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Effects of Pauli paramagnetism on the superconducting vortex phase diagram in strong fields
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The Ginzburg-Landau functional and the resultant phase diagram of quasi-two-dimensional superconductors
in strong fields perpendicular to the layers, where the Pauli paramagnetic depairing is not negligible, are
examined in detail by assuming the weak coupling BCS model with adx22y2-like pairing. It is found that the
temperature at which the mean field~MF! transition atHc2 changes into a discontinuous one lies much above
another temperature at which a lineHFFLO(T) of transition to a helical vortex solid similar to a Fulde-Ferrell-
Larkin-Ovchinnikov state may begin to appear. In addition to MF results, details of a real phase diagram near
the Hc2(T) line are examined based on a theoretical argument and Monte Carlo simulations, and it is found
that the MF discontinuous transition is changed due to the fluctuation into a crossover which is nearly discon-
tinuous in systems with weak enough fluctuation. These results are consistentbothwith the MF discontinuous
behavior and a suggestion ofHFFLO(T) in the heavy fermion superconductor CeCoIn5 with weak fluctuation
and with their absence in cuprate and organic superconductors with strong fluctuation.

DOI: 10.1103/PhysRevB.68.184510 PACS number~s!: 74.25.Dw, 74.40.1k, 74.70.Tx
u
ee

an
b

ed
s.
io
el

i.e
o

el
su

b
o

ita

th

b
,
i

n

u

in-
ula-
y

the

ary

ed
cts
ve
s a

s
bital
t is

e
re

ere
ling

of
t
C

not
g
e
the

hat
be
in
o-
ng
I. INTRODUCTION

Traditionally, the effects of Pauli paramagnetism on s
perconductors with a spin-singlet Cooper-pairing have b
discussed by simply focusing on two energy scales,1,2 the
superconducting~SC! condensation energy and the Zeem
energy preventing the singlet pairing. This is a reasona
explanation of the first order transition~FOT! in an excep-
tional case with no orbital depairing creating field-induc
vortices, i.e., a thin-film superconductor in parallel field3

Further, there is also the possibility of a structural transit
within the Meissner phase into the so-called Fulde-Ferr
Larkin-Ovchinnikov~FFLO! state4,5 with a periodic modula-
tion, induced by the spin~paramagnetic! depairing, of the SC
order parameter. However, the orbital depairing effects,
the field-induced vortices, are inevitably present in most
cases of a bulk type II superconductor under a strong fi
including a layered material under a field parallel to the
perconducting layers.7 Hence, we encounter quite adifferent
issue from that in the works,1,2,4–6that is, effects of the spin
depairing on thevortex statewhich hasno Meissner re-
sponse. Since the number of vortices is determined only
the magnetic field strength and system sizes, treating the
bital depairing as a perturbation for the case with no orb
depairing is not valid.

At present, it is well understood8,9 that, in lower fields
where the spin depairing is negligible, theH-T phase dia-
gram for the vortex states isdrasticallychanged by including
the SC fluctuation neglected in the mean field~MF! approxi-
mation. Typical among such drastic fluctuation effects is
fact that the second order MF transition atHc2 is not realized
as a consequence of the fluctuation and gives way to aweak
first order transition lying belowHc2 between the vortex
solid phase and the vortex liquid region which needs not
distinguished from the normal state. At least theoretically
is important to extend this issue to the strong field region
which the spin depairing is not negligible and the MF tra
sition atHc2 may be discontinuous.

Through previous MF works on the vortex states of s
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perconductors with paramagnetic depairing,10–12 however,
one notices that even theH-T phase diagram in the MF
approximation is an unsettled issue. For instance, a FOT
duced by the spin depairing was expected through a calc
tion in the dirty limit,12 to the best of our knowledge contrar
to the experimental facts. Further, even in the pure~clean!
limit, there is no consensus on the MF phase diagram. In
strong fields of our interest, any Meissner phase~i.e., any
phase occurring with no orbital depairing! is not possible,
and we expect just some vortex solids, such as an ordin
solid consisting of straight vortex lines and~if any! FFLO-
like solid state with a periodic modulation along the appli
field, as SC ground states in the clean limit with no defe
leading to a vortex pinning. Let us call the transition cur
between the above-mentioned two vortex solid state
HFFLO(T). In Ref. 10, the transition atHFFLO was argued to
be of first order with no detailed calculation, while it wa
obtained as a second order one in Ref. 11, where the or
depairing represented by the gauge-invariant gradien
treated perturbatively. Further, the temperatureT* at which
the MF transition atHc2 changes into a discontinuous on
was concluded there11 to lie much below another temperatu
TFFLO at which HFFLO(T) and Hc2(T) branch. In addition,
the HFFLO(T) line is often suggested to be insensitive toT.
We note that all the conflicting results raised above w
obtained in the same model, i.e., the simplest weak-coup
BCS model.

In the present paper, we consider a SC phase diagram
quasi-two-dimensional~2D! superconductors with a single
d-wave pairing under a high field perpendicular to the S
layers where both the orbital and spin depairings are
negligible. In Sec. II, a MF calculation for the weak-couplin
BCS model is first performed by focusing primarily on th
region where the SC order parameter is described within
lowest Landau level~LLL or N50 LL!. We demonstrate by
treating the two depairing effects on the same footing t
most of the previous MF results mentioned above may
significantly changed. Our analysis is different from that
Ref. 11 in that the gauge-invariant gradient is fully incorp
rated. This nonperturbative inclusion of the orbital depairi
©2003 The American Physical Society10-1
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should become important upon cooling and with increas
field, although, instead, multiple numerical integrals have
be performed to accomplish it. Further, bearing in mind
comparison with data in real systems, a weak impurity sc
tering should be incorporated because theHFFLO(T) line
which may appear in highH and lowT is found to be quite
sensitive to the impurity strength. Consequently, the M
phase diagram is determined by a competition among
two depairing effects and the impurity strength. We find th
the temperatureT* always lies above other two character
tic temperaturesTFFLO and Tnext, below which the vortex
solid will be described by the next lowest Landau levelN
51 LL!. In addition to these studies of the MF phase d
gram, linear response and elastic properties in a possible
lical FFLO-like vortex solid will be examined to give a resu
useful for search of such a helical solid state.

Next, in Sec. III, we address the effects of the SC fluct
tion on the phase diagram by neglecting vortex pinning
fects. We notice that a theoretical consideration on the fl
tuation effects on the orderings in vortex states belowHc2 is
unaffected by a change of the Ginzburg-Landau~GL! model
brought by the presence of the spin depairing, and natur
leads to the conjecture that the FOT obtained in the
approximation~MF-FOT! at Hc2 will not occur as a true
FOT in real systems. Otherwise, the high field portion of
H-T phase diagram would not become compatible with
low field portion, in which the absence of the second or
MF transition atHc2 is well established.8,9 The only transi-
tion in the case with no pinning disorder should be the m
ing transition of a vortex solid. In the present case with
MF-FOT, however, the GL model needs to have higher or
~nonlinear! terms other than the quartic term, and this fa
makes an analytic study more involved. For this reason,
have chosen to perform Monte Carlo simulations on a
model justified through our microscopic analysis in order
examine the true phase diagram. Our simulation results
consistent with the above-mentioned conjecture that the M
FOT atHc2 is changed due to the fluctuation into a crosso
of which the width is narrower in systems with weaker flu
tuation. Together with the impurity-induced disappearance
the MF-FOT, this fluctuation-induced broadening of t
sharp behavior reflecting the MF-FOT explains why t
nearly discontinuous behavior atHc2 has not been observe
so far in, except for recent observations in CeCoIn5,13–17

bulk type II superconductors with a spin-singlet pairing. O
the other hand, we find that, in spite of the absence of
genuine FOT atHc2, a hysteresis may appear nearHc2 in
simulations for cases with weaker fluctuation~or equiva-
lently, at very low temperatures! as a result of an incomplet
relaxation at finite time scales.

Finally in Sec. IV, experimental facts in CeCoIn5 under
Hic and other materials are discussed based on the re
obtained in Secs. II and III. It is conjectured there that the
fluctuation makes theHFFLO(T) line and the FOT-like behav
ior at Hc2 unobservable in strongly fluctuating systems su
as organic materials. Further, it is also pointed out there t
although microscopic results in Sec. II are not applicable
the H'c case in CeCoIn5, recent specific heat data13,18 can
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be understood within our results in Sec. III. We use the u
\5c5kB51 throughout this paper.

II. MEAN FIELD ANALYSIS

Following Klemm et al.,19 we start from a BCS Hamil-
tonian for a quasi-2D superconductor under a nonzero m
netic field perpendicular to the basal plane

H5H01HJ2
ugu
2 (

s, j
E d2q'

~2p!2
Bj

s†~q�!Bj
s~q�!. ~1!

Here, g is the attractive interaction strength,w j
s(r�)

5(1/AVs)(p�
aj

s(p�)eip�"r� is the annihilation operator of a

quasiparticle with spins (511 or 21) at the in-plane po-
sition r� on the j th plane, ands and V are the interlayer
spacing and the area of a layer, respectively. The pair-fi
operator is defined byBj

s(q�)5(p�
wpaj

2s(Àp�
À)aj

s(p�
1),

wherewp is the orbital part of the pairing function and, in th
case ofdx2-y2 pairing, is written asA2(p̂x

22 p̂y
2), wherep̂ is

the unit vector in thep' direction, andp�
Á implies p�

6q/2. The first termH0 in Eq. ~1! represents in-plane mo
tions of quasiparticles,

H05s(
s, j

E d2r'S w j
s†~r�!

