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Phase diagrams of the two-dimensional one-karidHubbard model are obtained within the two-patch and
temperature-cutoff many-patch renormalization group approaches. At sn@ild at van Hove band fillings
antiferromagnetism dominates, while with increasih@r changing filling antiferromagnetism is replaced by
d-wave superconductivity. Nedf =t/2 and close to van Hove band fillings the system is unstable towards
ferromagnetism. Away from van Hove band fillings this ferromagnetic instability is replaced by a region with
dominating tripletp-wave superconducting correlations. The results of the renormalization-group approach are
compared with the mean-field results and the results offtheatrix approximation.
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[. INTRODUCTION tigate the effect of the band dispersion on magnetic ordering
and superconductivity of 2D systems is the single-b&hd
The close relation between antiferromagnetigif) and  Hubbard model on a square lattice which takes into account
d-wave superconductivitydSO was the subject of intensive both nearest-neighbohopping and next-nearest-neightbor
investigations during the last two decadesge, e.g., Refs. hopping. This model is often discussed in connection with
1-5. In particular, it was argued that the superconductingHTSC compounds, and it describes well the shape of the FSs
properties of highF, (HTSC) materials are intimately related of cuprate superconductors observed in ARPES! In par-
to their inherent antiferromagnetic correlations, and manyticular, the valua’/t=0.15 was chosen for L&uO, and the
features of these materials were explained from the point ofaluet’/t=0.30 for the Bi2212 systetfiin the tight-binding
view of competition between antiferromagnetic and superparametrization of the relevant electronic band for the CuO
conducting correlation$On the other hand, AF spin fluctua- planes, although the realistic modeling of the latter bilayer
tions also serve as the natural candidate for the pairingnaterial requires the inclusion of interlayer hopping as well.
mechanism of dSE> A distinctly different physical situation On the other hand, SRuQO, has three relevant bandsin-
is realized in the layered ruthenate,BuQ,, which is an terband effects are not negligible in this material, and may
unconvential and most likely triplet supercondu@dr.was even prove important for the origin of unconventional
proposed that the pairing in this material results from ferrosuperconductivity®
magnetic spin fluctuation’s® Although inelastic neutron Already in early mean-field and quantum Monte Carlo
scattering has so far been unsuccessful in detecting signifiQMC) studies of thet-t’ Hubbard modéf it was found
cant low-energy ferromagnetic spin fluctuations in thisthat, depending on the rattd/t and the band filling, differ-
material® this idea finds experimental support from the re-ent types of instabilities are possible. For smidlit near
cent measurements of the susceptibility of the electron dopeldalf-filling the FS is almost nested, which is the origin of
compound Sr_,La,Ru0,,*° which revealed a tendency to- antiferromagnetism in the weak-coupling regirtiehopping
wards ferromagnetism with La doping. Furthermore, the isodestroys the perfect nesting property of the FS and therefore
electronic compound GRuQ, also shows ferromagnetism leads to a “frustration” of the antiferromagnetism due to the
under hydrostatic pressute. hopping processes on the same sublattice and may therefore
Both copper-oxide systems and,BuQ,, are layered ma- favor the emergence of a superconducting sthfeurther-
terials. Therefore both systems motivate the investigation ofnore,t’ hopping also weakens the tendency towards stripe
the competition and the mutual interplay between magnetiformation?! and by the suppression of this alternative insta-
and superconducting instabilities in two-dimensiof2D)  bility superconducting fluctuations may be enhanced. At the
correlated electron systems. For this type of analysis it isame time, larger values 6f move the system closer to a
important to account for specific band structure related pheferromagnetic instability, since fdr/t close to 1/2 the dis-
nomena, namely, for the form of the Fermi surfdE&) and  persion is flattened close to the bottom of the band. This
the electronic dispersion. The influence of the shape of théeads to flat-band ferromagnetiétrat low densities which
FS on superconducting and magnetic properties is of interestas investigated earlier for the 2Bt’ Hubbard model
from both theoretical and experimental points of view, andwithin the T-matrix approximatioft>* and projected QMC
the theoretical analysis can be guided by material-specifisimulations®®
information obtained from angle-resolved photoemission The interplay of antiferromagnetism amwave super-
(ARPES experimentg?~1° conductivity in the one-band-t’ Hubbard model was
The simplest theoretical model which allows one to inves+ecently reconsidered within one-loop many-patch renor-
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malization-group(RG) approache$®~28 |t was indeed veri- inclusion of all electron scattering channels were performed
fied that with increasing’ and/or decreasing band filling either in the two-patch RG scherfiewhich is restricted to
antiferromagnetism is replaced bywave superconductivity. VH band fillings or within the TCRG approach®* which so

In the early RG approaches of Refs. 26—28 particle-holdar was applied only for some selected parameter values.
scattering at small momenta was not treated on an equal The purpose of the present paper is to investigate system-
footing with other types of scattering, and therefore thesetically different types of instabilities of thet’ Hubbard
analyses were unable to search for a possible ferromagnetidodel within one-loop two-patch and the many-patch TCRG
instability (see the discussion in Refs. 29 and).3® was approaches. The paper is organized as follows. In Sec. Il we
shown in Ref. 31 however, that particle-hole scattering agive @ summary of the RG methods we use. In Sec. lll we
small momenta does indeed lead to the appearance of a fayresent the phase diagrams obtained and compare the results
romagnetic phase at |arge enou:gh and at van HovévH) with pI'EViOUS investigations of thie-t’ Hubbard model. In
band fillings; the onset of dominant ferromagnetic correla-Sec. IV we discuss the results and conclude.

