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Effects of Pauli paramagnetism on the superconducting vortex phase diagram in strong fields
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The Ginzburg-Landau functional and the resultant phase diagram of quasi-two-dimensional superconductors
in strong fields perpendicular to the layers, where the Pauli paramagnetic depairing is not negligible, are
examined in detail by assuming the weak coupling BCS model witfp a,2-like pairing. It is found that the
temperature at which the mean fiéMdF) transition atH ., changes into a discontinuous one lies much above
another temperature at which a linlgg o(T) of transition to a helical vortex solid similar to a Fulde-Ferrell-
Larkin-Ovchinnikov state may begin to appear. In addition to MF results, details of a real phase diagram near
the H.,(T) line are examined based on a theoretical argument and Monte Carlo simulations, and it is found
that the MF discontinuous transition is changed due to the fluctuation into a crossover which is nearly discon-
tinuous in systems with weak enough fluctuation. These results are conbistentith the MF discontinuous
behavior and a suggestion Bif-r o(T) in the heavy fermion superconductor CeGowith weak fluctuation
and with their absence in cuprate and organic superconductors with strong fluctuation.
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. INTRODUCTION perconductors with paramagnetic depairtfigh?> however,
one notices that even thd-T phase diagram in the MF
Traditionally, the effects of Pauli paramagnetism on su-2pproximation is an unsettled issue. For instance, a FOT in-
perconductors with a spin-singlet Cooper-pairing have beefuced by the spin depairing was expected through a calcula-

discussed by simply focusing on two energy scafethe tion in the dirty limit?to the best of our knowledge contrary

superconductingSC) condensation energy and the Zeemant© the experimental facts. Further, even in the plalean

energy preventing the singlet pairing. This is a reasonabldMit, there is no consensus on the MF phase diagram. In the

explanation of the first order transitidi¥OT) in an excep- Str:ggg gggsrr%f O\';Ivgtr:n:]eges:bi?z::y d(l\a/le;isr?}?'er npor]casg;sia;)r;g
tional case with no orbital depairing creating field-induced g P & P !

vortices, i.e., a thin-film superconductor in parallel fields and we expect just some vortex solids, such as an ordinary
v P P " solid consisting of straight vortex lines aitifl any) FFLO-

Further, there is also the possibility of a structural transition”ke solid state with a periodic modulation along the applied

within the Meissner phase intcgéhe_ so-called Fulde-Ferrellyig|q "a5 SC ground states in the clean limit with no defects
Larkin-Ovchinnikov(FFLO) stat€"” with a periodic modula-  |gading to a vortex pinning. Let us call the transition curve

tion, induced by the spitparamagneticdepairing, of the SC - petween the above-mentioned two vortex solid states a
order parameter. However, the orbital depairing effects, i.eq reLo(T). In Ref. 10, the transition atir o Was argued to
the field-induced vortices, are inevitably present in most ofe of first order with no detailed calculation, while it was
cases of a bulk type Il superconductor under a strong fieldgbtained as a second order one in Ref. 11, where the orbital
including a layered material under a field parallel to the sudepairing represented by the gauge-invariant gradient is
perconducting layerSHence, we encounter quitedifferent  treated perturbatively. Further, the temperatiifeat which
issue from that in the works?*~Sthat is, effects of the spin the MF transition aH., changes into a discontinuous one
depairing on thevortex statewhich hasno Meissner re- was concluded thet&to lie much below another temperature
sponse. Since the number of vortices is determined only b¥cr, 5 at which Hgr o(T) and H,(T) branch. In addition,
the magnetic field strength and system sizes, treating the othe H, o(T) line is often suggested to be insensitiveTto
bital depairing as a perturbation for the case with no orbitalWe note that all the conflicting results raised above were

depairing is not valid. obtained in the same model, i.e., the simplest weak-coupling
At present, it is well understo8d that, in lower fields BCS model.
where the spin depairing is negligible, theT phase dia- In the present paper, we consider a SC phase diagram of

gram for the vortex states @asticallychanged by including quasi-two-dimensional2D) superconductors with a singlet
the SC fluctuation neglected in the mean fitWF) approxi-  d-wave pairing under a high field perpendicular to the SC
mation. Typical among such drastic fluctuation effects is thdayers where both the orbital and spin depairings are not
fact that the second order MF transitiontg; is not realized  negligible. In Sec. I, a MF calculation for the weak-coupling
as a consequence of the fluctuation and gives wayweak BCS model is first performed by focusing primarily on the
first order transition lying belowH., between the vortex region where the SC order parameter is described within the
solid phase and the vortex liquid region which needs not béowest Landau levelLLL or N=0 LL). We demonstrate by
distinguished from the normal state. At least theoretically, ittreating the two depairing effects on the same footing that
is important to extend this issue to the strong field region inmost of the previous MF results mentioned above may be
which the spin depairing is not negligible and the MF tran-significantly changed. Our analysis is different from that in
sition atH., may be discontinuous. Ref. 11 in that the gauge-invariant gradient is fully incorpo-
Through previous MF works on the vortex states of su-rated. This nonperturbative inclusion of the orbital depairing
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should become important upon cooling and with increasindge understood within our results in Sec. Ill. We use the unit
field, although, instead, multiple numerical integrals have tdi =c=kg=1 throughout this paper.

be performed to accomplish it. Further, bearing in mind a

comparison with data in real systems, a weak impurity scat- Il. MEAN FIELD ANALYSIS

tering should be incorporated because thg- o(T) line
which may appear in highl and lowT is found to be quite ¢
sensmve_ to the_ impurity _strength. Consqugntly, the MFnetic field perpendicular to the basal plane
phase diagram is determined by a competition among the
two depairing effects and the impurity strength. We find that 9|
the temperatur@* always lies above other two characteris- H=Ho+H;— > 2 j
tic temperaturesl e o and Ty, below which the vortex o)
solid will be des_c_;rlbed by the nex_t lowest Landau levsll ( Here, g is the attractive interaction strengthp?(r )
=1 LL_). In addition to these stgdles of the MF phas_e d'a'z(ll\/Q_s)Ep a})’(pl)eipl-rl is the annihilation operator of a
gram, linear response and elastic properties in a possible he- L

lical FFLO-like vortex solid will be examined to give a result q'u.a3|part|cle \r'lv'th ;pwar (=+1or- 1()1 at thehm-planle po-
useful for search of such a helical solid state. sitionr, on thejth plane, ands and () are the interlayer

