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Inelastic electron relaxation rates caused by spit/2 Kondo impurities
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We study a spirs= M/2 Kondo system coupled to electrons in an arbitrary nonequilibrium situation above
Kondo temperature. Coupling to hot electrons leads to a shorter lifetime of pseudo particles and hence a larger
Korringa width. This in turn is responsible for the enhanced inelastic relaxation rates of the electronic system.
The rates are related to spin—spin correlation functions which are determined using a projection operator
formalism. The results generalize recent findingsS@r% Kondo impurities which have been used to describe
energy relaxation experiments in disordered mesoscopic wires.

DOI: 10.1103/PhysRevB.68.193301 PACS nunider73.23—b, 72.15.Qm

Recently, experimental evidence was found indicating that We describe the quasiparticles and the impurity spin by
Kondo impurities might play an essential role for energythe free Hamiltonian
relaxation in mesoscopic gold wiresdisplaying much
higher-energy relaxation rates than predicted by standard
theory? Based on these findings several theoretical studies
have led to a qualitative or even quantitative explanation of
experimental data by accounting for electron-electron interwhere C{, and C,, create and annihilate an electron in a
action mediated by magnetic impuriti&Z Assuming Kondo ~ given orbitalk, and spino state.e,,, is the energy of this
impurities of unknown origin as relevant inelastic-scatteringstate. The second term in E() describes a spi/2 im-
centers also earlier experimental findings on copper Wirespurity with Zeeman splittingE,,=gugB. The coupling be-
could be explainedi® Moreover, assuming spih- tween quasiparticles and impurity spin is described by the
impuritie the detailed magnetic field dependence of energystandard Kondo Hamiltonian
relaxation experiments on copper witesould be fitted,
strongly suggesting that Kondo impurities indeed play an
essential role for energy relaxation at low temperatures.

In a recent work Anthoret al1° studied energy relaxation
in thin silver wires with Mn impurities and explained their whereJ, is the bare coupling ans,., denotes the vector of
findings using both, direct electron—electron interadimnd  Pauli matrices. Here, we assume the impurity dersjty to
the effect of sping impurities® Since Mn in silver is not a be small enough that we need to treat coupling to a single
spin- impurity and furthermore the spin of the impurities in impurity only.
copper is not known, a generalization of the theory in Ref. 8 To determine the inelastic electron rates we consider the
is desirable. In addition the impurity densities,, gained by ~ angularly averaged collision integral which in linear order in
fitting the energy relaxation data of the copper and silvethe densityCim, reads!
samples typically exceed those obtained from measurements .
of the dephasing rate by more than an order of magnitude, [
see Refs.p8, 10 2nd papgrs cited therein. Impurity dengsities as lo(€)= %{fv( O (e +[1-f(e)]Z (e)}. ()
high as those inferred from energy relaxation rates would
lead to much higher dephasing rates than those found ihlere,EjK(e)=2>’<(ko,e), wheree= ¢,,, is the electron
experiments. self-energy on shell, assumed to be independent of the angu-

Considering the theoretical work in Refs. 3, 4, the impu-lar momentumf ,(e€) is the angularly averaged distribution
rity density can be lowered by increasing the sBibecause function for electrons of energyand spino. For readability
only the producS(S+ 1)ciy,, enters the prefactor of the rate. we suppressed the spatial dependence. Since the self-energy
However, this result does not take into account the spin deis proportional to the impurity density, we already replaced
pendence of the renormalized coupling constant. The aim ahe electron Green’s functions by their unperturbed form and
the present work is a generalization of the findings in Ref. 8ntegrated over frequency to get the classical form of the
to arbitrary spin thereby exploring the possibilities of lower- collision integral. In contrast to Ref. 8 we do not use the spin
ing the impurity density by increasing the sgn averaged self-energy but generalize the results to spin depen-

Since this work is an extension of Ref. 8 we follow the dent distribution functions.
argumentation therein and, as far as possible, use the sameOur task is now to determine the electron self-energy
notation. In order to make the paper self-contained, some ofhich in turn leads to the electron scattering rates. Changing
the basic ideas and definitions are, however, repeatedo the interaction picture and representing the spin degrees of
Whereas the technical details change, the main physical afreedom by pseudoparticfés one can use perturbation
guments remain the same and we refer the reader to Ref.tBeory on the Keldysh contour to generate the graphs con-
for further information. tributing to the electron self-energy. Since the topological

