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A simple scheme is proposed for generating first-principles local pseudopotentials, and applied to group-1V
elements. The scheme is based on solving Kohn-Sham equations inversely, using the density from a nonlocal
pseudopotential calculation. The generated local pseudopotentials have been applied in the calculations of
dimers and solids including diamond and fcc structures of Si, Ge, and Sn. Fairly good results are obtained for
bond lengths and lattice constants, while the results for energies and energy eigeri@auesxcitation
energies of atoms and band structures of splasnpare less well with those given by the corresponding
nonlocal pseudopotentials. However, our work indicates the important features required by a good local
pseudopotential of a group-1V element.
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[. INTRODUCTION and the energy differences between fcc and diamond struc-
tures are less accurate when compared with those obtained
The remarkable success of first-principles nonlocalfrom the corresponding nonlocal pseudopotentials. We ana-
pseudopotentials has diminished interest in local pseudopdyze the features leading to these successes and failures, and
tentials. Compared with nonlocal pseudopotentials, the locapoint out how further improvements can be made.
counterparts are, in general, less competitive in their trans- Generating a local KS potential from a given density was
ferability since it is difficult to find a single smooth potential Originally motivated by a fundamental problem in density-
which leads to good norm-conserving valence orbitals for thdunctional theory;® i.e., thev representability of an electron
different angular momenta involved in the valence statesdensity? Chen and Stott showed that for a small number of
However, local pseudopotentials have their advantages. B&Rin-unpolarized electrons any reasonable spherically sym-
sides their simplicity, there are some cases where the use Bfetric density is the nondegenerate ground-state density or a
nonlocal pseudopotentials can be problematic. In particulafinear combination of degenerate ground-state densities for
we are interested in orbital-free calculatidnahere an ap- Some local potentiaf In the case of a two- or three-level
proximate electron kinetic energy is used so that the electrofiystem, the effective potential can be constructed from a
density is the only variable. Such calculations are much moréiven density by solving KS equations inversely. The inver-
efficient than those using Kohn-Sha(iS) orbitals? how-  sion procedure is based on the reductionNofone-body
ever, orbital dependent nonlocal pseudopotentials cannot bechralinger equations to a set bf—1 nonlinear differential
applied in a straightforward way. Evidently, local pseudopo-equations, which involve the given density directiyThis
tentials with good transferability can be very useful. approach has been used to deduce the effective potential of
Early orbital-free calculatiodis used empirical local Be, Ne, and C atoms from the corresponding all-electron
pseudopotentiatsin more recent worR¢ first-principles lo- ~ densities®> We follow the same inversion procedtité" and
cal pseudopotentials have been applied. These pseudopotdienerate the local KS potential for group-IV atoms. Instead
tials are generated by in\/erting an electron density, througﬁf all-electron densities used in the earlier calculations, we
either KS(Ref. 2 or orbital-freé calculations, so that they have used the pseudoatom densities from nonlocal pseudo-
reproduce a given density. However, the densities used in Potential calculations since only the valence electrons influ-
this procedure are taken from the bulk or simulate a bulkence the physical properties of interest. From the resulting
environment. The pseudopotentials generated in this walpcal KS potentials, local bare ion pseudopotentials are con-
were designed specifically for studying an extended systerfitructed in the usual manner by unscreening and subtracting
and the degree to which they are transferable to a finite sydhe exchange and correlation potentials. Consequently, the
tem such as a cluster or molecule is uncertain. Here wéocal pseudopotential and the nonlocal one give the same
present a simple and straightforward scheme for generatingee atom electron density.
local pseudopotentials which is also based on an inversion In the following section, we outline the method used for
procedure. In this scheme, the local bare ion pseudopotentifenerating the local pseudopotentials of group-1V elements.
is constructed from a local KS potential, which is obtainedThe pseudopotentials are described in Sec. Ill. The results of