~2 i¹'1ueuA!2

2m
w j

s~r�!

1w j
s†~r�!@v j~r�!2sI #w j

s~r�! D , ~2!

where the gauge fieldA has no out-of-plane component,I
5m0H is the Zeeman energy, andm is the effective mass o
a quasiparticle. The strength of the paramagnetic depairin
measured bym0Hc2

orb(0)/2pTc0 corresponding to the Mak
parameter except a numerical factor, whereHc2

orb(T) is the
MF transition curve in the case neglecting both the param
netic depairing and impurity effects, andTc0 is the zero field
(H50) transition temperature in the pure limit. Througho
the numerical calculations in this section and the next s
tions, we will choosem0Hc2

orb(0)/2pTc0 to be 0.8 by bearing
a comparison with observations in CeCoIn5 in mind ~see
Sec. IV!. The random potentialv j (r�) obeys the following
Gaussian ensemble:v j (r�)50, v j (r�)v j 8(r�8 )5d(r�
2r�8 )d j j 8/2pN(0)t, whereN(0) is a 2D density of state a
the Fermi surface, andt21 the elastic scattering rate. Th
second term represents the interplane hopping,

HJ5
Js

2 (
s, j

E d2r'~w j
s†~r�!w j 11

s ~r�!1H.c.!, ~3!

where H.c. denotes the Hermitian conjugate. We use the
miliar quasiclassical approximation for the single-partic
propagator

G«s

H ~r,r 8!5G«s

H50~r2r 8!eiueu* r
r8ds"A. ~4!

Here, the Green’s function in zero field,G«s

H50(r ), is given

as the Fourier transform of the expression
0-2
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G«s
~p!5$ i«̃s2@jp'

1J cos~pzs!#%21, ~5!

where « denotes the Matsubara frequency«n52pT(n
11/2) in this paper, «̃s5«1s« /(2t)2 isI , and s«

5sgn(«). Since we take account of the paramagnetic dep
ing suppressing the MF upper critical field, the use of
quasiclassical approximation, valid ifkFr H@1, needs not to
be questioned, wherekF is the Fermi momentum, andr H
5(2ueuH)21/2 is the magnetic length. According to the fa
miliar Stratonovich-Hubbard procedure to introduce the p
field D, we can construct a GL functional. Throughout th
paper, we neglect theinternal gauge fluctuation and examin
the resulting GL model in the type II limit. The validity o
this approximation will be explained later when discuss
the MF phase diagram.

A. Quadratic term

The quadratic term of the GL functional is given by

F25(
qz

E d2r'D̃qz
* ~r�!S 1

ugu
2K̂2~P,qz! D D̃qz

~r�!, ~6!

where D j5(Nlayer)
21/2(qz

D̃qz
eiqzs j denotes the pair field

on the j th SC plane,Nlayer is the number of SC planes
P52 i¹'12ueuA, and the operatorK̂2 in the pure limit
(t21→0) is simply given by

K̂2~P,qz!52pN~0!T(
«.0

D̂d~2«!,

D̂d~2«!5E
p

^uwpu2G«s
~p!G2«s

~P1qzẑ2p!&s

pN~0!
. ~7!

Here, the notation*p[*@d2p' /(2p)2#r@d(pzs)/2p# was
used. Hereafter, a bracket^•••&a with subscripta means an
average overa, so that^•••&s implies 221(s . In the im-
pure case, there are also contributions from the impur
ladder vertex corrections, andD̂d(2«) should be replaced a
follows:

D̂d~2«!→D̂d~2«11/t!

1Êd~2«!
G

12GD̂s~2«!
Êd~2«!u2«→2«11/t ,

~8!

whereG5(2t)21, andD̂s and Êd are defined by replacing
uwpu2 in Eq. ~7! into 1 andwp , respectively. In the dirty limit
with 2ptTc0!1, the impurity-ladder vertex correction ex
pressed by the second term of Eq.~8! becomes important
although the SC phase itself in the presentd-wave case is
simultaneously suppressed. As shown later, however,
MF-FOT appears only when 2pTc0t.10, and hence, we
focus here on this moderately clean case. In fact, as give
Fig. 1, a change in theHc2(T) curve due to the inclusion o
the impurity-ladder vertex corrections is extremely sm
even when (2pTc0t)2150.1. Based on this result, the se
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ond term of Eq.~8! and any contribution including the
impurity-ladder vertex corrections in other terms of GL fun
tional will be neglected hereafter in the text and in the A
pendixes.

We should note here that, strictly speaking, the eigenst
of the operatorK̂2 in the dx2-y2-wave pairing are not LLs,
and that there are nonvanishing off-diagonal matrix eleme
between LLLs and higher LLs with indices of multiples of
However, in the range of Maki parameter considered in t
paper, the instability line for theN54 LL modes, defined by
a4(0)50 in our notation used below, lies far belowHc2(T)
~see the dashed line in Fig. 1!, and hence, we can neglect th
off-diagonal elements in considering vortex states inN50
~and 1!. Then,wp in Eq. ~7! may be replaced by 1, and ou
analysis using the LL basis becomes straightforward. W
focusing on a projectionD̃qz

(N) onto theNth LL of D̃qz
(r'),

the corresponding eigenvalue ofK̂2 is given by

K2,N~qz!52pTN~0!E
0

`

dr f ~r!LNS r2

2tH
2 D

3exp~2r2/4tH
2 !J0F2J sinS qzs

2 D rG , ~9!

where LN is the Nth Laguerre function,J0 is the zeroth
Bessel function,tH5mrH /kF , and the functionf is defined
by

f ~r!5
e2r/tcos~2Ir!

sinh~2pTr!
. ~10!

The procedures leading to Eq.~9! will be explained in Ap-
pendix A. After, as in theH50 case, eliminating the high
energy cutoff by definingTc0, we obtain the final expressio
for the quadratic free energy,

F25N~0! (
N50

`

(
qz

E d2r'aN~qz
2!uD̃qz

(N)~r'!u2, ~11!

where

FIG. 1. Comparison betweenHc2(T) curves for (2pTc0t)21

50.1 determined froma0(0)50 by neglecting~crossed symbols!
and including~solid curve! the impurity-ladder vertex correction
The dashed curve is the line on whicha4(0)50, and h
5H/Hc2

orb(0).
0-3
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aN~qz
2!5 ln~T/Tc0!12pTE

0

`

drH @sinh~2pTr!#21

2 f ~r!LNS r2

2tH
2 D e2(r/2tH)2J0F2J sinS qzs

2 D rG J .

~12!

For several purposes, it is convenient to expandaN(qz
2) in

powers of sin2(qzs/2):

aN~qz
2!5aN~0!1aN

(1)Q21aN
(2)Q41•••, ~13!

where Q[J sin(qzs/2). When the SC transition in the MF
approximation is of first order and occurs within theNth LL,
this MF-FOT line, which is a part ofHc2(T), lies in the
region whereaN(0).0, and the quartic and sixth order G
terms have to be considered to determine theHc2(T) line.
The possibility of an instability to an FFLO-like helical vo
tex solid in the Nth LL may be studied, at least whe
uaN(0)u!1 @see discussions below Eq.~45!#, by focusing on
aN

(1) andaN
(2) , where

aN
(1)52pTE

0

`

drr2f ~r!e2(r/2tH)2LNS r2

2tH
2 D , ~14!

aN
(2)52

pT

2 E
0

`

drr4f ~r!e2(r/2tH)2LNS r2

2tH
2 D . ~15!

As far asaN
(2).0, the instability point to an FFLO solid stat

is determined byaN
(1)50, and the corresponding transition

of second order.

B. Quartic term

The corresponding analysis for higher order~quartic and
sixth order! terms of the GL functional is more complicate
than that for the quadratic one. As already explained,
impurity-ladder vertex corrections will be neglected in t
ensuing analysis. Hereafter, it is convenient to work in
fixed Landau gaugeA5(0,Hx,0) and to represent the pa
field in theNth LL in terms of the corresponding LL orbital
uN,k(r'),

D j
(N)~r�!5

1

ASH
(

k
fN,k, juN,k~r�!, ~16!

FIG. 2. Diagrams expressing the quartic term of the GL fu
tional. The solid line implies the Green’s functionG, and the impu-
rity ~dashed! line carries@2pN(0)t#21.
18451
e

a

whereSH5r HLyp
1/2. In the present gauge,uN,k(r') is given

by

uN,k~r�!5
p̂1

N

AN!
e2(1/2r H

2 )(x1krH
2 )21 iky, ~17!

where we introduce the creation and annihilation opera
of LLs:

p̂65
r H

A2
~Px6 iPy!. ~18!

Hereafter, let us focus on a vortex solid within the LLL su
space. The corresponding analysis in higher LLs will
given elsewhere. Then, the quartic term of the GL functio
can be written as

F45
1

2 (
j
E d2r'K̂4~$Pi%!~D j

(0)~r'1!D j
(0)~r'3!!*

3D j
(0)~r'2!D j

(0)~r'4!ur' i→r'
~19!

