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Anderson localization of light in inverted opals
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We describe a photonic crystal disordered by stacking faults which can be realized in the laboratory and
which exhibits an Anderson localization of light over certain regions of frequency. The localization length is
obtained from a calculation of the transmittance of a slab of the material as a function of the thickness of the
slab. The localization length depends on the frequency and the angle of incidence of the incident light. It
appears that there are regions of frequency where all states of the electromagnetic field are either localized or
delocalized, but we also find regions where localized states coexist with delocalized ones.
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It has been realized for some time that Anderson local
tion is not restricted to the Schro¨dinger field of an electron in
a disordered solid, that it can happen in a classical wavefi
as well; electromagnetic~EM! or elastic waves may becom
localized in a medium whose dielectric function or elas
coefficients, respectively, vary randomly in space~see, e.g.,
Ref. 1, and references therein!. It has been argued that suc
classical wavefields can provide a surer testing ground
Anderson localization, because photons and phonons, un
electrons, are indeed independent excitations, practically
of the correlation effects which are never entirely absen
the case of electrons in solids. We know that in semicond
tors localization sets in at energies about the edges of a b
With increasing disorder localization spreads from the ed
of the band toward its center, and if the disorder is su
ciently strong all states of the band become localized.
analogy, if we have a photonic crystal which exhibits
absolute frequency gap, it is likely that with the introducti
of disorder the states about the band edges will become
calized.

According to the scaling theory of localization a sm
amount of disorder is sufficient to localize all the eigensta
of a one-dimensional~1D! system.2–4 This may be also true
for 2D systems, as shown by numerical simulations in dis
dered photonic crystals.5,6 In 3D systems the situation i
more complicated and the experimental evidence of pho
localization due to disorder is still uncertain.7–11 In this paper
we deal with a system, realizable in the laboratory, wh
exhibits a specific type of disorder~it remains periodic in
two dimensions! and is, therefore, amenable to large-sc
calculations of the localization length.

Theory tells us that defect-free inverted opals, which c
sist of close-packed air spheres in a high-refractive-in
material, have absolute frequency gaps,12,13 and recent im-
provements in fabrication techniques promise that such
be prepared in the laboratory.14 Moreover, stacking faults can
be introduced in a controlled manner during fabrication,15 so
that an inverted opal with stacking faults appears to b
disordered system for which a direct comparison betw
theory and experiment can be made. It also exhibits a n
ber of particular features which are quite interesting a
worth noting. In previous work16,17 it has been shown that a
absolute frequency gap of an inverted opal, as seen in op
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transmission experiments, will in general appear wider in
presence of stacking faults. Here we confirm the existenc
an Anderson localization of light in this system and point o
aspects of the phenomenon which have not been dealt
previously, to our knowledge.

A fcc ~inverted! opal grown in the@111# direction ~the z
axis! consists, in the absence of disorder, of parallel plane
spheres~layers! in a sequence:. . . ABCABC . . . Thelayers
denoted by A, B, and C are identical and have the same
periodicity ~a hexagonal lattice of lattice constanta0) in the
xy plane, but each layer is displaced relative to the one p
ceding it byd15(di ,d)5a0(1/2,A3/6,A6/3). When this se-
quence is destroyed, as in. . . ABCBI CAB . . . , we have a
stacking fault: the layer BI is obtained from C by a displace
mentd25(2di ,d) instead ofd1 . In a disordered structure
there is a certain~percent! probability, n, that a layer is dis-
placed relative to the one preceding it byd2 instead ofd1 .
We note thatn lies between 0 and 50%.

The calculation of the transmittance of a slab contain
any number of stacking faults can be done efficiently us
the method of Ref. 18. The results presented here were
tained using a cutoff in the angular-momentum expansion
l max57, and 37 2D reciprocal-lattice vectorsg in the plane-
wave expansions, which ensured a fractional relative ac
racy of 1025 for the transmittance of an individual slab.

In the absence of stacking faults the structure we cons
is a fcc inverted opal consisting of touching air spheres
silicon ~dielectric constante511.9). This crystal has an ab
solute frequency gap extending fromva0 /c53.452 to
va0 /c53.623, wherev denotes the angular frequency an
c is the speed of light in vacuum.13,16 We have selected two
ki5(kx ,ky) points: the centerḠ @ki5(0,0)# and the vertex
K̄ @ki5(4p/3a0,0)#, of the surface Brillouin zone of the
~111! plane of the crystal~a regular hexagon!. For each of
these points we present the frequency bands of the ord
structure in the dimensionless form:va0 /c versuskzd/p,
wherekz is the component of the Bloch wave vector norm
to the ~111! surface in the reduced zone:2p/d,kz<p/d.
We consider the region fromva0 /c53.0 to va0 /c54.0
which includes the above-mentioned absolute gap. We t
calculate the transmittance of a~111! slab of the material
consisting ofNL layers, over the same frequency regio
©2003 The American Physical Society05-1
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keepingki constant. We do this for a slab of the~ordered!
crystal and for slabs with a different degree of disorder, a
different thickness. For the sake of simplicity we assume t
the silicon host extends to infinity on either side of the sl