Next, in Sec. Ill, we address the effects of the SC fluctua—Pasnd apd thg area OLf, a Ia;ier, respeﬁcglvely._ Tr:,e p+a|r-f|eld
. ) X -~ operator is defined b¥(q,)=2=, wya; “(—pr)aj(py),
tion on the phase diagram by neglecting vortex pinning ef- : ) ) 1P SIS
fects. We notice that a theoretical consideration on the fluc/N€"eWp is the orbital part of the painng fl{nth'o” and, in the
tuation effects on the orderings in vortex states bettwis ~ Case ofd,z.2 pairing, is written a?ﬁ (P~ Pj), wherep is
unaffected by a change of the Ginzburg-Land@l) model ~ the unit vector in thep, direction, andpy implies p,
brought by the presence of the spin depairing, and naturally- @/2. The first termH, in Eq. (1) represents in-plane mo-
leads to the conjecture that the FOT obtained in the MHIONs of quasiparticles,
approximation(MF-FOT) at H., will not occur as a true

FOT in real systems. Otherwise, the high field p(_)rtion pf the HOZSE erL( (P]fTT(rl)
H-T phase diagram would not become compatible with its .

low field portion, in which the absence of the second order

MF transition atH. is well established® The only transi- + T Ploj(r ) —ollef(ry) |, )
tion in the case with no pinning disorder should be the melt-

ing transition of a vortex solid. In the present case with aynere the gauge fielé has no out-of-plane componerit,
MF-FOT, however, the GL model needs to have higher order woH is the Zeeman energy, amdis the effective mass of

(nonlineay terms other than the quartic term, and this facty quasiparticle. The strength of the paramagnetic depairing is
makes an analytic study more involved. For this reason, we,.asured byMoHOEb(O)/ZﬂTTCo corresponding to the Maki
have chosen to perform Monte Carlo simulations on a G N

model justified through our microscopic analysis in order to arameter except a numerical factor, WhHga(T) Is the
. 9 . pIC analys MF transition curve in the case neglecting both the paramag-
examine the true phase diagram. Our simulation results a

consistent with the above-mentioned conjecture that the MFﬁet'C depairing and impurity effects, afig, is the zero field

FOT atH,, is changed due to the fluctuation into a crossoveliH =0) tra_nsmon temp_eratqre " the pure limit. Throughout
of which the width is narrower in systems with weaker fluc- the numengal calculatlorgrsb in this section and the ne>§t sec-
tuation. Together with the impurity-induced disappearance Opons, we \.N'" cho_oseuoch (0.)/2771—.@ to be 9'8 by bearing
the MF-FOT, this fluctuation-induced broadening of the@ comparison with observat_lons in CeCalim mind (s_ee
sharp behavior reflecting the MF-FOT explains why the S€C- I\_b. The random potential;(r ) obeys the/ following
nearly discontinuous behavior Bi,, has not been observed Gaussian —ensemble:v;(r,)=0, wv;(r)v;(r})=4(r,

so far in, except for recent observations in CeGofivY”  —r))dj;:/2mN(0)7, whereN(0) is a 2D density of state at
bulk type Il superconductors with a spin-singlet pairing. Onthe Fermi surface, ana~ ! the elastic scattering rate. The
the other hand, we find that, in spite of the absence of théecond term represents the interplane hopping,

genuine FOT aH,, a hysteresis may appear nédg, in Is

simulations for cases with weaker fluctuatidor equiva- _=> 2 ot o

lently, at very low temperaturgss a result of an incomplete =7 02, dor (@] (r)eia(rp+He), 3

relaxation at finite time scales. . )
where H.c. denotes the Hermitian conjugate. We use the fa-

Finally in Sec. IV, experimental facts in CeCglunder " _ _ e _ .
H|lc and other materials are discussed based on the resuff@lliar quasiclassical approximation for the single-particle

obtained in Secs. I and IIl. It is conjectured there that the S@®roPagator

fluctuation makes thel gz o(T) line and the FOT-like behav- -

ior at H,, unobservable in strongly fluctuating systems such Gy (rr ')=GSH:O(f—f')e'|e”' dsh, 4
as organic materials. Further, it is also pointed out there that, o o He0 o
although microscopic results in Sec. Il are not applicable td1€re, the Green’s function in zero fielt, ~(r), is given
the HL c case in CeCol) recent specific heat dafd®can  as the Fourier transform of the expression

Following Klemm et al,'® we start from a BCS Hamil-

onian for a quasi-2D superconductor under a nonzero mag-

d2
(ZE;Bml)Br(qL). &

(—iV, +]e|A)?
2m

(o8

@j(ry)
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G, (p)={is,~[& +Jcogp,s)]} %, (5) h
0.16
where ¢ denotes the Matsubara frequeney,=27T(n

+1/2) in this paper, e,=&+s,/(27)—icl, and s,

=sgn(e). Since we take account of the paramagnetic depair-

ing suppressing the MF upper critical field, the use of the 0.08
guasiclassical approximation, validkgr 4> 1, needs not to
be questioned, wherkg is the Fermi momentum, and,
=(2|e|H) Y2 is the magnetic length. According to the fa-
miliar Stratonovich-Hubbard procedure to introduce the pair
field A, we can construct a GL functional. Throughout this
paper, we neglect thiaternal gauge fluctuation and examine
the resulting GL mOdel in the type I ||m|t The Va.||d|ty Of FIG. 1. Comparison betweeHcZ(T) curves for (ZTTcoT)il
this approximation will be explained later when discussing=0.1 determined froma,(0)=0 by neglecting(crossed symbols

the MF phase diagram. and including(solid curve the impurity-ladder vertex correction.
The dashed curve is the line on which,(0)=0, and h
A. Quadratic term =H/HZP(0).