5
1

2SH
(

j ,$ki %
f0,k1 , j* f0,k2 , jf0,k3 , j* f0,k4 , j

3E d2r'

SH
K̂4~$Pi%!u0k1

* ~r'1!u0k2
~r'2!

3u0k3
* ~r'3!u0k4

~r'4!ur' i→r'
, ~20!

where Pi5P(r i). In the impure caseK̂4 consists of three
terms represented in Fig. 2 and will be expressed asK̂4

5K̂4a1K̂4bc. The termK̂4a is given by

K̂4a52pTN~0!

3(
«
K 2 is«uwpu4

~2i«̃s1v"P1* !~2i«̃s1v"P2!~2i«̃s1v"P3* !
L

s,p̂

1~P2↔P4! ~21!

52pTN~0!

3E )
i 51

3

dr i f S (
i 51

3

r D ^uwpu4ei(r1v"P1* 1r2v"P21r3v"P3* )& p̂

1~P2↔P4!, ~22!

wherev5kFp̂/m, the functionf is defined by Eq.~10!, and
the bracket̂ & p̂ implies the angle-average over the unit vec
p̂5p/kF on Fermi surface. The sum of Figs. 2~b! and 2~c!,
K̂4bc, is given by

-

0-4
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K̂4bc52
2pT

t
N~0!(

« K K uwpu2

~2i«̃s1v"P1* !~2i«̃s1v"P2!
L

p̂

3K uwp8u
2

~2i«̃s1v8"P3* !~2i«̃s1v8"P4!
L

p̂8
L

s

1~P2↔P4! ~23!

52
2pT

t
N~0!E )

i 51

4

dr i f S (
i 51

4

r D
3^uwpu2ei(r1v"P1* 1r2v"P2)& p̂

3^uwp8u
2ei(r3v8"P3* 1r4v8"P4)& p̂81~P2↔P4!, ~24!

wherev85kFp̂8/m. The following formulas which are de
rived in Appendix B are quite convenient:

eirv"Pu0,k~r'!5e2(ulu22l2)/4e2(1/2)(x/r H1krH1l)21 iky,
~25!

eirv"P* u0,k* ~r'!5e2(ulu22l* 2)/4e2(1/2)(x/r H1krH2l* )22 iky.
~26!

where l5rz* /tH and z5 p̂x1 ip̂y is the complex coordi-
nate. Using this identity and Eq.~B5! in Appendix B, we
obtain the following results:

E d2r'

SH
K̂4a~$Pi%!u0k1

* ~r'1!

3u0k2
~r'2!u0k3

* ~r'3!u0k4
~r'4!ur' i→r'

5
2pTN~0!

A2
E )

i 51

3

dr i f S (
i 51

3

r D
3E d2r'

SH
^uwpu4ei(r1v"P1* 1r2v"P21r3v"P3* )u0k1

* ~r'1!

3u0k2
~r'2!u0k3

* ~r'3!u0k4
~r'4!& p̂ur' i→r'

1~k2↔k4!

5
2pTN~0!

A2
dk11k3 ,k21k4

E )
i 51

3

dr i f S (
i 51

3

r D
3^4~Rez2!4I 4~$l i%!ul450,l iÞ45r iz* /tH

& p̂1c.c., ~27!

E d2r'

SH
K̂4bc~$Pi%!u0k1

* ~r'1!u0k2
~r'2!

3u0k3
* ~r'3!u0k4

~r'4!ur' i→r'

52
2pTN~0!

tA2
E )

i 51

4

dr i f S (
i 51

4

r D E d2r'

SH

3^uwpu2ei(r1v"P1* 1r2v"P2)u0k1
* ~r'1!u0k2

~r'2!& p̂

3^uwpu2ei(r3v8"P3* 1r4v8"P4)u0k3
* ~r'3!
18451
u0k4
~r'4!& p̂8ur' i→r'

1~k2↔k4!

52
2pTN~0!

tA2
dk11k3 ,k21k4

E )
i 51

4

dr i f S (
i 51

4

r D
3^4~Rez2!2~Rej2!2

3I 4~$l i%!ul1,25r1,2z* /tH ;l3,45r3,4j* /tH
& p̂,p̂81c.c., ~28!

where the suffixl i , j5r i , jz* /tH implies l i5r iz* /tH and
l j5r jz* /tH . Here the functionI 4 for the quartic term is
given by

ln~ I 4~$l i%!!52
1

4 (
i 51

4

ul i u22
1

8
~l13*

21l24
2 !2

1

4
~l1* 1l3* !

3~l21l4!2
r H

2
~k13l13* 2k24l24!, ~29!

where j5 p̂x81 ip̂y8 , ki j 5ki2kj , and l i j 5l i2l j . Finally
we have a quartic term

F45
N~0!

2A2SH
(

j
(
$ki %

dk11k3 ,k21k4
V4~$ki%!

3e2(r H
2 /4)(k13

2
1k24

2 )f0,k1 , j* f0,k2 , jf0,k3 , j* f0,k4 , j , ~30!

V4~$ki%!52pTE )
i 51

3

dr i f S (
i 51

3

r i D ^4~Rez2!4

3I 4~$l i%!ul450;l i5r iz* /tH
& p̂2

2pT

t

3E )
i 51

4

dr i f S (
i 51

4

r i D ^4~Rez2!2~Rej2!2

3I 4~$l i%!ul1,25r1,2z* /tH ;l3,45r3,4j* /tH
& p̂,p̂81c.c.

~31!

We will show later@see Fig. 5~a!# that, consistent with the
neglect of the second term of Eq.~8!, the second contribution
to Eq. ~31! arising fromK̂4bc is safely negligible compared
with the first K̂4a term in the relatively clean case wit
2pTc0t.10 of our interest.

C. Sixth order term

When we restrict the pair-field into the LLL subspace, t
sixth order term of the GL functional is expressed as follo

F652
1

3 (
j
E d2r'K̂6~$Pi%!

3~D j
(0)~r'1!D j

(0)~r'3!D j
(0)~r'5!!* D j

(0)~r'2!

3D j
(0)~r'4!D j

(0)~r'6!ur i→r ~32!
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52
1

3SH
2 (

j ,$ki %
f0,k1 , j* f0,k2 , jf0,k3 , j* f0,k4 , jf0,k5 , j* f0,k6 , j

3E d2r'

SH
K̂6~$Pi%!u0k1

* ~r'1!u0k2
~r'2!

3u0k3
* ~r'3!u0k4

~r'4!u0k5
* ~r'3!u0k6

~r'4!ur' i→r'
. ~33!

In contrast to the quartic term, the kernelK̂6 also includes
diagrams@see Fig. 3~b!# with two or three impurity lines in
addition to those with a single impurity line such as F
2~b!. Fortunately, according to the statement following E
~31!, all terms other than Fig. 3~a! may be neglected in the
range of purity parameter we focus on. The diagram of Fig
~a! is expressed as

K̂652pTN~0!(
«

is«K S uwpu6)
i 51

6
1

zi
D S z61z41z2

1
z3z6

z22z31z4
1

z1z4

z32z41z5
1

z2z5

z12z21z3
D L

s,p̂

[K̂6a1K̂6b1K̂6c1K̂6d1K̂6e1K̂6 f ~34!

wherezi[2i«̃s1v"Pi for eveni and 2i«̃s1v"Pi* for odd i.
It is easily seen that, due to the symmetry with respect toPi

and Pi* , the above expression can be represented in te
only of, e.g., its first and fourth terms.

First, let us calculate the contribution to the GL function
of K̂6a . Using the parametric representation~see Appendix
A!, it is written as

E d2r'

SH
K̂6a~$Pi%!u0k1

* ~r'1!u0k2
~r'2!

3u0k3
* ~r'3!u0k4

~r'4!u0k5
* ~r'3!u0k6

~r'4!ur' i→r'
~35!

52pTN(0)E )
i 51

5

dr i f S (
i 51

5

r D
3E d2r'

SH
K UwpU6ei( (

i 51,3,5
r iv"Pi*

1 (
i 52,4

r iv"Pi )u0,k1
* S r'1Du0,k2S r'2D

3u0,k3
* S r'3Du0,k4S r'4Du0,k5

* S r'5Du0,k6S r'6D L p̂Ur' i→r'

~36!
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.
.

3

s

l

5
2pTN~0!

A3
dk11k31k5 ,k21k41k6

E )
i 51

5

dr i f S (
i 51

5

r D
3^8~Rez2!6I 6~$l i%!ul650,l iÞ65r iz* /tH

& p̂ , ~37!

where the functionI 6 is given by

ln@ I 6~$l i%!#52
1

4 (
i 51

6

ul i u21
1

4 S (
i :odd

l i*
21 (

i :even
l i

2D
2

1

12S (
i :odd

l i* 1 (
i :even

l i D 2

2
1

6 S (
( i , j ):odd

l i j*
21 (

( i , j ):even
l i j

2 D
1

r H

3 S (
( i , j ):odd

ki j l i j* 2 (
( i , j ):even

ki j l i j D .

~38!

Next we examineK̂6d . Using the parameter represent
tion, this term is expressed by changing the integral variab
in the above expression asr2→r21r3 , r3→2r3, andr4
→r31r4.

In this way, we can write the 6th order term of the GL fre
energy functional in the form

F65
N~0!

3A3SH
2 (

j
(
$ki %

dk11k31k5 ,k21k41k6
V6~$ki%!