Ho=2 €,Ci,Cro~EnS, @

Hi=Jo > S84C 0 Cho @)
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structure of the graphs for a spin-system and a spiNt/2  with energy and process dependent coupling constants. Us-
system are the same, we can directly follow the reasoning img this Hamiltonian we have to restrict to elementary
Ref. 8. electron-hole pair excitations only. Other, more complex
In lowest order the electron self-energy is given by agraphs of the one-particle intermediate state correction type
pseudofermion bubble and an electron or hole line in beare already put into the renormalization of the coupling con-
tween. The pseudofermion bubble can be represented asstants. The electron self-energy is now given by the pseudo-
spin-spin correlation function which in frequency space di-fermion bubble coupled to arbitrarily many simple electron-
rectly determines the rates. Higher-order corrections aréole pairs with an electron or hole line in between and can be
separable into terms adding an additional electron-hole paiwvritten as
and terms leading to higher-order corrections for a single
electron-hole pair. The combinations of the second type are >0 / NP1 /
usually referred to as single particle intermediate state cor- 2o(e= I;‘ f de'Wo o (eI T, (€] (9)
rections and can be absorbed by a renormalization of th
coupling constants® For arbitrary spinS, we find that the
renormalized verticed’ , J* only depend on electronic oc-
cupation factors and therefore are given by relations ver
similar to those derived in Ref. 8. For a non-spin-flip pro-
cesses we have

?or the larger self-energy wherd/, ,, denotes the corre-
sponding rates. The smaller self-enedy (e) is given by
hanging the variablese(o) to (¢',0') andf—1—f. Re-
riting the pseudofermion bubble as spin-spin correlation
function, the rates are given by

e ()l3o={|1= (mpJe)*S(S+1)/4— pJog=(eFEp)|? W (ee) =ML 3- (37 (e)C(e€),  (10)
+(mpdo)*S(S+1)} 2 (4)
and for a spin-flip process W, (€)= Czn—fgpf(é)»]_(f')cf(f— €), (11
3 (&)130={|1~ (mp3o)*S(S+1)/4—pJo[g-(e) CooP
(e By 2P+ (mpdo) PSS 1)1 W, i (e,€) ="~ Ji (€)% (e)Cole—€), (12
© CimpP
The renormalization is determined by the auxiliary function W (€)= 4 J()IZ(e")Cole—e") (13
D fo(e)—1/2 with
g+(e)=fDde’m- (6) C.()=(S*(1)S7(0)), C,(t)=(SH(1)SX0)). (14

_ . . . . Using Eqg.(9) the collision integral takes the standard form
In equilibrium this leads to the usual logarithmic correcuons,]cor sgin ge(p)endent scattering 9

however, the above formulas are applicable for arbitrary non-

equilibrium situations. The Kondo temperature in this ap-
proximation reads Io(e)=z fde’{fU(e)[l—fU,(e’)]WU,U,(e,e')
1 Jo)2S(S+1 1 . '
TKzDexp{_pT[l_Wo)*] @ [1=1,(&)]1f (W, (¢ 0)}. (15
0

The energieg= ¢, measure the kinetic energy and the Zee-

and equals the bulk Kondo temperature. The phrase “abovB'an energy. Usually, when going over to a continuum de-
Kondo temperature” in this work means that the correctionsScription, the Zeeman splitting is put into a band bottom
determined by the auxiliary functiof6) are still small com- ~ shift. o .
pared to one. In this sense a system below the equilibrium AS in Ref. 8 we use a projection operator formalism to
Kondo temperature can be above Kondo temperature bé_let_ermm_e thg corr_elatlon functions in an arbitrary nonequi-
cause of the nonequilibrium smearing of the distributionlibrium situation. Since the general formulas depend on the
function. commutation relations of the spin operators only, we get the
Well above Kondo temperature it is usually assumed thaf@me expressions as in Ref. 8. The detailed formulas, how-
all vertices renormalize independently. Therefore, one cafVer. change when evaluating impurity spin averages. Using
equivalently put these renormalized quantities in a new inthe projection operators
teraction Hamiltonian

