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Renormalization group analysis of magnetic and superconducting instabilities
near van Hove band fillings
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Phase diagrams of the two-dimensional one-bandt-t8 Hubbard model are obtained within the two-patch and
temperature-cutoff many-patch renormalization group approaches. At smallt8 and at van Hove band fillings
antiferromagnetism dominates, while with increasingt8 or changing filling antiferromagnetism is replaced by
d-wave superconductivity. Neart85t/2 and close to van Hove band fillings the system is unstable towards
ferromagnetism. Away from van Hove band fillings this ferromagnetic instability is replaced by a region with
dominating tripletp-wave superconducting correlations. The results of the renormalization-group approach are
compared with the mean-field results and the results of theT-matrix approximation.
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I. INTRODUCTION

The close relation between antiferromagnetism~AF! and
d-wave superconductivity~dSC! was the subject of intensiv
investigations during the last two decades~see, e.g., Refs
1–5!. In particular, it was argued that the superconduct
properties of high-Tc ~HTSC! materials are intimately relate
to their inherent antiferromagnetic correlations, and ma
features of these materials were explained from the poin
view of competition between antiferromagnetic and sup
conducting correlations.3 On the other hand, AF spin fluctua
tions also serve as the natural candidate for the pai
mechanism of dSC.4,5A distinctly different physical situation
is realized in the layered ruthenate Sr2RuO4, which is an
unconvential and most likely triplet superconductor.6 It was
proposed that the pairing in this material results from fer
magnetic spin fluctuations.7,8 Although inelastic neutron
scattering has so far been unsuccessful in detecting sig
cant low-energy ferromagnetic spin fluctuations in th
material,9 this idea finds experimental support from the r
cent measurements of the susceptibility of the electron do
compound Sr22xLaxRuO4,10 which revealed a tendency to
wards ferromagnetism with La doping. Furthermore, the i
electronic compound Ca2RuO4 also shows ferromagnetism
under hydrostatic pressure.11

Both copper-oxide systems and Sr2RuO4, are layered ma-
terials. Therefore both systems motivate the investigation
the competition and the mutual interplay between magn
and superconducting instabilities in two-dimensional~2D!
correlated electron systems. For this type of analysis i
important to account for specific band structure related p
nomena, namely, for the form of the Fermi surface~FS! and
the electronic dispersion. The influence of the shape of
FS on superconducting and magnetic properties is of inte
from both theoretical and experimental points of view, a
the theoretical analysis can be guided by material-spe
information obtained from angle-resolved photoemiss
~ARPES! experiments.12–15

The simplest theoretical model which allows one to inv
0163-1829/2003/68~19!/195101~12!/$20.00 68 1951
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tigate the effect of the band dispersion on magnetic orde
and superconductivity of 2D systems is the single-bandt-t8
Hubbard model on a square lattice which takes into acco
both nearest-neighbort hopping and next-nearest-neighbort8
hopping. This model is often discussed in connection w
HTSC compounds, and it describes well the shape of the
of cuprate superconductors observed in ARPES.12–14 In par-
ticular, the valuet8/t50.15 was chosen for La2CuO4 and the
valuet8/t50.30 for the Bi2212 system16 in the tight-binding
parametrization of the relevant electronic band for the Cu2

planes, although the realistic modeling of the latter bilay
material requires the inclusion of interlayer hopping as w
On the other hand, Sr2RuO4 has three relevant bands.17 In-
terband effects are not negligible in this material, and m
even prove important for the origin of unconvention
superconductivity.18

Already in early mean-field and quantum Monte Ca
~QMC! studies of thet-t8 Hubbard model19 it was found
that, depending on the ratiot8/t and the band filling, differ-
ent types of instabilities are possible. For smallt8/t near
half-filling the FS is almost nested, which is the origin
antiferromagnetism in the weak-coupling regime.t8 hopping
destroys the perfect nesting property of the FS and there
leads to a ‘‘frustration’’ of the antiferromagnetism due to t
hopping processes on the same sublattice and may ther
favor the emergence of a superconducting state.20 Further-
more, t8 hopping also weakens the tendency towards str
formation,21 and by the suppression of this alternative ins
bility superconducting fluctuations may be enhanced. At
same time, larger values oft8 move the system closer to
ferromagnetic instability, since fort8/t close to 1/2 the dis-
persion is flattened close to the bottom of the band. T
leads to flat-band ferromagnetism22 at low densities which
was investigated earlier for the 2Dt-t8 Hubbard model
within the T-matrix approximation23,24 and projected QMC
simulations.25

The interplay of antiferromagnetism andd-wave super-
conductivity in the one-bandt-t8 Hubbard model was
recently reconsidered within one-loop many-patch ren
©2003 The American Physical Society01-1
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malization-group~RG! approaches.26–28 It was indeed veri-
fied that with increasingt8 and/or decreasing band fillin
antiferromagnetism is replaced byd-wave superconductivity
In the early RG approaches of Refs. 26–28 particle-h
scattering at small momenta was not treated on an e
footing with other types of scattering, and therefore the
analyses were unable to search for a possible ferromag
instability ~see the discussion in Refs. 29 and 30!. It was
shown in Ref. 31 however, that particle-hole scattering
small momenta does indeed lead to the appearance of a
romagnetic phase at large enought8/t and at van Hove~vH!
band fillings; the onset of dominant ferromagnetic corre
tions was found to occur fort8/t.0.27. However, unlike in
Refs. 26–28, the contribution of the Cooper channel was
taken into account in Ref. 31. The possibility of a ferroma
netic instability was also investigated within a simplifie
two-patch RG scheme,29 which considers only the scatterin
of electrons in the vicinity of the ‘‘singular’’ points (p,0)
and (0,p) in momentum space, and therefore gives only
rough picture of the RG scaling behavior of the coupli
constants. The temperature-cutoff version of the many-pa
RG approach~TCRG! recently introduced by Honerkam
and Salmhofer30 includes the contributions of the whole Bri
louin zone and uses the temperature as a natural low-en
cutoff parameter in order to avoid the technical difficulti
with the inclusion of small-momentum particle-hole scatt
ing. It was demonstrated in Refs. 29 and 30 that a pro
account of all scattering channels indeed leads to ferrom
netism at large enought8/t. Moreover, the critical value o
(t8/t)c for the stability of ferromagnetism isU dependent29