The quadratic term of the GL functional is given by

~ 1
F=2 f erLA:;Z(rl)(

Az @_

ond term of Eq.(8) and any contribution including the

R impurity-ladder vertex corrections in other terms of GL func-
KZ(quz))Zqz(rL)a (6) tional will be neglected hereafter in the text and in the Ap-
pendixes.

We should note here that, strictly speaking, the eigenstates

of the operatorK, in the dy2.,2-wave pairing are not LLs,
and that there are nonvanishing off-diagonal matrix elements
between LLLs and higher LLs with indices of multiples of 4.
However, in the range of Maki parameter considered in this
paper, the instability line for thBl=4 LL modes, defined by
K,(I1,0,)=27N(0)T >, Dy(2e), a,(0)=0 in our notation used below, lies far beldu,(T)

e=0 (see the dashed line in Fig),Jand hence, we can neglect the
. off-diagonal elements in considering vortex statesNis 0
. (Iwpl?G, (P)G ., (I1+0,2—P)), (and 1. Then,w, in Eq. (7) may be replaced by 1, and our
Dy(2¢)= fp 7N(0) ) analysis using the LL basis becomes straightforward. When
focusing on a projectiod{" onto theNth LL of A (r,),

where Aj=(Niaye) 224 A4 %) denotes the pair field
on the jth SC plane,N,, is the number of SC planes,
I=—iV, +2|e|A, and the operatoK, in the pure limit
(7~ 1=0) is simply given by

Here, the notationf ,= [[d®p, /(2)?]$[d(p,S)/27] was o .
used. Hereafter, a brackét. - ), with subscripta means an the corresponding eigenvalue K5 is given by
average over, so that(---), implies 2712 . In the im-

L . . % 2
pure case, there ar(_a also ciontrlbutlons from the impurity- K2,N(qz):27TTN(0)f dpf(p)EN(p—z)
ladder vertex corrections, aridly(2e) should be replaced as 0 27
follows:
X exp( — p?l472) To| 23 sin(q—zs) 9)
Dy(28)—Dy(2e+1/7) pIETH)Jo 2 P
R R where Ly is the Nth Laguerre function,7, is the zeroth
+E4(2e) —————E4(22) | 2626 4 1/r» Bessel function;y=mry /kg, and the functiorf is defined
1-T'Dgy(2¢) by
8
. . ® e *'"coq2lp)
wherel'=(27) "%, andD and E4 are defined by replacing fp)= Wfﬂ'p) (19

|w,|? in Eq.(7) into 1 andw,,, respectively. In the dirty limit

with 277T,<1, the impurity-ladder vertex correction ex- The procedures leading to E(Q) will be explained in Ap-
pressed by the second term of &) becomes important, pendix A. After, as in thed=0 case, eliminating the high
although the SC phase itself in the presdiwave case is energy cutoff by defining .o, we obtain the final expression
simultaneously suppressed. As shown later, however, thi®r the quadratic free energy,

MF-FOT appears only when T ,7>10, and hence, we

focus here on this moderately clean case. In fact, as given in - - ) 20% (N) )

Fig. 1, a change in thel.,(T) curve due to the inclusion of fZ_N(O),\IE:O ; f dr an(a)|dg (r)l% (1D
the impurity-ladder vertex corrections is extremely small ‘

even when (ZT.7) 1=0.1. Based on this result, the sec- where
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whereS,=ryL, 72 In the present gaugey (r,) is given
by

~ N

2 2\2,
+k +ik
) (x+krg)e+i y’

17

Un(rp)=

FIG. 2. Diagrams expressing the quartic term of the GL func-

tional. The solid line implies the Green’s functi®) and the impu-
rity (dashedl line carries[27N(0)7] L.

aN(q§)=In(T/Tco)+27rTf:dp{ [sinh(27Tp)] 1

i)

(12

2
e —(pl27y)? To

p
—f(p)L
(p) Ly 27H

For several purposes, it is convenient to expan(iqg) in
powers of siR(q,52):

an(a)=an(0) +a’Q*+aPQ +---, (13
where Q=Jsin(,82). When the SC transition in the MF
approximation is of first order and occurs within tRéh LL,
this MF-FOT line, which is a part oH(T), lies in the
region whereay(0)>0, and the quartic and sixth order GL
terms have to be considered to determine khg(T) line.
The possibility of an instability to an FFLO-like helical vor-
tex solid in theNth LL may be studied, at least when
|ay(0)| <1 [see discussions below E@5)], by focusing on
a{) anda{?’, where

2> (14

(l)_ZWTJ dpp?f(p)e” (pl2ry)? L (2
H

(19

7T| o) 2

(2)— _ _f 4 —(pl27y)? p_
a d f(p)e L

N 2 0 PP (P) N(ZT&

As far asa{?)>0, the instability point to an FFLO solid state

is determined bﬁ(l)—o, and the corresponding transition is

of second order.

B. Quartic term

The corresponding analysis for higher ordquartic and

sixth ordej terms of the GL functional is more complicated

than that for the quadratic one. As already explained, the
impurity-ladder vertex corrections will be neglected in the
ensuing analysis. Hereafter, it is convenient to work in a

fixed Landau gaugé\ = (0,Hx,0) and to represent the pair
field in theNth LL in terms of the corresponding LL orbitals

Unk(r1),

1
A(N) \/__SH Ek: Nk, UNGK(T 1) (16)

where we introduce the creation and annihilation operators
of LLs:

7o =—= (T =illy).

r
V2
Hereafter, let us focus on a vortex solid within the LLL sub-
space. The corresponding analysis in higher LLs will be

given elsewhere. Then, the quartic term of the GL functional
can be written as

(18

1 N
.7-'4252 fdZUK4({Hi})(A1(O)(rL1)AJ(O)(ri3))*

X AO(r DA Wr ) (19
_i E * *
=35, %, b0k, i Pok,.i Pok,.i Pok,.i
d’r .. .
X | —g Ka({Tlip) Ug (71 1) Uok,(T12)
H
Xngs(rLs)U0k4(rl4)|riﬁrla (20)

whereIL,=II(r;). In the impure cas&, consists of three
terms represented in Fig. 2 and will be expressedas
=Kys+ Kape. The termK 4, is given by

K 45=27TN(0)

<3

+ (HzHH4)

—isy|wp|*
(2ig ,+V-II¥ ) (2ig ,+V-T1,) (2ie ,+ v-T1% )

(21)

=27TN(0)
3

2

xff[l dpif(l lp

+ (HZH HA)!

