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First-principles local pseudopotentials for group-IV elements
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A simple scheme is proposed for generating first-principles local pseudopotentials, and applied to group-IV
elements. The scheme is based on solving Kohn-Sham equations inversely, using the density from a nonlocal
pseudopotential calculation. The generated local pseudopotentials have been applied in the calculations of
dimers and solids including diamond and fcc structures of Si, Ge, and Sn. Fairly good results are obtained for
bond lengths and lattice constants, while the results for energies and energy eigenvalues~e.g., excitation
energies of atoms and band structures of solids! compare less well with those given by the corresponding
nonlocal pseudopotentials. However, our work indicates the important features required by a good local
pseudopotential of a group-IV element.
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I. INTRODUCTION

The remarkable success of first-principles nonlo
pseudopotentials has diminished interest in local pseudo
tentials. Compared with nonlocal pseudopotentials, the lo
counterparts are, in general, less competitive in their tra
ferability since it is difficult to find a single smooth potenti
which leads to good norm-conserving valence orbitals for
different angular momenta involved in the valence sta
However, local pseudopotentials have their advantages.
sides their simplicity, there are some cases where the us
nonlocal pseudopotentials can be problematic. In particu
we are interested in orbital-free calculations,1 where an ap-
proximate electron kinetic energy is used so that the elec
density is the only variable. Such calculations are much m
efficient than those using Kohn-Sham~KS! orbitals;2 how-
ever, orbital dependent nonlocal pseudopotentials canno
applied in a straightforward way. Evidently, local pseudop
tentials with good transferability can be very useful.

Early orbital-free calculations3 used empirical local
pseudopotentials.4 In more recent work,5,6 first-principles lo-
cal pseudopotentials have been applied. These pseudop
tials are generated by inverting an electron density, thro
either KS~Ref. 2! or orbital-free1 calculations, so that they
reproduce a given density.6,7 However, the densities used i
this procedure are taken from the bulk or simulate a b
environment. The pseudopotentials generated in this
were designed specifically for studying an extended sys
and the degree to which they are transferable to a finite
tem such as a cluster or molecule is uncertain. Here
present a simple and straightforward scheme for genera
local pseudopotentials which is also based on an inver
procedure. In this scheme, the local bare ion pseudopote
is constructed from a local KS potential, which is obtain
from a given density by solving KS equations inversely. T
densities used are the free pseudoatom densities yielded
popular nonlocal pseudopotential, and the resulting po
tials may be regarded as the local equivalents of the nonl
pseudopotentials. The method is applied to group-IV e
ments. The local pseudopotentials give fairly good results
bond lengths of dimers and lattice constants of solids. Ho
ever, the calculated band structures for diamond struct
0163-1829/2003/68~19!/195102~6!/$20.00 68 1951
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and the energy differences between fcc and diamond st
tures are less accurate when compared with those obta
from the corresponding nonlocal pseudopotentials. We a
lyze the features leading to these successes and failures
point out how further improvements can be made.

Generating a local KS potential from a given density w
originally motivated by a fundamental problem in densit
functional theory,2,8 i.e., thev representability of an electron
density.9 Chen and Stott showed that for a small number
spin-unpolarized electrons any reasonable spherically s
metric density is the nondegenerate ground-state density
linear combination of degenerate ground-state densities
some local potential.10 In the case of a two- or three-leve
system, the effective potential can be constructed from
given density by solving KS equations inversely. The inv
sion procedure is based on the reduction ofN one-body
Schrödinger equations to a set ofN21 nonlinear differential
equations, which involve the given density directly.11 This
approach has been used to deduce the effective potenti
Be, Ne, and C atoms from the corresponding all-elect
densities.12 We follow the same inversion procedure10,11 and
generate the local KS potential for group-IV atoms. Inste
of all-electron densities used in the earlier calculations,
have used the pseudoatom densities from nonlocal pse
potential calculations since only the valence electrons in
ence the physical properties of interest. From the resul
local KS potentials, local bare ion pseudopotentials are c
structed in the usual manner by unscreening and subtrac
the exchange and correlation potentials. Consequently,
local pseudopotential and the nonlocal one give the sa
free atom electron density.