from a given density by solving KS equations inversely. Theapplying these pseudopotentials in calculations of dimers and
densities used are the free pseudoatom densities yielded bys@lids are presented and discussed in Sec. IV, and conclu-
popular nonlocal pseudopotential, and the resulting potensions are drawn in Sec. V.
tials may be regarded as the local equivalents of the nonlocal
pseudopotentials. The method is applied to group-1V ele- Il. METHOD
ments. The local pseudopotentials give fairly good results on
bond lengths of dimers and lattice constants of solids. How- To generate a local KS potential from a given density, we
ever, the calculated band structures for diamond structuresllow the scheme of Chen and St&¥tThe valence configu-
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ration of group-1V atoms is?p?. The electron density from
a nonlocal pseudopotential calculation has spherical symme
try and is normalized to four. Given this density, the KS
equations fors and p states are solved inversely, using the
transformation introduced by Dawson and Mattfhe po-
tential V(r) is determined within a constant. It has the same
ground-state density as the corresponding nonlocal pseudc
potential. The KS potential generated in this way is the exact
functional derivative of the kinetic energy, and as such has
been used in developing approximate kinetic functiofhass.
local ionic pseudopotentid,(r) is constructed by subtract-
ing the Hartree and exchange-correlation potentials from the
generated local KS potentiaV/(r). For the exchange-
correlation  potential, we use the local-density
approximatiof with the Perdew-Zunger parametrizattbof
the results of Ceperley and Alder for a uniform electron
gas’® The resulting local pseudopotential has the same
ground-state density as the corresponding nonlocal pseudc
potential. Since the local KS potential is generated within a
constant, the local pseudopotential is shifted so that at large 02
(>18 a.u.) it coincides with the corresponding nonlocal i
pseudopotential. 0.1F i/
One difficulty with the local pseudopotentisd,(r) is F
that it differs from— 4/r outside the core by a small oscilla- 00—+ |
tory tail with roughly the range of the valence orbitals so that 0
Vs oscillates about{4). For C, the maximum amplitude
of the tail is about 0.2, while for Si, Ge, and Sn, the ampli-  F|G. 1. The radials and p wave functionsRy(r) and Ro(r),
tudes are 0.03, 0.01, and 0.03, respectively. The reason f@iom local and nonlocal pseudopotential calculations of C and Ge
the small deviations from-4/r outside the core is that a atoms.
single local pseudopotential cannot reproduce tso#md p
orbitals of the corresponding nonlocal pseudopoteri§e ¢ jation is then inverted to a local pseudopotential as de-
below) and a compromise between the two is made outsidgriped above.
the core. Itis interesting to note that sir_nilgr long-range tails By construction, the generated local pseudopotential gives
have been also seen in the more sophisticated local pseudgye same ground-state density as the corresponding nonlocal
potentials including the nearly exact exchange potefftid. pseudopotential, so that the sum of the squares of the orbitals
The small deviations from-4/r caused numerical problems s the same for both sets. However, the wave functions do not
in the treatment of a diamond or fcc structure. As pointed outgincide exactly with the nonlocal pseudo-wave-functions.
by Bylander and Kleinmatf, there should be no long over- aq shown in Fig. 1, the most extreme case is the C atom for
lapping tails for ionic pseudopotentials to be transferable,ich there is the largest degree of nonlocality. The wave
from atoms to solids. We therefore modify the local pseudosnctions for the Ge atom for which very good agreement is
potential by truncating the tail at a point whevigs crosses  achieved are also shown in Fig. 1. The agreement is fairly
over —4/r. For Ge and Sn, this can be done at two pointsgqa for the wave functions of Si and Sn. Of particular in-
and we found that truncating at large(8.35 a.u. for Ge and {erest for the group-IV elements is the degree to which a
5.09 a.u. for Shgives better results in the calculations of |c4| pseudopotential can give energetically favored diamond
dimers and solids. For C and Si, the truncation is made alyctures which will depend on tisep splitting. In this light
r=3.19 and 4.20 a.u., respectively. The modifications of they ey parameter is the energy difference between the lowest
potentials are very small and invisible on a plot of the localg andp states ¢ =E,— E,, obtained from the local KS po-
pseudopotential. tential. The results are given in Table | along with corre-
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TABLE |. The energy difference betweerandp states, i.e.g