In Fig. 1~a! we show the frequency bands forki at the K̄
point. None of these bands is degenerate. In Fig. 1~b!, by a
solid line we show the logarithm of the transmission coe
cient of light of the sameki , for a slab of the crystal con
sisting of 128 layers. We see that this is practically unity
frequencies within the bands and drops to vanishingly sm
values for frequencies in the gaps~we note that for the or-
dered slab there is no need for any averaging and^ ln T&
means lnT in this case!. The dashed, dotted, and dash-dott
lines in Fig. 1~b! show the ensemble-averaged logarithm
the transmittance,̂ ln T&, for slabs of the same thicknes
disordered by a random distribution of stacking faults w
n55%, 10%, and 20%, respectively. Actually,^ ln T& of Fig.
1~b!, and the same applies to the rest of the figures, has b
obtained by averaging over an ensemble of 100 differ
realizations of random~according to our definition ofn) se-
quences of the given in each case number of layers.
standard error of the mean does not exceed 6% in our ca
lations.

We see that the transmission of light through the dis
dered slab of the 128 layers is reduced by many order
magnitude over the band regions, though not uniformly, a
that this reduction increases with disorder. Over the gap
gions the transmittance may be larger than that of the co
sponding ordered system, due to the introduction of de
states in the gaps, and this naturally increases with diso
However these states are highly localized and the trans
tance remains very small. In order to decide whether loc
ization is at work, we need to calculate a decay lengthl,

l /d522NL /^ ln T&, ~1!

FIG. 1. ~a! The frequency band structure of the inverted op

described in the text, forki at the K̄point. ~b! ^ ln T& of s-polarized
light with the sameki incident on a slab of the material, 128 laye
thick, with n50% ~solid line!, n55% ~dashed line!, n510% ~dot-
ted line!, andn520% ~dash-dotted line!. ~c! l /d for slabs withn
510% andNL5128 ~solid line!, andNL5256 ~broken line!.
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for disordered slabs of different thickness. In a regime
Anderson localization,l will be independent of thickness fo
NL sufficiently large (l !NLd) and we can then refer to it a
the localization length~a function of v independent of
NL).2,3,5 We should remember that in the present case lo
ization occurs only in thez direction ~normal to the surface
of the slab!, and that the wave functions are Bloch wav
parallel to the surface of the slab. In Fig. 1~c!, we showl
versusv for two slabs with the same amount of disord
(n510%), but of different thickness:NL5128 for the solid
line, andNL5256 for the broken one. We see that the tw
lines practically coincide at most frequencies which impl
that Anderson localization is at work in the present ca
However, at some frequencies, e.g., atva0 /c53.9825, the
two lines in Fig. 1~c! do not coincide, which suggests
larger localization length. In Fig. 2 we shoŵln T& at this
frequency as a function of the slab thickness. We obse
that the apparent decay length for thin slabs is smaller t
the true localization length, but asNL increases, and the cri
terion l !NLd is satisfied, the exponential decay of the tran
mittance characteristic of the Anderson localization is est
lished. In this particular case we deduce a localization len
of 43 layers. It is worth noting that the variance of the re
tive transmittanceT/^T& increases exponentially with th
thickness for thin slabs10 and tends to saturate for slabs mu
thicker than the localization length~see Fig. 2!. We should
say, however, that our numerical results show that the v
ances25@^(ln T)2&2^ln T&2#/(2NLd)2 does not relate to 1/l
in the manners251/(lNLd), expected from the single
parameter-scaling theory. That this may be so has, of cou
been pointed out by others.19

The results in Figs. 1~b! and 1~c! were obtained with
s-polarized light. We have obtained similar results f
p-polarized light. On a logarithmic scale the transmittan
for p polarization is practically the same with that of Fi
1~b!. Correspondingly the localization length forp polariza-
tion is practically the same as that of Fig. 1~c!.

We now consider transmission at normal incidence. In t
case the incident light can only bes polarized~in our calcu-

l
FIG. 2. ^ ln T& ~empty squares! and^T2&/^T&221 ~filled squares!

for ki at the K̄point for slabs withn510% as a function ofNL , at
va0 /c53.9825.
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lations the electric field is parallel to thex axis!. The fre-
quency band structure forki50 (Ḡ point! is shown in Fig.
3~a!. The solid lines refer to doubly degenerate bands,
broken lines to the nondegenerate ones. The latter are p
tically inactive bands: they couple very weakly with the i
cident light,20 but they are interesting in relation to localiz
tion. In order to explain better what follows it is wort
remembering at this point the form of the wavefield cor
sponding to an eigenmode of the infinite crystal. In the h
region between two consecutive layers, this can be expan
into plane waves with wave vectorsKg

65„ki1g,6@ev2/c2

2(ki1g)2#1/2
….18,20 At the Ḡ point which interests us here

ki50. For the nondegenerate bands the coefficientsEg50
6

50 in the plane-wave expansion of the electric field van
identically for symmetry reasons. On the other hand, a n
mally incident wave has only one component, correspond
to g50. Therefore, most of it will be reflected at the surfa
of the slab, if there are no bands withEg50