tions was found to occur far'/t>0.27. However, unlike in

Refs. 26—-28, the contribution of the Cooper channel was not 1. RENORMALIZATION-GROUP APPROACHES

taken into account in Ref. 31. The possibility of a ferromag-
netic instability was also investigated within a simplified
two-patch RG schent®,which considers only the scattering
of electrons in the vicinity of the “singular” points,0) H=— >, ti,-ci*gc,-UJrU > i, —(p—4tHN, (1)
and (Ozr) in momentum space, and therefore gives only a ijo [

rough picture of the RG scaling behavior of the coupling here the hopping amplitude =t for nearest neighbor sites
constants. The temperature-cutoff version of the many—patcw . e v : .
i"andj andt;=—t" for next-nearest neighbor sites,t(

RG approach(TCRG) recently introduced by Honerkamp >0) on a square latticewe have shifted the chemical po-

and Salmhofef includes the contributions of the whole Bril- ntial 12 by 4t' for further conveniende In momentum
louin zone and uses the temperature as a natural low-ener © By
ace Eq(1) reads

cutoff parameter in order to avoid the technical difficulties
with the inclusion of small-momentum particle-hole scatter-
ing. It was demonstrated in Refs. 29 and 30 that a properH= Y, &,c{ cy,

We consider the--t” Hubbard model

account of all scattering channels indeed leads to ferromag- ko
netism at large enougti/t. Moreover, the critical value of U
(t'/t). for the stability of ferromagnetism i) dependerif +o Lt 5
; . : o5 Ck,0Ck, o’ Chgor’ Che o Oky +ky— kg —k g2
(unlike the results of Ref. 31in particular forU—0 ferro- 2N?kikokgks oor 1 72 3 47 P12 T T

magnetism exists only in the flatband low-density limit @)
(t'/t).—1/2, in qualitative agreement with the results of the
T-matrix approximation for the effective electron-electron in-where the Kroneckes symbol ensures momentum conser-
teraction verteX> Naturally, ferromagnetic and-wave su-  vation and the dispersion has the form
perconducting fluctuations tend to suppress each &tHer.
The suppression of ferromagnetism by superconducting fluc- e,= —2t( cosk,+ cosky)+4t’( cosk, cosk,+ 1) — u,
tuations is reminiscent of the well-known Kanamori 3)
screening? On the other hand, as shown in Ref. 30, the
tendency towarddriplet superconductivity is enhanced by
ferromagnetic fluctuations and may exist in the vicinity of a
ferromagnetic phase. Note that the Pomeranchuk instability,
which was proposed for small in Ref. 33, was shown to be
a nonleading instability in thet’ Hubbard modef*

Although the one-loop approximations described abov

where the lattice constant is set to unity. The tight-binding
spectrum(3) leads to vH singularitiesvHSS in the density

f states arising from the contributions around the points
A= (m,0) andkg=(0,7). These singularities lie at the FS if
u=0. Fort’ =0 the corresponding filling is,, ;=1 and the
E!:S is nested, but the nesting is removed for &8y 0. The

do not account for self-energy corrections, we expect thafi€Pendence of the vH band filling ah is shown in Fig. 1.
these effects do not change qualitatively the results of the The standard RG strategy for ferm!on systéfis to in-
one-loop analysis. The Fermi surface fifind the quasi- tegrate out step by step the el.ectronlc states which are far
particle residue¥ calculated within the one-loop approxima- oM the FS(i.e., the states with the energy—dA <ey
tion show that the self-energy effects are much smaller than-A @t €ach RG step This procedure meets a difficulty
the effects of the vertex renormalization, at least in the Weak‘—"’sher? itis applied to a FS with singular points, i.e., the points
coupling regime. kg with vanishing Fermi veI00|thk|k:k’s:=O, as in points
With these recent results it appears as a natural task to, andkg. In this case, the states with the same excitation
investigate systematically the weak-coupling phase diagramanergy e, become inequivalent: the excitations with mo-
of the 2D Hubbard model within the one-loop RG approachmenta closer to the singular points produce more divergent
Earlier, such an analysis was performed only with the mo-<ontributions to the renormalization of the electron-electron
mentum cutoff RG versior® 28 which, as we discussed interaction vertices than the excitations with momenta far
above, do not allow one to include the contribution of ferro-from the singular points. Therefore, an additional separation
magnetic fluctuations. Previous studies of the model with th@f the momenta besides the standard separation into “slow”
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FIG. 1. The dependence of the van Hove band filling ‘@t

(ex<A) and “fast” (g,>A) modes is needed. The two-

patch approach which we consider in Sec. Ill A accounts G, 2. The division of momentum space into patches in the
only for the most singular contributions coming from the two-patch approach. Region I contains the momenta closest to the
immediate vicinities of the singular points. The more sophisvH singularity pointsk, andkg, region Il contains the momenta
ticated many-patch approaches of Refs. 26—-28 an@s88  which are close to the FS but far from vH singularities, and region
Sec. lll B) take into account the momentum dependence ofil contains the momenta far from both, FS and vH singularities.
the interaction in a more accurate way by introducing a set of

patches which cover the entire Brillouin zone and param-

etrize the interactions by the position of incoming and out- Cho=
going momenta on the patched FS. Pk—ky.c keO(B).