P?X=SYX$)/(S'S") for C, (16
1 o and
Hi=5 2 {S"3"(e)Cy Cia +S ™37 (e)Cy1: Cig . .
Kk P*X=S"(XS")/(S"S") for C. (17)
t i
+ SZ[Ji(fkT)Ck'TCkT_Jz—(fki)ckwckl]}’ (8) one can derive a formally exact integrodifferential equdfion
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and

Calt) =,Calt) J;duqsa(t—u)ca(u) (19

_ 21% + _ _
with the solution in terms of the Laplace transform {=(o) j dep™J7 ()7 (et w)i=(e)[1~ T (et w)]

(25
C.(2)= Ca(t=~0) _ (19) describe coupling to electron-hole pairs. In equilibrium the
2 2= D+ da(2) damping leads directly to the Korringa width proportional to

_ L . the temperature whereas in nonequilibrium this rate scales
Herea=z,+ and, as in theS=3 case,®,=(S'S")/(S’S")  ith a measure of the nonequilibrium situation, namely,
=0, and®_.=(S"S")/(S"S")=FiEy, which leads to the leading to an increased inverse lifetime independent of the
free propagation, wher&,, includes the Knight shift ne- Mmeasurement temperature.
glected throughout this work. The averages are to be calcu- The equal-time correlation functions read &+ M/2
lated self-consistently together with the steady-state elec- M2

tronic distribution functions f, and the occupation O/ oz 2
probabilitiesP,,, for the impurity spin being in state. C,(t=0)=(S'8) m:ZM/Z Pmm (26
The memory kerned,(t) for the C.. correlation function
reads an
C - M/2
¢+(t):<sr (t)? >+ <Sr (t)s > (20) Ci(t=0)=<SiS+>= _2 Pm[S(S—Fl)—m(mIl)],
<Sts+> <S S+> m=—M/2 (27)

Here, the index in S (t) indicates that the dynamics of the As in the caseS=3, the spin—spin correlation function

spin operator is reduced by the prOJecnon It is determlne(b(t) (S(t)-S)=[C., () + C_(t) ]/2+ C,(t) fulfills the sum

by the expressio; (t) = exil (1~ P*)t]S" with the Liou-  ryle C(t=0)= [(dw/2m)C(w)=S(S+1) independent of
ville operatorl. acting as- X=[H,X]/%.The memory kernel the distribution?,,.

for the C, correlation function is given by Eq. (20) with the  To determine the master equation for thg's we use Eq.
replacements-, ¥ —z. We are interested in the regime well (27) and write the spin—flip correlation function as

above Kondo temperature and expand the kernel up to sec-

ond order in the renormalized couplidg Since the dynam- _ _ — AN

ics of the expanded kernel function is oscillatory, the c (w)_z PrlS(ST1)=m(m+1)]C.(0). (28

Fourier-transformed correlation function has always the
The rate for the transition from state to m=1 then reads

simple form
_ Finomer=[S(S+1)—m(m=1)]I". (29
2C,(t=0)Regp, 1
Ca )= ———— =D fﬁ ) > @D with
[w—i1®a+IMp,(w) ]+ [Reda(w)] Wi
with a=z,+. Further, we define Re(w)=Re{d,(—iw 1 .
+6)} and the imaginary part Imp,(w) follows from the ri_RJ’ dolz(~0)Cs(w). (30

Kramers-Kronig relation. When calculating the electronic
distributions f, or spin occupation probabilitie®,,, the
imaginary parts In$,(w) in the denominators lead to
higher-order corrections id and are neglected.