) ( |Wp| 4ei(plv~n’1* +povelly+ pav-Ily )>r3
(22)

wherev=kgep/m, the functionf is defined by Eq(10), and
the bracket); implies the angle-average over the unit vector

p=p/ke on Fermi surface. The sum of Figs(b? and Zc),
Kb, is given by
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wp|?
(2ig ,+ v-ITF ) (2ig , + V- Hz)

2T
Kabe= — —N<0>E < <

. w2
(2|s +v'-113 )(2|s(,+v -11,)

+ (M 11,) (23
4 4
27T
=—=—nN() | [I dpif(E p)
T i=1 i=1
X (|wy| 2gi(pgvILy + p2Tl2)y o
X (| w262 IS T ) s 4 (Mo T, (24)

wherev’' =kgp’/m. The following formulas which are de-
rived in Appendix B are quite convenient:

INP=N?)/ag = (U2) (/1 g+ kry+0) 2 +iky

(29

eV Mugy(r ) =e

TR _ 2_\*x2 _ N*\2
eIpVH Ué,k(fi):e (INE=N )/4e (L2)(x/ry+kry—\*)“—iky

(26)

where \=p{*/7y and {=p,+ip, is the complex coordi-
nate. Using this identity and EqB5) in Appendix B, we
obtain the following results:

d’r, . .
f S_HK4a({Hi})u0k1(rJ_ 1)

X Uok, (11 2)Ugie, (11 3)Uok, (L a)lr v,

3 3
ZwTN(O)J'
- do f
O L a5 0)
d?r
xf -
S
X Uok (M2)U3k3(rl3)U0k4(U4)>ﬁ|riﬁrl+(k2<—>k4)
27TTN(0

2 O, +kg, k2+k4f H dpif (

X <4(Re§2)4| 4({)\i})|)‘4:O')‘i#4:pi§*/TH>|3+ c.c.,

i(pV-IIF + povelly+ poveIlE ) | %
e(Pl 1 7P2 27T P3 3)u0k1(rll)

3

27

d’r, .
f S K4bc({Hi})ugkl(rJ_l)UOKZ(rJ_2)
H
X U (Ue.)UOk‘l(U4)|rLﬁrL

d’r,

(]

1 . * .
X <|Wp|ze'(plv Iy *+p2v HZ)USkl(U DUok,(rL 2Np

. *
X (|wp|2eitra s tpav My, (1 3)

PHYSICAL REVIEW B8, 184510(2003

Uok,(FLa))prlr, r, + (KaeoKy)

~ 2aTN(0) 4 ‘
-z B 5k1+k3,k2+k4f |=H1 dPif<i21 P)
X (4(Ref?)?(Ret?)?
xI4({)\i})|)\l'2=pl’2{*/TH;)\3’4:p3'4§*/TH>[3,;A)’+C'C'! (28)

where the suffix\; ;= p; ;{*/7y implies \j=p;{*/ 7y and

)\j=pj§*/TH. Here the functionl, for the quartic term is
given by
1 : 2 *2 l *
In(la(hib) == 7 2, I\l ——mg A%~ (M HA3)
H
X(NatNg)— 7(k13)\’1c3_ Koa\24), (29

where ¢=py+ip;, kij=
we have a quartic term

ki_kj , and )\ij:}\i_)\j . Flna"y

NO 5 5,

Y o2s, T

2 2,2
Xe (rH/4)(k13+k24)¢gvkl’j¢ka2,j¢3,k3,j¢o,k4,j, (30

ky+kg otk Va(Tki})

3 3
Vy({kih)=2aT f i1]1 dpif( El pi)<4<Re§2>4

27T

XTa(ND I\ =0 = pic* 1)~ —

4 4
X f iljl dpif(izl pi)<4<Re§2>Z(Re§2>2

X1 4({)\i})|)\1’2:p1’2£*/TH :}\&4:’)3'4&*/7'_')’3,‘3, +c.c.
(31)

We will show later[see Fig. 8a)] that, consistent with the
neglect of the second term of E®), the second contribution

to Eq. (31) arising fromK . is safely negligible compared
with the first R4a term in the relatively clean case with
27T o7>10 of our interest.

C. Sixth order term

When we restrict the pair-field into the LLL subspace, the
sixth order term of the GL functional is expressed as follows

1 “
}—6:_5 2 deHKs({Hi})
X(AL(r, DAO(r AL 6)* AT, 5)

XA (r A1 6)]r (32)
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1
- ﬁ j%} POk, i POk, Poks.i POk, | Poke . POKe.i . .
o S8
Xf Ke({Ii}) ugi (11 1) Uoky(T1 2)

S,
(a)

><ngs(rls)U0k4(U4)U3k5(rL3)U0k6(U4)|rii_ﬂ- (33 . , .
FIG. 3. Diagrams expressing the sixth order term of the GL
In contrast to the quartic term, the kerr€} also includes functional.
diagramgsee Fig. 8)] with two or three impurity lines in

— I
O
~— I

addition to those with a single impurity line such as Fig. 27TN(0) 5 5
2(b). Fortunately, according to the statement following Eq. = N 5k1+k3+k5rk2+k4+k6f II doit| X p
(31), all terms other than Fig.(8 may be neglected in the 3 =1 =1
range of purity parameter we focus on. The diagram of Fig. 3 26 A
(a) is expressed as X(B(R&L)™6({Ni})ng=0x, ,6=pi2*/m )5 (37)
A 51 where the functiorig is given by
Ke=2mTN(0) >, is,{ | lwy|®]] ~ |zt ztz
B =1 6
1
. - 2 *2
Z3Zg 2124 ZyZg > In[IG({)\I})] 4 Z )\ | I;d)\ +|§en)\ )
Zy—Z3+2y Z3—Z4+Zs 21— Z,+Z .
2 3 4 3 4 5 1 2 3 op 1 2
. . - —( A+ Ai)
EKG +K b+ K6C+ K6d+ K69+ KGf (34) 12 i;odd i;even

