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Low-energy excitations of the Hubbard model on the Kagomdattice
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The Hubbard model on the Kagortatice is investigated in a metallic phase at half filling. By introducing
anisotropic electron hopping on the lattice, we control geometrical frustration and clarify how the lattice
geometry affects physical properties. By means of the fluctuation exchange approximation, we calculate the
spin and charge susceptibilities, the one-particle spectral function, the quasiparticle renormalization factor, and
the Fermi velocity. It is found that geometrical frustration of the Kagdatéice suppresses the instability to
various ordered states through the strong reduction of the wave-vector dependence of susceptibilities, thereby
stabilizing the formation of quasiparticles due to the almost isotropic spin fluctuations in the Brillouin zone.
These characteristic properties are discussed in connection with the effects of geometrical frustration in the
strong-coupling regime.
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[. INTRODUCTION even in the metallic phase when the electron interactions are
sufficiently larget’=28
Geometrically frustrated metallic systems have attracted The two-dimensional2D) Kagomelattice is another geo-

much interest since the discovery of the heavy fermion bemetrically frustrated system, which may be regarded as a 2D
havior in the transition-metal oxide LiD,.'? This com- analog of the pyrochlore lattice. Antiferromagnetic spin sys-
pound has the spinel structure and the band calculatiortems on this lattice have been intensively studied and many
show that the conduction bands are essentially composed ohusual properties have been found. For example, inSthe
vanadium 3 orbitals, which are well separated from the =1/2 Heisenberg antiferromagnet, there exists a finite energy
oxygen 2 bands. Therefore when low-energy properties aregap between the singlet ground state and triplet excitations,
concerned, it is sufficient to consider only the vanadiush 3 and a thermodynamic number of singlet excitations exist
orbitals®~® The vanadium sublattice in the spinel structureWithin the singlet-triplet gap due to strong frustratfgin®®

constitutes a network of corner-sharing tetrahedra, i.e., th&his level scheme of excitations is in common with that for

pyrochlore lattice, and this is a typical example of geometri-t€ SPin systems on the 3D pyrochlore lattice, and it may be

cally frustrated three dimensiondBD) lattices. Various quite gen'e.ric in geometrically frgstrate;d systems. If electrons
works have revealed unusual low-energy properties of Spipe_com_e |t|nerant,_ele_ctron motion will be coupled to bOth
systems on the pyrochlore lattice, including the presence O§p|n-tr_|plet_ and spin-singlet excitations. _There_fore, quasipar-
thermodvnamic degeneracy of thé round stat&3Another ticles in this case may be renormalized in a different manner
) o an other more conventional cases without frustration. To
metallic );)yrochloreg compo)l/md Y(Sgc)l\élralso exh.|b|ts the th th t ! thout frustrat T

. ) study this issue, we will investigate the correlation effects in
heavy fermion behavior where an unusual feature has beetﬂe 2D Kagomdattice. The Kagormdattice is simpler than

observed in the dynamical susceptibifify:® In both com- ¢ pyrochlore lattice due to the low dimensionality, but oth-
pounds, no long-range order has been observed and thgise its magnetic properties in the insulating phase are in
specific-heat coefficient is strongly enhanced at low temperasommon with those in the pyrochlore lattice. Therefore, the
tures, similar to the lanthanide or actinide heavy-fermionstudy on a metallic Kagomsystem is a good starting point
systems. to investigate how geometrical frustration affects physical
The heavy-fermion behavior in the lanthanide or aCtinideproperties in a metallic phase, and we expect that many of
systems is, as well known, attributed to the Kondo effect andhe results will hold in other frustrated systems including the
the presence of localized orbital is essential to this pyrochlore system.
mechanisnt® However, in these transition-metal heavy- In this paper, we will investigate the effects of geometri-
fermion systems, @ electrons are much more mobile thin cal frustration of the Kagom#attice on physical properties.
electrons and the presence of local magnetic moment has nbit particular, we focus on the possibility of magnetic insta-
been detected so far. It is highly nontrivial whether the enorbility and its relationship to the nature of quasiparticles in a
mous mass enhancement is also attributed to the Kondo efretallic phase. We employ the fluctuation exchatfgeEX)
fect, and there may exist another mechanism leading to thapproximatiof®=*!for electron correlations and calculate the
heavy fermionlike behavior. This indeed gives rise to a numspin and charge susceptibilities, and the one-particle spectral
ber of theoretical proposals on the mechanism of the formafunction. We will show that geometrical frustration of the
tion of heavy quasiparticles. Among them, it has beerKagomelattice indeed suppresses the instability to various
claimed that geometrical frustration plays an important roleordered states and stabilizes the formation of quasiparticles.
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square lattice with specific diagonal bonds, as shown in Fig.
1(b), where the unit cell contains three sites. In the following
discussions we will deal with the latter lattice, which makes
the analysis simpler, since its Brillouin zoBZ) changes
from hexagon[Fig. 1(c)] to square,— m/a<k,,k,<w/a
[Fig. 1(d)], wherea is the lattice constant. In order to control
geometrical frustration on the Kagortadtice, we here intro-
duce anisotropic hoppingandt’, between nearest-neighbor
sites as shown in Fig.(h). Whent'/t=1.0, the system is
equivalent to the original Kagomlattice. The advantage of
introducing this anisotropy is that it properly interpolates the
nonfrustrated latticésmallt’/t) to the fully frustrated lattice
(t'/t=1) in the strong-coupling limitU/t—cc at half filling,
where the system is reduced to the antiferromagnetic Heisen-
berg model. We expect that the effects due to the frustrated
lattice geometry should show up even at weak or intermedi-
ate values ofU/t. Hereafter, we call the decorated square
lattice with t’/t=1.0 (t'/t+1.0) isotropic Kagome(aniso-
tropic Kagome lattice and the lattice constaatis taken to
be unity,a=1.