3expS 2r H
2 (

( i ,m)
kim

2 /6D
3f0,k1 , j* f0,k3 , j* f0,k5 , j* f0,k2 , jf0,k4 , jf0,k6 , j , ~39!

where the summation( ( i ,m) is taken over the pairs
$(1,3),(3,5),(5,1),(2,4),(4,6),(6,2)%, andV6 is given by

FIG. 3. Diagrams expressing the sixth order term of the
functional.
V6~$ki%!52332pTE )
i 51

5

dr i f S (
i 51

5

r i D $^8~Rez2!6I 6~$l i%!ul650;l iÞ65r iz* /tH
& p̂

1^8~Rez2!6I 6~$l i%! ul650;l1,55r1,5z* /tH ;l352r3z* /tH ;l2,45(r2,41r3)z* /tH
& p̂%. ~40!
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EFFECTS OF PAULI PARAMAGNETISM ON . . . PHYSICAL REVIEW B68, 184510 ~2003!
In deriving the MF phase diagram and its impurity depe
dence, we will use an additional approximation below. Sin
a nonzero magnetic field plays the roles of cutting off t
low T divergences of coefficients of the higher order G
terms, the orbital depairing effect arising from the gau
invariant gradientsPj has been incorporated nonperturb
tively in the above expressions.19 Instead, algebraicki j de-
pendences have arisen in the verticesVm($ki j %) with m54
and 6. On the other hand, the Gaussianki j dependences in
F4 and F6 are direct consequences of restricting the p
field into the LLL subspace and also appear in the fami
GL expression with spatially local higher order terms. Th
is, the additionalki j dependences inVm($ki j %) can be seen a
spatiallynonlocalcontributions to the higher order GL term
and affect the structure of vortex solid. Actually, in the LL
and the case with no paramagnetic depairing, this nonloca
in the quartic GL term results in the structural transition b

FIG. 4. Results onF̃4[2F4 /@NlayerVN(0)tH
2 (^uD (0)u2&)2# cal-

culated under three different conditions and in the pure (tTc0

5`) limit. In the open-square symbols, the square vortex lattic

assumed with the nonlocal contribution inF̃4 included, while the
triangular lattice is assumed in both the crossed symbols with
nonlocal contribution and the solid curve with no nonlocal on

Note thatT* at which F̃450 is insensitive to the nonlocal contr
bution and to the types of lattices.
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tween the rhombic and square vortex lattices.20 However, an
energy difference affecting the lattice structure is extrem
small, reflecting a weak structure dependence of the Abri
sov factors~denoted asbA and gA below!. For instance, as
shown in Fig. 4, the nonlocal correction toF̃4 and thus, to
T* is negligibly small. Therefore, at least as far as the
transition in the MF approximation atHc2 is concerned, such
nonlocal corrections are safely negligible. For this reas
the local approximation for the higher order terms will b
used hereafter, andVm($ki j %) will be replaced by Vm
5Vm($ki j 50%). Then, the GL functional derived micro
scopically takes the form

Floc5N~0!E d2r'F(
qz

a0~qz
2!uD̃qz

(0)~r'!u2

1(
j

S V4

2
uD j

(0)u41
V6

3
uD j

(0)u6D G . ~41!

Temperature variations of the coefficientsV4 andV6 cal-
culated along theHc2(T) curve are shown, respectively, i
Figs. 5~a! and 5~b!. To clarify that the contributions of Figs
2~b! and 2~c! are safely negligible,V4 in Fig. 5~a! was cal-
culated in terms of (2pTc0t)2150.05, the value used in
Fig. 6~b! below. The coefficientV4 is negative at lower tem-
peratures, whileV6 is positive over a broad region so that th
GL expression~41! with a MF-FOT atHc2(T) is well de-
fined.

D. Mean field phase diagram

Below, the MF phase diagram will be examined based
the functional, Eq.~41!. First, let us neglect a possibility of
FFLO-like state and assume a straight vortex solid indep
dent of j as the MF solution. Then, the first term in th
brackets of Eq.~41! is replaced by( ja0(0)uD j u2, and the
MF solution is obtained in a standard way. The characte
the MF transition at theHc2(T) line changes with increasing
field from a second order one to a discontinuous one a

is

e
.

to

FIG. 5. Numerical results of the dimensionless coefficients~a! Ṽ45V4($kj50%)/tH

2 and ~b! Ṽ65V6($kj50%)/tH
4 on theHc2 curve at

lower temperaturesT<0.5Tc0. The value (2pTc0t)2150.05 was commonly used. In~a!, the cross symbols represent the result due only
Fig. 2~a!.
0-7
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HIROTO ADACHI AND RYUSUKE IKEDA PHYSICAL REVIEW B 68, 184510 ~2003!
temperatureT* whereV4 becomes negative@see Figs. 4 and
5~a!# reflecting that the spin depairing is more effective up
cooling and with increasingH. To obtain MF results inT
,T* , higher order terms are necessary in the GL express
According to Fig. 5~b!, the coefficientV6 is positive over a
broad temperature range, and thus, Eq.~41!, terminated at
the sixth order term, will be sufficient for our purpose. Fu
ther, let us introduce the effective coefficientsb̃5V4bA of
the quartic term andc̃5V6gA of the sixth order term, respec
tively, where

bA5
^uD j

(0)~r'!u4&

~^uD j
(0)u2&!2

,

gA5
^uD j

(0)~r'!u6&

~^uD j
(0)u2&!3

. ~42!

Then, the following MF results inT,T* are found. First,
the MF transition point inT,T* and in the LLL is deter-
mined by the condition

a0~0!5
3b̃2

16c̃
[a0,c , ~43!

while the supercooling~superheating! point is given by
a0(0)50 @a0(0)5b̃2/(4c̃)#. Next, the energy barrierUbarr
between theuD (0)u50 solution and the jump value ofuD (0)u
at the transition,uD (0)uc5A3ub̃u/4c̃, is given by

Ubarr5N~0!
ub̃u3

48c̃2
. ~44!

Further, by calculating the mean squared amplitu
^udD (0)u2& of the Gaussian fluctuationdD (0) when a0(0)
5a0,c and in the 2D limit, one also finds

^udD (0)u2&}
Tc2uD (0)uc

2

Ubarr
, ~45!

whereTc2 is the MF transition temperature. Thus, the flu
tuation strength is enhanced with decreasingub̃u and increas-

FIG. 6. High H and low T regions of the MFH-T phase dia-
grams in~a! clean limit @(2pTc0t)2150# and ~b! the moderately
clean case@(2pTc0t)2150.05#. See the text for further details.
18451
n.

e

ing c̃ and, as expected, is measured atTc2 by the inverse of
the energy barrier. Hence, if this MF-FOT occurs as a t
FOT in real systems, a clear hysteresis is expected in a
tem with weaker fluctuation.

However, in higher fields and lower temperatures wh
the spin depairing becomes more important, a FFLO-like
lical vortex solid within LLL may become more favorable
As far as the width a0,c is sufficiently small, the
qz-dependent terms have only to be incorporated into
quadratic terms inD j

(0) . That is, thisstructural transition line
HFFLO(T) between the FFLO-like solid and the straight vo
tex solid may be discussed within the coefficienta0(qz

2).
Actually, according to the calculation results ofV4 andV6 in
Fig. 5,a0,c in Fig. 6 is at most of the order of 1022. Assum-
ing a helical state with thej dependenceD j

(0);eiqzjs in H
.HFFLO, a second order structural transition lineHFFLO(T)
is obtained within LLL according to Eq.~13! as the curve
a0

(1)(T)50 if a0
(2)(T).0 there. Numerical results ona0

(1)

and a0
(2) are shown in Fig. 7. We find thata0

(2) nearHc2 is
always positive along theHFFLO(T) line and increases upo
cooling at a fixed field aboveHFFLO(T). Further, since the
paramagnetic depairing effect is enhanced with increas
field and decreasing temperature, as the example in Fi
shows, a possibleHFFLO(T) curve should decrease upo
cooling.

Now, the MF phase diagrams Fig. 6 following from th
GL coefficients derived above and for two different impuri
strengths@(tTc0)21 values# will be explained. The used
value of paramagnetic parameterm0Hc2

orb(0)/2pTc0, corre-
sponding to the Maki parameter, is 0.8, which leads to
value T* 50.36Tc0 in the pure limit @Fig. 6~a!#, where
Hc2

orb(0)50.56f0 /(2pj0
2) is the 2D orbital limiting field at

T50 in the pure limit, andj05kF/2pmTc0 is the coherence
length. The field values in the figures were normalized
Hc2

orb(0) @i.e.,h5H/Hc2
orb(0)]. ThecurveH* (T) indicated by

the cross symbols is defined by the conditionV450 and may
not be directly seen in experiments. In contrast, the port
~open circles! in T,T* of Hc2(T) on which the MF SC
transition is discontinuous is experimentally measurable
gether with ~if any! the second order transition lin
HFFLO(T) ~solid curve! to the FFLO vortex solid. In the tem

FIG. 7. Temperature dependences ofã0
(1) and ã0

(2) on Hc2(T)

and nearTFFLO, whereã0
(s)5a0

(s)/tH
2s (s51,2), and the pure limit

was assumed. The corresponding curve ofã1
(1)5a1

(1)/tH
2 is also

shown for convenience.
0-8
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EFFECTS OF PAULI PARAMAGNETISM ON . . . PHYSICAL REVIEW B68, 184510 ~2003!
perature regions where the MF-FOT does not occur,
higher of the dashed curves indicated byN50 or 1 becomes
the Hc2(T) line, on whicha0(0) or a1(0)50, and the MF
transition there is of second order.

