three peaks reflecting the three-band s
ture; namely, theath peak is mainly due to the contributio
of the band withEka . As U increases, two peaks at largeuvu
are gradually smeared due to lifetime effects. On the ot
hand, the peak nearv50 keeps a sharp structure, implying
well-defined Fermi-liquid behavior. Note that these peaks
not exactly located atv50 due to the discretization ofk
points in the numerical calculations. However, this does
give any essential changes in the following discussions. T
behavior is particularly prominent in the isotropic caset8/t
51.0 irrespective ofk’s ~a–c!. However, in the anisotropic
cases oft8/t50.8 and 0.6, the central peak changes its sh
from ~a! k'(0.75p,0.75p) to ~c! k'(0.42p,20.42p),
where the amplitude of the spectra atv;0 is reduced with
the decrease oft8/t. This behavior suggests that quasipar
cles are stabilized in the region of isotropic hoppingt8;t.
As discussed in the preceding section, increasingt8 repre-
sents the enhancement of effects of geometrical frustrat
and this leads to the trend that the wave-vector depende
are strongly reduced in the BZ. Since the spin fluctuatio
are localized in the real space and these amplitude
strongly reduced, various orders, such as the SDW, CD
and currant-carrying states, are suppressed and the me
state is stabilized. Therefore the quasiparticle picture
comes fine description. This result indicates that geometr
frustration on the Kagome´ lattice may be important for the
formation of quasiparticles.

For reference, we also present in Fig. 9 the results of
total spectral density defined by Eq.~14!. As U increases, the
total spectral density is smeared in the whole energy reg

FIG. 8. One-particle spectra for variousk. ~a! k
'(0.75p,0.75p), ~b! k'(0.75p,0), and ~c! k'(0.42p,
20.42p), respectively.~d! Fermi surface for several values oft8.
Small circles represent the location ofk chosen for~a–c!. The
energy is measured from the Fermi level (v50). The Coulomb
repulsionU/t52.5, the temperatureT/t50.1, and adiabatic con
stant d50.05. The insets show the magnification of the lo
frequency regime.
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due to the lifetime effect. However, in the weak-couplin
regime treated here, the total spectral density near the F
level is rather insensitive to the change in anisotropic h
ping t8 in comparison with other physical quantities, such
the one-particle spectra, etc. Although the one-particle sp
tral weight with k for the ky52kx direction close to the
Fermi surface is strongly reduced atv;0 with decreasing
t8/t, the amplitude of total spectral density atv;0 becomes
largest att8/t50.6 even whenU is introduced. In the inter-
mediateU region, the one-particle spectrum atk far from the
Fermi surface mainly consists of the incoherent parts. Si
the local spectral density is obtained by thek summation in
Eq. ~14!, the contributions of these incoherent parts far fro
Fermi surface become quite large even atr(0) with increas-
ing U. Therefore, it is difficult to discuss about the coheren
of quasiparticles only based on the total spectral den
r(0), and weneed more detailed information fromA(k,v).

Summarizing this section, as compared with the to
spectral density, the one-particle spectrum gives us more
tailed information on the nature of quasiparticles. The wei
of the coherent part in the one-particle spectrum grows w
increasingt8, which means that the quasiparticle behavior
stabilized by geometrical frustration.

D. Renormalization effects

To investigate the properties of quasiparticles in more
tail, we calculate the renormalization factor and the Fer

FIG. 9. Total spectral density for variousU. ~a! t8/t51.0, ~b!
t8/t50.8, and~c! t8/t50.6.
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velocity of quasiparticles. According to the convention
Fermi-liquid theory, the one-particle spectrum consists of
d-function-like coherent part and the broad incoherent p
As the Coulomb interaction increases, the quasiparticle m
is enhanced and the weight of the coherent part beco
small. For the single-band case, the renormalization facto
given by the self-energy as

Zk5F12
]ReS~k,v!

]v U
v50

G21

, ~15!

which corresponds to the weight of the coherent part. Ho
ever, in the present case, the one-particle spectrum at a g
k has contribution of three bands. When the coherent qu
particle part is separated from the other parts, it is given

Acoh~k,v!5
1

p

Zkg

~v2jk!21g2
1b, ~16!

wherejk is the shift from the Fermi level,b is the correction
due to the other peaks which are located far from the Fe
level, andg represents the inverse of lifetime of the qua
particle. These parameters can be determined by nume
fitting of the data of the spectral function. However, inste
of performing this procedure, we here use an alternative
proach to simply determine the renormalization factor. Sin
the middle band near the Fermi level is isolated sufficien
far from the other bands, we can introduce the followi
effective self-energy in the low-energy region:

S̃eff~k,v![g̃~k,v!212G̃~k,v!21, ~17!

where

g̃~k,v!5
1

3 (
m

gmm~k,v!, ~18!

G̃~k,v!5
1

3 (
m

Gmm~k,v!. ~19!

The approximate formula for the renormalization factor th
reads

Zk5F12
]ReS̃eff~k,v!

]v
U

v50
G21

. ~20!

Although Eq.~20! is not exact, this formula works well as fa
as the low-energy regime is concerned. We have checked
severalk that the results obtained by using Eq.~20! are in
good agreement with the renormalization factor determi
by the fitting Eq.~16!.