~ ~ 1
wherez;=2ig .+ v-II; for eveni and 2k, + v-II* for oddi. - —( NP > )\ZJ)
It is easily seen that, due to the symmetry with respedi;to 61 i /)oad (i.j)-even
andIT* , the above expression can be represented in terms ry
only of, e.g., its first and fourth terms. + ?( p k,l)\l’j kij)\”)

First, let us calculate the contribution to the GL functional (i.J):0dd (i.]):even

of Kgy. Using the parametric representatitsee Appendix (39

A), it is written as
Next we examineKgq. Using the parameter representa-

d’r, . . tion, this term is expressed by changing the integral variables
S, Kea({1Li}) Ugk, (T 1)Uok,(T 1 2) in the above expression @s— p,+ps, ps— —ps, andp,
. . —>p3+p4. )
X Udky (T 1 3)Uok, (11 ) Ugk, (T3 Uokg (Y1 a)lr ,—r,  (3) In this way, we can write the 6th order term of the GL free

energy functional in the form

5 5
=27TN(0) i1;[1 dpif<i21 p

de rj_<‘wp‘ i( E p,VH

i=1,35

N(0)
3T S By Skt Vol ()

xex;J(—rHE k2 /6)

X B0k, i Poky.i Poks i Pok,y i ok, iPokg,ir (39

6=

+ pivIL), *
i:22,4 o Uo,kl(

Mo

Uok, Hz)

Uok,| L4 Uok

o]

* *
><Uo,k3( s Uo,ks( Mis

e where the summationS , is taken over the npairs

36  {(1,3),(3,5),(51),(2,4),(4,6),(6,p) and Vg is given by

5 5
Ve({ki}) = —3X ZWTJ .1;[1 dPif( 21 pi){(8(Rd.:2)6|6({)\i})|)\6—0§}\i¢6—pi§*/TH>{)

+(8(Rez?)®ls({\i}) |Ng=0ihy 5= p1 %1744 hg= — pgl* I Mg 4= (P 4 PR * 7 B (40)
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< 06 tween the rhombic and square vortex latti€&slowever, an

< 0 nlx energy difference affecting the lattice structure is extremely
=5 uj)}j/ small, reflecting a weak structure dependence of the Abriko-
{)i 0 sov factors(denoted ag3, and y, below). For instance, as
= shown in Fig. 4, the nonlocal correction Fo, and thus, to

-3 T* is negligibly small. Therefore, at least as far as the SC
% 06 transition in the MF approximation &t., is concerned, such

) nonlocal corrections are safely negligible. For this reason,
é/ -1.2} x the local approximation for the higher order terms will be
o used hereafter, and/,,({k;;}) will be replaced byV,

o 0 01 02 03 04 05 =Vn({kij=0}). Then, the GL functional derived micro-

T/ Teo scopically takes the form

FIG. 4. Results ofF ;=27 /[ NjayeAN(0) 75 ({|A©|?))?] cal-
culated under three different conditions and in the pur@.§ Floc= N(O)J’ d2rL
=o0) limit. In the open-square symbols, the square vortex lattice is
assumed with the nonlocal contribution iy, included, while the
triangular lattice is assumed in both the crossed symbols with the + 2
nonlocal contribution and the solid curve with no nonlocal one. )
Note thatT* at whichF,=0 is insensitive to the nonlocal contri-
bution and to the types of lattices.

> ao(a)|AQ(r )2

z

Vv, Vi
?|A}°)|4+?|AJ(°)|6”. (41)

Temperature variations of the coefficies and Vg cal-
culated along theH.,(T) curve are shown, respectively, in
o . o ) Figs. 5a) and §b). To clarify that the contributions of Figs.

In deriving the MF phase diagram and its impurity depen-p() and 2c) are safely negligibley, in Fig. 5a was cal-
dence, we will use an additional approximation below. Sinc&jated in terms of (2T.07) 1=0.05, the value used in
a nonzero magnetic field plays the roles of cutting off theriy gp) below. The coefficieny, is negative at lower tem-
low T divergences of coefficients of the higher order GL heratyres, whildv is positive over a broad region so that the

terms, the orbital depairing effect arising from the gaugeg expression41) with a MF-FOT atH.,(T) is well de-
invariant gradientdl; has been incorporated nonperturba-fineq.

tively in the above expression8.Instead, algebraik;; de-
pendences have arisen in the vertisgg({k;;}) with m=4
and 6. On the other hand, the Gaussigndependences in
F, and Fg are direct consequences of restricting the pair Below, the MF phase diagram will be examined based on
field into the LLL subspace and also appear in the familiarthe functional, Eq(41). First, let us neglect a possibility of a
GL expression with spatially local higher order terms. ThatFFLO-like state and assume a straight vortex solid indepen-
is, the additionak;; dependences M ({k;;}) can be seenas dent ofj as the MF solution. Then, the first term in the
spatiallynonlocalcontributions to the higher order GL terms brackets of Eq(41) is replaced bija0(0)|Aj|2, and the
and affect the structure of vortex solid. Actually, in the LLL MF solution is obtained in a standard way. The character of
and the case with no paramagnetic depairing, this nonlocalitthe MF transition at thél .,(T) line changes with increasing

in the quartic GL term results in the structural transition be-field from a second order one to a discontinuous one at a

D. Mean field phase diagram

5
0.4
4
0.2
3
1S O m-mmm e - 1>
2
-0.2
]
-0.4
X o A i i A i i A 2 0 " " A L L L " L n
0 0.1 0.2 0.3 04 05 0 0.1 0.2 0.3 04 05
T/T°° T/Tco
(a) (b)