Then we consider the Hubbard model on the isotropic/
anisotropic Kagomdattice of Fig. 1b). The Hamiltonian is
9iven by

74

FIG. 1. (a) Original Kagomelattice and(b) decorated square
lattice which is topologically equivalent t(). Lattice points la-
beled bym=1, 2, and 3 represent relative positions in each unit
cell. t andt’ are hopping integraldc) and (d) BZ of the original
Kagomeand decorated square lattices, respectivelyD represent
the corresponding wave vectors in both lattices. Hexagon shown b
dash-dotted line irfc) is the first BZ of the Kagoméattice, which
is equivalent to the diamond shown by dotted line. Square shown by

_ mm’ |t _ T
dotted line in(d) represents the first BZ corresponding to the dia- H _k 2, € CkmoCkm' o MK;U Ckmo Ckma
mond in(c). mmLe
; : ; : +UD ¢l cimich c (1)
This paper is organized as follows. In the following sec- < CimqCim{ Cim) Cim| »

tion, the model and the method are described briefly, and we
show the obtained results in Sec. Ill. A brief summary is

given in Sec. IV wherecim, (Clmn,) represents the annihilatiqoreation op-

erator of an electron at wave vectomwith site indexm and
spino. Note that the lattice points are labeled by the position
of each unit celli together with the relative positiom
The original Kagormdattice is schematically shown in (=1,2,3) in the cell, there exist three bands. Herés the
Fig. 1(a), which is given by a corner-sharing 2D network of chemical potential ant}ﬂ is the on-site Coulomb repulsion.
triangles. This is topologically equivalent to the decoratedThe kinetic energyy'™ is given in the matrix form,

Il. MODEL AND METHOD

- k ky—k
€= —2tco<§x) 0 —2t’co< X2 y) . 2

In the following discussions, one hopping integral is fixedemploy the FLEX approximation, which is a self-consistent
and taken as units of energy= 1. In the present study, we perturbation method with respect to the Coulomb interaction
focus on the half-filling case, in which geometrical frustra-U. The FLEX approximation is a conserving approximation
tion in the strong-coupling regime is most prominent andbased on the idea of Baym and Kadarff> and has been
discuss how the system changes its characteristic propertissiccessfully used to describe electron correlations in the
from the weak coupling to the strong-coupling regime. high-T, cuprates and other correlated electron syst&nfs.

In order to study electron correlations in the model, weln our three-band system, it is convenient to represent
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Green’s functionG and the effective interactioW in the 3 )A((C), are the response of spin-triplet and spin-singlet polar-
X 3 matrix form corresponding to three sites in the unit cell.izations, respectively, and their matrix element is given by
As far as there is no spin order, the Green’s function and

other quantities are diagonal in spin space, and we drop the Xﬁfi?\)qz,m3m4(Q)={3('(Q)[T1 Ox" ()] Himymy .mymy»
spin index. The self-energy within the FLEX approximation (10)
is written as

where the¥ sign should read- for the spin and+ for the

- T e A charge susceptibilities, respectively. The elemenitds
2= 2 V(=a)Glkta), 3
a Umlmz,m3m4: U 5m1,m25m3,m45m1,m3- (12)
where T is the temperaturek=(k,iw,), and q=(q,iv,),
with w,=(2n—1)7T and »,=2I7T, andN'=N/3 is the Il RESULTS
number of total unit cells, withN being the number of total '
sites. The effective interaction is given by We numerically iterate the above-mentioned procedure of
3 Egs.(3)—(6) until the calculated5(k)’s converge within de-
V() =UT+U2(aq)+ —U2s T—us -1_7 sired accuracy. The summations are efficiently carried out by
(@) x@+3 (@il x(@)] ) using the fast Fourier transform with’ = 642 points in thek
1 summation and 2048 Matsubara frequencies indhesum-
+ SUS(@{[T+ Ux(@)] =T}, (4)  mation.