A—k,,c keO(A)

o For momentak e O(A)\/O(B) in the vicinity of the vH
A. Two-patch renormalization-group approach points the dispersion is expanded as
The two-patch approaéh®’:8is restricted to the vH band

fillings only. At these fillings the density of states at the 8kA+p58é:_2t(Sin2(P pi—cos ¢ pg)-—
Fermi energy and the electron-electron interaction vertices at
momentak; =k, g contain logarithmic divergencies arising
from the momentum integrations in the vicinity of the points
forthe calaulaion of the renormalzed interaction verices,  *ter?=¢h 2t €05 ¢ Pi= it p)
Accordingly, we subdivide the momentum space into three -
types of regions(see Fig. 2 Region | with ke O(A) =2tp,p-—pu, (5b)
\vO(B), where

—2tpLp-—u, (5a)

where cos (2)=R=2t'/t, p.=p,sin¢*p,cose, and B
o(A)={k: |k_kA|<A/\|8k/t|>efA/|kka|}, 4) = Px cos<pipy3|_ngo. Usmg the new electron operators we
write the effective Hamiltonian in the form
and similarly forO(B) (A is a momentum cutoff paramejer
produces the most singular contribution to the renormaliza- | — E 8p pgapUJr 2 gbga
tion of the vertices. Region Il contains the electronic states
which are close to the FS but far from vH singularities. It can

be proven that the contributions of region Il to the renormal- 27t E N b

ization of the vertices is subleading in comparison with the NEE— [9a( )apl,, P2 rr/apyf’ Pac

contributions of region |, provided that/t is not small, i.e. v

if the nesting effects are not important. Finally, region IlI +92(7\)ap oD by srp 180 +p —p.—p

contains the excitations which are far from both, the FS and ! p R

VHS and do not produce diverging contributions to any quan- 2t

tity. Therefore, in the simplest approximation it is reasonable +— E [gg()\)a p,o@ p o bDSU,bp4,,

to neglect the contributions of regions Il and 11l altogether. A pi oo’

more accurate treatment within the many-patch RG approach +ot

will be performed in Sec. III. +9a(Map 8y 518080+ B0 4 p,—pyp
To account for the excitations with momenta in region |, it 6)

is convenient to introduce new electron operarandby

by where
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1 4 1 4 FIG. 3. The four types of vertices considered
in the two-patch approacka) and(b) correspond
to exchange and direct scattering between differ-
ent vH singularities respectivelyc) Umklapp
g scattering.(d) Intrapatch scattering. The incom-
4 2 N 9 ing and outgoing momenta with equal spin are
k, ks k, k3 connected by solid lines inside the vertices.
A= In(A/maxpis.pi_pis Pi_ TI: (7) not arise in Wilson’s RG approach with a smooth cutoff

and/or discrete RG transformatiotfsas well as in the exact

the summation in Eq(6) is restricted to momentp; with RG schemes currently usdde., Polchinski, the Wick or-
lpil<A andley, ,+p, /t|>eMPpil, dered, or the 1Pl scheme; see Sed. It this case particle-

As shown in 'Fig. 3, the verticay, to g, represent differ-  particle scattering contributes to the renormalization of the
ent types of scattering processes of electrons with momentéertices with arbitrary momenta.
close to the VHS. The bare value for all four verticegs In order to explore the possible instabilities of the system,
=U/(47?t). The momentum dependence of the vertex in-We consider the behavior of the zero-frequency, time-ordered
side region | is accounted for through the scaling variable ésponse functions
only. Note, however, that the momentum dependence of the o
electronic spectrum within each patch is correctly taken into _ At VA )
account in t%e two-patch approazh. g Xm™ fo AT On(7)Om(O)]); (10

To obtain the dependence of the verticgon A we in-
tegrate out at each RG step the fermi@gswith momenta in the zero-temperature limit— 0. O,,,(7) are the following
Ae*<p.<Ae ™, and fermionsb, with momenta operators:
Ae *<p.<Ae 9 (see the detailed description in Ref.
39). As argued above we neglect the renormalization of the Orm 1 2 +
g; arising from the regions Il and Ill of Fig. 2, since this AFTIN 4 TCk,oCk+Qo»
leads to subleading corrections at weak coupling. We deter-
mine the RG equations for the verticag(\) in the 1
forms’®37-%9 édsczﬁkz kaCE,UCT—k,—aa

dg;/d\=2d;(N)g1(92—91) +2d2919,—2 d30:07,

~ 1
dg, /d\=d1(N)(g5+93) +202(91— 92) 94— da(93 + 02), Or= & TCkoCho (1)

dgs/dh=—2do(N)gs0s+2d1(N)93(292-91),  (8)  in the Heisenberg representatiof,is the imaginary time
ordering operation, an®@=(,7). The order parameters

dgs/dh=—do(N)(95+93) +d(93+ 2919, 205+ 03), which correspond tp-wave pairing.
where 1
AXY XYat AT
do\) =2\ VI-RE, dy=211- R, ORe=iy & Meekotli—o 12
ds;=2tan 1 (R/V1-RY)/R, with hi¥= sink,, are irrelevant with the restriction of mo-
menta to the vicinities of vH points, sinquB=O, and
dy(N)=2min{\, In[(1+ V1—R?)/R]}. (9)  therefore the possibility of triplet pairing cannot be consid-

. . - . ered within the two-patch approach. However, these order
Equat|onos(8) have to be solved with the initial conditions parameters can be taken into account in many-patch ap-
9i(0)=g;. _ , . proachegsee Sec. Il B.

The authors of Ref. 31 argued thqt klnematlg restrlcthns Picking up the logarithmical divergences inwe obtain
lead to the absence of particle-particle scattering contrlbu,[-he RG equations for the dimensionless susceptibiliﬁ@s

tlonsl to.thehverncegi. (d0=d3=t0d|n '?hu;hnOt(ja:;:‘pnﬁtThl]‘sth =2ty in the same approximations as discussed above
conclusion however is connected wi e difficulty of the (.« pots” 29 37 and 38

infinitesimal version of Wilson’s RG approach with a sharp
momentum cutoff, since this approach does not allow one to
treat vertices with nonzero momentum transfer, correctly and
artificially gives no renormalization for such vertic®sThat

is why in the present approach we consider the vertices at the dinR,(N)/d\= dam()\)l“m(x), (13
special vH points only, rather than considering vertices with

arbitrary momentum transfers. Note that this difficulty doeswhere the coefficients , (m=AF, dSC, or B are given by

dxm(M/dN=dy (MRE(N),
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FIG. 4. (a) Scaling behavior of the coupling constantst&ft
=0.1. The solid line corresponds tp, the dashed line tg,, the FIG. 5. The same as in Fig. 4 fot/t=0.45.
dash-dotted line tg3, and the dotted line tg,. (b) Scaling behav-

ior of the susceptibilities at'/t=0.1. The solid line corresponds to

the AF susceptibility, the dashed line to the dSC susceptibility, andi€NOte the corresponding combination + —), the signs
the dotted line to the F susceptibility. The interaction strength iscorrespond to the pehawor of the coupling constants
U=2t. 01-04, M means marginal. In the second cage 4, grow to