~unlike the results of Ref. 31!, in particular forU→0 ferro-
magnetism exists only in the flatband low-density lim
(t8/t)c→1/2, in qualitative agreement with the results of t
T-matrix approximation for the effective electron-electron
teraction vertex.23 Naturally, ferromagnetic andd-wave su-
perconducting fluctuations tend to suppress each other29,30

The suppression of ferromagnetism by superconducting fl
tuations is reminiscent of the well-known Kanamo
screening.32 On the other hand, as shown in Ref. 30, t
tendency towardstriplet superconductivity is enhanced b
ferromagnetic fluctuations and may exist in the vicinity o
ferromagnetic phase. Note that the Pomeranchuk instab
which was proposed for smallt8 in Ref. 33, was shown to be
a nonleading instability in thet-t8 Hubbard model.34

Although the one-loop approximations described abo
do not account for self-energy corrections, we expect t
these effects do not change qualitatively the results of
one-loop analysis. The Fermi surface shift28 and the quasi-
particle residues35 calculated within the one-loop approxima
tion show that the self-energy effects are much smaller t
the effects of the vertex renormalization, at least in the we
coupling regime.

With these recent results it appears as a natural tas
investigate systematically the weak-coupling phase diag
of the 2D Hubbard model within the one-loop RG approa
Earlier, such an analysis was performed only with the m
mentum cutoff RG versions,26–28 which, as we discusse
above, do not allow one to include the contribution of ferr
magnetic fluctuations. Previous studies of the model with
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inclusion of all electron scattering channels were perform
either in the two-patch RG scheme,29 which is restricted to
vH band fillings or within the TCRG approach,30,34which so
far was applied only for some selected parameter values

The purpose of the present paper is to investigate syst
atically different types of instabilities of thet-t8 Hubbard
model within one-loop two-patch and the many-patch TCR
approaches. The paper is organized as follows. In Sec. II
give a summary of the RG methods we use. In Sec. III
present the phase diagrams obtained and compare the re
with previous investigations of thet2t8 Hubbard model. In
Sec. IV we discuss the results and conclude.

II. RENORMALIZATION-GROUP APPROACHES

We consider thet-t8 Hubbard model

H52 (
i j s

t i j cis
† cj s1U (

i
ni↑ni↓2~m24t8!N, ~1!

where the hopping amplitudet i j 5t for nearest neighbor site
i and j and t i j 52t8 for next-nearest neighbor sites (t,t8
.0) on a square lattice~we have shifted the chemical po
tential m by 4t8 for further convenience!. In momentum
space Eq.~1! reads

H5 (
ks

«kcks
† cks

1
U

2N2 (
k1k2k3k4

(
ss8

ck1s
† ck2s8

† ck3s8ck4sdk11k22k32k4
,

~2!

where the Kroneckerd symbol ensures momentum conse
vation and the dispersion has the form

«k522t~ coskx1 cosky!14t8~ coskx cosky11!2m,
~3!

where the lattice constant is set to unity. The tight-bindi
spectrum~3! leads to vH singularities~vHSs! in the density
of states arising from the contributions around the poi
kA5(p,0) andkB5(0,p). These singularities lie at the FS
m50. For t850 the corresponding filling isnVH51 and the
FS is nested, but the nesting is removed for anyt8Þ0. The
dependence of the vH band filling ont8 is shown in Fig. 1.

The standard RG strategy for fermion systems36 is to in-
tegrate out step by step the electronic states which are
from the FS~i.e., the states with the energyL2dL,«k
,L at each RG step!. This procedure meets a difficult
when it is applied to a FS with singular points, i.e., the poi
kF

s with vanishing Fermi velocity¹«kuk5k
F
s 50, as in points

kA andkB . In this case, the states with the same excitat
energy «k become inequivalent: the excitations with m
menta closer to the singular points produce more diverg
contributions to the renormalization of the electron-electr
interaction vertices than the excitations with momenta
from the singular points. Therefore, an additional separa
of the momenta besides the standard separation into ‘‘slo
1-2
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(«k,L) and ‘‘fast’’ («k.L) modes is needed. The two
patch approach which we consider in Sec. III A accou
only for the most singular contributions coming from th
immediate vicinities of the singular points. The more soph
ticated many-patch approaches of Refs. 26–28 and 30~see
Sec. III B! take into account the momentum dependence
the interaction in a more accurate way by introducing a se
patches which cover the entire Brillouin zone and para
etrize the interactions by the position of incoming and o
going momenta on the patched FS.

A. Two-patch renormalization-group approach

The two-patch approach29,37,38is restricted to the vH band
fillings only. At these fillings the density of states at th
Fermi energy and the electron-electron interaction vertice
momentak i5kA,B contain logarithmic divergencies arisin
from the momentum integrations in the vicinity of the poin
kA,B . Therefore these contributions are the most import
for the calculation of the renormalized interaction vertic
Accordingly, we subdivide the momentum space into th
types of regions~see Fig. 2!. Region I with kPO(A)
~O(B), where

O~A!5$k: uk2kAu,L`u«k /tu.e2L/uk2kAu%, ~4!

and similarly forO(B) (L is a momentum cutoff parameter!,
produces the most singular contribution to the renormal
tion of the vertices. Region II contains the electronic sta
which are close to the FS but far from vH singularities. It c
be proven that the contributions of region II to the renorm
ization of the vertices is subleading in comparison with
contributions of region I, provided thatt8/t is not small, i.e.
if the nesting effects are not important. Finally, region
contains the excitations which are far from both, the FS a
vHS and do not produce diverging contributions to any qu
tity. Therefore, in the simplest approximation it is reasona
to neglect the contributions of regions II and III altogether
more accurate treatment within the many-patch RG appro
will be performed in Sec. III.