A. Free-electron properties

- -T R N
x(Q)=— > G(k+q)G(k), (5) We start with the noninteracting casét=0. By using an

N" k orthogonal transformation, the kinetic term of the Hamil-
tonian is diagonalized at eaéh The result for the isotropic

wherel is the unit matrix. The Dyson equation for the renor- caset’/t=1.0 is given by

malized Green’s function reads

G(k)t=g(k)"1=3(k), (6) Ek1,2:—t[li \/1+8005<%)005(%>cos( kx;ky)J,

where@(k) is the bare Green'’s function defined as

Exs=2t, (12

Nk) =T (i T_21-1
gl =Ll wntw)l=ed @ where + and — signs correspond to the lowest bark}, ,
By numerically iterating the procedures of E¢3)—(6), we  and the middle bandk,, respectively. While the largest

obtain the renormalized Green'’s function. eigenvalue forms a flat band over the whole BZ, the lower
In order to investigate the spin and charge response of thisvo dispersive bands are symmetric with respectwte

system, we introduce the generalized susceptibjitygq), ~ —1.0. and touch each other &t=+(27/3,—27/3) with

whose element is defined by linear dispersions. Let us define the density of stgfE3S)

including the chemical potential, d3(w)=(1/N)Zy ,1/(w
, . " +u—E,,), and they are shown in Fig.(& for severalt’.
Xmymymgm,(Q) = fo d7e"™"(pm,m, (4, ) Py, (,0)), For the isotropic cas€/t=1.0, as-function peak appears at
(8) 0~1.5 (o+pu=2) due to the flat ban&,5. In the aniso-
tropic case, the dispersion of the three bands is modified, and
where pnw(9,7)=(1WN)Ze9Ric! (1)cim(7) is the  the main change is that the highest band is now dispersive,
generalized polarization at imaginary time R; represents leading to the broadening of thefunction part of the DOS.
the position of the unit cell. It should be noted that gener- However, the qualitative change in the DOS around the
alized susceptibilityy’ is in the 9x9 matrix form and is Fermi level,w=0, is quite small. Shown in Fig.(B) is the
diagonal for the spin sector. Within the FLEX approxima- Fermi surface for the corresponding cases. Wtién= 1.0,

tion, the generalized susceptibility is obtained as the shape of the Fermi surface is most isotropic. Since the
lattice structure is transformed, it seemstAglecreases, the
Xr,111m2,m3m4(q) Fermi surface is elongated along tkg=Kk, direction, and
becomes more anisotropic. Although the Fermi surface
seems anisotropic even for the isotropic Kagolaitice in
=— Ek G m,(K+ @) G m, (K) Fig. 2b), this is an apparent feature due to the modified
coordinate systerfiig. 1(b)], which was introduced for our
><efik-(rm;rm3)ei(k+q)-(rm;rm), (9)  convenience. For reference, we show in Fie) 2he Fermi

_ _ _ S _ surface for the original Kagomiattice, from which we can
wherer, (m=1-3) is a relative lattice position in €ach unit indeed see that the Fermi surface is almost isotropic for
cell [Fig. 1(b)]. The spin and charge susceptibilitigs? and  t'/t=1.0 (solid line).
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FIG. 4. (Color) (a) Nesting of the Fermi surface. Each solid
ellipse depicts the Fermi surface in the extended BZ scheme. Nest-
ing vectors are defined by the shift of the Fermi surface such that
the shifted onegshown by dotted ellipgetouch the original at

severalq points. Two examples of the nesting vectors are shown by
arrows in the figure(b) Contour plot of the largest eigenvalues of