+o while g; goes to zero, i.e., we observe & {0+)
Tar=0o+0s, Te=01+04, behavior of the coupling constants. The comparison of the
corresponding susceptibilities shows that foft=0.1 the
Tysc=05—0a. (14) antiferromagnetic susceptibility is the most divergent, while
in the case’/t=0.45 the ferromagnetic susceptibility domi-
In Egs. (13) agsc=0, axe=1, andar=2. Equations(13) nates and therefore the two different coupling constant flows
have to be solved with the initial condition®,,(0) reflect two different instabilities of the system. We discuss
=1, xm(0)=0. the complete phase diagram at vH band fillings in Sec. Il A.

The numerical solutions of Eq&3) show that, at a critical
value\ . of the scaling parameter, some of the vertices and o _
susceptibilities are divergent. For a givap the sizeA of B. Many-patch renormalization-group analysis
the patches is restricted by In (Mdy<\.. The latter criterion In the many-patch analysis we follow the temperature-
follows from the condition that the contribution of the elec- cutoff RG for one-particle irreducible Green functions pro-
trons with |k.|<A to particle-hole and particle-particle posed recently by Honerkamp and Salmhofer in Ref. 30.
bubbles is dominantsee, e.g., Ref. 41 We chooseA=1 This version of the RG uses the temperature as a natural
and requirex > In4=1. Since\ . decreases with increasing cutoff parameter, allowing one to account for both the exci-
interaction strength, this criterion defines the interactiontations with momenta close to the FS and far from it, which
range where the two-patch RG approach is valid. is necessary for the description of instabilities which arise

As an example, in Figs. 4 and 5 we show the result of thérom zero-momentum particle-hole scattering, e.g., ferro-
numerical solutions of Eqg¢8) for U=2t and two different magnetism. Neglecting the frequency dependence of the ver-
choices oft’/t=0.1 andt’'/t=0.45. The behavior of the cou- tices, which is considered not important in the weak-
pling constants is qualitatively different in these two casescoupling regime, the RG differential equation for the
While in the first case we have, 3 flowing to +«, g, to  temperature- and momentum-dependent electron-electron in-
—o, andg; is mostly unchanged during the RG flowe  teraction vertex has the forth(see Fig. &
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d
d—TVT(kl-kz-ks):— Ep Vr(ky,Ka,p)Lpo(P, =P+ K1+ ko) Vr(p, —p+Ki+Ky,Ks3)

1
N
1
+ sz: [—2V+1(ky,p,k3)Vr(p+ki—Kz,Kz,p) + Vr(Ky,p,K3) Vi(Ky, p+ Ky — K3, p)

+V1(ky,p,p+ ki —K3)Vr(p+ki—Kz,Ko,p) JLor(P,p+ Ky —K3)

+ % Vr(ky,p+Kko—Kz,p)Lpn(p,p+Ka—k3)V(p,Kz, K3), (15
|
where exploiting the symmetries of the square lattice, this reduces
the above integrodifferential equatiofib) and(17) to a set
fr(er) —frewr) of 5824 differential equations which were solved numeri-
Lpn(k,k")= - cally. We use the value of the starting temperatdrg
FkT K =12t, which is slightly larger than the bandwidth, and we
, , stop the flow of the coupling constants at the temperalire
L, (kk')= fr(e) +frlen) (169  When the maximum absolute value of the vertex function is
ppE evtew larger thanV,,,,—=18t. Note that the initiak dependence of

) ) ) ) vertices (19) is slightly changed during the RG flow: the
andfr(e)=df(¢)/dT, f(e) is the Fermi function. Equation ertices which correspond b andp-wave superconductiv-
(15 has to be solved with the initial condition jty acquireg- andf-wave(and even higher ordgharmonics,
Vr,(K1,kz,k3)=U where the initial temperatuf®, is of the  respectively, and the vertices which hasvave symmetry
order of the bandwidth. (F, AF) acquire an additional extendegtwave (co,

The evolution of the vertices with decreasing temperaturet cosk,) component. However, these additional corrections
determines the temperature dependence of the susceptibifire small.

ties according t&3* To extract more detailed information about different insta-
q bilities we extrapolate the inverse susceptibilitigg% to
— XmT= 2 Rtk )R FK' + ) temperaturesllower thamy . For magnetically orQered or
dr K superconducting ground states the corresponding extrapo-

lated inverse susceptibilitieg, .+ vanish at some temperature
XLpp,p[{k,vlk/_l—qm)! p eSmT p

kl k3 kl k3
d =% > Rk mr(k,k")
dTRmT(k)—+ <. mT( mT( ) i _ >@<o>< +
X Lot K/, TK' + Q). ap dT
ky ky Kk Ky

K Vi(k,k" K" +qm) for m=AForF k ky ki k3 k; k; k1 k4
Fmr(kk®) = Vr(k,—k,k") for m=dSC or pSC.
(18)
gm=Q for the AF susceptibility andj,,=0 otherwise. The + + +
upper signs an@p indices in Eq.(17) refer to the supercon-
ducting instabilitiedSC and pSE and the lower signs and
ph indices to the other susceptibilities. The initial conditions T
cosk,— cosk, for dSC FIG. 6. Diagrammatic representation for the many-patch RG

for Egs.(17) are 1<4
_ . equations[Eg. (15)]. Lines drawn through the vertices show the