In the following section, we outline the method used f
generating the local pseudopotentials of group-IV eleme
The pseudopotentials are described in Sec. III. The result
applying these pseudopotentials in calculations of dimers
solids are presented and discussed in Sec. IV, and con
sions are drawn in Sec. V.

II. METHOD

To generate a local KS potential from a given density,
follow the scheme of Chen and Stott.10 The valence configu-
©2003 The American Physical Society02-1
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BING WANG AND M. J. STOTT PHYSICAL REVIEW B68, 195102 ~2003!
ration of group-IV atoms iss2p2. The electron density from
a nonlocal pseudopotential calculation has spherical sym
try and is normalized to four. Given this density, the K
equations fors and p states are solved inversely, using t
transformation introduced by Dawson and March.11 The po-
tential V(r ) is determined within a constant. It has the sa
ground-state density as the corresponding nonlocal pse
potential. The KS potential generated in this way is the ex
functional derivative of the kinetic energy, and as such
been used in developing approximate kinetic functionals.13 A
local ionic pseudopotentialVps(r ) is constructed by subtract
ing the Hartree and exchange-correlation potentials from
generated local KS potentialV(r ). For the exchange
correlation potential, we use the local-dens
approximation2 with the Perdew-Zunger parametrization14 of
the results of Ceperley and Alder for a uniform electr
gas.15 The resulting local pseudopotential has the sa
ground-state density as the corresponding nonlocal pse
potential. Since the local KS potential is generated withi
constant, the local pseudopotential is shifted so that at larr
(.18 a.u.) it coincides with the corresponding nonloc
pseudopotential.

One difficulty with the local pseudopotentialVps(r ) is
that it differs from24/r outside the core by a small oscilla
tory tail with roughly the range of the valence orbitals so th
rVps oscillates about (24). For C, the maximum amplitud
of the tail is about 0.2, while for Si, Ge, and Sn, the amp
tudes are 0.03, 0.01, and 0.03, respectively. The reason
the small deviations from24/r outside the core is that
single local pseudopotential cannot reproduce boths and p
orbitals of the corresponding nonlocal pseudopotential~see
below! and a compromise between the two is made outs
the core. It is interesting to note that similar long-range ta
have been also seen in the more sophisticated local pse
potentials including the nearly exact exchange potential.16,17

The small deviations from24/r caused numerical problem
in the treatment of a diamond or fcc structure. As pointed
by Bylander and Kleinman,16 there should be no long over
lapping tails for ionic pseudopotentials to be transfera
from atoms to solids. We therefore modify the local pseu
potential by truncating the tail at a point whereVps crosses
over 24/r . For Ge and Sn, this can be done at two poin
and we found that truncating at largerr ~8.35 a.u. for Ge and
5.09 a.u. for Sn! gives better results in the calculations
dimers and solids. For C and Si, the truncation is made
r 53.19 and 4.20 a.u., respectively. The modifications of
potentials are very small and invisible on a plot of the lo
pseudopotential.

III. LOCAL PSEUDOPOTENTIALS
OF GROUP-IV ELEMENTS

The computer codeFHI98PP developed by Fuch and
Scheffler18 was used to generate nonlocal norm-conservi
spin-averaged scalar relativistic pseudopotentials of the g
eralized Bachelet-Hamann-Schlu¨ter ~BHS! type19 for
group-IV elements. The electron density for the neut
pseudoatom obtained from the nonlocal pseudopotential
19510
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culation is then inverted to a local pseudopotential as
scribed above.

