
PHYSICAL REVIEW B 68, 193301 ~2003!
Inelastic electron relaxation rates caused by spin-M Õ2 Kondo impurities

Georg Go¨ppert and Hermann Grabert
Physikalisches Institut, Albert-Ludwigs-Universita¨t, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany

~Received 13 May 2003; published 11 November 2003!

We study a spinS5 M /2 Kondo system coupled to electrons in an arbitrary nonequilibrium situation above
Kondo temperature. Coupling to hot electrons leads to a shorter lifetime of pseudo particles and hence a larger
Korringa width. This in turn is responsible for the enhanced inelastic relaxation rates of the electronic system.
The rates are related to spin–spin correlation functions which are determined using a projection operator
formalism. The results generalize recent findings forS5

1
2 Kondo impurities which have been used to describe

energy relaxation experiments in disordered mesoscopic wires.

DOI: 10.1103/PhysRevB.68.193301 PACS number~s!: 73.23.2b, 72.15.Qm
ha
gy

a
ie
o

te

ing
re

rg

a

ir

in
f.

ve
e
d
s
ul
d

u

.
d

f.
r-

e
a

e
te
l a
ef

by

a

the

f

gle

the
in

ngu-
n

nergy
ed
nd

the
pin
pen-

rgy
ing
s of

n
on-

cal
Recently, experimental evidence was found indicating t
Kondo impurities might play an essential role for ener
relaxation in mesoscopic gold wires1 displaying much
higher-energy relaxation rates than predicted by stand
theory.2 Based on these findings several theoretical stud
have led to a qualitative or even quantitative explanation
experimental data by accounting for electron-electron in
action mediated by magnetic impurities.3–6Assuming Kondo
impurities of unknown origin as relevant inelastic-scatter
centers also earlier experimental findings on copper wi7

could be explained.4–6 Moreover, assuming spin-1
2

impurities8 the detailed magnetic field dependence of ene
relaxation experiments on copper wires9 could be fitted,
strongly suggesting that Kondo impurities indeed play
essential role for energy relaxation at low temperatures.

In a recent work Anthoreet al.10 studied energy relaxation
in thin silver wires with Mn impurities and explained the
findings using both, direct electron–electron interaction2 and
the effect of spin-12 impurities.8 Since Mn in silver is not a
spin-12 impurity and furthermore the spin of the impurities
copper is not known, a generalization of the theory in Re
is desirable. In addition the impurity densitiescimp gained by
fitting the energy relaxation data of the copper and sil
samples typically exceed those obtained from measurem
of the dephasing rate by more than an order of magnitu
see Refs. 8, 10 and papers cited therein. Impurity densitie
high as those inferred from energy relaxation rates wo
lead to much higher dephasing rates than those foun
experiments.

Considering the theoretical work in Refs. 3, 4, the imp
rity density can be lowered by increasing the spinS because
only the productS(S11)cimp enters the prefactor of the rate
However, this result does not take into account the spin
pendence of the renormalized coupling constant. The aim
the present work is a generalization of the findings in Re
to arbitrary spin thereby exploring the possibilities of lowe
ing the impurity density by increasing the spinS.

Since this work is an extension of Ref. 8 we follow th
argumentation therein and, as far as possible, use the s
notation. In order to make the paper self-contained, som
the basic ideas and definitions are, however, repea
Whereas the technical details change, the main physica
guments remain the same and we refer the reader to R
for further information.
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We describe the quasiparticles and the impurity spin
the free Hamiltonian

H05(
ks

eksCks
† Cks2EHSz, ~1!

where Cks
† and Cks create and annihilate an electron in

given orbitalk, and spins state.eks is the energy of this
state. The second term in Eq.~1! describes a spinM /2 im-
purity with Zeeman splittingEH5gmBB. The coupling be-
tween quasiparticles and impurity spin is described by
standard Kondo Hamiltonian

HI5J0 (
kk8ss8

S•ss8sCk8s8
† Cks , ~2!

whereJ0 is the bare coupling andss8s denotes the vector o
Pauli matrices. Here, we assume the impurity densitycimp to
be small enough that we need to treat coupling to a sin
impurity only.

To determine the inelastic electron rates we consider
angularly averaged collision integral which in linear order
the densitycimp reads11

I s~e!5
i

\
$ f s~e!Ss

.~e!1@12 f s~e!#Ss
,~e!%. ~3!