To account for the excitations with momenta in region I
is convenient to introduce new electron operatorsak andbk
by

FIG. 1. The dependence of the van Hove band filling ont8/t.
19510
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For momentakPO(A)~O(B) in the vicinity of the vH
points the dispersion is expanded as

«kA1p[«p
A522t~ sin2 w px

22 cos2 w py
2!2m

522tp1p22m, ~5a!

«kB1p[«p
B52t~ cos2 w px

22 sin2 w py
2!2m

52t p̃1p̃22m, ~5b!

where cos (2w)5R52t8/t, p65px sinw6py cosw, and p̃6

5px cosw6py sinw. Using the new electron operators w
write the effective Hamiltonian in the form

H5 (
ps

«p
Aaps

† aps1 (
ps

«p
Bbps

† bps

1
2p2t

N2 (
pi ,ss8

@g1~l!ap1s
† bp2s8

† ap3s8bp4s

1g2~l!ap1s
† bp2s8

† bp3s8ap4s#dp11p22p32p4

1
p2t

N2 (
pi ,ss8

@g3~l!ap1s
† ap2s8

† bp3s8bp4s

1g4~l!ap1s
† ap2s8

† ap3s8ap4s1a↔b#dp11p22p32p4
,

~6!

where

FIG. 2. The division of momentum space into patches in
two-patch approach. Region I contains the momenta closest to
vH singularity pointskA and kB , region II contains the momenta
which are close to the FS but far from vH singularities, and reg
III contains the momenta far from both, FS and vH singularities
1-3
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FIG. 3. The four types of vertices considere
in the two-patch approach:~a! and~b! correspond
to exchange and direct scattering between diff
ent vH singularities respectively.~c! Umklapp
scattering.~d! Intrapatch scattering. The incom
ing and outgoing momenta with equal spin a
connected by solid lines inside the vertices.
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l5 ln ~L/max~pi 1 ,pi 2 ,p̃i 1 ,p̃i 2 ,T/t !; ~7!

the summation in Eq.~6! is restricted to momentapi with
upi u,L and u«kA,B1pi

/tu.e2L/upi u.

As shown in Fig. 3, the verticesg1 to g4 represent differ-
ent types of scattering processes of electrons with mom
close to the vHS. The bare value for all four vertices isgi

0

5U/(4p2t). The momentum dependence of the vertex
side region I is accounted for through the scaling variabll
only. Note, however, that the momentum dependence of
electronic spectrum within each patch is correctly taken i
account in the two-patch approach.

To obtain the dependence of the verticesgi on l we in-
tegrate out at each RG step the fermionsap with momenta
Le2l,p6,Le2l2dl, and fermions bp with momenta
Le2l, p̃6,Le2l2dl ~see the detailed description in Re
39!. As argued above we neglect the renormalization of
gi arising from the regions II and III of Fig. 2, since th
leads to subleading corrections at weak coupling. We de
mine the RG equations for the verticesgi(l) in the
forms29,37–39

dg1 /dl52d1~l!g1~g22g1!12d2g1g422 d3g1g2 ,

dg2 /dl5d1~l!~g2
21g3

2!12d2~g12g2!g42d3~g1
21g2

2!,

dg3 /dl522d0~l!g3g412d1~l!g3~2g22g1!, ~8!

dg4 /dl52d0~l!~g3
21g4

2!1d2~g1
212g1g222g2

21g4
2!,

where

d0~l!52l/A12R2, d252/A12R2,

d352 tan21 ~R/A12R2!/R,

d1~l!52min$l, ln @~11A12R2!/R#%. ~9!

Equations~8! have to be solved with the initial condition
gi(0)5gi

0 .
The authors of Ref. 31 argued that kinematic restrictio

lead to the absence of particle-particle scattering contr
tions to the verticesgi (d05d350 in our notations!. This
conclusion however is connected with the difficulty of t
infinitesimal version of Wilson’s RG approach with a sha
momentum cutoff, since this approach does not allow on
treat vertices with nonzero momentum transfer, correctly
artificially gives no renormalization for such vertices.40 That
is why in the present approach we consider the vertices a
special vH points only, rather than considering vertices w
arbitrary momentum transfers. Note that this difficulty do
19510
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not arise in Wilson’s RG approach with a smooth cuto
and/or discrete RG transformations,40 as well as in the exac
RG schemes currently used~i.e., Polchinski, the Wick or-
dered, or the 1PI scheme; see Sec. III!. In this case particle-
particle scattering contributes to the renormalization of
vertices with arbitrary momenta.

In order to explore the possible instabilities of the syste
we consider the behavior of the zero-frequency, time-orde
response functions

xm5 E
0

1/T

dt^T@Ôm
† ~t!Ôm~0!#&; ~10!

in the zero-temperature limitT→0. Ôm(t) are the following
operators:

ÔAF5
1

N (
k

sck,s
† ck¿Q,s ,

ÔdSC5
1

N (
ks

f ksck,s
† c2k,2s

† ,

ÔF5
1

N (
ks

sck,s
† ck,s , ~11!

in the Heisenberg representation,T is the imaginary time
ordering operation, andQ5(p,p). The order parameter
which correspond top-wave pairing.