It will be important, in relation to real phase diagrams
related materials, to understand how theHFFLO(T) curve and
the characteristic temperatures are affected by the impu
strength. By comparing Figs. 6~a! and 6~b!, the region
HFFLO(T),H,Hc2(T) is found to be easily lost by a sligh
increase of impurity strength (tTc0)21. In contrast, the onse
T* of the MF-FOT behavior is relatively insensitive to th
sample purity. Nevertheless, when (2pTc0t)21 goes beyond
0.095 while the valuem0Hc2

orb(0)/2pTc050.8 was kept, the
MF-FOT region atHc2(T) is also lost, and the MF transitio
at Hc2(T) is continuous at all temperatures. This result
contrast to other works6,12 in which the presence of a MF
FOT was argued under the use of dirty limit. We find th
instead, the FOT obtained in the dirty limit12 never occurs in
T→0 limit when EFt.1 under which the usual dirty limi
may be valid. On the other hand, the results in Ref. 6
derived by completely neglecting the orbital depairing a
are not comparable with the present ones. Further, we s
that, in contrast to results given in a previous work11 taking
account of both the orbital and spin depairing effects,
results in Fig. 6 imply that alwaysT* .TFFLO in the present
quasi-2D case under a perpendicular magnetic field.

Since, as already mentioned, the widtha0,c in Fig. 6 is
relatively small, the MF-FOT there may be regarded as be
weak. However, this does not mean a strong fluctuation.
tually, in systems with a largeN(0) in zero field such as
CeCoIn5, the fluctuation strengthT/Ubarr itself becomes ex-
tremely small in the lowT region of our interest. On the
other hand, the magnetization jump valueDMc at the MF-
FOT should be quite small compared with the applied field
order to justify our neglect of a spatially varyinginternal
magnetic field. In CeCoIn5 under an applied field in the tesl
range, this condition is well satisfied15 ~also see Sec. IV!.

In T,Tnext wherea1(0),a0(0) @,a2(0)#, the Hc2(T)
line and, hence, the vortex lattice itself just below it a
determined by the next lowest (N51) LL. According to the
a1

(1)(T) curve in Fig. 7, thisN51 state is not a modulate
FFLO-like state but a straight vortex solid. Further, note t
Tnext andTFFLO are close to each other@see Fig. 6~a!#. These
results imply that, in quasi 2D materials under fields perp
dicular to the SC layers, the presence itself of the FFLO-l
vortex solid is very subtle even in pure limit. Thus, a co
petition between the FFLO-like solid within the LLL and
solid within theN51 LL has to be examined just above th
HFFLO(T) line. Since this is an issue of a transition betwe
vortex lattice structures defined within the planes perp
dicular to the field, a detailed description of the stable vor
lattices ind-wave pairing cases is required to address this.
already mentioned, however, the nonlocality, at least, of
sixth order GL term affecting the in-place lattice structu
was neglected in this paper. We will postpone a study
structural transitions to higher LL solids inH.HFFLO to our
future study.
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E. Properties of helical vortex solid

Here, we briefly comment on linear responses and ela
properties in vortex solid phases, primarily in a FFLO-lik
helical solid with a modulationD j.D̃qm

eiqmjs in a LLL with

qmÞ0. To examine the electromagnetic linear response
an ordered vortex lattice phase, we have only to focus on
gradient terms with anexternalgauge fluctuation substituted
and to examine the Gaussian fluctuation around a MF s
tion of D j . An appropriate form, consistent with the abo
microscopic analysis, of the gradient energy will be

Fgrad5E d3rD* ~r' ,z!FA~P2!S 2 i
]

]z
2azD 4

22B~P2!S 2 i
]

]z
2azD 2

1@A~P2!#21@B~P2!#2GD~r' ,z!, ~46!

where a continuous variablez was used for the coordinat
parallel to the field. If considering the SC response in thex or
y direction,P needs to be accompanied by a gauge fluct
tion a5a'1azẑ in the form P2a' . Within the Gaussian
approximation for the fluctuation, no cross terms likea'az
appear because any term}a' becomes off-diagonal with re
spect to the LLs and hence, zero after spatial averag
Hence, the linear responses in the parallel and perpendic
directions can be considered independently.

First, let us consider the response parallel to the field
which a'50. If the spatial variations perpendicular toH of
the MF pair-field solution are described within the LLL, th
argumentP2 in A and B can be replaced byr H

22 . For the
moment, let us focus on the helical solid phase in wh
B(r H

22).0. Assuming the fluctuation ofD j to be dominated
by that of its phasef, the fluctuation part ofdFgrad simply
becomes

dFgrad5A~r H
22!^uDu2&

3E d3r @~~]zf!22qm
2 22]zfaz!

21~]z
2f!2#

.4B~r H
22!^uDu2&E d3r ~]zdf2az!

2. ~47!

Here,df is the phase fluctuation, and higher gradient ter
were omitted in the expression following the second equa
Further, the fact that the MF valueqm

2 of qz
2 is

B(r H
22)/A(r H

22) was used. As seen in a seminal work,5 the
sameform as above occurs in the case with no orbital d
pairing in an isotropic 3D system@see Eq.~31! in Ref. 5#.
This familiar result ~47! implies that, in the helical solid
state, there is nostationarycurrent even alongH and that a
supercurrent}az can flow in this direction, although the su
perfluid rigidity }B(r H

22) vanishes with approaching
HFFLO(T).

The absence of a SC response inx andy directions can be
seen, as well as in the ordinary (qm50) case, most easily
0-9
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HIROTO ADACHI AND RYUSUKE IKEDA PHYSICAL REVIEW B 68, 184510 ~2003!
within the phase-only approximation.21 Noting that any term
accompanied by the in-plane periodic variation in a vor
lattice disappears after averaging spatially and that theuni-

form fluctuation part of]'df is given by r H
22( ẑ3s), one

finds that the fluctuation ofP2 in the limit of vanishing wave
number can be expressedeverywherein A andB as @r H

22( ẑ
3s)2a'#2, wheres is a uniform in-plane displacement of
vortex lattice. After integrating overs, a' disappears to-
gether in the resulting fluctuation free energy, implying
SC response. This non-SC perpendicular response is a
sequence of the establishment of the Josephson relatioa'

5r H
22( ẑ3s) ~leading to an electric fieldE proportional to a

vortex velocityvf , i.e., E52vf3H) and is quite different
from the corresponding one in the case with no orbital
pairing in the ideal isotropic 3D system which is a conse
quence ofspontaneousformation of a direction of the helica
modulation.22

Next, let us briefly discuss the vortex elastic energy. T
shear elastic energy for in-plane shear distortions is obtai
as in the case of straight vortex lattice, from the phase fl
tuation energy. It was already shown in Ref. 23 that thequar-
tic dispersion on the 2D wave vectorq' of the massless
phase fluctuation and hence, the way of identifying the sh
elastic mode with the phase fluctuation, are unaffected
any change of the higher order terms of the GL model.
calculation of shear the modulus will be performed here, a
we simply assume, just for qualitative consideration, the
sulting shear energy term to be positive definite.24 In con-
trast, some comment will be necessary on the tilt ene
which should change throughHFFLO(T). For simplicity, we
focus on its expression in the type II limit with no intern
gauge fluctuation.25,26 According to Eq.~47!, the tilt energy
in the type II limit takes the form

Etilt5A~r N
22!^uDu2&S 2pH

f0
D 2

(
q

kz
2~kz

214qm
2 !

q'
2

usq
Tu2,

~48!

where ukzu5uuqzu2qmu, and the relation23,25,26 dfq

52 i (q'
22r H

22)(q'3sq
T)z between the transverse displac

ment sT and the phase fluctuation was used. On the ot
hand, in the straight vortex solid@i.e., in H,HFFLO(T)],
whereB(r H

22),0, the dispersionkz
2(kz

214qm
2 ) in Eq. ~48! is

replaced by 2uB(r H
22)uqz

2/A(r H
22). Thus, the macroscopi

properties in both the vortex solids are qualitatively the sa
as each other.

However, the tilt rigidity decreases with approachi
HFFLO(T). In particular, thekz

2/q'
2 dependence of the til

modulus just onHFFLO(T) implies ashort-ranged phase co
herence of the vortex solid there which is consistent with
vanishing superfluid rigidity onHFFLO(T). Because this ab
sence of SC order in thecritical vortex solid@i.e., the case
just onHFFLO(T)] is due to a softening~or weakening! of an
elastic modulus, an enhanced peak effect due to an incr
of the critical current is expected nearHFFLO(T), as well as
the ordinary one nearHc2(T),27 in real materials with ran-
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dom pinning effects. This conjecture may be useful
searching for a transition curve to the FFLO-like vort
solid.