Here,Ss
./,(e)5S./,(ks,e), wheree5eks is the electron

self-energy on shell, assumed to be independent of the a
lar momentum.f s(e) is the angularly averaged distributio
function for electrons of energye and spins. For readability
we suppressed the spatial dependence. Since the self-e
is proportional to the impurity density, we already replac
the electron Green’s functions by their unperturbed form a
integrated over frequency to get the classical form of
collision integral. In contrast to Ref. 8 we do not use the s
averaged self-energy but generalize the results to spin de
dent distribution functions.

Our task is now to determine the electron self-ene
which in turn leads to the electron scattering rates. Chang
to the interaction picture and representing the spin degree
freedom by pseudoparticles12 one can use perturbatio
theory on the Keldysh contour to generate the graphs c
tributing to the electron self-energy. Since the topologi
©2003 The American Physical Society01-1
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structure of the graphs for a spin12 –system and a spin-M /2
system are the same, we can directly follow the reasonin
Ref. 8.

In lowest order the electron self-energy is given by
pseudofermion bubble and an electron or hole line in
tween. The pseudofermion bubble can be represented
spin-spin correlation function which in frequency space
rectly determines the rates. Higher-order corrections
separable into terms adding an additional electron-hole
and terms leading to higher-order corrections for a sin
electron-hole pair. The combinations of the second type
usually referred to as single particle intermediate state
rections and can be absorbed by a renormalization of
coupling constants.13 For arbitrary spinS, we find that the
renormalized verticesJ6

z , J6 only depend on electronic oc
cupation factors and therefore are given by relations v
similar to those derived in Ref. 8. For a non-spin-flip pr
cesses we have

J6
z ~e!/J05$u12~prJ0!2S~S11!/42rJ0g7~e7EH!u2

1~prJ0!2S~S11!%21/2 ~4!

and for a spin-flip process

J6~e!/J05$u12~prJ0!2S~S11!/42rJ0@g6~e!

1g7~e6EH!#/2u21~prJ0!2S~S11!%21/2.

~5!

The renormalization is determined by the auxiliary functi

g6~e!5E
2D

D

de8
f 6~e8!21/2

e2e81 id
. ~6!

In equilibrium this leads to the usual logarithmic correction
however, the above formulas are applicable for arbitrary n
equilibrium situations. The Kondo temperature in this a
proximation reads

TK5DexpH 2
1

rJ0
F12

~prJ0!2S~S11!

4 G J ~7!

and equals the bulk Kondo temperature. The phrase ‘‘ab
Kondo temperature’’ in this work means that the correctio
determined by the auxiliary function~6! are still small com-
pared to one. In this sense a system below the equilibr
Kondo temperature can be above Kondo temperature
cause of the nonequilibrium smearing of the distributi
function.

Well above Kondo temperature it is usually assumed t
all vertices renormalize independently. Therefore, one
equivalently put these renormalized quantities in a new
teraction Hamiltonian

HI5
1

2 (
kk8

$S1J1~ek↑!Ck8↓
† Ck↑1S2J2~ek↓!Ck8↑

† Ck↓

1Sz@J1
z ~ek↑!Ck8↑

† Ck↑2J2
z ~ek↓!Ck8↓

† Ck↓#%, ~8!
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with energy and process dependent coupling constants.
ing this Hamiltonian we have to restrict to elementa
electron-hole pair excitations only. Other, more comp
graphs of the one-particle intermediate state correction t
are already put into the renormalization of the coupling co
stants. The electron self-energy is now given by the pseu
fermion bubble coupled to arbitrarily many simple electro
hole pairs with an electron or hole line in between and can
written as

Ss
.~e!52 i(

s8
E de8Ws,s8~e,e8!@12 f s8~e8!# ~9!

for the larger self-energy whereWs,s8 denotes the corre
sponding rates. The smaller self-energySs

,(e) is given by
changing the variables (e,s) to (e8,s8) and f→12 f . Re-
writing the pseudofermion bubble as spin-spin correlat
function, the rates are given by

W2,1~e,e8!5
cimpr

4\
J2~e!J1~e8!C1~e2e8!, ~10!

W1,2~e,e8!5
cimpr

4\
J1~e!J2~e8!C2~e2e8!, ~11!

W1,1~e,e8!5
cimpr

4\
J1

z ~e!J1
z ~e8!Cz~e2e8!, ~12!

W2,2~e,e8!5
cimpr

4\
J2

z ~e!J2
z ~e8!Cz~e2e8! ~13!

with

C6~ t !5^S6~ t !S7~0!&, Cz~ t !5^Sz~ t !Sz~0!&. ~14!

Using Eq.~9! the collision integral takes the standard for
for spin dependent scattering

I s~e!5(
s8

E de8$ f s~e!@12 f s8~e8!#Ws,s8~e,e8!

2@12 f s~e!# f s8~e8!Ws8,s~e8,e!%. ~15!