ÔpSC
x,y 5

1

N (
ks

hk
x,yck,s

† c2k,2s
† , ~12!

with hk
x,y5 sinkx,y are irrelevant with the restriction of mo

menta to the vicinities of vH points, sincehkA,B
50, and

therefore the possibility of triplet pairing cannot be cons
ered within the two-patch approach. However, these or
parameters can be taken into account in many-patch
proaches~see Sec. III B!.

Picking up the logarithmical divergences inl we obtain
the RG equations for the dimensionless susceptibilitiesxm
52p2txm in the same approximations as discussed ab
~cf. Refs. 29, 37 and 38!:

dxm~l!/dl5dam
~l!Rm

2 ~l!,

d lnRm~l!/dl5dam
~l!Gm~l!, ~13!

where the coefficientsGm (m5AF, dSC, or F! are given by
1-4
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GAF5g21g3 , GF5g11g4 ,

GdSC5g32g4 . ~14!

In Eqs. ~13! adSC50, aAF51, and aF52. Equations~13!
have to be solved with the initial conditionsRm(0)
51, xm(0)50.

The numerical solutions of Eqs.~8! show that, at a critical
valuelc of the scaling parameterl, some of the vertices an
susceptibilities are divergent. For a givenlc the sizeL of
the patches is restricted by ln (4/L)!lc . The latter criterion
follows from the condition that the contribution of the ele
trons with uk6u,L to particle-hole and particle-particl
bubbles is dominant~see, e.g., Ref. 41!. We chooseL51
and requirelc@ ln 4.1. Sincelc decreases with increasin
interaction strength, this criterion defines the interact
range where the two-patch RG approach is valid.

As an example, in Figs. 4 and 5 we show the result of
numerical solutions of Eqs.~8! for U52t and two different
choices oft8/t50.1 andt8/t50.45. The behavior of the cou
pling constants is qualitatively different in these two cas
While in the first case we haveg2,3 flowing to 1`, g4 to
2`, and g1 is mostly unchanged during the RG flow~we

FIG. 4. ~a! Scaling behavior of the coupling constants att8/t
50.1. The solid line corresponds tog1, the dashed line tog2, the
dash-dotted line tog3, and the dotted line tog4. ~b! Scaling behav-
ior of the susceptibilities att8/t50.1. The solid line corresponds t
the AF susceptibility, the dashed line to the dSC susceptibility,
the dotted line to the F susceptibility. The interaction strength
U52t.
19510
n

e

.

denote the corresponding combination (m112), the signs
correspond to the behavior of the coupling consta
g1-g4 , m means marginal. In the second caseg1,2,4 grow to
1` while g3 goes to zero, i.e., we observe a (1101)
behavior of the coupling constants. The comparison of
corresponding susceptibilities shows that fort8/t50.1 the
antiferromagnetic susceptibility is the most divergent, wh
in the caset8/t50.45 the ferromagnetic susceptibility dom
nates and therefore the two different coupling constant flo
reflect two different instabilities of the system. We discu
the complete phase diagram at vH band fillings in Sec. III

B. Many-patch renormalization-group analysis

In the many-patch analysis we follow the temperatu
cutoff RG for one-particle irreducible Green functions pr
posed recently by Honerkamp and Salmhofer in Ref.
This version of the RG uses the temperature as a nat
cutoff parameter, allowing one to account for both the ex
tations with momenta close to the FS and far from it, whi
is necessary for the description of instabilities which ar
from zero-momentum particle-hole scattering, e.g., fer
magnetism. Neglecting the frequency dependence of the
tices, which is considered not important in the wea
coupling regime, the RG differential equation for th
temperature- and momentum-dependent electron-electro
teraction vertex has the form30 ~see Fig. 6!

d
s

FIG. 5. The same as in Fig. 4 fort8/t50.45.
1-5
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d

dT
VT~k1 ,k2 ,k3!52

1

N (
p

VT~k1 ,k2 ,p!Lpp~p,2p1k11k2!VT~p,2p1k11k2 ,k3!

1
1

N (
p

@22VT~k1 ,p,k3!VT~p1k12k3 ,k2 ,p!1VT~k1 ,p,k3!VT~k2 ,p1k12k3 ,p!

1VT~k1 ,p,p1k12k3!VT~p1k12k3 ,k2 ,p!#Lph~p,p1k12k3!

1 (
p

VT~k1 ,p1k22k3 ,p!Lph~p,p1k22k3!VT~p,k2 ,k3!, ~15!
n

ur
tib

-

ns

.

ces

ri-

e

is

e

ns

ta-

r
apo-
e

RG
e
me

the
ded
where

Lph~k,k8!5
f T8~«k!2 f T8~«k8!

«k2«k8

,

Lpp~k,k8!5
f T8~«k!1 f T8~«k8!

«k1«k8

, ~16!

and f T8(«)5df («)/dT, f («) is the Fermi function. Equation
~15! has to be solved with the initial conditio
VT0

(k1 ,k2 ,k3)5U where the initial temperatureT0 is of the
order of the bandwidth.

The evolution of the vertices with decreasing temperat
determines the temperature dependence of the suscep
ties according to30,34

d

dT
xmT5 (

k8
RmT~k8!RmT~7k81qm!

3Lpp,ph~k8,7k81qm!,

d

dT
RmT~k!57 (

k8
RmT~k8!GmT~k,k8!