The damping rategwhich were namedv,(w) with a

All other rates vanish. Note that the definitionIof in this
work is different from that employed in Ref. 8. The rate
equations for the occupation probabilities

=z,* in Ref. § read 7')m: —Thome 1P mom— 1Pt T mPmsa
T <St81> +Fm—1—>mpm—1 (31)
Red(w)=7 Ei: () {+(0+Ep) (220 with the normalization conditio ,P,=1 form a closed set

of equations with the steady-state solution
for the C, correlation function and

l-\h_f/2+ml—~l\_A/2—m
< [S4S z> (32)
<S* S7)

for the C.. correlation functions. The auxiliary functions The probabilities obey the obvious balance relation
Pml!Pm+1=1_IT, which leads to the thermal distribution
dep?d%(e) I (e+ w)fa 1—f. (et in equilibrium.
blw)= f epz(edi(ero)f(e)l s(etw)] At vanishing magnetic fiel=0 the probabilities are all
(29 equal,P,=1/(M+1), and the equal-time correlation func-

Red.(w)= [-(0)| (23 m_EPLOFT*”F’l.

aa
Z {(o+Ey)+
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tions read C,(t=0)=5(S+1)/3 and C.(t=0)=2C,(t our theory is no longer valid in this regime, the outcome is
=0). If in addition the distribution functions are spin inde- quite physical since electrons always transfer the same spin
pendent, the renormalized coupling constants become pravhen scattering from one impurity independent®fThis
cess independedt. =J*=J(¢€), and the auxiliary functions shows that using our theory an increase of the spin does not
read{,=2¢.=2{(w). Inserting this in the correlation func- lower the impurity concentrations needed to describe the ex-
tions, we find C(w)=[C,(w)+C_(w)]/2+C,(w) periments. Even a more involved theory valid below Kondo
=3C,(w)/2. In equilibrium and at low temperatures the temperature is not likely to help much since the scattering
width shrinks to zero and leads t®€(w)—27S(S rate cannot exceed the limit discussed above.
+1)(w). To discuss the magnetic-field dependence of the rates
The inelastic relaxation rate 44 at B=0 is the spin— e consider two limiting cases. For low magnetic fields
flip rate 1/g reduced by the quasielastic rate, and we havgyhere the Zeeman splitting,, is much smaller than the
Utine<1/7st. Quite generally, due to a sum rule for the temperature or the applied voltage the occupation probabili-

spin—spin correlation function, the spin-flip rate obeys ties are all of the same order. Also the lifetimes do not
1 1 _— change much and the behavior is dominated by the shift in
—== > f deW, , (e, )==7 —2(pJ)2S(S+1). the spin—flip correlation functionsy— w= Ey . Therefore,
st 2 5 ' 2h p there is no dependence on the s@rfor small magnetic

(33 fields. For higher magnetic fields of the order of temperature

In order to discuss the possibility of reducing the impurity or applied voltage, higher spin states are rapidly depopulated
density by increasing the spi@ at constant inelastic elec- so that only two spin states like in tf&=3 case lead to the
tronic rate, we may as well consider the spin-flip rate. Asqjominant contribution. For highes this is of course just a
already explained in the Introduction, E(B3) suggests a fraction and therefore in this regime the rates are even
decrease of the impurity density with increasing sQifThis  smaller than in the&s=1 case.
is true only if the renormalization of the coupling constants |5 this work we have studied electron relaxation rates
is independent of, i.e., at temperatures much higher than cq,sed by magnetic impurities of arbitrary spin generalizing
the Kondo temperature. To explain the experiments, hoWgecent results foS=1. It is found that an increase of the
ever,pJ has to be around 1/3 to be almost voltage indepengy,;, 5 goes not change the qualitative outcome and the rate
dent. cherW|se . renormal!zatlon would not allqw for t.heat vanishing magnetic field is even unaffected by the spin for
experimentally observed scaling property of the d|str|but|onIarges Therefore, assuming magnetic impurities with higher
function f(e,eU) =f(e/eU), see Refs. 4, 8. In this regime, g ; S does not ,resolve the disagreement between Kondo
however, the renormalization depends on the spiand SPIn o : g . !

S . impurity densities determined by energy relaxation experi-
scales for large spin |Ik¢)J~1/\/7TZS(S+ 1) leading to a ments and weak localization experiments.
spin independent rate 4. Actually, the renormalized cou-
pling constant equals the spin-flipmatrix* which obeys a The authors would like to thank B.L. Altshuler, A. An-
unitarity condition. It reaches a maximum,pJ thore, Y.M. Galperin, F. Pierre, and H. Pothier for valuable
=1/{Jm?S(S+1), at the Kondo temperature where the ratediscussions. Financial support was provided by the Deutsche
again would become independent of spin for&lAlthough  Forschungsgemeinscha®FG).
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