The energiese5eks measure the kinetic energy and the Ze
man energy. Usually, when going over to a continuum
scription, the Zeeman splitting is put into a band botto
shift.

As in Ref. 8 we use a projection operator formalism
determine the correlation functions in an arbitrary noneq
librium situation. Since the general formulas depend on
commutation relations of the spin operators only, we get
same expressions as in Ref. 8. The detailed formulas, h
ever, change when evaluating impurity spin averages. Us
the projection operators

PzX5Sz^XSz&/^SzSz& for Cz ~16!

and

P6X5S6^XS7&/^S6S7& for C6 ~17!

one can derive a formally exact integrodifferential equatio14
1-2
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Ċa~ t !5FaCa~ t !2E
0

t

du fa~ t2u!Ca~u! ~18!

with the solution in terms of the Laplace transform

C̃a~z!5
Ca~ t50!

z2Fa1f̃a~z!
. ~19!

Here a5z,6 and, as in theS5 1
2 case,Fz5^ṠzSz&/^SzSz&

50, andF65^Ṡ6S7&/^S6S7&57 iẼH , which leads to the
free propagation, whereẼH includes the Knight shift ne-
glected throughout this work. The averages are to be ca
lated self-consistently together with the steady-state e
tronic distribution functions f s and the occupation
probabilitiesPm for the impurity spin being in statem.

The memory kernelfa(t) for theC6 correlation function
reads

f6~ t !5
^Ṡr

6~ t !Ṡ7&

^S6S7&
1F6

^Ṡr
6~ t !S7&

^S6S7&
. ~20!

Here, the indexr in Sr
6(t) indicates that the dynamics of th

spin operator is reduced by the projection. It is determin
by the expressionṠr

6(t)5exp@iL̂(12P6)t#Ṡ6 with the Liou-

ville operatorL̂ acting asL̂X̂5@H,X̂#/\.The memory kernel
for the Cz correlation function is given by Eq. (20) with th
replacements6,7→z. We are interested in the regime we
above Kondo temperature and expand the kernel up to
ond order in the renormalized couplingJ. Since the dynam-
ics of the expanded kernel function is oscillatory, t
Fourier-transformed correlation function has always
simple form

Ca~v!5
2Ca~ t50!Refa~v!

@v2 iFa1Imfa~v!#21@Refa~v!#2
~21!

with a5z,6. Further, we define Refa(v)[Re$f̃a(2 iv
1d)% and the imaginary part Imfa(v) follows from the
Kramers-Kronig relation. When calculating the electron
distributions f s or spin occupation probabilitiesPm , the
imaginary parts Imfa(v) in the denominators lead t
higher-order corrections inJ and are neglected.

The damping rates~which were namedna(v) with a
5z,6 in Ref. 8! read

Refz~v!5
p

4 (
6

F ^S6S7&

^SzSz&
z6~v7EH!G ~22!

for the Cz correlation function and

Ref6~v!5
p

4 F zz~v7EH!14
^SzSz&

^S6S7&
z7~v!G ~23!

for the C6 correlation functions. The auxiliary functions

zz~v!5(
6

E der2J6
z ~e!J6

z ~e1v! f 6~e!@12 f 6~e1v!#

~24!
19330
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and

z6~v!5E der2J7~e!J6~e1v! f 7~e!@12 f 6~e1v!#

~25!

describe coupling to electron-hole pairs. In equilibrium t
damping leads directly to the Korringa width proportional
the temperature whereas in nonequilibrium this rate sc
with a measure of the nonequilibrium situation, namelyeU,
leading to an increased inverse lifetime independent of
measurement temperature.

The equal-time correlation functions read forS5 M /2

Cz~ t50!5^SzSz&5 (
m52M /2

M /2

P mm2 ~26!

and

C6~ t50!5^S6S7&5 (
m52M /2

M /2

Pm@S~S11!2m~m71!#.

~27!

As in the caseS5 1
2 , the spin–spin correlation function

C(t)5^S(t)•S&5@C1(t)1C2(t)#/21Cz(t) fulfills the sum
rule C(t50)5*(dv/2p)C(v)5S(S11) independent of
the distributionPm .

To determine the master equation for thePm’s we use Eq.
~27! and write the spin–flip correlation function as

C6~v![(
m

Pm@S~S11!2m~m71!#Č6~v!. ~28!

The rate for the transition from statem to m61 then reads

Gm→m615@S~S11!2m~m61!#G6 ~29!

with

G65
1

4\E dvz7~2v!Č7~v!. ~30!