By construction, the generated local pseudopotential gi
the same ground-state density as the corresponding non
pseudopotential, so that the sum of the squares of the orb
is the same for both sets. However, the wave functions do
coincide exactly with the nonlocal pseudo-wave-functio
As shown in Fig. 1, the most extreme case is the C atom
which there is the largest degree of nonlocality. The wa
functions for the Ge atom for which very good agreemen
achieved are also shown in Fig. 1. The agreement is fa
good for the wave functions of Si and Sn. Of particular i
terest for the group-IV elements is the degree to which
local pseudopotential can give energetically favored diam
structures which will depend on thes-p splitting. In this light
a key parameter is the energy difference between the low
s andp states,«5Ep2Es , obtained from the local KS po
tential. The results are given in Table I along with corr

FIG. 1. The radials and p wave functions,Rs(r ) and Rp(r ),
from local and nonlocal pseudopotential calculations of C and
atoms.

TABLE I. The energy difference betweens andp states, i.e.,«
5Ep2Es ~in eV!, obtained from local pseudopotential calculatio
compared with the results from nonlocal pseudopotential calc
tions.

C Si Ge Sn

Local 20.009 7.692 7.589 5.671
Nonlocal 8.223 6.716 7.899 6.943
2-2
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FIRST-PRINCIPLES LOCAL PSEUDOPOTENTIALS FOR . . . PHYSICAL REVIEW B 68, 195102 ~2003!
sponding values for the nonlocal potentials, which are
same as those from all-electron calculations. The agreem
is very good for Ge, and worst for C where the local resu
for « is too much large.

The local pseudoion potentials for C and Ge are show
Fig. 2 along with the corresponding nonlocal pseudopot
tials. For Ge, the local pseudopotential is closest to the n
local s pseudopotential, and similarly for Si and Sn, althou
there are differences so that the local potential strikes a c
promise between thes andp nonlocal potentials which yields
the correct density. However, the local pseudopotential fo
is rather strange. There is a large spike at the origin, and
most striking feature is the double minima atr'0.4 and 0.9
a.u. This originates from the minima of the nonlocals andp
pseudopotentials. This double shell feature appears in
local pseudopotential of C but not Ge because for the for
the minima of the nonlocals andp pseudopotentials are we
separated from each other. Compared with other group
atoms, a C atom has a smaller core and nop states in the
core, both of which are the factors forcing small cutoff ra
in generating a nonlocal pseudopotential. The cutoff ra
used for C are 0.72 and 0.46 a.u. fors andp states, respec
tively, while the corresponding radii for Ge are 1.07 and 1
a.u.

Using different cutoff radii for generating the nonloc
pseudopotential has a marginal effect on the correspon
local pseudopotential. For Si, the change in« for the local
potential is less than 0.2 eV when the cutoff radii for non

FIG. 2. The local and nonlocal ionic pseudopotentials of C a
Ge.
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cal s and p pseudopotentials vary from about 0.80 to 1.
a.u. The cutoff radii were selected that gave the local va
of « closest to that for the nonlocal pseudopotential. For
a local pseudopotential was also generated from
Troullier-Martins-type nonlocal pseudopotential.20 Again, the
local value of« does not differ much from the value obtaine
from the BHS-type nonlocal pseudopotential, and the gen
ated local pseudopotential gives about the same results in
calculations of dimer and solids.

The transferability of the local pseudopotentials was fi
tested by calculating atomic excitation and ionization en
gies for a number of occupied configurations different fro
the reference configuration for which the local pseudopot
tial was generated. The errors in these energies and en
eigenvalues with respect to all-electron calculations ra
from a few millielectron volt to a few hundreds millielectro
volt, while the corresponding errors given by nonloc
pseudopotentials and frozen-core all-electron calculations
no more than a few tens millielectron volt. Again the resu
for Ge are the most satisfactory, the errors in the ene
eigenvalues being comparable to those given by the nonl
pseudopotential.

IV. APPLICATION

The transferability of the local pseudopotentials genera
for Si, Ge, and Sn was further tested by applying them
calculations of dimers and solids including diamond and
structures for each of the three elements. Instead of using
local pseudopotentials in orbital-free calculations where
results will be affected by the choice of kinetic-energy fun
tionals, we have used a Kohn-Sham plane-wave metho
that a direct comparison can be made with the results for
corresponding nonlocal pseudopotential. The results are
sented and discussed in this section.