Rm|To(k) - Smkx'y forpSC (19 direction of the spin conservation. Diagrams are drawn in the same
1 otherwise, order as the respective terms in E@5). The cutting dash at the
_ . propagator lines means the derivative with resped (tr brevity
and Xm’To__O' TO STOIVe Egs(19) and(17) nu.merlcally, W€ we indicate only the derivative of one of the propagators, the
use the discretization of momentum spacéljj=48 patches same diagrams with derivatives of another propagator are included
and the same patching scheme as proposed in Ref. 30. By wel).

where
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T} belowTy . The vanishing of the inverse susceptibilities at Dig
finite temperatures is an artifact of the one-loop RG approact 1.0 0.9 0.8 07 06 05 00
and should be understood to determine a crossover temperi 4 . : .

ture into a renormalized classical regime with strong mag-
netic or superconducting fluctuations and exponentially large
correlation lengthéoc exp A/T) for F and AF instabilities

(see the Appendixand &oc exp A/ T—Tgky) for supercon- 3

ducting instabilities. Tgxr is the Berezinskii-Kosterlitz- e ° |
Thouless transition temperature which arises because the si

perconducting transition in two dimensions is in the same I AF i
symmetry class as the classical 2IY model*®*¢ Although

the inverse magnetic susceptibiliies must be finiteTat > 2} e e o o e T

<Tg ar. they are exponentially small, since in this regime
X;’}\Focgfz, cf. Refs. 42—44. The same concerns the super- r
conducting susceptibilities in the temperature rafgg
<T<Tiscpsc: Where critical behaviorygge psc@é 27 1t o o/ oo .
(n=1/4 is the critical exponent for the susceptibiliys for
the XY modef® is expected. AT<Tgyr the superconduct- i
ing correlations have a power law decay in real space and th
inverse static uniform order parameter susceptibility does in-

dsC

O 1 1

deed vanish. 000 010 020 030 040 050
th
IIl. RESULTS AND PHASE DIAGRAMS FIG. 7. Phase diagram at vH band fillings as obtained from two-
A. van Hove band fillings and many-patch RG analyses. Solid lines correspond to the phase

boundaries obtained within the two-patch RG analysis. The symbols
First we trace the vH band fillings at differetit, which  show the results of the many-patch RG approach: closed circles
are determined by the conditign=0. The corresponding correspond to AF, open circles to incommensurate— &) order,
phase diagram itf — U coordinates is plotted in Fig. 7. Solid diamonds to dSC, and triangles to the F phase. The long-dashed line
lines correspond to the phase boundaries obtained within thie the boundary of the ferromagnetic phase obtained in Refs&4d
two-patch approach, while the symbols show different typeshe texi.
of instabilities obtained within the many-patch RG schéfne. o _ _
Our many-patch results fdd =3t agree quantatively with A this difference is traced to the same behavior(+ —)
those obtained previously in Ref. 30. of .the couplmg constants on a_pproachlr_lg AF and dSC ms_ta—
In both approaches we find antiferromagnetism for smalPlities, while the ferromagnetic phase is signaled by a dif-
t', ferromagnetism fot’ close to 1/2, and-wave supercon- ferent behavior of th_e coupling con_stantrs{—0+). Further- _
ductivity for intermediatet’. Thet’ range with a tendency more, the near-nesting effects, which are not accpunted forin
towardsdSC decreases with increasity For intermediate € tWo-patch RG approach become particularly important at

t'/t the susceptibilities with moment®=(=—§,7) are smallt_’/t. | Kth It of Al 1L for th
stronger than the antiferromagnetic susceptibility. The in- " Fi9. 7 we also mark the result of Alvarez al=for the
commensurate magnetic regions are indicated in Fig. 7 oundary of the ferromagnetic phase, obtained by neglecting

well. In the regiont’/t~0.3 the behavior of the coupling the contribution of particle-particle scattering. In this case
constants in the two-patch approach becomes “frustrated,Lhe co_rrespondmg two-patc_h_ RG equations can be solved
namely, allg;—0 with increasing\. This frustration is the analytically, since the coefficients; in Eg. (8) becomex

consequence of the competition of antiferromagnetic and Sljndependent. The main difference in comparison with Ref.

perconducting instabilities from one side and the ferromag-31 is that particle-particle scattering leads t0 dependence

netic instability from the other side, and thereforetatt ~ ©f the critical value (/). for the appearance of ferromag-
>0.2 neither the antiferromagnetic nor the superconductin etism so that ((/t)—1/2 for U._)O n q‘.‘a"ta.“"g agree-
susceptibility diverges in the two-patch approach. The manyMment with the results of thé-matrix approximatiort’ At the
patch approach suffers less from this problem; the frustrate a}me time, _neglectlng particle-particle scattering gives
behavior of the vertices is observed only very close to th L /t)C:O'.27' independent dﬂ.‘ .Note that the valugt(/t)o .
boundary of ferromagnetic and antiferromagnetic or super'S determined by the condition of equal noninteracting
conducting phases. pa_rtlc_le-hole_ suscept|bll|t|§s(0(0)_=X_O(Q), and therefore
The boundary to the ferromagnetic phase appears almo pincides with th_e “mean-field” criterion for the boundary of
identical in two- and many-patch approaches, but the twoll€ ferromagnetic phase.
patch approach fails to reproduce the location of the phase
boundary between the antiferromagnetic and superconduct-
ing phases for smatl'. This is similar to the results for the ~ The casa’=0 for fillings close ton=1 was intensively
extendedU-V-J Hubbard mode?’ As mentioned in Sec. Il studied previously — within  momentum-cutoff RG