All other rates vanish. Note that the definition ofG6 in this
work is different from that employed in Ref. 8. The ra
equations for the occupation probabilities

Ṗm52Gm→m11Pm2Gm→m21Pm1Gm11→mPm11

1Gm21→mPm21 ~31!

with the normalization condition(mPm[1 form a closed set
of equations with the steady-state solution

Pm5
G1

M /21mG2
M /22m

( n50
M G1

M2nG2
n

. ~32!

The probabilities obey the obvious balance relati
Pm /Pm115G2 /G1 which leads to the thermal distributio
in equilibrium.

At vanishing magnetic fieldB50 the probabilities are al
equal,Pm51/(M11), and the equal-time correlation func
1-3
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tions read Cz(t50)5S(S11)/3 and C6(t50)52Cz(t
50). If in addition the distribution functions are spin ind
pendent, the renormalized coupling constants become
cess independentJ6

z 5J6[J(e), and the auxiliary functions
readzz52z6[2z(v). Inserting this in the correlation func
tions, we find C(v)5@C1(v)1C2(v)#/21Cz(v)
53C1(v)/2. In equilibrium and at low temperatures th
width shrinks to zero and leads toC(v)→2pS(S
11)d(v).

The inelastic relaxation rate 1/t inel at B50 is the spin–
flip rate 1/tsf reduced by the quasielastic rate, and we ha
1/t inel,1/tsf . Quite generally, due to a sum rule for th
spin–spin correlation function, the spin-flip rate obeys

1

tsf
5

1

2 (
s,s8

E deWs,s8~e,e8!5
p

2\

cimp

r
~rJ!2S~S11!.

~33!

In order to discuss the possibility of reducing the impur
density by increasing the spinS at constant inelastic elec
tronic rate, we may as well consider the spin-flip rate.
already explained in the Introduction, Eq.~33! suggests a
decrease of the impurity density with increasing spinS. This
is true only if the renormalization of the coupling constan
is independent ofS, i.e., at temperatures much higher th
the Kondo temperature. To explain the experiments, h
ever,rJ has to be around 1/3 to be almost voltage indep
dent. Otherwise the renormalization would not allow for t
experimentally observed scaling property of the distribut
function f (e,eU)5 f (e/eU), see Refs. 4, 8. In this regime
however, the renormalization depends on the spinS and
scales for large spin likerJ;1/Ap2S(S11) leading to a
spin independent rate 1/tsf . Actually, the renormalized cou
pling constant equals the spin-flipt matrix4 which obeys a
unitarity condition. It reaches a maximum,rJ
51/Ap2S(S11), at the Kondo temperature where the ra
again would become independent of spin for allS. Although
n
al
n

-

al
n
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our theory is no longer valid in this regime, the outcome
quite physical since electrons always transfer the same
when scattering from one impurity independent ofS. This
shows that using our theory an increase of the spin does
lower the impurity concentrations needed to describe the
periments. Even a more involved theory valid below Kon
temperature is not likely to help much since the scatter
rate cannot exceed the limit discussed above.

To discuss the magnetic-field dependence of the rateW
we consider two limiting cases. For low magnetic fiel
where the Zeeman splittingEH is much smaller than the
temperature or the applied voltage the occupation proba
ties are all of the same order. Also the lifetimes do n
change much and the behavior is dominated by the shif
the spin–flip correlation functions,v→v6EH . Therefore,
there is no dependence on the spinS for small magnetic
fields. For higher magnetic fields of the order of temperat
or applied voltage, higher spin states are rapidly depopula
so that only two spin states like in theS5 1

2 case lead to the
dominant contribution. For higherS this is of course just a
fraction and therefore in this regime the rates are e
smaller than in theS5 1

2 case.
In this work we have studied electron relaxation ra

caused by magnetic impurities of arbitrary spin generaliz
recent results forS5 1

2 . It is found that an increase of th
spin S does not change the qualitative outcome and the
at vanishing magnetic field is even unaffected by the spin
largeS. Therefore, assuming magnetic impurities with high
spin S does not resolve the disagreement between Ko
impurity densities determined by energy relaxation expe
ments and weak localization experiments.
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4G. Göppert and H. Grabert, Phys. Rev. B64, 33301~2001!.
5J. Kroha, inKondo Effect and Dephasing in Low-Dimension

Metallic Systems, edited by V. Chandrasekhar, C. Van Haese
donck, and A. Zawadowski~Kluwer Academic, Dordrecht,
2001!, p. 245.

6J. Kroha and A. Zawadowski, Phys. Rev. Lett.88, 176803~2002!.
d

-

-

7H. Pothier, S. Gue´ron, N.O. Birge, D. Esteve, and M.H. Devore
Phys. Rev. Lett.79, 3490~1997!.
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