6 Þ0 at the fre-
quency of the incident wave. Diffraction at the surface w
excite only to a very small degree a mode of a nondegene
band withEg50

6 50. This low excitation~the amplitudeEgÞ0
6

of the wavefield will be very small compared to that of t
incident wave! will be carried to the other side of the sla
and, ifAev/c.ugu for some of thegÞ0 components, will be
partly transmitted beyond it. The transmittance obtained
this way is about 10218 (ln T'240) in a typical case, as
shown in Fig. 3~b! in the region aboutva0 /c53.8 where
only a nondegenerate band which satisfies the above c
rion exists. Now it turns out that these bands are alm
insensitive to disorder. For example, we have obtained p
tically the same inactive band aboveva0 /c53.7, as the one
described by the broken line of Fig. 3~a!, for crystals where
the period ABC along the@111# direction, which character
izes the fcc structure, is replaced by different periods suc
AB, ABAC, etc. This can be understood as follows. For

FIG. 3. ~a! The frequency band structure of the inverted op
described in the text, forki50. The solid lines refer to the degen
erate bands and the dashed lines to the nondegenerate ban~b!
^ ln T& of light incident normally on a slab of the material, 12
layers thick, withn50% ~solid line! andn520% ~dashed line!. ~c!
l /d for slabs withn520% andNL5128 ~solid line!, NL5256 ~bro-
ken line!.
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single layer we obtain eigenstates of the EM field which
highly localized on the layer and decay rapidly to a vanis
ingly small amplitude on either side of it. When many laye
are brought together to build an infinite crystal such state
neighboring layers overlap slightly with each other and g
erate a narrow band. In a close-packed arrangement, suc
the one we consider here, the first-neighbor overlap will
the same, because in any stacking configuration the la
have equivalent positions relative to each other. A differen
arises from the interaction between second nearest neigh
which is very weak. Therefore, the inactive bands are ins
sitive to the stacking sequence because they are essen
determined by the interaction of nearest-neighbor laye
which is the same in all possible stacking configurations.
the same token we should expect the random distribution
layers~implied by stacking faults! not to have a significan
effect on the transmission of light by modes of these ban
It is small, about 10218 for the ordered structure, but it wil
not be reduced much further by disorder. This is clearly de
onstrated in Fig. 3~b! for frequencies aroundva0 /c53.8.
Accordingly, the correspondingl, defined by Eq.~1!, in-
creases~practically linearly! with NL , as shown in Fig. 3~c!.
The above argument suggests that an arbitrary sliding di
der which introduces a variation in the interaction betwe
nearest-neighbor layers will produce a considerable varia
in the inactive band, and in a randomly disordered slab
corresponding states will become localized. This is inde
what happens. As we see in Fig. 4, for a disordered slab w
an arbitrary sliding disorder the transmittance goes expon
tially to zero with increasing thickness in contrast to a dis
dered slab with stacking faults where the transmittance
creases very slowly with thickness.

We have found that if over a given frequency region d
generate and nondegenerate bands coexist, a random d
bution of stacking faults reduces the transmittance thro
the degenerate bands~this goes exponentially to zero as th
thickness increases! but some transmittance remains becau

l
FIG. 4. ^ ln T& for ki50 for slabs withn520% as a function of

NL , at va0 /c53.74 ~circles!. The squares show the correspondi
results when each stacking-fault displacement (2di ,d) is replaced
by (20.8di ,d).
5-3
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of the nondegenerate bands. Therefore, over regions wh
nondegenerate band exists, which permits a low but pra
cally insensitive to disorder transmittance to occur, we do
have l as defined by Eq.~1! independent of thickness, a
shown in Fig. 3~c!. However, localization is at work in the
present case reducing the transmittance to the low level
mitted by the nondegenerate band. This is a rather interes
situation: it appears that we have at the same freque
localized and delocalized modes of the EM field, and that
two do not interact. This is certainly very different from
the commonly accepted rule, that localized and delocali
states in a disordered system cannot exist at the s
frequency.2 We should note that, it is in principle possib
that localization occurs for the inactive bands also,
with a localization length much larger than the thicknes
we have considered. A final note in relation to Fig. 3~b!: over
a narrow region of frequency betweenva0 /c53.250
e

e-
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re

L

v,
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and 3.275 we have a degenerate band by itself. There
expect and find a true localization length independent
thickness.

Finally, we would like to comment on the significance
light absorption, which could in principle complicate the e
perimental proof of Anderson localization.8–10 Assuming
silicon-based inverted opals with a~fcc! lattice constanta
51.070mm,14 we find that, in the frequency region we hav
been considering, the imaginary part of the dielectric co
stant of crystalline silicon does not exceed 1025 and thus the
absorbance is negligible.21 Therefore, we may say that in
verted opals disordered by stacking faults provide an ex
lent testing ground for studying the localization of light du
to disorder.
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