B. Antiferromagnetic instability at small t’
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1.00 0.95 0.90 0.85 0.80 0.75
n

o L 1 1 1
FIG. 8. (Color onling Phase diagram fdar =0. The dashed line 0 0.1 0.2 0.3

is the mean-field phase boundary between antiferromagnetic ana th

paramagnetic phases, and the solid line is the boundary of the an- f|G. 9. (Color online Phase diagram at=1 (half-filled casg.
tiferromagnetic phase obtained from the temperature-cutoff manyrne notations are the same as in Fig. 8. The cross corresponds to the
patch RG approach. The corresponding result of Ref. 27 for theyitical U, for the stability of the antiferromagnetic phasetatt

boundary of the antiferromagnetic phase is shown by the dotted- g 2 a5 obtained from QMC calculatiofRef. 19, the star marks
line. The dot-dashed, dot-dot-dashed, and dot-dot-dot-dashed lingge result of the path-integral RG approach tiy (Ref. 53.

are contour lines for the-wave superconductiving crossover tem-
perature into the renormalized classical regififa=e °t,e %,
and e t, respectively(see the tejt The inset shows the phase
diagram inu-U coordinates.

separatiojy as obtained in the mean-field studies of the Hub-
bard modéf® and the weak-coupling results in high
dimensiong?®

Outside the antiferromagnetic region we find the tendency
approache$>?’We plot the results of TCRG @t=0 in Fig.  towardsdSC as observed previously in Refs. 27 and 34. The
8. There is a line of critical concentrationg(U) such that values of the crossover temperatuFgs. rapidly decrease
for n<n.(U) the extrapolated inverse susceptibilighe  away from the antiferromagnetic phase; in Fig. 8 we show
does not reach zero for any temperature and the ground statfee contour lines with Int(T}s0=5,6, and 7. The contour
is expected not to have long-range antiferromagnetic ordefines with largerT}sc cannot be traced within the present RG
For comparison, we also plot the result for the critical con-analysis: because of strong fluctuations near the AF phase,
centrations obtained within the momentum-cutoff RG ap-the coupling constants readh,,,=18 before thed-wave
proach(Ref. 27. Both approaches give practically indistin- susceptibility becomes large. On the other hand, smafjes
guishable results for the critical fillings where (and correspondingly larger deviations from half filljrare
antiferromagnetism disappears. Mean-field theory predicts hard to treat too, because of the difficulties with the numeri-
broader concentration range for the stability of antiferromag<al integrations in Egs(15) since the integrands contain
netism, see Fig. 8. It was proven by van Dorffehat for ~ sharp Fermi functions at small temperatures.
large space dimensionaliy>1 andU<t the critical hole The half-filled case at different’ was _investigated

. . . . . . H i H —52
concentrationd,=1—n, is reduced in comparison with its Previously within a mean-field analysis;*> QMC cal-

mean-field values™ by a finite factor qq. To analyze culations®®! and a path-integral R& Different methods
" .

whether this remains true far=2 we consider théJ depen- predict different values of the critical interactidh, for the
dence of the ratiog(U)=s,/6"F. We find that q(U) onset of antiferromagnetism at fixad. In particular for
Cc c -

liahtly d ith d : d it is saturating at t'/t=0.2 QMC results on an 88 lattice®®! at T=0.2%
slightly decreases wi _e_creasmgan It 1S saturaling a yield U.=2.5, while a path-integral RGRef. 53 gives
q(0)=0.4+0.025. Surp-rlsw.lgly, the formal gppl|cat|on of U.=3.4t. The result of the mean-field approach for the same
the results of I expansion in Ref. 48 td=2 gives aclose ;//; ig U,=2t.50-52\We present our phase diagram as ob-

value,q;=0.3. o . _ tained from the many-patch RG analysis in Fig. 9; symbols
We have verified that within the antiferromagnetic phasegpow the critical valuetJ . obtained by other methods. As

att’=0 the susceptibilities at wave vecto@# (7,m) are  expected and in agreement with previous studies, the critical

always smaller than the susceptibilipar, so that the ten- y_ is larger than the mean-field value for &Il At the same

dency towards incommensurate magnetic order is subleadingine, theU, result of the TCRG at’/t=0.2 is larger than

in comparison with commensurate () order. The fact that  that from QMC calculations, but it agrees well with the path-

we identify commensurate AF even away from half-filling integral RG result in Ref. 53.

may be reconciled with the possibility that the system devel- Again, we find the tendency toward$SC away from the

ops inhomogeneous spin and charge struct(ees, phase AF region; in Fig. 9 we show the contour lines which corre-
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t'=t/2
4 I 5 N /MF I/
" (8)
MF
pSC ,/ / )
7/
31 _
)/
0.3 /‘ /
/
S 2f / .
4
F 7
-/
i
FIG. 10. (Color online The electronic dispersion at /'
t'/t=1/2. 1 34 P .
o
spond to In{T}s) =5,6, and 7. Note that from the extrapo- I -
lation of these data to larg&y in the paramagnetic phase S =
(U<U,) we always find Inf{Tgs0 >3 in the weak-coupling 0 : : : ' : : : !
regime, i.e., a temperature regime which is far below the  0-00 0.20 0.40 0.60 0.80

accessible temperature range in QMC simulations. There- n

fore, it may be difficult if not impossible to observe the cor- i, 11. (Color onling The phase diagram far/t=1/2. The

r_95p0ndin9.S_UperCOUdUCti.ng fluctuations in QMC calculaiong-dashed line MfF) is the mean-field phase boundary between
tions on finite lattice sizes—at least in the weak-t0ferromagnetic and paramagnetic phases, and the dot-dashed line

intermediate coupling regime. MF(S) is the mean-field result for the boundary of saturated ferro-
magnetism. The solid line is the boundary of ferromagnetic phase
C. Ferromagnetic instability obtained from the temperature-cutoff many-patch RG approach, and