FIG. 5. Numerical results of the dimensionless coefficiéatsV,=V,({k;=0})/5 and(b) V= Ve({k;=0})/7{; on theH, curve at
lower temperature$<0.5T 5. The value (2rTo7)  1=0.05 was commonly used. (@), the cross symbols represent the result due only to

Fig. 2a).
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FIG. 6. HighH and lowT regions of the MFH-T phase dia-
grams in(a) clean limit[ (27 Tg7) *=0] and(b) the moderately
clean cas¢(27T,7) 1=0.05). See the text for further details.

temperaturél* whereV, becomes negatiisee Figs. 4 and

PHYSICAL REVIEW B 68, 184510(2003

2 e~
g
~.
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52~ (1)
1 \‘\\\ ao \~\/ a-'
Bz ~~— ~.
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58) TFW
0 X l '
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FIG. 7. Temperature dependencesa@f andaf® on H,(T)
and nearTgr o, whereal®=al®/7% (s=1,2), and the pure limit
was assumed. The corresponding curvea@f=a{"/Z is also
shown for convenience.

5(a)] reflecting that the spin depairing is more effective uponing ¢ and, as expected, is measuredat by the inverse of

cooling and with increasingd. To obtain MF results inT

the energy barrier. Hence, if this MF-FOT occurs as a true

<T*, higher order terms are necessary in the GL expressionzQOT in real systems, a clear hysteresis is expected in a sys-

According to Fig. Bb), the coefficientVy is positive over a
broad temperature range, and thus, El), terminated at

tem with weaker fluctuation.
However, in higher fields and lower temperatures where

the sixth order term, will be sufficient for our purpose. Fur-the spin depairing becomes more important, a FFLO-like he-

ther, let us introduce the effective coefficiefitsV,3, of

the quartic term and=Vgy, of the sixth order term, respec-
tively, where

(Al
b (AR
(AP )%

=" 42
((|A19)2))3 2

YA

Then, the following MF results if<T* are found. First,
the MF transition point inT<T* and in the LLL is deter-
mined by the condition

(43

while the supercooling(superheating point is given by
ao(0)=0 [ay(0)=b?/(4c)]. Next, the energy barriel
between théA(®)|=0 solution and the jump value ¢A(©)]

at the transition|A ()| .= \/3|b|/4c, is given by

bJ®
Upar= N(0) —

= (44)

Further,
(| 6A)]2) of the Gaussian fluctuatiodA® when ay(0)
=ap. and in the 2D limit, one also finds

T |A(0)|2
(0)[2y, 27 e

barr

(49)

lical vortex solid within LLL may become more favorable.
As far as the widthay, is sufficiently small, the
g,-dependent terms have only to be incorporated into the
quadratic terms i {?). That is, thisstructural transition line
Her ol T) between the FFLO-like solid and the straight vor-
tex solid may be discussed within the coefficieay(qﬁ).
Actually, according to the calculation results\¢f andVg in

Fig. 5,a0, in Fig. 6 is at most of the order of 16. Assum-

ing a helical state with th¢ dependence\(V~¢'%* in H
>Hgr 0, @ second order structural transition liRleg o(T)

is obtained within LLL according to Eq.13) as the curve
al’(T)=0 if al?(T)>0 there. Numerical results oa§"
anda?) are shown in Fig. 7. We find that{® nearH., is
always positive along thelr o(T) line and increases upon
cooling at a fixed field abovélr o(T). Further, since the
paramagnetic depairing effect is enhanced with increasing
field and decreasing temperature, as the example in Fig. 6
shows, a possibléd- o(T) curve should decrease upon
cooling.

Now, the MF phase diagrams Fig. 6 following from the
GL coefficients derived above and for two different impurity
strengths[ (7T¢) "1 valueg will be explained. The used
value of paramagnetic paramet,&bH‘c’gb(O)/Zcho, corre-
sponding to the Maki parameter, is 0.8, which leads to the
value T*=0.36T, in the pure limit [Fig. 6(@)], where
HOP(0)=0.56¢,/(27£2) is the 2D orbital limiting field at

by calculating the mean squared amplitudel =0 in the pure limit, ando=kg/27mT, is the coherence

length. The field values in the figures were normalized by
HOP(0) [i.e.,h=H/H%P(0)]. ThecurveH* (T) indicated by
the cross symbols is defined by the conditiyy=0 and may
not be directly seen in experiments. In contrast, the portion
(open circleg in T<T* of H,(T) on which the MF SC
transition is discontinuous is experimentally measurable to-

WhereTcz is the MF transition temperature. Thus, the fluc- gether with (|f any) the second order transition line

tuation strength is enhanced with decreagisigand increas-

Heeo(T) (solid curve to the FFLO vortex solid. In the tem-
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perature regions where the MF-FOT does not occur, the E. Properties of helical vortex solid

higher of the dashed curves indicatedby-0 or 1 becomes Here, we briefly comment on linear responses and elastic
the Heo(T) line, on whichao(0) ora,(0)=0, and the MF  properties in vortex solid phases, primarily in a FFLO-like
transition there is of second order. helical solid with a modulatios; =X, €% in a LLL with

It will be important, in relation to real phase diagrams of . - .
related materials, to understand how Hhes_o(T) curve and gm# 0. To examine the electromagnetic linear responses in
' Lo an ordered vortex lattice phase, we have only to focus on the

the characteristic temperatures are affected by the Impurlt&radient terms with aexternalgauge fluctuation substituted,

strength. By comparir_1g Figs.(® and Qb), the regiqn and to examine the Gaussian fluctuation around a MF solu-
HerLo(T) <H<Hcp(T) Is found to be easily lost by a slight tion of A;. An appropriate form, consistent with the above

increase of impurity strengthrT.) 1. In contrast, the onset microscopic analysis, of the gradient energy will be
T* of the MF-FOT behavior is relatively insensitive to the

sample purity. Nevertheless, when#2,,7) ! goes beyond -
0.095 while the valuguoH%(0)/27T,=0.8 was kept, the fgrad:j d°ra*(r,,2)
MF-FOT region atH,(T) is also lost, and the MF transition
at H,(T) is continuous at all temperatures. This result is —28(H2)< . d
contrast to other works? in which the presence of a MF-