III. STUDY OF THE GENUINE PHASE DIAGRAM

In this section, the real phase diagram of systems
scribed by Eq.~41! is studied by including the fluctuation
effects. We will focus here on the rangeH* (T),H
,HFFLO(T) and hence, rewrite the first term in the bracke
of Eq. ~41! into ( j (a0uD j

(0)u21g0uD j
(0)2D j 11

(0) u2) with g0

.0. Although we have not extended our simulation work
~if any! the rangeH.HFFLO defined within the lowest LL,
fluctuation effects similar to those inH,HFFLO should also
be expected in such higher fields~see below!. The partition
function we should examine is

Z5TrCexp~2F!, ~49!

where the functionalF5Floc /T is rewritten as

F5(
j
E d2r S auC j u21guC j2C j 11u2

2
ubu
2

uC j u41
1

3
uC j u6D , ~50!

where C j (r ) is the rescaled order parameter field defin
within the LLL, g>0,

a5S r H
2 N~0!

T D 2/3a0~0!

V6
1/3

.a0~T!
H2H0

H0
,

ubu5S r H
2 N~0!

T D 1/3uV4u

V6
2/3

, ~51!

and the in-plane coordinatesr were normalized liker /r H
→r . Further,H0 denotesHc2(0) in the case with no MF-
FOT. Since, as mentioned earlier,a0,c measuring the differ-
ence (Hc22H0)/H0 is small for the Maki parameter valu
used in this paper,H0 will not be distinguished fromHc2
below. Note that, except for a numerical factor,ubu3 is iden-
tical to Ubarr/T. TheT-dependent parameterubu21 measures
the fluctuation strength, while the magnetic field depende
is assumed only ina. Thus, a change ofubu can be regarded
nearHc2 as a change only ofT in Eq. ~49! under the same
Floc with fixedvalues ofa0 , g0 , V4, andV6, if the magnetic
field variablea is appropriately rescaled, and a difference
the anisotropy~i.e., theg0 value! plays no important role.

A. Theoretical consideration

First, let us explain how an ordinary physical picture
low energy fluctuations and their effect on orderings leads
the absence of a genuine transition atHc2. As in the familiar
case9,25 with a second order MF transition atHc2, let us start
from a description deep in the ordered phase. First, since
inclusion of orbital depairing requires the presence of fie
induced vortices, a low energy excitation in the order
phase is inevitably an elastic mode of a vortex solid.
0-10
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EFFECTS OF PAULI PARAMAGNETISM ON . . . PHYSICAL REVIEW B68, 184510 ~2003!
already noted in the final part of Sec. II, it is clear that t
form of the elastic energy and the relation between the ph
fluctuation and the vortex displacement26 are essentially un-
affected by differences in the forms of higher order G
terms. Then, it is clear from the previous works25,26 that the
phase fluctuation is marginally relevant even in the 3D ca
and that the rigidity controlling thequasi-long-ranged phase
coherence in the vortex solid is the shear modulus.25 That is,
if the vortex solid is melted atHm belowHc2, we have only
short-ranged orders for both the phase and the vortex p
tion in the vortex liquid aboveHm with no finite shear modu-
lus, and thus, the vortex liquid should be continuously c
nected with the normal phase aboveHc2.9,25 In this sense,
the MF-FOT atHc2 should not occur. Further, to understa
this from another point of view, let us note that the quasi-
SC order parameter in the lowest LL has the form28

C~j,z!5A~z!e2y2/(2r H
2 ) )

i 50

Ns21

@j2j i~z!#, ~52!

wherej5x1 iy, z5 js, j i(z) is the complex coordinate per
pendicular toH of the i th vortex, and a Landau gauge wa
assumed for the external gauge field. Since the vortex p
tions are highly disordered aboveHm , the fluctuation effect
above Hm is essentially described only by the amplitu
A(z). However,A(z) depends only onz irrespective ofthe
form of the higher order GL terms. That is, since the amp
tude fluctuation itself has a reduced dimensionality and
1D-like in 3D systems29 even in the present case, the amp
tude fluctuation will push the vortex lattice freezing fieldHm
down to a lower field, and the MF-FOT should not be re
ized as a true FOT in real 3D systems.30

Once noting that theqz
2 form of the tilt elastic term in

H,HFFLO is replaced inH.HFFLO by (uqzu2qm)2, the
above argument precluding a genuine FOT atHc2 can be
applied to such higher fields with no modification. Note a
that the continuous transition atHFFLO is a structural transi-
tion between the ordered vortex solids and, hence, toge
with FFLO-like states themselves, will not be lost due to t
SC fluctuationas far as Hm.HFFLO ~see Sec. IV!.

FIG. 8. Two candidates of a schematicH-T phase diagram of
bulk type II superconductors with paramagnetic depairing in
case with thermal fluctuation and with no vortex pinning effect. T
solid curve, the thick dashed curve, and thin dashed curve are
melting lineHm(T) of vortex solids, the MF-FOT curve onHc2(T),
and the ordinaryHc2 curve of the second order MF transition, r
spectively. Dashed curves are not genuine transition lines. A
sible presence of the structural transition to an FFLO-like vor
solid, neglected here for simplicity, does not lead to any esse
change onHm(T) andHc2(T).
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The theoretical discussion given above implies that, as
asHm,Hc2, a genuine transition atHc2 cannot occur. Then
it is at least natural to expect that, following the familiar ca
in T.T* with a second orderHc2 transition,Hm,Hc2 at
any nonzeroT and, hence, that, as in Fig. 8~a!, a genuine
transition atHc2 never occurs atany nonzero temperature
However, caution will be necessary in the present case wi
MF-FOT. For instance, aHm defined in terms of the Linde
mann criterion26 may lie aboveHc2 in a case with weak
enough fluctuation because any elastic modulus, proportio
in the lowest LL to some power of̂uCu2&, is nonvanishing
on approachingHc2 from below. Of course, there will be no
possibility that the actualHm lies aboveHc2. Then, one may
consider another possible phase diagram@Fig. 8~b!# realiz-
able for a case with weak enough fluctuation, in which,
flecting a reduction of thermal fluctuation upon coolin
Hm(T) at low enough temperatures virtually coincides w
Hc2, and both a large jump of magnetization~reflecting a
large condensation energy! and atiny hysteresis, arising from
the vortex lattice melting, will be seen atHc2 on the solid
curve. An important point is that, even in the scenario of F
8~b!, a large hysteresis occurring as a consequence of a l
jump of magnetization, i.e., a hysteresis at thermal equi
rium resulting directly from the MF-FOT, cannot occur. A
cording to the experimental data13,15,16in the situation of our
interest in this paper corresponding to CeCoIn5 under a field
Hic, the phase diagram of Fig. 8~a! seems to be always
realized. However, it is theoretically valuable to clari
whether Fig. 8~b! may be realized or not in real system
Results of our numerical simulation, performed for exam
ing our theoretical arguments given above, will be repor
below.

B. Simulation results

In this subsection, we explain our methods and results
Monte Carlo~MC! simulations for the model Eq.~49!. Our
simulation method closely follows that used in th
simulations31,32 for the familiar GL model with a positive
quartic term in place of2ubu in Eq. ~50!. On a fixed SC
layer, the pair-fieldC is expanded in terms of the LLL basi
functionsfn(x,y) consistent with a quasi periodic bounda
condition31 as C5(ncnfn(x,y), and the system sizesLx
and Ly of a rectangular cell satisfy the commensurabil
with a triangular lattice ground state through the relati
Lx /Ly5A3Nx/2Ny (52Nx /A3Ny) in the 2D~layered! case.
Note that, as mentioned earlier, the ground state in
present case is, due to the neglect of nonlocality in the
higher order terms, a triangular lattice, although the pair
state assumed originally is a fourfoldd-wave one@see the
sentences above Eq.~41!#. In the layered case, a period
boundary condition is assumed across the layers. The sy
sizes we studied were (Nx ,Ny)5(6,4) and~8,6! in the 2D
case and~6,6! in the layered case. The Markov chains forcn
are generated by the Metropolis algorithm. For the 2D c
~layered case!, we used 53105(1.53106) MC steps for ther-
malization and another 53105 MC steps for further obser
vation in both cases. As in the figures in Sec. II, we ha
assumed the value 0.8 form0Hc2

orb(0)/2pTc0. Further, when

e

he

s-
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HIROTO ADACHI AND RYUSUKE IKEDA PHYSICAL REVIEW B 68, 184510 ~2003!
assuming aN(0) value appropriate to CeCoIn5 ~Ref. 33! and
that T/Tc050.1, theub(T)u value is estimated to be in th
range between 2.0 and 3.0 used in the simulations.

To study fluctuation effects on the MF-FOT, the mea
squared average of the pair field^uCu2& was calculated. It
corresponds to the magnetization whena0 is the measure
primarily, of H. Hence, if it does not show a true discontin
ous jump but aroundedbehavior atHc2 broadening with
decreasingubu, a genuine FOT atHc2 is judged to be absent
Further, as a measure of the vortex-positional order
~vortex-solidification!, we have examined the structure fact
S(k) defined29 as the Fourier transform of the correlatio
function of uC(r )u2. In the figures, thea dependences o
these physical quantities are shown. Although a changea
implies a change ofH at a fixedT, the vortex density is fixed
at any simulation.