. . L - ., the short-dashed line is the contour line above which the maximal
Now we investigate the ferromagnetic instability, which .. reachV, ., =18t at the temperatur®,>e 8. The T-matrix
. 7 H p—
arises fort’/t close to 1/2. We start with//t=1/2, when the phase boundary for the ferromagnetic phéRef. 24 at U=4t is

dispersion at the bottom of the band at snkglbr ky can be  marked by the cross. The inset shows the phase diagraan

expanded as coordinates. pSC marks the region where the triplet superconduct-
ing susceptibility is dominating.
tk2(1- cosk)—m, kel o0 g susceptibity g
Ex= 2 _ . - 20
thy (1= cosky) —u, ky<1, =n./n¥F to measure the deviation from the mean-field re-

i.e., it has extended minima along the links=0 andk,  sult att’/t=1/2. The analysis of the data shows thafU)

=0 (see Fig. 1@rather than a single minimum at the origin, slightly increases with decreasingandgr(U—0)=0.8.

as fort’/t<1/2. This peculiar flatness of the spectrum leads We have also explored the possibility for triplgt-(vave

to a square-root divergence of the density of statds,) pairing in the vicinity of the ferromagnetic phase. Although

og ~ 12 at the bottom of the band. Therefore in the low den-the p-wave pairing susceptibility is dominant in this region, a

sity limit (which is close to a vH band filling, since,;  conclusive low-temperature extrapolation for the inverse sus-

=0 for t'/t=1/2), saturated ferromagnetism is ceptibility is not possible. Therefore, it is not clear whether a

expected®? At t'/t=1/2 the T-matrix approximatioff finite crossover temperatufiéis. exists. In any case the pos-

predicts rather high critical densities for the stability of fer- sible values forT s must be significantly smaller than the

romagnetism, e.gn.=0.57 forU=4t. Fort'/t=0.45 and crossover temperatures fdiwave superconductivity. The re-

U =4t the same approach predicts ferromagnetism for dengion where In{/Tyx)<8 is shown in Fig. 11 too. The growing

sities 0.3<n<0.5; the smallest value df at which ferro-  of the vertices near the ferromagnetic phase results from the

magnetism can exist was predicted to Wé&/t).=0.43 for triplet p-wave superconducting fluctuations, but, unfortu-

U =4t. The projected QMC calculatiofisconfirmed the ex-  nately, the smallness of the temperature crossover scale,

istence of ferromagnetism fot'(t).=0.47. which is far below the range of applicability of the TCRG
The phase diagram obtained within the TCRG approaclmethod prevents a safe conclusion about the possibility of a

for t'/t=1/2 is shown in Fig. 11. Similar to the antiferro- p-wave superconducting ground state.

magnetic instability, mean-field theory overestimates the ten- Now we consider the cagé/t<1/2, which is very differ-

dency to magnetic order. The result of thematrix analysis ent from the above-discussed casé=1/2. The square-root

of Ref. 24 for the critical concentration of the stability of divergence of the density of states is replaced by a logarith-

ferromagnetism at) =4t is marked by a cross. Surprisingly, mical divergence at the energy of the VH& ) In (t/¢),

this result is very close to the result of the RG approachwhile the density of states is finite at the lower band edge

Similar to Ref. 48 one may introduce the quantay(U) (see Fig. 12 The phase diagram faf/t=0.45 is presented
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IV. SUMMARY AND CONCLUSIONS

We have considered the phase diagrams oftttieHub-
bard model within two- and many-patch RG approaches as
shown in Figs. 7, 8, 9, 11, and 13. Instabilities towards anti-
08 ferromagnetic or ferromagnetic order as well as to singlet
- d-wave superconductivity are identified in different param-

0.4 eter regimes. Near the ferromagnetic region ph&ave su-
perconducting susceptibility is enhanced, but a conclusion
02 about a possible triplet superconducting ground state remains
elusive.

At small t" and vH band fillings the antiferromagnetic

0 0.5 1 1.5 2 25 3 instability dominates. With increasirtg antiferromagnetism
et is replaced byd-wave superconductivity. At larger /t fer-
_ ) . romagnetism becomes the leading instability. The tendency

FIG. 12. The noninteracting density of states for0.43. towardsd—wave superconductivity decreases with increas-

ing U while antiferromagnetism is enhanced. We found that
in Fig. 13, where we again mark by cross the result of thehe two-patch approach correctly predicts the boundary of
T-matrix approximation. The ferromagnetic region substanihe ferromagnetic phase at vH band fillings, while it fails to
tially shrinks with decreasiny: it reduces to a narrow den- eproduce correctly the boundary between antiferromagnetic
sity window around the vH band fillingy;=0.465(the cor- ~ @nd superconducting phases at srialivhere nearly nesting
responding critical densities are almost symmetrical aroun&ff€CtS become important. , ,
Nyy SO that only the region>n,,, is shown. Nevertheless, | Anhferror_nagnetlsm at S”_‘a" and ferromagnetism at_
the ferromagnetic region is wider than in tiematrix ap- t /t=.1/2 existin broad dgnsny ranges around vH banq fll-
proximation. The same tendency is reflected in the RG resulf'9S the anuferromagnetlsm remains commensurate in the
for the critical value {'/t).~0.3 for the disappearance of part of the phase diagram where the long-range ordered

. - T ground state is expected. The density ranges for magnetic
ferromagnetism aU_—4t, Wh"_:h |s_mucr_1 lower than Ehe re- order, found from TCRG, are substantially narrower (2.5
sult of the T-matrix approximation cited above,t’(t).