3Lpp,ph~k8,7k81qm!, ~17!

where

GmT~k,k8!5H VT~k,k8,k81qm! for m5AF or F

VT~k,2k,k8! for m5dSC or pSC.
~18!

qm5Q for the AF susceptibility andqm50 otherwise. The
upper signs andpp indices in Eq.~17! refer to the supercon
ducting instabilities~dSC and pSC!, and the lower signs and
ph indices to the other susceptibilities. The initial conditio
for Eqs.~17! are

Rm,T0
~k!5H coskx2 cosky for dSC

sinkx,y for pSC

1 otherwise,

~19!

and xm,T0
50. To solve Eqs.~15! and ~17! numerically, we

use the discretization of momentum space inNp548 patches
and the same patching scheme as proposed in Ref. 30
19510
e
ili-

By

exploiting the symmetries of the square lattice, this redu
the above integrodifferential equations~15! and~17! to a set
of 5824 differential equations which were solved nume
cally. We use the value of the starting temperatureT0
512t, which is slightly larger than the bandwidth, and w
stop the flow of the coupling constants at the temperatureTX
when the maximum absolute value of the vertex function
larger thanVmax518t. Note that the initialk dependence of
vertices ~19! is slightly changed during the RG flow: th
vertices which correspond tod- andp-wave superconductiv-
ity acquireg- andf-wave~and even higher order! harmonics,
respectively, and the vertices which haves-wave symmetry
~F, AF! acquire an additional extendeds-wave (coskx
1 cosky) component. However, these additional correctio
are small.

To extract more detailed information about different ins
bilities we extrapolate the inverse susceptibilitiesxmT

21 to
temperatures lower thanTX . For magnetically ordered o
superconducting ground states the corresponding extr
lated inverse susceptibilitiesxmT

21 vanish at some temperatur

FIG. 6. Diagrammatic representation for the many-patch
equations,@Eq. ~15!#. Lines drawn through the vertices show th
direction of the spin conservation. Diagrams are drawn in the sa
order as the respective terms in Eq.~15!. The cutting dash at the
propagator lines means the derivative with respect toT ~for brevity
we indicate only the derivative of one of the propagators,
same diagrams with derivatives of another propagator are inclu
as well!.
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Tm* belowTX . The vanishing of the inverse susceptibilities
finite temperatures is an artifact of the one-loop RG appro
and should be understood to determine a crossover temp
ture into a renormalized classical regime with strong m
netic or superconducting fluctuations and exponentially la
correlation lengthj} exp (A/T) for F and AF instabilities
~see the Appendix! andj} exp (A/AT2TBKT) for supercon-
ducting instabilities. TBKT is the Berezinskii-Kosterlitz-
Thouless transition temperature which arises because th
perconducting transition in two dimensions is in the sa
symmetry class as the classical 2DXY model.45,46Although
the inverse magnetic susceptibilities must be finite atT
,TF,AF* , they are exponentially small, since in this regim
xF,AF

21 }j22, cf. Refs. 42–44. The same concerns the sup
conducting susceptibilities in the temperature rangeTBKT

,T,TdSC,pSC* , where critical behaviorxdSC, pSC
21 }j221h

(h>1/4 is the critical exponent for the susceptibility! as for
the XY model45 is expected. AtT,TBKT the superconduct
ing correlations have a power law decay in real space and
inverse static uniform order parameter susceptibility does
deed vanish.

III. RESULTS AND PHASE DIAGRAMS

A. van Hove band fillings

First we trace the vH band fillings at differentt8, which
are determined by the conditionm50. The corresponding
phase diagram int82U coordinates is plotted in Fig. 7. Soli
lines correspond to the phase boundaries obtained within
two-patch approach, while the symbols show different typ
of instabilities obtained within the many-patch RG scheme47

Our many-patch results forU53t agree quantatively with
those obtained previously in Ref. 30.

In both approaches we find antiferromagnetism for sm
t8, ferromagnetism fort8 close to 1/2, andd-wave supercon-
ductivity for intermediatet8. The t8 range with a tendency
towardsdSC decreases with increasingU. For intermediate
t8/t the susceptibilities with momentaQÄ(p2d,p) are
stronger than the antiferromagnetic susceptibility. The
commensurate magnetic regions are indicated in Fig. 7
well. In the regiont8/t;0.3 the behavior of the coupling
constants in the two-patch approach becomes ‘‘frustrate
namely, allgi→0 with increasingl. This frustration is the
consequence of the competition of antiferromagnetic and
perconducting instabilities from one side and the ferrom
netic instability from the other side, and therefore att8/t
.0.2 neither the antiferromagnetic nor the superconduc
susceptibility diverges in the two-patch approach. The ma
patch approach suffers less from this problem; the frustra
behavior of the vertices is observed only very close to
boundary of ferromagnetic and antiferromagnetic or sup
conducting phases.

The boundary to the ferromagnetic phase appears alm
identical in two- and many-patch approaches, but the tw
patch approach fails to reproduce the location of the ph
boundary between the antiferromagnetic and supercond
ing phases for smallt8. This is similar to the results for the
extendedU-V-J Hubbard model.39 As mentioned in Sec. II
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A, this difference is traced to the same behavior (m112)
of the coupling constants on approaching AF and dSC in
bilities, while the ferromagnetic phase is signaled by a d
ferent behavior of the coupling constants (1101). Further-
more, the near-nesting effects, which are not accounted fo
the two-patch RG approach become particularly importan
small t8/t.

In Fig. 7 we also mark the result of Alvarezet al.31 for the
boundary of the ferromagnetic phase, obtained by neglec
the contribution of particle-particle scattering. In this ca
the corresponding two-patch RG equations can be so
analytically, since the coefficientsdi in Eq. ~8! becomel
independent. The main difference in comparison with R
31 is that particle-particle scattering leads to aU dependence
of the critical value (t8/t)c for the appearance of ferromag
netism so that (t8/t)c→1/2 for U→0 in qualitative agree-
ment with the results of theT-matrix approximation.23 At the
same time, neglecting particle-particle scattering giv
(t8/t)c.0.27, independent ofU. Note that the value (t8/t)c
is determined by the condition of equal noninteracti
particle-hole susceptibilitiesx0(0)5x0(Q), and therefore
coincides with the ‘‘mean-field’’ criterion for the boundary o
the ferromagnetic phase.