FOT was argued under the use of dirty limit. We find that,

instead, the FOT obtained in the dirty liffinever occurs in +[AI?) ] B(112) ]2
T—0 limit when Eg7>1 under which the usual dirty limit

may be valid. On the other hand, the results in Ref. 6 argyhere a continuous variabtewas used for the coordinate
derived by completely neglecting the orbital depairing andparallel to the field. If considering the SC response inxtbe

are not comparable with the present ones. Further, we stregsgirection, I needs to be accompanied by a gauge fluctua-
that, in contrast to results given in a previous woraking tion a=a, +a,2 in the form II—a, . Within the Gaussian
account of both the orbital and spin depairing effects, theapproximation for the fluctuation, no cross terms liea,
results in Fig. 6 imply that alway$* >Teg o in the present  gppear because any terma, becomes off-diagonal with re-
quasi-2D case under a perpendicular magnetic field. spect to the LLs and hence, zero after spatial averaging.

Since, as already mentioned, the width. in Fig. 6 is  Hence, the linear responses in the parallel and perpendicular
relatively small, the MF-FOT there may be regarded as beingjirections can be considered independently.

weak. However, this does not mean a strong fluctuation. Ac-  First, let us consider the response parallel to the field in
tually, in systems with a larg&(0) in zero field such as whicha, =0. If the spatial variations perpendicular ltb of
CeColn, the fluctuation strengti/U,,,, itself becomes ex- the MF pair-field solution are described within the LLL, the
tremely small in the lowT region of our interest. On the argumentII? in A and B can be replaced by,]z. For the
other hand, the magnetization jump valA&l. at the MF- moment, let us focus on the helical solid phase in which
FOT should be quite small compared with the applied field inB(r,]Z)>O. Assuming the fluctuation of; to be dominated
order to justify our neglect of a spatially varyirigternal by that of its phasep, the fluctuation part 0bF g Simply
magnetic field. In CeColnunder an applied field in the tesla becomes

range, this condition is well satisfiet(also see Sec. IV

4

A(H2)<—ii—a
Jz ¢

2

A(ry ,2), (46)

IN T<T e Wherea,;(0)<ay(0) [<ay(0)], the Hey(T) 8 Fgraq= AT )(|A[?)
line and, hence, the vortex lattice itself just below it are
determined by the next lowesiE 1) LL. According to the xf d3r[((9,0)°— 02— 20,0a,)%+ (92)?]

a{)(T) curve in Fig. 7, thisN=1 state is not a modulated

FFLO-like state but a straight vortex solid. Further, note that 5 ) 3 5

Thex@anNd Ter o are close to each othEsee Fig. 63)]. These =4B(riy (A >f d*r(9,0¢-a,)". (47)
results imply that, in quasi 2D materials under fields perpen- ) ) _ _

dicular to the SC layers, the presence itself of the FFLO-liké1€re, d¢ is the phase fluctuation, and higher gradient terms
vortex solid is very subtle even in pure limit. Thus, a com-Were omitted in the expression following the2 secondzequahty.
petition between the FFLO-like solid within the LLL and a Further, the fact that the MF valueyy, of q; is
solid within theN=1 LL has to be examined just above the B(r;*)/A(r;%) was used. As seen in a seminal wdrthe
Hero(T) line. Since this is an issue of a transition betweensameform as above occurs in the case with no orbital de-
vortex lattice structures defined within the planes perpenpairing in an isotropic 3D systerisee Eq.(31) in Ref. 5.
dicular to the field, a detailed description of the stable vortexThis familiar result(47) implies that, in the helical solid
lattices ind-wave pairing cases is required to address this. Astate, there is netationarycurrent even alongi and that a
already mentioned, however, the nonlocality, at least, of théupercurrenta, can flow in this direction, although the su-
sixth order GL term affecting the in-place lattice structure,perfluid rigidity <>CB(rgz) vanishes with approaching
was neglected in this paper. We will postpone a study oHgg o(T).

structural transitions to higher LL solids #h>Hgg o to our The absence of a SC responseiandy directions can be
future study. seen, as well as in the ordinarg,{=0) case, most easily
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within the phase-only approximatidhNoting that any term  dom pinning effects. This conjecture may be useful in
accompanied by the in-plane periodic variation in a vortexsearching for a transition curve to the FFLO-like vortex
lattice disappears after averaging spatially and thatutie  solid.

form fluctuation part ofd, 8¢ is given byr,%(zxs), one
finds that the fluctuation dfi? in the limit of vanishing wave [Il. STUDY OF THE GENUINE PHASE DIAGRAM

number can be expressederywheren A and 5 as[ry;*(z In this section, the real phase diagram of systems de-
x8)—a, ]? wheresis a uniform in-plane displacement of & scribed by Eq.41) is studied by including the fluctuation
vortex lattice. After integrating oves, a, disappears to- goffects. We will focus here on the range* (T)<H
gether in the resulting fluctuation free energy, implying no<H__ (T) and hence, rewrite the first term in the brackets
SC response. This non_—SC perpendicular response is a Cogt Eq. (41) into Ej(ao|AJ(0)|2+ 7,O|AJ(0)_AJ(3)1|2) with o
sequence of the establishment of the Josephson relation - ajthough we have not extended our simulation work to
=r;%(zx9) (leading to an electric fielE proportional to a  (if any) the rangeH > Her, o defined within the lowest LL,
vortex velocityv,, i.e., E=—v,XxXH) and is quite different fluctuation effects similar to those i <Hgg o should also
from the corresponding one in the case with no orbital debe expected in such higher fiel(see below. The partition
pairing in theideal isotropic 3D system which is a conse- function we should examine is
guence okpontaneouformation of a direction of the helical
modulation?? Z=Tryexp(—F), (49
Next, let us briefly discuss the vortex elastic energy. Th

. ; . ) . : here the functionalF=F,,./T is rewritten as
shear elastic energy for in-plane shear distortions is obtained,

as in the case of straight vortex lattice, from the phase fluc-

tuation energy. It was already shown in Ref. 23 thatghar- F=2 f dzf( a2+ | W =Wy, ]2

tic dispersion on the 2D wave vectgy, of the massless J

phase fluctuation and hence, the way of identifying the shear Vel . 1 .