IIl. LOCAL PSEUDOPOTENTIALS =E,—E; (in eV), obtained from local pseudopotential calculations
OF GROUP-IV ELEMENTS compared with the results from nonlocal pseudopotential calcula-
tions.

The computer coderHiosPp developed by Fuch and
Schefflet® was used to generate nonlocal norm-conserving;,

spin-averaged scalar relativistic pseudopotentials of the gen- c S Ge Sn
eralized Bachelet-Hamann-Scteu (BHS) type19 for Local 20.009 7.692 7.589 5.671
group-1V elements. The electron density for the neutralnonlocal 8.223 6.716 7.899 6.943

pseudoatom obtained from the nonlocal pseudopotential cal
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L cal s and p pseudopotentials vary from about 0.80 to 1.30
a.u. The cutoff radii were selected that gave the local value
30 - of & closest to that for the nonlocal pseudopotential. For Si,
— Local ionic potential l a local pseudopotential was also generated from the
spll 020200 = Nonlocal ionic s potential | Troullier-Martins-type nonlocal pseudopotentidAgain, the
=== Netlocal fenicp poteritial | local value ofe does not differ much from the value obtained

from the BHS-type nonlocal pseudopotential, and the gener-
ated local pseudopotential gives about the same results in the
calculations of dimer and solids.

= The transferability of the local pseudopotentials was first
tested by calculating atomic excitation and ionization ener-
gies for a number of occupied configurations different from

10

o i T | the reference configuration for which the local pseudopoten-
> tial was generated. The errors in these energies and energy
4 - eigenvalues with respect to all-electron calculations range
Ge — Local ionic potential from a few millielectron volt to a few hundreds millielectron
----- Nonlocal ionic s potential | volt, while the corresponding errors given by nonlocal
Mk -~ Nonlocal ionic p potential | pseudopotentials and frozen-core all-electron calculations are

no more than a few tens millielectron volt. Again the results
for Ge are the most satisfactory, the errors in the energy
eigenvalues being comparable to those given by the nonlocal
pseudopotential.

IV. APPLICATION

The transferability of the local pseudopotentials generated
r(au.) for Si, Ge, and Sn was further tested by applying them in

o . calculations of dimers and solids including diamond and fcc

FIG. 2. The local and nonlocal ionic pseudopotentials of C andsyryctures for each of the three elements. Instead of using our
Ge. local pseudopotentials in orbital-free calculations where the

sponding values for the nonlocal potentials, which are thé_esults will be affected by the choice of kinetic-energy func-

same as those from all-electron calculations. The agreemefjPnals: we have used a Kohn-Sham plane-wave method so
is very good for Ge, and worst for C where the local resultgat & dlrecF comparison can be made. with the results for the
for & is too much large. correspondmg nonloca! psgudopqtenual. The results are pre-
The local pseudoion potentials for C and Ge are shown irented and discussed in this section.
Fig. 2 along with the corresponding nonlocal pseudopoten-
tials. For Ge, the local pseudopotential is closest to the non-
local s pseudopotential, and similarly for Si and Sn, although
there are differences so that the local potential strikes a com- The computer codeBINIT (version 3.2.3 developed by
promise between theandp nonlocal potentials which yields Xavier Gonze and his abinit grotipwas used in the calcu-
the correct density. However, the local pseudopotential for Gations. For the diamond structure a fcc supercell was used
is rather strange. There is a large spike at the origin, and theith two symmetrically placed nonequivalent atoms per cell.
most striking feature is the double minimarat0.4 and 0.9 The lattice constant was optimized. For the dimer, a simple
a.u. This originates from the minima of the nonlosandp  cubic supercell was used with the lattice constant of 30 a.u.,
pseudopotentials. This double shell feature appears in the single (') k point, and a plane-wave energy cut®f,
local pseudopotential of C but not Ge because for the former12 a.u. In the calculation of diamond and fcc structures
the minima of the nonlocal andp pseudopotentials are well E.,;=24 a.u. and & 8X8=516k points were used. These
separated from each other. Compared with other group-I\Walues are more than necessary for convergence of the dia-
atoms a C atom has a smaller core and m@tates in the mond structure, but were required for the fcc structure which
core, both of which are the factors forcing small cutoff radiiis metallic. In the calculation of fcc structures, the cold
in generating a nonlocal pseudopotential. The cutoff radismearing scheni@was used with the smearing factor equal
used for C are 0.72 and 0.46 a.u. ®andp states, respec- to 0.06 Hartree. The convergence of the total energy and
tively, while the corresponding radii for Ge are 1.07 and 1.27lattice constant with respect to the energy cutoff, the number
a.u. of k points and the smearing factor in the calculations of the
Using different cutoff radii for generating the nonlocal diamond and fcc structures was checked for Si using both
pseudopotential has a marginal effect on the correspondinigcal and nonlocal pseudopotentials. The convergence with
local pseudopotential. For Si, the changesirfor the local  the local pseudopotential is comparable to, and in some cases
potential is less than 0.2 eV when the cutoff radii for nonlo-better than that with the nonlocal pseudopotential.