B. Antiferromagnetic instability at small t 8

The caset850 for fillings close ton51 was intensively
studied previously within momentum-cutoff RG

FIG. 7. Phase diagram at vH band fillings as obtained from tw
and many-patch RG analyses. Solid lines correspond to the p
boundaries obtained within the two-patch RG analysis. The sym
show the results of the many-patch RG approach: closed cir
correspond to AF, open circles to incommensurate (p,p2d) order,
diamonds to dSC, and triangles to the F phase. The long-dashed
is the boundary of the ferromagnetic phase obtained in Ref. 31~see
the text!.
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A. A. KATANIN AND A. P. KAMPF PHYSICAL REVIEW B 68, 195101 ~2003!
approaches.26,27We plot the results of TCRG att850 in Fig.
8. There is a line of critical concentrationsnc(U) such that
for n,nc(U) the extrapolated inverse susceptibilityxAF

21

does not reach zero for any temperature and the ground
is expected not to have long-range antiferromagnetic or
For comparison, we also plot the result for the critical co
centrations obtained within the momentum-cutoff RG a
proach~Ref. 27!. Both approaches give practically indistin
guishable results for the critical fillings wher
antiferromagnetism disappears. Mean-field theory predic
broader concentration range for the stability of antiferrom
netism, see Fig. 8. It was proven by van Dongen48 that for
large space dimensionalityd@1 andU!t the critical hole
concentrationdc512nc is reduced in comparison with it
mean-field valuedc

MF by a finite factor qd . To analyze
whether this remains true ford52 we consider theU depen-
dence of the ratioq(U)5dc /dc

MF . We find that q(U)
slightly decreases with decreasingU and it is saturating a
q(0).0.460.025. Surprisingly, the formal application o
the results of 1/d expansion in Ref. 48 tod52 gives a close
value,q250.3.

We have verified that within the antiferromagnetic pha
at t850 the susceptibilities at wave vectorsQÞ(p,p) are
always smaller than the susceptibilityxAF , so that the ten-
dency towards incommensurate magnetic order is sublea
in comparison with commensurate (p,p) order. The fact that
we identify commensurate AF even away from half-fillin
may be reconciled with the possibility that the system dev
ops inhomogeneous spin and charge structures~e.g., phase

FIG. 8. ~Color online! Phase diagram fort850. The dashed line
is the mean-field phase boundary between antiferromagnetic
paramagnetic phases, and the solid line is the boundary of the
tiferromagnetic phase obtained from the temperature-cutoff ma
patch RG approach. The corresponding result of Ref. 27 for
boundary of the antiferromagnetic phase is shown by the do
line. The dot-dashed, dot-dot-dashed, and dot-dot-dot-dashed
are contour lines for thed-wave superconductiving crossover tem
perature into the renormalized classical regimeTdSC* 5e25t,e26t,
and e27t, respectively~see the text!. The inset shows the phas
diagram inm-U coordinates.
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separation!, as obtained in the mean-field studies of the Hu
bard model49 and the weak-coupling results in hig
dimensions.48

Outside the antiferromagnetic region we find the tende
towardsdSC as observed previously in Refs. 27 and 34. T
values of the crossover temperatureTdSC* rapidly decrease
away from the antiferromagnetic phase; in Fig. 8 we sh
the contour lines with ln (t/TdSC* )55,6, and 7. The contou
lines with largerTdSC* cannot be traced within the present R
analysis: because of strong fluctuations near the AF ph
the coupling constants reachVmax518t before thed-wave
susceptibility becomes large. On the other hand, smallerTdSC*
~and correspondingly larger deviations from half filling! are
hard to treat too, because of the difficulties with the nume
cal integrations in Eqs.~15! since the integrands contai
sharp Fermi functions at small temperatures.

The half-filled case at differentt8 was investigated
previously within a mean-field analysis,50–52 QMC cal-
culations,19,51 and a path-integral RG.53 Different methods
predict different values of the critical interactionUc for the
onset of antiferromagnetism at fixedt8. In particular for
t8/t50.2 QMC results on an 838 lattice19,51 at T50.25t
yield Uc52.5t, while a path-integral RG~Ref. 53! gives
Uc53.4t. The result of the mean-field approach for the sa
t8/t is Uc52t.50–52 We present our phase diagram as o
tained from the many-patch RG analysis in Fig. 9; symb
show the critical valuesUc obtained by other methods. A
expected and in agreement with previous studies, the crit
Uc is larger than the mean-field value for allt8. At the same
time, theUc result of the TCRG att8/t50.2 is larger than
that from QMC calculations, but it agrees well with the pat
integral RG result in Ref. 53.

Again, we find the tendency towardsdSC away from the
AF region; in Fig. 9 we show the contour lines which corr

nd
n-

y-
e
d
es

FIG. 9. ~Color online! Phase diagram atn51 ~half-filled case!.
The notations are the same as in Fig. 8. The cross corresponds
critical Uc for the stability of the antiferromagnetic phase att8/t
50.2 as obtained from QMC calculations~Ref. 19!, the star marks
the result of the path-integral RG approach forUc ~Ref. 53!.
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spond to ln (t/TdSC* )55,6, and 7. Note that from the extrapo
lation of these data to largerU in the paramagnetic phas
(U,Uc) we always find ln (t/TdSC* ).3 in the weak-coupling
regime, i.e., a temperature regime which is far below
accessible temperature range in QMC simulations. Th
fore, it may be difficult if not impossible to observe the co
responding superconducting fluctuations in QMC calcu
tions on finite lattice sizes—at least in the weak
intermediate coupling regime.