A. Computational details

The computer codeABINIT ~version 3.2.3! developed by
Xavier Gonze and his abinit group21 was used in the calcu
lations. For the diamond structure a fcc supercell was u
with two symmetrically placed nonequivalent atoms per c
The lattice constant was optimized. For the dimer, a sim
cubic supercell was used with the lattice constant of 30 a
a single (G) k point, and a plane-wave energy cutoffEcut
512 a.u. In the calculation of diamond and fcc structu
Ecut524 a.u. and 838385516k points were used. Thes
values are more than necessary for convergence of the
mond structure, but were required for the fcc structure wh
is metallic. In the calculation of fcc structures, the co
smearing scheme22 was used with the smearing factor equ
to 0.06 Hartree. The convergence of the total energy
lattice constant with respect to the energy cutoff, the num
of k points and the smearing factor in the calculations of
diamond and fcc structures was checked for Si using b
local and nonlocal pseudopotentials. The convergence w
the local pseudopotential is comparable to, and in some c
better than that with the nonlocal pseudopotential.

d
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TABLE II. Results for Si, Ge, and Sn calculated using local and nonlocal pseudopotentials. Listed a
bond length of a dimer,ddimer (Å), the lattice constant of a diamond structure,adia (Å), the lattice constant
of a fcc structure,af cc (Å), the ratio in the volume per atom of fcc to diamond structures,v f cc /vdia , and the
energy difference between a fcc and a diamond structure,DE5Ef cc2Ediamond ~eV/atom!. Numbers in
parentheses are the percentage errors with respect to experimental results.

ddimer adia af cc v f cc /vdia DE

Si
Local 2.183(22.8%) 5.301(22.4%) 3.611 0.632 20.17
Nonlocal 2.184(22.8%) 5.384(20.8%) 3.824 0.717 0.50
Experiment 2.246a 5.430b

Ge
Local 2.245 5.482(23.1%) 4.151 0.869 0.56
Nonlocal 2.275 5.568(21.6%) 4.189 0.851 0.43
Experiment 5.658b

Sn
Local 2.604(25.2%) 6.416(21.1%) 4.960 0.924 0.46
Nonlocal 2.673(22.7%) 6.468(20.3%) 4.757 0.796 0.10
Experiment 2.746c 6.49b

aReference 23.
bReference 24.
cReference 25.
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B. Results and discussion

The calculated bond lengths of dimers and lattice c
stants of diamond and fcc structures are listed in Table II
Si, Ge, and Sn, along with the corresponding values fr
nonlocal pseudopotential calculations. The results given
local pseudopotentials are in good agreement with both
results of nonlocal pseudopotentials and available exp
mental results. The discrepancies with respect to experim
tal values are within the typical error due to the local-dens
approximation. For fcc structures, our results for nonlo
pseudopotentials agree with earlier calculations for Si
Ge~Ref. 26! and the very recent calculation of Sn.27 Figure 3
shows the total energy as a function of lattice constant
diamond and fcc structures. In all cases, the shape of
curve obtained with the local pseudopotential is very sim
to the corresponding one for the nonlocal pseudopoten
The ratios of the volume per atom of fcc to diamond stru
tures obtained by local and nonlocal pseudopotentials, g
in Table II, agree fairly well with each other. However, e
cept for Ge, the energy difference between fcc and diam
structures calculated with local pseudopotentials do not a
well with the results of nonlocal pseudopotentials; indeed
Si, the local pseudopotential wrongly gives the energy of
slightly lower than that of diamond.

The calculated band structures for a diamond structur
the optimized lattice constant given in Table II are shown
Figs. 4–6 for Si, Ge, and Sn, respectively. For Si, the b
structure given by our nonlocal pseudopotential is in v
good agreement with the published result obtained fr
similar calculations at the experimental lattice constan26

The band structure from our local pseudopotential agr
reasonably well with the one from the nonlocal pseudopot
tial, although there are differences in the band widths a
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gaps. The agreement is best for Ge, except for the low
unoccupied band; the local pseudopotential gives a la
gap. The nonlocal pseudopotential includes the scalar r
tivistic effect, which, as shown in Ref. 28, is responsible
the reduced gap in Ge. This relativistic effect, however,
not transferred to the local potential when it is inverted fro
the pseudoatom density. The local pseudopotential for
gives a poor band structure as shown in Fig. 6. Although
shape of each band is similar to that of the nonlocal pseu
potential, the band gaps are wrong. In particular, the g
between the highest occupied and lowest unoccupied ba
at theG point is too large.