FIG. 2. (a) DOS, andb) and(c) Fermi surfaces of thisotropic/ X (0,0). The curve is a guide to eyes.
anisotropic Kagomdattice and the original Kagomiattice of the
noninteracting systemU/t=0) at half filling for various hopping tice), the susceptibility has a distorted symmetry. Then the
amplitude;t’/t=1.0 (solid line), 0.8 (dashed ling and 0.6(dotted  largest values of the susceptibility are located gt
line). +(0.47,—0.47), *=(0.44,0.87), and = (0.87,0.4w), and

this is due to nesting behavior. Although there is no strong

Once the free-electron Hamiltonian is diagonalized, it isnesting because of the rather isotropic Fermi surface, when
easy to calculate the susceptibility using E®). Since the the Fermi surface touches itself in a BZ at several points for
unit cell contains three atoms, there are nine independert given nesting vector, this enhances the susceptibility. Such
modes of polarization concerning the site degrees of freedoreonditions are illustrated in Fig.(d), where the arrows de-
in the unit cell, and each of them has both spin-singlet andhote the corresponding nesting vectors. It is seen that these
spin-triplet branches. Correspondingly, the susceptibility is avectors indeed give rise to large values of the susceptibility.
9X 9 matrix at eacly, and its largest eigenvalue is the domi- The results for the anisotropic cases are also shown in the
nant response. As we are considering the noninteracting caseft panels of Fig. 6, and they can also be explained by the
(U/t=0) at the moment, the response of spin-singlet polarfermi-surface nesting.
ization is always degenerate with that of spin-triplet polar- In the following, we will study the effects of geometrical
ization. Of course, they start to differ, upon switching on thefrustration of the isotropic/anisotropic Kagoniattice in-
electron correlations, which will be discussed in a later partcluding the Coulomb interactiob. Of course, the strength
In Fig. 3, we show the largest eigenvalue of the static spirof electron correlation is characterized by the ratio of the

(or charge susceptibility y’(g,0) in the Brillouin zone, for ~Coulomb interaction to the kinetic energy, but the latter is
the isotropic cas€’'/t=1.0. For the original Kagomiattice, ~ insensitive to the hopping anisotropy/t and therefore the
the susceptibility should have the exact sixfold rotationalstrength is essentially given by the ratigt. This is because
Symmetry in the BZ. However, since in our treatment thethe Change in the total bandwidth and the DOS at the Fermi
original Kagoméattice is transformed into the topologically energy is small. We show the change in the bandwidth as a

equiva|ent decorated square |attiﬁeotropic Kagon"]e]at- function oft’ in Flg 5. Although the bandwidth decreases
slightly with decreasing hopping, its change is very small.

(b) . Even att'/t=0, the total bandwidth is ¢2t~5.6&, which

is about 94% of that of the isotropic casg/¢=1.0). This
enables us to systematically discuss electron correlations due
to U by using the anisotropic model.

B. Magnetic properties

We now turn to study electron correlations in the
R isotropic/anisotropic Kagoméattice, and let us start with
9y magnetic properties. Shown in Fig. 6 is the Coulomb inter-
action dependence of the maximum eigenvalues of the static
FIG. 3. (Colon (a) Largest eigenvalues of the static susceptibil- spin susceptibility(®(q,0) for three typical values df . We
ity x’(q,0) at half filling for U/t=0. (b) Contour plot of(a). The first discuss the isotropic case'{t=1.0). ForU/t=0, the

circles indicate the location of the peak values. The temperature irgest values of the susceptibility are located at the six
T/t=0.1. points in the BZ,q~ =+ (0.4ar,—0.447), *+(0.47,0.87), and

0
9x (m-m)
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] S P S a w susceptibility atU/t=0 still has large values at specific
5'_ ] positions, which are also able to be expected by the nesting
= i P | picture similar tot’/t=1.0 case. When we switch d#, the
,.*a’ 4+ - peaks in they dependence &i/t=0 gradually grow and this
=T 5.9+ 1 enhancement is more remarkable for smatler For ex-
B T s sl 17 ample, fort’/t=0.6, the peak positions in the intermediake
o] 2'_ ) region areq~ = (0.57,—0.57), which implies that the sys-
< I 5.7¢ T tem prefers the spin configuration with the period of twice
< gL sel . the original unit cell.
aa : 0 02 04 06 08 1 . We note here that just at/t=0, a flat band is located at
307 0% oz 1 the Fermi level at half filling. It is known that this gives rise
‘ ' ' ' to the so-called flat-band ferromagnetic ground statEhe
l”/t nature of the ferromagnetism in this case has been well stud-
ied, so that we do not give detailed discussions for the cases
t'/t<1.0.