First, let us present and explain 2D simulation results
which g50. The obtained results~symbols! are shown in
Figs. 9 and 10. The corresponding MF curves are also dr
for comparison. The feature, that the simulation data
above the MF curve inHm,H,Hc2, is not surprising but
presumably a reflection of a dimensionality dependence
the amplitude fluctuation~compare with Fig. 11 below!. It is
found in the literature34 that a similar dimensionality depen
dence appears in the magnetization in the case with a p
tive quartic coefficient. As is clear particularly from theubu
52 data of Fig. 9, the nearly discontinuous jump of^uCu2&
at Hc2 is rounded due to the fluctuation, and thus, no genu
FOT has occurred atHc2. We note thata0(T50.1Tc0).50
for the parameter values used here. Hence, if the abscis
Fig. 9 is reexpressed as the reduced field (H2H0)/H0, even
this rounded behavior of̂uCu2& for ubu52 cannot be distin-
guished from a strictly sharp discontinuity, and the differen
Hc22Hm will not be visible ~see Sec. IV!. Thus, the pres-
ence of a genuine FOT cannot be argued through mere
steep growth of̂ uCu2& in a real system with weak SC fluc
tuation.

Next, let us examine whether the melting position co
cides or not with the MF transition fieldHc2(T). The melt-

FIG. 9. Numerical data ofa dependence~i.e.,H dependence! of
^uCu2& in the 2D case, forubu52.0 ~crossed symbols! and ubu
53.0 ~plus symbols!. Dashed and solid curves are the correspo
ing MF results. According to Eq.~43!, the MF transition point cor-
responds toa50.75 ~1.69! in b52.0 ~3.0!. The system size~6,4!
was commonly used.
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ing transition is widely believed to be aweakFOT, and this
should be found31 in Monte Carlo simulations as a tiny dis
continuity in thermodynamic quantities. Unfortunately, d
primarily to numerical difficulties, our simulation is re
stricted to systems too small to observe such a discontinu
For our purpose of determiningHm , however, it is sufficient
to find where the Bragg peaks of the vortex lattice disapp
Figure 10 shows snapshots of the structure factor
uC(r')u2 when ubu52.0. No vortex positional ordering is
seen atHc2. By comparing Figs. 10~a! and 10~b! with Fig. 9,
one finds that nearly sharp Bragg peaks appear atHm below
Hc2, while most of the entropy has been lost nearHc2 above
it. The two field ~or temperature! scales, one characterizin
the steep growth of̂uCu2& and another corresponding to th
sudden growth of vortex positional ordering, are clearly d
tinguished.

We have also examined the size dependence ofS(k) data.
By comparing the data in Figs. 10~b! and 10~c! with each

-

FIG. 10. S(k) data corresponding to theubu52.0 data in Fig. 9
at ~a! a50.75 and~b! 22.0. ~c! S(k) at a522.0 for larger system
size ~8,6!.
0-12
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EFFECTS OF PAULI PARAMAGNETISM ON . . . PHYSICAL REVIEW B68, 184510 ~2003!
other, it will be clear that the sixfold symmetry of Brag
peaks is more remarkable in the former, i.e., in a sma
size. It means that the solidification is enhanced by
boundary condition in a smaller system. This size dep
dence will be sufficient for justifying our expectation that t
vortex solidification~or melting! occurs belowHc2.

The corresponding results in a layered~quasi-2D! system
consisting of four layers are shown in Figs. 11 and 12, wh
the parameter valuesg50.25 andubu52.0 or 3.0 were as-
sumed. The obtained computation results are essentially
same as in 2D case, except the feature that the differe
Hc22Hm became narrower in the layered case. Thus,
anisotropy or dimensionality, i.e., the magnitude ofg0, does
not seem to induce an essential change of the true p
diagram. The nearly discontinuous behavior atHc2 is also
smeared out in this quasi 2D case as the fluctuation is

FIG. 11. Numerical data of̂uCu2& in the layered case compose
of four layers. The crossed symbols~plus symbols! are results in
ubu52.0 ~3.0!.

FIG. 12. Structure factor defined from the correlation functi
of uC(r )u2 for ubu53.0 at~a! a51.65 and~b! a51.25.
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hanced, and no hysteresis is present accompanying this
havior atHc2. The simulation results given above imply tha
at least forubu<3.0, the correct phase diagram is Fig. 8~a!.

Next, we report on consequences of an extension of si
lation for the layered system composed of four layers
weakerfluctuation cases withubu.3.0 ~i.e., at lower tem-
peratures!. As the numerical data in Fig. 13~a! show, a hys-
teresis in the vicinity ofHc2 suggestive of a genuine FO
appears between twôuCu2& curves for ubu53.5, respec-
tively, in increasingH ~corresponding to a heating! and de-
creasingH ~corresponding to a cooling!. However, this hys-
teresis isnot due to the vortex lattice freezing or meltin
included in the scenario of Fig. 8~b! because, as the simula
tion results inubu<3 have shown, the hysteresis accomp
nying the melting is unobservably small~Although the melt-
ing field Hm is estimated to lie close toa52.0 throughS(k)
data, it is not easy to conclude a separation betweenHm and

FIG. 13. ~a! Numerical data, similar to Fig. 11, forubu53.5. ~b!
The history of̂ uCu2& at a52.0 and 2.19 in theH-increase process
Note the strong dependence on Monte Carlo steps of^uCu2& when
a52.19, i.e., in the vicinity ofHc2.
0-13
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HIROTO ADACHI AND RYUSUKE IKEDA PHYSICAL REVIEW B 68, 184510 ~2003!
Hc2 for this case!. Further, since, as mentioned below E
~51!, an increase ofub(T)u can be regarded as a decrea
only of T in the partition function~49! under the sameFloc
@Eq. ~41!#, it is difficult to imagine a scenario30 in which the
MF result would become exact in a very low butfinite T
region. Actually, the hysteresis in Fig. 13~a! is not due to a
genuine FOT in thermal equilibrium: Thea52.19 data in
Fig. 13~b! show that the system, at least in the vicinity
Hc2, has not reached the thermal equilibrium even during
MC steps we could observe.

Actually, a similar situation occurs, if the fluctuation
weak enough, in other systems with a MF-FOT butno true
phase transition. To illustrate this statement, in Fig. 14
show results, corresponding to Fig. 13, for a familiar 1D G
model with a negative quartic coefficient,

F1d5E dxS auC~x!u21 f u
dC~x!

dx
u2

2
uwu
2

uC~x!u41
1

3
uC~x!u6D , ~53!

whereC is a function only ofx, anda in this case may be
regarded as a temperature variable. This 1D model is u

FIG. 14. ~a! ^uCu2& Data similar to Fig. 13~a! for the 1D GL
model @Eq. ~53!#, taken at MC steps 13106. ~b! Data ata54.74
show a recovery of thermal equilibrium after many MC steps.
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here for comparison because the fluctuation in the 3D
model within the LLL is expected to be similar to that of th
corresponding 1D GL model in zero field. We chose the v
ues uwu55.0 andf 54.0, together with a system size com
posed of 102 sites. Due to a smaller number of degrees
freedom in SC fluctuations in this 1D case, a tendency o
full relaxation to the thermal equilibrium~i.e., a disappear-
ance of hysteresis!, as Fig. 14~b! shows, manages to be ver
fied within the practically observable MC steps. In contra
in the case of quasi 2D systems expressed by Eq.~50!, it is
quite difficult to verify such a full relaxation within practi
cally possible MC steps because of a much larger numbe
degrees of freedom in a quasi-2D vortex state.

Summarizing this subsection, for anyubu value withHm
lying below Hc2, no true FOT occurs atHc2, and the phase
diagram@Fig. 8~a!# is justified. For largerubu values when
Hm may not be distinguished fromHc2, it is practically dif-
ficult to verify whether Fig. 8~b!, in place of Fig. 8~a!, is
realized as a true phase diagram, and a hysteresis can a
in numerical experiments atHc2 even without a genuine
FOT occurring there.

IV. DISCUSSION

As explained in Sec. I, the present work was origina
motivated as an extension of the problem of the vortex ph
diagram to the more general cases with spin~paramagnetic!
depairing. Since the absence of a MF second order trans
at Hc2 in lower fields is well established, it is unreasonab
to expect the MF-FOT atHc2 resulting from the Pauli para
magnetic depairing in higher fields to truly occur as a ge
ine FOT. The recent finding of an FOT-like nearly disco
tinuous crossover at Hc2 in the heavy fermion
superconductor CeCoIn5 in Hic ~Refs. 15 and 16! provides
us with a good occasion of a detailed comparison betw
the present theory and real data. Further, recent data inH'c
~Ref. 13! showing a small hysteresis in heat capacity a
suggesting a second order transition between the FFLO-
vortex solid and the ordinary vortex solid will stimulate d
tailed theoretical studies of vortex phase diagram in the
gion with paramagnetic depairing.