A. Computational details
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TABLE Il. Results for Si, Ge, and Sn calculated using local and nonlocal pseudopotentials. Listed are: the
bond length of a dimedgimer (A), the lattice constant of a diamond structuag;, (A), the lattice constant
of a fcc structurea,. (A), the ratio in the volume per atom of fcc to diamond structuses, /v 4i5 , and the
energy difference between a fcc and a diamond structEes E¢..— Egiamong (€V/atom. Numbers in
parentheses are the percentage errors with respect to experimental results.

ddimer Agia Aicc Vice/Vdia AE
Si
Local 2.183(¢2.8%) 5.301¢ 2.4%) 3.611 0.632 —-0.17
Nonlocal 2.184(2.8%) 5.384( 0.8%) 3.824 0.717 0.50
Experiment 2.246 5.430°
Ge
Local 2.245 5.482¢ 3.1%) 4.151 0.869 0.56
Nonlocal 2.275 5.568( 1.6%) 4.189 0.851 0.43
Experiment 5.658
Sn
Local 2.604(5.2%) 6.416( 1.1%) 4.960 0.924 0.46
Nonlocal 2.673C2.7%) 6.468( 0.3%) 4,757 0.796 0.10
Experiment 2.748 6.49°

%Reference 23.
bReference 24.
‘Reference 25.

B. Results and discussion gaps. The agreement is best for Ge, except for the lowest

The calculated bond lengths of dimers and lattice conUnoccupied band; the local pseudopotential gives a larger

stants of diamond and fcc structures are listed in Table Il fogaP- The nonlocal pseudopotential includes the scalar rela-
Si, Ge, and Sn, along with the corresponding values fronfiVistic effect, which, as shown in Ref. 28, is responsible for
nonlocal pseudopotential calculations. The results given byhe reduced gap in Ge. This relativistic effect, however, is
local pseudopotentials are in good agreement with both thBot transferred to the local potential when it is inverted from
results of nonlocal pseudopotentials and available experithe pseudoatom density. The local pseudopotential for Sn
mental results. The discrepancies with respect to experimegives a poor band structure as shown in Fig. 6. Although the
tal values are within the typical error due to the local-densityshape of each band is similar to that of the nonlocal pseudo-
approximation. For fcc structures, our results for nonlocalpotential, the band gaps are wrong. In particular, the gap
pseudopotentials agree with earlier calculations for Si andbetween the highest occupied and lowest unoccupied bands
Ge(Ref. 26 and the very recent calculation of $hFigure 3  at thel’ point is too large.

shows the total energy as a function of lattice constant for In general, our local pseudopotentials give fairly good
diamond and fcc structures. In all cases, the shape of theesults for bond lengths of dimers and lattice constants of
curve obtained with the local pseudopotential is very similarsolids. The results for diamond structures are better than
to the corresponding one for the nonlocal pseudopotentiamight be expected for a local pseudopotential because of the
The ratios of the volume per atom of fcc to diamond struc-sp hybridization involved in the formation of covalent tetra-
tures obtained by local and nonlocal pseudopotentials, givehedral bonds. However, except for Ge, the band structures of
in Table II, agree fairly well with each other. However, ex- diamonds and energy differences between fcc and diamond
cept for Ge, the energy difference between fcc and diamondtructures do not agree well with the results given by the
structures calculated with local pseudopotentials do not agre@onlocal pseudopotentials. It is therefore worthwhile to re-
well with the results of nonlocal pseudopotentials; indeed fowisit the properties of the local pseudopotentials described in
Si, the local pseudopotential wrongly gives the energy of fcahe preceding section and identify the features that lead to
slightly lower than that of diamond. the results presented in this section.