FIG. 5. Thet’ dependence of the total bandwidth at noninter-

acting system. The inset shows the magnification. In order to discuss the instability to spin ordered states, it

is instructive to compare the FLEX results with those calcu-
lated by the random-phase approximati®PA). Shown in
+(0.8m,0.44r). With increasingU, the susceptibility is en- Fig. 7(a) is the inverse of the largest value of the spin sus-
hanced in the whole BZ. However, its dependence is re- ceptibility x¥(q,0) within the whole BZ. Note that the cor-
duced in contrast to the unfrustrated cases. In particular, it ifespondingg, which gives the largesi(®(q,0), changes
found that the susceptibility for varioug's besides the continuously depending on the Coulomb interaction, tem-
above-mentioned six points are also strongly enhanced witerature, etc. When this value becomes zero, the correspond-
increasingy, so that theg dependence of the spin suscepti- ing spin order, i.e., spin-density way8DW), appears. Both
bility is weakened and spin fluctuations become more isotroresults of the FLEX approximation and the RPA show that
pic in the BZ. We also show the susceptibility for anisotropicthe dominant spin susceptibility is suppressed with increas-
casest’'/t=0.8 and 0.6 in Fig. 6. Although th&istorted ing t’, indicating the suppression of spin order. Note that the
sixfold symmetry is lost due to hopping anisotropy, the spinRPA spin susceptibility diverges at a finit¥'t for all t’, and

Uit=0.0 Ur=15 Ut=25
(©)
0.58,
0.49(
0.40
FIG. 6. (Color) The maximum
(f) eigenvalues of the static spin sus-
ceptibility x(¥(q,0) for three typi-
0.71 cal U values. Upper, middle, and
059,"{" . lower panels correspond to'/t
e =1.0, 0.8, and 0.6, respectively.
0.47 The temperaturd/t is 0.1.
@)
0.94
t’/t =0.6 0.74] &
0.44
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susceptibility for allq in the whole BZ as a function of the Cou-
lomb interactionU for varioust’. Solid (dashed lines represent the
results of the FLEX approximatiofiRPA). (b) The inverse of largest

—_

(=)

oa»peo

a»peo

t't=1.0
0.8
0.6
04
0.2

t't=1.0
0.8
0.6
04
0.2

PHYSICAL REVIEW B 68, 195103 (2003

of the largest value of the spin susceptibility is also plotted as

a function of temperature in Fig.(B). As should be ex-
pected, these values are suppressed with decreasing tempera-
ture, but remain finite even at low temperatures. Further-
more, as the system approaches the isotropic model with
t'/t~1.0, the susceptibility becomes smaller in the whole
temperature region, indicating that the SDW instability is
suppressed for the isotropic model.

Summarizing the magnetic properties, the spin suscepti-
bility is enhanced in the presence of the Coulomb interaction
in the whole BZ, but geometrical frustration of the Kagome
lattice has a strong effect to reduce thelependence of the
susceptibility and to suppress the instability to any type of
the SDW order. Although the present calculations are based
on a weak-coupling approach, the obtained results are quite
consistent with properties expected in the strong-coupling
regime, the frustrated Heisenberg spin system, where the
magnetic order is suppressed due to strong frustration.

We have so far discussed the instability of spin-triplet
polarization, but the instability in the spin-singlet channel is
even weaker. The largest eigenvalues of the charge suscepti-

bility x(©(q,0) in the BZ are always smaller than that for

x®(q,0) within the FLEX approximation and there is no
indication of charge orddicharge-density waveCDW)] or
current-carrying statgshown in Fig. 7c)]. Thus we do not
give detailed discussions on the charge susceptibility here.

C. One-particle spectral function

We now discuss the one-particle spectral function and the
total spectral density, which are defined by

1 .
A(k,w)=—3—ﬂ_§ IMG (K, 0+i6), (13)

1
p(w)=— > AKk,w), (14)
N’ k

whereé is a small adiabatic constant.
In order to obtain dynamical quantities in the FLEX ap-

eigenvalues of the spin susceptibility as a function of temperatur@0Ximation, the analytic continuation from the imaginary

T/t for several values of’. U/t is 2.5.(c) Largest eigenvalues of

Matsubara frequency to the real frequency is usually per-

the spin and charge susceptibilities calculated by the FLEX approxiformed by using the Padapproximation or the maximum
mation as a function ofl/t. Solid (dashedilines denote the charge entropy method. However, it is known that this procedure

(spin sector, respectively. In botta) and (c), all of the data are
normalized by the value al/t=0.0 and the temperatur&/t

=0.1.