As shown in Sec. II, in quasi-2D systems under fie
perpendicular to the layers, a FOT atHc2 should naturally
occur inT,T* at the mean-field level in clean enough s
perconductors with a moderately strong paramagnetic dep
ing, and the onset temperatureTFFLO from which an FFLO-
like vortex solid begins to appear lies muchbelow T* . The
results, that this modulated solid state is rarely seen c
pared with theapparentFOT atHc2, and is easily lost by a
small amount of impurities, are consistent with th
observations13 in a heavy fermion superconductor CeCoI5
in Hic but seem to be a contrast to the conclusions on ph
diagram in previous works.11 Further, the range ofT* (0.2
,T* /Tc0,0.36) shown in Fig. 6 following from the value
m0Hc2

orb(0)/2pTc050.8 and small (tTc0)21-values is com-
parable with that (T* /Tc0.0.25) in CeCoIn5 under
Hic.13,15,16When theN(0) value in CeCoIn5 in zero field33

is used further, we find the nearly discontinuous jump va
of magnetization atHc2 whenT550 ~mK! to become 20~G!
0-14
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EFFECTS OF PAULI PARAMAGNETISM ON . . . PHYSICAL REVIEW B68, 184510 ~2003!
which is comparable to the estimated value 30~G! in Ref.
15. Further, the widthDH(T) of the magnetization jump a
Hc2 will be roughly estimated using the numerical data
Fig. 11 as follows. Using the relationsa0(T)
.50(0.1Tc0 /T)2/3 and b(T)}T21/3, given in Sec. III, and
assumingub(T50.1Tc0)u52.0, the data in Fig. 11 imply
DH(T50.1Tc0).0.06~T! and DH(T50.03Tc0).0.02 ~T!,
which seem to be comparable with those in availa
data.15,17

As shown and mentioned in Sec. III, the absence of a
FOT at Hc2 should be an appropriate interpretation f
observations15,16at least inHic where no measurable hyste
esis was observed although the ordinary magnetic hyste
related to the peak effect nearHc2 ~Ref. 35! might appear.
On the other hand, observations of a tiny hysteresis w
recently reported in specific heat data13,18 and also in mag-
netization data15 of CeCoIn5 in H'c. Examining micro-
scopic aspects inH'c leading to a MF phase diagram
beyond the scope of the present paper, and will not be c
sidered here. However, the issue of the genuine phase
gram in Sec. III is more generic and may be applicable to
H'c case in CeCoIn5. Because the fluctuation effect inH'c
is weaker than that inHic at the sameT, the observed hys
teresis in Refs. 13,15, and 18 can be understood within
present theory arguing the absence of a genuine FOT atHc2,
if it has the same origin as a hysteresis in numerical sim
tions at low enough T, shown in Figs. 13 and 14, whic
arises from anincompleterelaxation at long but finite time
scales in a system with a strong MF-FOT. In relation to th
we point out that the onset of hysteresis in Ref. 13 l
slightly above the temperatureTFFLO at which HFFLO(T)
branches from the MF-FOT@i.e., Hc2(T)] line. This implies
that the onset of hysteresis has nothing to do with the app
ance of the FFLO-like state and thus that there is no phys
reason favoring a termination of some genuine SC~super-
conducting! FOT. Alternatively, the observed hysteres
might accompany a truemagnetic FOT induced by the
^uDu2& nucreation atHc2 as a consequence of a couplin
between the SC and a magnetic order parameter. In rela
to this, we point out the observation of a large magne
hysteresis17 in H'c just below Hc2, to which the corre-
sponding one was not seen in the vanishing of resisti
~i.e., a SC ordering!.

Finally, let us point out that the present theory easily e
plains why, in fields parallel to the layers, the transition to
FFLO-like phase and the nearly discontinuous crossove
Hc2, implying the MF-FOT, were measured not in organ
materials with larger anisotropy but in a heavy fermion m
terial with weaker anisotropy. At least at the MF level, t
case with a field parallel to the layers in more anisotro
materials is subject to a stronger paramagnetic depairing
is the best candidate for observing the paramagnetic eff
such as the FFLO-like state and the MF-FOT. The orga
materials satisfy this requirement, and actually, the upwa
increasingHc2(T) curve determined resistiviely36 under high
fields parallel to the layers is an evidence37 that the spin
depairing is microscopically important without being di
turbing by an impurity effect. However, both the MF-FO
and a transition to a FFLO-like state have not been see
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the organic materials. On the other hand, since such a
ward Hc2(T) curve is not visible in the heavy fermion ma
terial CeCoIn5 with a much weaker anisotropy, one mig
wonder why these crossover and transition arising from
spin depairing have occurred in this material. This puzzl
facts are easily resolved by taking account of fluctuation
fects examined in this paper. Typically, in the organic a
cuprate materials,36,38 the fluctuation effect is much stronge
compared with those of CeCoIn5. Actually, a shorter coher-
ence length tends to result in a larger Maki parameter
simultaneously to enhance the fluctuation even in the para
field case.7,39 Consequently, as shown in Sec. III, the MF
FOT behavior is rounded, and is transmuted into a bro
continuous crossover by the SC fluctuation, reflecting
absence of the true FOT atHc2. Further, a remarkable field
and temperature range of the vortex liquid region in wh
the resistance is finite may be created belowHc2(T) curve
even in the parallel field case39 where the fluctuation effect is
minimized. Since the FFLO-like state is limited to a narro
field range belowHc2, and the modulation parallel to th
field does not lead to any ordering in the vortex liquid, t
vortex liquid region should mask and erase the FFLO-l
phase in a strongly fluctuating superconductor. For these
sons, cleaner superconducting materials withweakerfluctua-
tion such as CeCoIn5 are the best candidates for examinin
the MF high field phase diagram in the case with Pauli pa
magnetic effects.
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APPENDIX A: DERIVATION OF K̂2

In this appendix we present how to solve the eigenva
problem ofK̂2 or equivalently ofD̂. Using the identity 1/a
5*0

`dre2ar, after energy integration we get the differenti
operator of infinite order:

D̂d~2«!5 (
«.0

E
0

`

dre2(2«11/t)rJ0F2J sinS qzs

2 D rG
3cos~2Ir!@^uwpu2e2 iv•Pr& p̂1c.c.#, ~A1!

whereJ0 is the zeroth order Bessel function. Expanding t
exponential and averaging on the Fermi surface, we hav

^uwpu2e2 iv•Pr& p̂5e2(
r

2tH
)2

(
m

F22S r

2tH
D 2Gm

~m! !2
p̂1

mp̂2
m

1~off diagonal terms!, ~A2!
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wherep̂6 are given in Eq.~18!, and a circular Fermi surfac
was assumed. As explained above Eq.~9!, we have only to
focus on the diagonal terms. Noticing that the eigenvalue
p̂1

mp̂2
m in theNth Landau level isN!/(N2m)! and perform-

ing them summation, we finally obtain Eq.~9!.

APPENDIX B: EXPRESSIONS OF I 4 AND I 6

In this appendix, we derive the expressions ofI 4 andI 6 in
terms of a convenient expression foreirv•Pu0,k(r'). If we
denote the position on a~two-dimensional! Fermi surface by
a complex numbervFz5vx1 ivy and definel5rz* /tH , we
have

eirv•P5ei/A2(lp̂11l* p̂2)5e2ulu2/4e(i/A2)lp̂1e(i/A2)l* p̂2,
~B1!

where we used the operator identityeÂ1B̂5e21/2[A,B]eÂeB̂

valid when @Â,B̂# is a constant. From this expression it
18451
f

sufficient to know the form ofe(i/A2)lp̂1u0,k(r'). Using the
above identity to obtain

e(i/A2)lp̂15e2l2/8e(l/2)(ir H]y2xrH
21)e

l
2 r H]x, ~B2!

and noticingea]xg(x)5g(x1a) for any nonsingular func-
tion g(x), we finally have

eirv"Pu0,k~r'!5e2(1/4)(ulu22l2)e2(1/2)(x/r H1krH1l)21 iky.
~B3!

eirv"P* u0,k* ~r'!5e2(1/4)(ulu22l2)e2(1/2)(x/r H1krH2l)22 iky.
~B4!

With the help of the above identities, the following resu
are easily derived:
E d2r'

SH
ei(r1v"P1* 1r2v"P21r3v"P3* 1r4v"P4)u0,k1

* ~r'1!u0,k2
~r'2!u0,k3

* ~r'3!u0,k4
~r'4!ur',i→r'

5
1

A2
dk11k3 ,k21k4

e2(r H
2 /4)(k13

2
1k24

2 )e2(1/4)[ (
i 51

4
ul i u

21(1/2)(l13*
2
1l24

2 )1(l1* 1l3* )(l21l4)12r H(k13l13* 2k24l24)]

[
1

A2
dk11k3 ,k21k4

e2(r H
2 /4)(k13

2
1k24

2 )I 4~$l i%!, ~B5!

E d2r'

SH
ei( (

i :odd
r iv"Pi* 1 (

i :even
r iv"Pi )u0,k1

* ~r'1!u0,k2
~r'2!u0,k3

* ~r'3!u0,k4
~r'4!u0,k5

* ~r'5!u0,k6
~r'6!U

r',i→r'

5
1

A3
dk11k31k5 ,k21k41k6

e2(r H
2 /6) (

( i , j )
ki j

2

3e2(1/4)S i 51
6 ul i u

21(1/4)( S
i :odd

l i*
2
1

S
i :evenl i

2)2(1/12)(
S

i :oddl i* 1
S

i :evenl i )
22 ~1/6!(

S
( i , j ):oddl i j*

2
1

S
( i , j ):evenl i j

2 )1(r H/3)(
S

( i , j ):oddki j l i j* 2
S

( i , j ):evenki j l i j )

[
1

A3
dk11k31k5 ,k21k41k6

e2(r H
2 /6) (

( i , j )
ki j

2
I 6~$l i%!, ~B6!

where (i , j )5$(1,3),(3,5),(5,1),(2,4),(4,6),(6,2)%.
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