C. Ferromagnetic instability

Now we investigate the ferromagnetic instability, whic
arises fort8/t close to 1/2. We start witht8/t51/2, when the
dispersion at the bottom of the band at smallkx or ky can be
expanded as

«k5H tkx
2~12 cosky!2m, kx!1

tky
2~12 coskx!2m, ky!1,

~20!

i.e., it has extended minima along the lineskx50 and ky
50 ~see Fig. 10! rather than a single minimum at the origi
as for t8/t,1/2. This peculiar flatness of the spectrum lea
to a square-root divergence of the density of states,r(«)
}«21/2 at the bottom of the band. Therefore in the low de
sity limit ~which is close to a vH band filling, sincenVH
50 for t8/t51/2), saturated ferromagnetism
expected.23–25 At t8/t51/2 the T-matrix approximation24

predicts rather high critical densities for the stability of fe
romagnetism, e.g.,nc50.57 for U54t. For t8/t50.45 and
U54t the same approach predicts ferromagnetism for d
sities 0.3,n,0.5; the smallest value oft8 at which ferro-
magnetism can exist was predicted to be (t8/t)c50.43 for
U54t. The projected QMC calculations25 confirmed the ex-
istence of ferromagnetism for (t8/t)c*0.47.

The phase diagram obtained within the TCRG appro
for t8/t51/2 is shown in Fig. 11. Similar to the antiferro
magnetic instability, mean-field theory overestimates the t
dency to magnetic order. The result of theT-matrix analysis
of Ref. 24 for the critical concentration of the stability o
ferromagnetism atU54t is marked by a cross. Surprisingl
this result is very close to the result of the RG approa
Similar to Ref. 48 one may introduce the quantityqF(U)

FIG. 10. ~Color online! The electronic dispersion a
t8/t51/2.
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5nc /nc
MF to measure the deviation from the mean-field

sult at t8/t51/2. The analysis of the data shows thatqF(U)
slightly increases with decreasingU andqF(U→0).0.8.

We have also explored the possibility for triplet (p-wave!
pairing in the vicinity of the ferromagnetic phase. Althoug
thep-wave pairing susceptibility is dominant in this region,
conclusive low-temperature extrapolation for the inverse s
ceptibility is not possible. Therefore, it is not clear whethe
finite crossover temperatureTpSC* exists. In any case the pos
sible values forTpSC* must be significantly smaller than th
crossover temperatures ford-wave superconductivity. The re
gion where ln (t/TX),8 is shown in Fig. 11 too. The growing
of the vertices near the ferromagnetic phase results from
triplet p-wave superconducting fluctuations, but, unfort
nately, the smallness of the temperature crossover sc
which is far below the range of applicability of the TCR
method prevents a safe conclusion about the possibility
p-wave superconducting ground state.

Now we consider the caset8/t,1/2, which is very differ-
ent from the above-discussed caset8/t51/2. The square-roo
divergence of the density of states is replaced by a logar
mical divergence at the energy of the vHS,r(«)} ln (t/«),
while the density of states is finite at the lower band ed
~see Fig. 12!. The phase diagram fort8/t50.45 is presented

FIG. 11. ~Color online! The phase diagram fort8/t51/2. The
long-dashed line MF~F! is the mean-field phase boundary betwe
ferromagnetic and paramagnetic phases, and the dot-dashed
MF~S! is the mean-field result for the boundary of saturated fer
magnetism. The solid line is the boundary of ferromagnetic ph
obtained from the temperature-cutoff many-patch RG approach,
the short-dashed line is the contour line above which the maxi
vertex reachVmax518t at the temperatureTX.e28t. TheT-matrix
phase boundary for the ferromagnetic phase~Ref. 24! at U54t is
marked by the cross. The inset shows the phase diagram inm-U
coordinates. pSC marks the region where the triplet supercond
ing susceptibility is dominating.
1-9
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A. A. KATANIN AND A. P. KAMPF PHYSICAL REVIEW B 68, 195101 ~2003!
in Fig. 13, where we again mark by cross the result of
T-matrix approximation. The ferromagnetic region subst
tially shrinks with decreasingt8: it reduces to a narrow den
sity window around the vH band fillingnVH50.465~the cor-
responding critical densities are almost symmetrical aro
nVH so that only the regionn.nVH is shown!. Nevertheless,
the ferromagnetic region is wider than in theT-matrix ap-
proximation. The same tendency is reflected in the RG re
for the critical value (t8/t)c'0.3 for the disappearance o
ferromagnetism atU54t, which is much lower than the re
sult of the T-matrix approximation cited above, (t8/t)c

50.43. As well as for the caset851/2 we find an increasing
triplet superconducting susceptibility away from the ferr
magnetic phase, while the possible corresponding cross
temperaturesTpSC* remain undetectably small.

FIG. 12. The noninteracting density of states fort850.45t.

FIG. 13. ~Color online! The phase diagram fort8/t50.45. The
notations are the same as in Fig. 11.
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IV. SUMMARY AND CONCLUSIONS

We have considered the phase diagrams of thet-t8 Hub-
bard model within two- and many-patch RG approaches
shown in Figs. 7, 8, 9, 11, and 13. Instabilities towards a
ferromagnetic or ferromagnetic order as well as to sing
d-wave superconductivity are identified in different para
eter regimes. Near the ferromagnetic region thep-wave su-
perconducting susceptibility is enhanced, but a conclus
about a possible triplet superconducting ground state rem
elusive.

At small t8 and vH band fillings the antiferromagnet
instability dominates. With increasingt8 antiferromagnetism
is replaced byd-wave superconductivity. At largert8/t fer-
romagnetism becomes the leading instability. The tende
towardsd–wave superconductivity decreases with incre
ing U while antiferromagnetism is enhanced. We found th
the two-patch approach correctly predicts the boundary
the ferromagnetic phase at vH band fillings, while it fails
reproduce correctly the boundary between antiferromagn
and superconducting phases at smallt8 where nearly nesting
effects become important.