sometimes encounters numerical difficulties. In the present
study, we directly calculate the spectral function in a real
frequency formulation without resorting to analytic continu-
ation. (Our formulation is similar to those used in the previ-

the divergence is even enhanced, as seen in the concawes works’’~3®but simpler from the viewpoint of numerical
shape of the lines, due to the multiband structure. On théechniques.We need a small but finite adiabatic constant
other hand, the enhancement in the FLEX results is muckor Green’s function, but its effects can be corrected system-
weaker at largéJ/t and the spin susceptibility does not seematically and we have checked that the Pageroximatiof®

to diverge. The behavior of the FLEX results is more reliablereproduces similar results. We show here the results calcu-
in the intermediat&J/t region, since mode-mode couplings lated by our real frequency technique, since they are free
are completely neglected in the RPA and the instability isfrom numerical errors due to analytic continuation.
overestimated. In particular, the suppression is most remark- Figure 8 shows the one-particle spectral function for three
able around the isotropic point~t, and we may conclude distinct wave vectors close to the Fermi surface. Since the
that no spin order is realized for the isotropic Kagoaitice ~ shape of Fermi surface changes with we have chosen
within the FLEX approximation. For reference, the inverseproper wave vectorg, which should be closer to the three
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FIG. 8. One-particle spectra for variouk. (a) k
~(0.757,0.757), (b) k=~(0.757,0), and (c) k=(0.42m,
—0.427), respectively(d) Fermi surface for several values ©f
Small circles represent the location kfchosen for(a—g. The
energy is measured from the Fermi levad=€0). The Coulomb
repulsionU/t=2.5, the temperatur@/t=0.1, and adiabatic con-
stant 6=0.05. The insets show the magnification of the low-
frequency regime.

typical Fermi points listed in the caption. All the spectra  FIG. 9. Total spectral density for various. (a) t'/t=1.0, (b)
shown consist of three peaks reflecting the three-band stru¢~/t=0.8, and(c) t'/t=0.6.
ture; namely, thexth peak is mainly due to the contribution
of the band withE, , . As U increases, two peaks at large) due to the lifetime effect. However, in the weak-coupling
are gradually smeared due to lifetime effects. On the otheregime treated here, the total spectral density near the Fermi
hand, the peak near=0 keeps a sharp structure, implying a level is rather insensitive to the change in anisotropic hop-
well-defined Fermi-liquid behavior. Note that these peaks ar@ingt’ in comparison with other physical quantities, such as
not exactly located atv=0 due to the discretization d€  the one-particle spectra, etc. Although the one-particle spec-
points in the numerical calculations. However, this does notral weight with k for the k,= —k, direction close to the
give any essential changes in the following discussions. Thigermi surface is strongly reduced @t-0 with decreasing
behavior is particularly prominent in the isotropic cds& t'/t, the amplitude of total spectral density«@t-0 becomes
=1.0 irrespective ok’s (a—9. However, in the anisotropic largest att’/t=0.6 even wherU is introduced. In the inter-
cases of'/t=0.8 and 0.6, the central peak changes its shapemediateU region, the one-particle spectrumkafar from the
from (@) k=~(0.757,0.757) to (c) k=~(0.42m,—0.427), Fermi surface mainly consists of the incoherent parts. Since
where the amplitude of the spectraw@t-0 is reduced with the local spectral density is obtained by th@aummation in
the decrease df /t. This behavior suggests that quasiparti- EQ. (14), the contributions of these incoherent parts far from
cles are stabilized in the region of isotropic hoppirig-t. Fermi surface become quite large evemp @) with increas-
As discussed in the preceding section, increasingepre- ing U. Therefore, it is difficult to discuss about the coherence
sents the enhancement of effects of geometrical frustratiof quasiparticles only based on the total spectral density
and this leads to the trend that the wave-vector dependencp$0), and weneed more detailed information froA(k, w).
are strongly reduced in the BZ. Since the spin fluctuations Summarizing this section, as compared with the total
are localized in the real space and these amplitude argpectral density, the one-particle spectrum gives us more de-
strongly reduced, various orders, such as the SDW, CDWgailed information on the nature of quasiparticles. The weight
and currant-carrying states, are suppressed and the metallif the coherent part in the one-particle spectrum grows with
state is stabilized. Therefore the quasiparticle picture beincreasing’, which means that the quasiparticle behavior is
comes fine description. This result indicates that geometricadtabilized by geometrical frustration.
frustration on the Kagoméattice may be important for the
formation of quasiparticles. b. Renormalization effects

For reference, we also present in Fig. 9 the results of the '
total spectral density defined by E44). As U increases, the To investigate the properties of quasiparticles in more de-
total spectral density is smeared in the whole energy regiotail, we calculate the renormalization factor and the Fermi
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velocity of quasiparticles. According to the conventional (@r/t=10 (byt'/t=0.8 ©)1t/t=0.6
Fermi-liquid theory, the one-particle spectrum consists of the I
o-function-like coherent part and the broad incoherent part.