- - , : ¢ times for the AF instability and 1.3 times for the F instability
=0.43. As well as for the cagé=1/2 we find an increasing at smallU) than the corresponding mean-field results.

triplet superconducting susceptibility away from the ferro-  a¢ haiffilling at differentt’ we find the critical interac-

magnetic phase, while the possible corresponding crossovgpy strengths for the antiferromagnetic instability. From the
temperatured s remain undetectably small. present analysis we cannot argue whether the antiferro-
magnetic state we find is metallic or insulating. It was
proposed! that at nonzera’ there is a finite interaction
range U.<U <U/ for metallic antiferromagnetism, at
U>U/ itis replaced by the insulating AF state. On the other
hand, the existence of a paramagnetic insulating state at
largert’ was conjectured in Ref. 53. Discriminating between
these possibilities requires the calculation of the conductivity
and the Drude weight, for which it is necessary to retain the
frequency dependence of the vertices.

The boundary of ferromagnetism #t=t/2 found from
TCRG is surprisingly close to th&-matrix approximation
result in Ref. 24 atJ = 4t, although the corresponding filling
is not small and possibly outside the region of the validity of
the T-matrix approximation. In the vicinity of antiferromag-
netic and ferromagnetic phases we found regions with en-
hancedd-wave andp-wave superconductivity, respectively.
Not too close to the antiferromagnetic phase the crossover
temperatures fod-wave superconductivity into the corre-
sponding renormalized classical regime with exponentially
large correlation length can be estimated from the extrapola-
tion to low temperatures of RG data for the order-parameter
0 L : ' : : : L : susceptibilities. At the same time, triplptwave supercon-

: : : : ductivity in the vicinity of the ferromagnetic phase possibly
has much smaller crossover temperatuT§§C, which can-

FIG. 13. (Color onling The phase diagram fdr/t=0.45. The  not be determined safely from the present RG analysis.
notations are the same as in Fig. 11. The ferromagnetic phase substantially shrinks foit

0.8

Ui
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<1/2 and the difference from the mean-field result increases. c exp(2mps/T) AF

For this case, th@-matrix approach underestimates the ten- = 12

dency towards ferromagnetism. The tendency towards triplet (1) 2exp(2mIST) F

p-wave superconductivity in the vicinity of the ferromagnetic is the correlation lengttC,,C" are temperature-independent

phase persists, although its associated temperature crossopeefactors, ang is the zero-temperature value of the spin

scale remains very low—significantly lower than fibivave  stiffness, which is proportional to the ground-stéseblat-

superconductivity. tice) magnetizatior,. Therefore, below the crossover tem-
It remains an open issue how the above results changgeratyreT* ~27JS, (S,=S for a ferromagnétthe suscep-

when the two-loop corrections to the RG equations are takefyility becomes exponentially large.

into account, and how the electronic self-energy evolves in  gimilar results can be obtained for the Hubbard model

the viqinity of _magnetic or superconducting instabilities. Arj— within the two-particle self-consistent approdétwe have
other interesting issue for future work remains the question

(Ad)

of whether inhomogenous spin and charge structures are pos- XOQ(T)
sible near half-filling and whether the Pomeranchuk instabil- D\ —— (A5)
ity may become the leading instability for anisotropic exten- 1=Usp(Mxo(T)

sions of th_e 2D Hubbard modgl; if it does it is natu_ral to where Q=(, ) in the AF caseQ=0 in the F case, and
connect this tendency to the stripe pattern formation in rarej(OQ(T)=X0(Q,O,T) is the zero-frequency limit of the bare
earth doped La ,Sr,CuQ,. Furthermore, the tendency to- dynamic susceptibility:
wards p-wave superconductivity near the ferromagnetic '

phase of the-t’ model suggests a possible route for future fr=Tfraq

i igati iai i iring i iw,,T)= —_—. A
investigations of the origin of triplet pairing in SRuO,. Xo(d,iwy,T) ; PP (A6)
ACKNOWLEDGMENTS The effective interactioJs,(T) satisfies the self-consistent

equation
We are grateful to W. Metzner, G. Uhrig, and M. I. _
Katsnelson for insightful discussions. This work was sup- ,Usp(T) Xo(d,iwy,T)
| a4y KA
ported by the Deutsche Forschungsgemeinschaft through U giton 1= Usy(T) x0(dsi 0y, T)
SFB 484, the work of A. A. Katanin was also partially sup- (A7)

ported by Scientific Russian Schools Project No. 747.2003.2, .
At high temperature3 >t we haveU;,(T)=U and

2n—n

APPENDIX TEMPERATURE CROSSOVER o 1
TO THE RENORMALIZED CLASSICAL REGIME Xrar=xo(T)= 7= (A8)

In this appendix we discuss how the temperature depenst small temperatures the denominator in E47) can be

dence of the magnetic susceptibilities changes at the crosgypanded for wavevectogsclose toQ (cf. Ref. 49, and one
over to the renormalized-classical regime. As a first examplegptains

we consider the 2D ferro- and antiferromagnetic Heisenberg
models — 2Txo 1

2_
AN 9§ £2+(g—-Q)?

J9
where xo=x0(Q.0.0), A=V?x¢(0,0,0)q-q, and oj=n
—nZUSp(O)/Z— P2 [P is the zero-temperature value
(plus corresponds to the antiferromagnet and minus to thgf the right hand side of Eq.(A7)], and & 2=[1
ferromagnet,J>0). The susceptibilitystaggered suscepti- —Ugo(Mx0(Q,0,T)I/A. Momentum integration in EqA9)
bility in the AF case at high temperature¥>J obeys the |eads to
Curie law

(A9)

H=iJ<Z> S-S (A1)
ij

£=C,exp{nAcd/2Txo} (A10)
C
XFAF= T (A2) and

XF,AF= X0
whereC=JS(S+1)/3. On the other hand, at temperatures PARTAD

T<J it was found from the RG analysis of the 2D nonlinear In this case the crossover temperatufgs,-~tog . There-

sigma modéf*3that fore these examples show that
T CIT, T>T*
XF,AF:C’?§2, (A3) XF.AF™ cre?,  T<T*,

and the correlation lengthiec exp (AT*/T) is exponentially
where large in the low-temperature, renormalized classical regime.
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