Antiferromagnetism at smallt8 and ferromagnetism a
t8/t51/2 exist in broad density ranges around vH band fi
ings; the antiferromagnetism remains commensurate in
part of the phase diagram where the long-range orde
ground state is expected. The density ranges for magn
order, found from TCRG, are substantially narrower (2
times for the AF instability and 1.3 times for the F instabili
at smallU) than the corresponding mean-field results.

At half-filling at different t8 we find the critical interac-
tion strengths for the antiferromagnetic instability. From t
present analysis we cannot argue whether the antife
magnetic state we find is metallic or insulating. It w
proposed51 that at nonzerot8 there is a finite interaction
range Uc,U ,Uc8 for metallic antiferromagnetism, a
U.Uc8 it is replaced by the insulating AF state. On the oth
hand, the existence of a paramagnetic insulating stat
largert8 was conjectured in Ref. 53. Discriminating betwe
these possibilities requires the calculation of the conductiv
and the Drude weight, for which it is necessary to retain
frequency dependence of the vertices.

The boundary of ferromagnetism att85t/2 found from
TCRG is surprisingly close to theT-matrix approximation
result in Ref. 24 atU54t, although the corresponding filling
is not small and possibly outside the region of the validity
the T-matrix approximation. In the vicinity of antiferromag
netic and ferromagnetic phases we found regions with
hancedd-wave andp-wave superconductivity, respectivel
Not too close to the antiferromagnetic phase the crosso
temperatures ford-wave superconductivity into the corre
sponding renormalized classical regime with exponentia
large correlation length can be estimated from the extrap
tion to low temperatures of RG data for the order-parame
susceptibilities. At the same time, tripletp-wave supercon-
ductivity in the vicinity of the ferromagnetic phase possib
has much smaller crossover temperaturesTpSC* , which can-
not be determined safely from the present RG analysis.

The ferromagnetic phase substantially shrinks fort8/t
1-10
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,1/2 and the difference from the mean-field result increas
For this case, theT-matrix approach underestimates the te
dency towards ferromagnetism. The tendency towards tri
p-wave superconductivity in the vicinity of the ferromagne
phase persists, although its associated temperature cros
scale remains very low—significantly lower than ford-wave
superconductivity.

It remains an open issue how the above results cha
when the two-loop corrections to the RG equations are ta
into account, and how the electronic self-energy evolves
the vicinity of magnetic or superconducting instabilities. A
other interesting issue for future work remains the ques
of whether inhomogenous spin and charge structures are
sible near half-filling and whether the Pomeranchuk insta
ity may become the leading instability for anisotropic exte
sions of the 2D Hubbard model; if it does it is natural
connect this tendency to the stripe pattern formation in ra
earth doped La22xSrxCuO4. Furthermore, the tendency to
wards p-wave superconductivity near the ferromagne
phase of thet-t8 model suggests a possible route for futu
investigations of the origin of triplet pairing in Sr2RuO4.
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APPENDIX TEMPERATURE CROSSOVER
TO THE RENORMALIZED CLASSICAL REGIME

In this appendix we discuss how the temperature dep
dence of the magnetic susceptibilities changes at the cr
over to the renormalized-classical regime. As a first exam
we consider the 2D ferro- and antiferromagnetic Heisenb
models

H56J (̂
i j &

Si•Sj ~A1!

~plus corresponds to the antiferromagnet and minus to
ferromagnet,J.0). The susceptibility~staggered suscept
bility in the AF case! at high temperaturesT@J obeys the
Curie law

xF,AF5
C

T
, ~A2!

whereC5JS(S11)/3. On the other hand, at temperatur
T!J it was found from the RG analysis of the 2D nonline
sigma model42,43 that

xF,AF5C8
T

J2
j2, ~A3!

where
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j5CjH exp~2prs /T! AF

~T/J!1/2exp~2pJS/T! F
~A4!

is the correlation length,Cj ,C8 are temperature-independe
prefactors, andrs is the zero-temperature value of the sp
stiffness, which is proportional to the ground-state~sublat-
tice! magnetizationS0. Therefore, below the crossover tem
peratureT* ;2pJS0 (S05S for a ferromagnet! the suscep-
tibility becomes exponentially large.

Similar results can be obtained for the Hubbard mo
within the two-particle self-consistent approach.44 We have

xF,AF5
xQ

0 ~T!

12Usp~T!xQ
0 ~T!

, ~A5!

where QÄ(p,p) in the AF case,QÄ0 in the F case, and
xQ

0 (T)5x0(Q,0,T) is the zero-frequency limit of the bar
dynamic susceptibility:

x0~q,ivn ,T!5 (
k

f k2 f k¿q

ivn2«k1«k¿q
. ~A6!

The effective interactionUsp(T) satisfies the self-consisten
equation

2n2n2
Usp~T!

U
54T (

q, ivn

x0~q,ivn ,T!

12Usp~T!x0~q,ivn ,T!
.

~A7!

At high temperaturesT@t we haveUsp(T).U and

xF,AF.xQ
0 ~T!.

1

4T
. ~A8!

At small temperatures the denominator in Eq.~A7! can be
expanded for wavevectorsq close toQ ~cf. Ref. 44!, and one
obtains

s0
25

2Tx0

AN (
q

1

j221~qÀQ…

2
, ~A9!

where x05x0(Q,0,0), A5¹2x0(q,0,0)uq5Q , and s0
25n

2n2Usp(0)/22P/2 @P is the zero-temperature valu
of the right hand side of Eq.~A7!#, and j225@1
2Usp(T)x0(Q,0,T)#/A. Momentum integration in Eq.~A9!
leads to

j5Cj exp$nAs0
2/2Tx0% ~A10!

and

xF,AF5x0j2.

In this case the crossover temperaturesTF,AF* ;ts0
2 . There-

fore these examples show that

xF,AF5H C/T, T@T*

C8j2, T!T* ,

and the correlation lengthj} exp (AT* /T) is exponentially
large in the low-temperature, renormalized classical regim
1-11
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