As the Coulomb interaction increases, the quasiparticle mas 08
is enhanced and the weight of the coherent part becomeNx
small. For the single-band case, the renormalization factor is =~ 0.6-"
given by the self-energy as

IReX (K, w)
1= Jw

0.4
, (15 0

-1

K=

w=0

WhiCh_ corresponds to the weight of th? coherent part. HO,W' FIG. 10. Renormalization factor as a functionlfat tempera-
ever, in the present case, the one-particle spectrum at a givehe/t=0.1: (@1'/t=1.0, (b) t'/t=0.8, and(c) t'/t=0.6, respec-
k has contribution of three bands. When the coherent quasyely, The insets show the Fermi surfa@lid line) in the half BZ
particle part is separated from the other parts, it is given by o<k <) where symbolgopen circles, etg.denote varioug for

which Z, is calculated.
AP K, 0) =~ — 2 (16)
, T (0= &)y functions. On the other hand, with decreasthgthe differ-
. ) ) ) ) ence inZ, for different k's becomes more remarkable. In
whereé, is the shift from the Fermi level is the correction articular, thez, for k's along the direction ok, = —k, is
) , y <
due to the other peaks which are located far from the Fer trongly renormalized. It should be noted that the lar@gst

Ieve.l, andy represents the inverse of Iifetime of the quasi—i the anisotropic cas@pen squares in Fig. 16) and 10c)]
particle. These parameters can be determined by numericgl < -imost the same amplitude as thattfét=1.0. In other

fitting of the data of the spectral function. However, instea ords, with decreasing’, the quasiparticle weight is re-
of performing this procedure, we here use an alternative apduced,in comparison Witl”l that of/t=1.0. Therefore this is

proach to simply determine the _renormal[zatmn faCtof- .S'nceanother evidence that geometrical frustration stabilizes the
the middle band near the Fermi level is isolated sufﬂuentlyFermi_quuid behavior up to larget) regime whent’/t

far from the other bands, we can introduce the following:1 0 (the isotropic Kagoréattice)

effective self-energy in the low-energy region: Shown in Fig. 11 is the absolute value of the Fermi ve-
locity, which is given by

Sk, 0)=g(k,0) 1= G(k,w) (17)
where =\ 2 =\ 2
IEy IEy
loil= \/( oK ) +(W) : (21)
~ 1 x y
g(k@)=3 2 gnul(k,w), (18)
m which is obtained from the renormalized quasiparticle energy
1 of the middle band,
é(k,w)=§E Gk, ®). (19)
m S e (d) U/t =00, '/t =1.0
The approximate formula for the renormalization factor then //T\\\
reads o sl ‘E‘ 1.95 l{ N ’\\
~ _1 F(a) t'/t=1.0 ---- 109 9 I\’L/\ T
IRk, ) ol 3 B sel L
Zy=1- o . (20 5 . g V NP n
0=0 ST 27T 1.65 =
O [TTmeeemeee- FE eead L (rmn, T K

Although EQq.(20) is not exact, this formula works wellas far = . 1 - k, (z-m
as the low-energy regime is concerned. We have checked fog

severalk that the results obtained by using E@O) are in & 0 (b,)m _,0'8 , . . ® i
good agreement with the renormalization factor determined | (¢) /¢ =0.6 L5k
by the fitting Eq.(16). 5
Figure 10 shows thk dependence of the renormalization o . 1 A O ¢," >
factor as a function ob) for varioust’. We show the results e 1 it
only in thek region, O<|ky|<k,<, because the valuesin o~ . 1+ . . o
other regions are readily obtained according to the symmetry ~#4 0 4
property. In all the cases af/t, the renormalization factor 4
Z, decreases with the increasel@f meaning that the effec-  FIG. 11. Angular dependence of the Fermi velocity for various

tive mass is enhanced. An important point is thabecomes  U; (a) t'/t=1.0, (b) t'/t=0.8, and(c) t'/t=0.6 [Eq. (2D]. (d)
nearly independent ok in the isotropic caset(/t=1.0),  Fermi velocity atU/t=0 andt’/t=1.0 in thek space(e) Angle ¢
being consistent with the results of one-particle spectrabf thek point on the Fermi surface.
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~Ek=Zk[E(k2)—/L+Re§eﬁ(k,0)]. (22) pic Kagom'e[attice up to !argerU regime, whiph i_s also
consistent with the behaviors of the renormalization factor
and Fermi velocity. These results indicate that geometrical
frustration stabilizes the formation of quasiparticles.
The main conclusion of the present study is that the strong
eometrical frustration reduces the wave-vector dependence
~ S . . f spin fluctuations and suppresses the instabilities to various
1.10 forU/t=2.0, indicating again the suppression of_the orders, such as the SDW, CDW, and current-carrying states,
dependence. On the other hand, for the anisotropic ca