In general, our local pseudopotentials give fairly go
results for bond lengths of dimers and lattice constants
solids. The results for diamond structures are better t
might be expected for a local pseudopotential because o
sp hybridization involved in the formation of covalent tetra
hedral bonds. However, except for Ge, the band structure
diamonds and energy differences between fcc and diam
structures do not agree well with the results given by
nonlocal pseudopotentials. It is therefore worthwhile to
visit the properties of the local pseudopotentials describe
the preceding section and identify the features that lead
the results presented in this section.

The good transferability of the nonlocal pseudopoten
is due to the norm conservation, i.e., it reproduces
electron energy eigenvalues, and generates pseudo-w
functions that are properly normalized and coincide with
corresponding all-electron wave functions outside the co
By construction, our local pseudopotential has the sa
ground-state density as the corresponding nonlocal pse
potential, so that the occupieds and p local pseudo-wave-
functions together, as a pair, are correctly normalized, but
2-4
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FIRST-PRINCIPLES LOCAL PSEUDOPOTENTIALS FOR . . . PHYSICAL REVIEW B 68, 195102 ~2003!
individually. Consequently, the energy dependence of ths-
andp-wave scattering at valence energies is incorrect. Ho
ever, except for C, the local pseudo-wave-functions ag
fairly well with the corresponding nonlocal pseudo-wav
functions, as seen in Fig. 1.

We also treated the dimer and the diamond structure o
using the local pseudopotential. The nonlocal pseudopo
tial gives fairly good results for the dimer bond leng
1.29 Å and lattice constant 3.525 Å compared with the
perimental value 1.24 Å23 and 3.567 Å,24 respectively. But,
the local pseudopotential gave a210% error in the dimer
bond length and converged results for the diamond struc
could not be obtained, probably because of the poor con
gence of the Fourier components of the pseudopotential
to the large spike in the local pseudoion potential asr→0
~cf. Fig. 2!.

As shown in Table I, the local pseudopotentials do n
reproduce well the energy differences betweens andp states,
except for Ge. The reasonable results for bond lengths
lattice constants suggest that correct energy eigenvalue
the pseudoatom may not be critical for these propert
However, they are crucial for properties involving ener

FIG. 3. The total energies of a diamond and a fcc structure
functions of the lattice constant obtained by local and nonlo
pseudopotential~pp! calculations on Si, Ge, and Sn.
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differences and energy eigenvalues such as excitation
ionization energies and band structures.

The local bare ion pseudopotentials that we have obtai
deviate slightly from24/r outside the core, and this caus
numerical problems which affect the equilibrium cryst
structures. We removed this tail in a rather arbitrary fashi
A systematic method for obtaining bare ion potentials wh
have the correct form outside the core could be based on
variational principle for the Kohn-Sham potential with th
bare ion potential fixed at24/r outside the core and varyin
inside the core only.

s
l

FIG. 4. The band structure of a Si diamond given by local~solid
curves! and nonlocal~dashed curves! pseudopotentials. Energies a
measured from the highest-occupied state.

FIG. 5. The band structure of a Ge diamond given by lo
~solid curves! and nonlocal~dashed curves! pseudopotentials. Ener
gies are measured from the highest-occupied state.
2-5
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V. CONCLUSIONS

We have presented a simple scheme for generating fi
principles local pseudopotentials of group-IV elements. T
local pseudopotential is constructed from a local KS pot
tial, which is obtained by solving KS equations inverse

*Present address: Department of Chemistry, University of Cali
nia, Santa Barbara, CA 93106.
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