The calculated band structures for a diamond structure at The good transferability of the nonlocal pseudopotential
the optimized lattice constant given in Table Il are shown inis due to the norm conservation, i.e., it reproduces all-
Figs. 4—6 for Si, Ge, and Sn, respectively. For Si, the banelectron energy eigenvalues, and generates pseudo-wave-
structure given by our nonlocal pseudopotential is in veryfunctions that are properly normalized and coincide with the
good agreement with the published result obtained frontorresponding all-electron wave functions outside the core.
similar calculations at the experimental lattice consfint. By construction, our local pseudopotential has the same
The band structure from our local pseudopotential agreeground-state density as the corresponding nonlocal pseudo-
reasonably well with the one from the nonlocal pseudopotenpotential, so that the occupiexland p local pseudo-wave-
tial, although there are differences in the band widths andunctions together, as a pair, are correctly normalized, but not
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FIG. 4. The band structure of a Si diamond given by Idsalid

curves and nonlocaldashed curvegpseudopotentials. Energies are
measured from the highest-occupied state.

differences and energy eigenvalues such as excitation and
ionization energies and band structures.

The local bare ion pseudopotentials that we have obtained
deviate slightly from—4/r outside the core, and this causes
numerical problems which affect the equilibrium crystal
structures. We removed this tail in a rather arbitrary fashion.
A systematic method for obtaining bare ion potentials which
have the correct form outside the core could be based on the

FIG. 3. The total energies of a diamond and a fcc structure agariational principle for the Kohn-Sham potential with the
functions of the lattice constant obtained by local and nonlocalygre ion potential fixed at 4/ outside the core and varying

pseudopotentialpp) calculations on Si, Ge, and Sn.

individually. Consequently, the energy dependence ofsthe
andp-wave scattering at valence energies is incorrect. How-
ever, except for C, the local pseudo-wave-functions agree
fairly well with the corresponding nonlocal pseudo-wave-
functions, as seen in Fig. 1.

We also treated the dimer and the diamond structure of C
using the local pseudopotential. The nonlocal pseudopoten
tial gives fairly good results for the dimer bond length %
1.29 A and lattice constant 3.525 A compared with the ex-,
perimental value 1.24 & and 3.567 A respectively. But, &
the local pseudopotential gave-a10% error in the dimer ™
bond length and converged results for the diamond structure
could not be obtained, probably because of the poor conver
gence of the Fourier components of the pseudopotential du
to the large spike in the local pseudoion potentialr asO
(cf. Fig. 2.

As shown in Table I, the local pseudopotentials do not
reproduce well the energy differences betwsamdp states,
except for Ge. The reasonable results for bond lengths ana

lattice constants suggest that correct energy eigenvalues of FIG. 5. The band structure of a Ge diamond given by local

-10

-12

-14

inside the core only.

r

K wWZ X

the pseudoatom may not be critical for these propertiesisolid curve$ and nonlocaldashed curvégpseudopotentials. Ener-
However, they are crucial for properties involving energygies are measured from the highest-occupied state.
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FIG. 6. The band structure of a Sn diamond given by I¢salid
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using the density from a nonlocal pseudopotential calcula-
tion. The scheme for inverting an electron density to a local
KS potential is applied here to group-IV elements but is not
limited to these, as shown in earlier wdfk!>**The poten-

tial generated in this way is the local equivalent of the full
nonlocal pseudopotential. The local pseudopotentials give
fairly good results on bond lengths of dimers and lattice
constants of solids for Si, Ge, and Sn. The results related to
energies and energy eigenvaluesy., atomic excitation en-
ergies and band structures of sojidi not agree so well
with those given by nonlocal pseudopotentials. Nevertheless,
our work indicates the important features required by a good
local pseudopotential for a group-IV element, namely, the
properly normalized and reasonably accurate pseudo-wave-
functions, the correct long-range Coulomb tail, and accurate
s-p splitting. In addition, we believe the local pseudopoten-
tial for Ge presented in this work can be usefully applied in
efficient orbital-free calculations, which are currently re-
stricted to the use of local pseudopotentials, and orbital-free
simulations of liquid Ge are in progress. We are also inves-
tigating the degree to which the local pseudopotential can be

curves and nonlocaldashed curvggpseudopotentials. Energies are optimized by employing the flexibility in the nonlocal

measured from the highest-occupied state.

V. CONCLUSIONS

pseudopotential in the core region.
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