{'/t=1.0. the ratio is not reduced but enhanced. For irffo that the Fermi-liquid behavior is stabilized and the quasi-

fort’/t=0.6. th 0 ch f b 9§ particles become well defined in the isotropic Kagolae
stan_ce, ot /t=0.6, t_e ratio changes from about L.79 10 {ice This conclusion is derived from the FLEX approxima-
U/t=0.0-2.45 forU/t=2.0. These results are in accordancetion’ which is an essentially weak-coupling approach, but it

with those of the renormalization factor in the sense that thes . nsistent with the results known for the strong-coupling
wave-vector dependence grows with increasing hopping ar,oqe| je., the absence of any magnetic order due to strong

Isotropy. frustration in the antiferromagnetic spin system on the
Kagomelattice. Therefore, it is reasonable that characteristic
IV. SUMMARY AND DISCUSSION properties discussed in the present work for the weak-

In this paper, we have studied how geometrical frustratiorf@UPIing Hubbard model on the Kagortadtice are naturally
of the isotropic/anisotropic Kagomattice affects physical connected to those inherent in the frustrated Heisenberg spin
properties in a metallic phase. By using the FLEX approxi-SYStém- o
mation for the Hubbard model at half filling, we have calcu-  Within the FLEX approximation in this paper, we have
lated the spin and charge susceptibility, the one-particle spe@-Ot observed other Ofd‘?fed stat4e_s‘,‘6e|ther such as the stag-
trum, the total spectral density, the quasiparticle9€red flux(current-carrying staté’~* and the charge or-
renormalization factor, and the Fermi velocity. In the isotro-d€red stat¥’ etc., which are other possible orders in the
pic Kagomielattice, we have shown that the spin susceptibil-St'ong-coupling regime. In the present case of half filling,
ity is enhanced by the Coulomb interaction as far as thélthough charge ordered states are unlikely, a staggered flux
amplitude of susceptibility is concerned. However, in con-State may appear due to strong geometrical frustration. Fur-
trast to ordinary cases of magnetic instability, its wave-vectof '€rmore, upon finite hole doping, geometrical frustration
dependence is strongly suppressed at the same time, agy realize a charge ordgred state. It is an interesting open
there appear many peaks in the BZ accumulating to form groblem .to be addressed in the future. )
line. This reduction of the wave-vector dependence around EXPerimentally, most compounds studied so far have been
the Fermi surface is also observed for other quantities, sucifstricted to ,Spin systems on the Kagoattice, such as
as the quasiparticle weight of the one-particle spectrum. We'CEGaO10. ™ "It is thus interesting to study electron cor-
have demonstrated that this behavior is indeed due to thélations in metallic Kagoméattice materials.
frustrated lattice geometry by controlling frustration by an-
isotropic hopping; th&k dependence is considerably recov-
ered with the decrease tf, i.e., when frustration is reduced.
By comparing the spin susceptibility calculated by the FLEX One of the authoréY.l.) would like to acknowledge help-
approximation with that of RPA, we have shown that theful discussion with T. Takimoto. The work was partly sup-
instability to magnetically ordered phases is dramaticallyported by a Grant-in-Aid from the Ministry of Education,
suppressed by mode-mode couplings of fluctuations, whiclscience, Sports, and Culture of Japan. A part of the numeri-
are neglected in the RPA level. This suppression is mostal calculations was performed on computers at the super-
prominent in the isotropic case, i.e., most frustrated casecomputer center at the Institute for the Solid State Physics,
Furthermore, considering the one-particle spectrum, we hav€he University of Tokyo, and at Yukawa Institute Computer
shown that the coherent part has a large weight in the isotrd=acility, Kyoto University.

In the case ot’/t=1.0, the Fermi velocity has the dis-
torted sixfold rotational symmetry in the BZ reflecting the
lattice structurg Fig. 11(d)] and the ratio of the largest and
smallest velocity is about 1.17 fdy/t=0. With increasing
U, the ratio is gradually reduced to the smaller value of abou
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