Figure 10 shows thek dependence of the renormalizatio
factor as a function ofU for varioust8. We show the results
only in thek region, 0<ukyu<kx<p, because the values i
other regions are readily obtained according to the symm
property. In all the cases oft8/t, the renormalization facto
Zk decreases with the increase ofU, meaning that the effec
tive mass is enhanced. An important point is thatZk becomes
nearly independent ofk in the isotropic case (t8/t51.0),
being consistent with the results of one-particle spec
19510
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functions. On the other hand, with decreasingt8, the differ-
ence inZk for different k’s becomes more remarkable. I
particular, theZk for k’s along the direction ofky52kx is
strongly renormalized. It should be noted that the largestZk
in the anisotropic case@open squares in Fig. 10~b! and 10~c!#
has almost the same amplitude as that fort8/t51.0. In other
words, with decreasingt8, the quasiparticle weight is re
duced in comparison with that oft8/t51.0. Therefore this is
another evidence that geometrical frustration stabilizes
Fermi-liquid behavior up to largerU regime when t8/t
51.0 ~the isotropic Kagome´ lattice!.

Shown in Fig. 11 is the absolute value of the Fermi v
locity, which is given by

uvk
Fu5AS ]Ẽk

]kx
D 2

1S ]Ẽk

]ky
D 2

, ~21!

which is obtained from the renormalized quasiparticle ene
of the middle band,

FIG. 10. Renormalization factor as a function ofU at tempera-
tureT/t50.1; ~a! t8/t51.0, ~b! t8/t50.8, and~c! t8/t50.6, respec-
tively. The insets show the Fermi surface~solid line! in the half BZ
(0<kx<p) where symbols~open circles, etc.! denote variousk for
which Zk is calculated.

FIG. 11. Angular dependence of the Fermi velocity for vario
U; ~a! t8/t51.0, ~b! t8/t50.8, and~c! t8/t50.6 @Eq. ~21!#. ~d!
Fermi velocity atU/t50 andt8/t51.0 in thek space.~e! Angle f
of the k point on the Fermi surface.
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Ẽk5Zk@Ek
(2)2m1ReS̃eff~k,0!#. ~22!

In the case oft8/t51.0, the Fermi velocity has the dis
torted sixfold rotational symmetry in the BZ reflecting th
lattice structure@Fig. 11~d!# and the ratio of the largest an
smallest velocity is about 1.17 forU/t50. With increasing
U, the ratio is gradually reduced to the smaller value of ab
1.10 forU/t52.0, indicating again the suppression of thek
dependence. On the other hand, for the anisotropic c
t8/t,1.0, the ratio is not reduced but enhanced. For
stance, fort8/t50.6, the ratio changes from about 1.79 f
U/t50.0–2.45 forU/t52.0. These results are in accordan
with those of the renormalization factor in the sense that
wave-vector dependence grows with increasing hopping
isotropy.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied how geometrical frustrat
of the isotropic/anisotropic Kagome´ lattice affects physica
properties in a metallic phase. By using the FLEX appro
mation for the Hubbard model at half filling, we have calc
lated the spin and charge susceptibility, the one-particle s
trum, the total spectral density, the quasiparti
renormalization factor, and the Fermi velocity. In the isot
pic Kagomélattice, we have shown that the spin susceptib
ity is enhanced by the Coulomb interaction as far as
amplitude of susceptibility is concerned. However, in co
trast to ordinary cases of magnetic instability, its wave-vec
dependence is strongly suppressed at the same time,
there appear many peaks in the BZ accumulating to form
line. This reduction of the wave-vector dependence aro
the Fermi surface is also observed for other quantities, s
as the quasiparticle weight of the one-particle spectrum.
have demonstrated that this behavior is indeed due to
frustrated lattice geometry by controlling frustration by a
isotropic hopping; thek dependence is considerably reco
ered with the decrease oft8, i.e., when frustration is reduced
By comparing the spin susceptibility calculated by the FLE
approximation with that of RPA, we have shown that t
instability to magnetically ordered phases is dramatica
suppressed by mode-mode couplings of fluctuations, wh
are neglected in the RPA level. This suppression is m
prominent in the isotropic case, i.e., most frustrated ca
Furthermore, considering the one-particle spectrum, we h
shown that the coherent part has a large weight in the iso

*Present address: PRESTO, Japan Science and Technology C
ration ~JST!, c/o Institute for Solid State Physics, University o
Tokyo, Kashiwanoha 5-1-5, Chiba, Japan. Email addre
imai@issp.u-tokyo.ac.jp
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pic Kagomélattice up to largerU regime, which is also
consistent with the behaviors of the renormalization fac
and Fermi velocity. These results indicate that geometr
frustration stabilizes the formation of quasiparticles.

The main conclusion of the present study is that the str
geometrical frustration reduces the wave-vector depende
of spin fluctuations and suppresses the instabilities to var
orders, such as the SDW, CDW, and current-carrying sta
so that the Fermi-liquid behavior is stabilized and the qua
particles become well defined in the isotropic Kagome´ lat-
tice. This conclusion is derived from the FLEX approxim
tion, which is an essentially weak-coupling approach, bu
is consistent with the results known for the strong-coupl
model, i.e., the absence of any magnetic order due to str
frustration in the antiferromagnetic spin system on t
Kagomélattice. Therefore, it is reasonable that characteris
properties discussed in the present work for the we
coupling Hubbard model on the Kagome´ lattice are naturally
connected to those inherent in the frustrated Heisenberg
system.

Within the FLEX approximation in this paper, we hav
not observed other ordered states, either such as the
gered flux ~current-carrying! state44–46 and the charge or-
dered state47 etc., which are other possible orders in t
strong-coupling regime. In the present case of half fillin
although charge ordered states are unlikely, a staggered
state may appear due to strong geometrical frustration.
thermore, upon finite hole doping, geometrical frustrati
may realize a charge ordered state. It is an interesting o
problem to be addressed in the future.

Experimentally, most compounds studied so far have b
restricted to spin systems on the Kagome´ lattice, such as
SrCr8Ga4O19.

48,49 It is thus interesting to study electron co
relations in metallic Kagome´ lattice materials.
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