elastic mode with the phase fluctuation, are unaffected by -5 W5, (50)

any change of the higher order terms of the GL model. No
calculation of shear the modulus will be performed here, anavhere W(r) is the rescaled order parameter field defined
we simply assume, just for qualitative consideration, the rewithin the LLL, y=0,
sulting shear energy term to be positive defiiftén con-
trast, some comment will be necessary on the tilt energy rﬁN(O) 2’3a0(0) H—Hg,
a= 7 =ao(T) '
Vg Ho

which should change throughgg o(T). For simplicity, we T
focus on its expression in the type Il limit with no internal
gauge fluctuatio”>?° According to Eq.(47), the tilt energy

2 1/3
in the type Il limit takes the form |ﬁ|:(rHN(O)) |Val (51)
T V23’
6
2 2012 2 and the in-plane coordinateswere normalized liker/ry
-2 2 27TH kz(kz+4qm) T2 . .

Eie=A(ry){|A]%) > 5 |sql°, —r. Further,Hy denotesH,(0) in the case with no MF-
®o q ar FOT. Since, as mentioned earlie, . measuring the differ-

(48) ence He,—Hg)/Hg is small for the Maki parameter value
used in this paperd, will not be distinguished fronH .,
where |k,|=|lg,)—a,/, and the relatiof#?5? 54 below. Note that, except for a numerical fact|? is iden-

_ —i(qurﬁz)(qixs;f)z between the transverse displ?’:tce— tical to Up,/T. The T-dependent paramethﬂ%rl measures
ments' and the phase fluctuation was used. On the othe}he fluctuation str-ength, while the magnetic field dependence
hand, in the straight vortex solifi.e., in H<Her o(T)], Is assumed only ie. Thus, a change d8| can be regarded
whereB(r;?) <0, the dispersiok2(k+4q2) in Eq.(48) is nearH, as a change only df in Eq. (49) under the same
replaced by PB(r2)|g2.A(r;2). Thus, the macroscopic Floc With fixedvalues ofay, yq, V4, andVg, if the magnetic

properties in both the vortex solids are qualitatively the sam
as each other.

However, the tilt rigidity decreases with approaching
HeroT). In particular, thek?/q? dependence of the filt
modulus just orHgg o(T) implies ashortranged phase co- First, let us explain how an ordinary physical picture of
herence of the vortex solid there which is consistent with thdow energy fluctuations and their effect on orderings leads to
vanishing superfluid rigidity ot o(T). Because this ab- the absence of a genuine transitiorHab. As in the familiar
sence of SC order in theritical vortex solid[i.e., the case cas&?®with a second order MF transition Bit.,, let us start
just onHep o(T)] is due to a softeningor weakeningof an  from a description deep in the ordered phase. First, since the
elastic modulus, an enhanced peak effect due to an increaselusion of orbital depairing requires the presence of field-
of the critical current is expected neldir o(T), as well as  induced vortices, a low energy excitation in the ordered
the ordinary one neaf,(T),?" in real materials with ran- phase is inevitably an elastic mode of a vortex solid. As

field variablea is appropriately rescaled, and a difference in
%he anisotropy(i.e., they, value plays no important role.

A. Theoretical consideration
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H H The theoretical discussion given above implies that, as far
H,© - @ | H,0 g;Hm<HC2, a genuine transition a ., ca'nnot occur.."l'hen,
NN it is at least natural to expect that, following the familiar case

in T>T* with a second ordeH_, transition,H,,<H., at

any nonzerol and, hence, that, as in Fig(e8, a genuine
transition atH., never occurs aany nonzero temperature.
However, caution will be necessary in the present case with a
MF-FOT. For instance, &l,, defined in terms of the Linde-
mann criterio”® may lie aboveH., in a case with weak

buIIE 'gp 2' ”T"S"Sp‘;fggri%itce;g va\llitshcZZTaanﬁg;-nFe):ngegi;?i?gmir?ftheenOUgh fluctuation because any elastic modulus, proportional
2 . . .
case with thermal fluctuation and with no vortex pinning effect. TheIn the lowest LL to some power G(ﬂ‘I’| )1 Is nonvanishing

solid curve, the thick dashed curve, and thin dashed curve are tha" approachingic, from below. Of course, there will be no

melting lineH ,(T) of vortex solids, the MF-FOT curve di.»(T), pOSS!bIlIty that the aCtu.aHm lies aboyeH 02'.Then’ one may
and the ordinanH., curve of the second order MF transition, re- consider another _pOSSIbIe phase dlagl[ﬁlg_. 8(b_)] rea_hz'
spectively. Dashed curves are not genuine transition lines. A posable, for a case V‘,”th weak enough fluctu_atlon, in Wh'Chj re-
sible presence of the structural transition to an FFLO-like vortexfiecting a reduction of thermal fluctuation upon cooling,

solid, neglected here for simplicity, does not lead to any essentidrim(T) at low enough temperatures virtually coincides with
change orH,(T) andH ,(T). H.,, andboth a large jump of magnetizatiofreflecting a

large condensation enenggnd atiny hysteresis, arising from
already noted in the final part of Sec. Il, it is clear that thethe vortex lattice melting, will be seen &t., on the solid
form of the elastic energy and the relation between the phaseurve. An important point is that, even in the scenario of Fig.
fluctuation and the vortex displacem&hare essentially un- 8(b), a large hysteresis occurring as a consequence of a large
affected by differences in the forms of higher order GLjump of magnetization, i.e., a hysteresis at thermal equilib-
terms. Then, it is clear from the previous wotk& that the  rium resulting directly from the MF-FOT, cannot occur. Ac-
phase fluctuation is marginally relevant even in the 3D casegording to the experimental data>®in the situation of our
and that the rigidity controlling thguastlong-ranged phase interest in this paper corresponding to CeCGplmder a field
coherence in the vortex solid is the shear mod@tuEhat is,  Hl|c, the phase diagram of Fig.(&® seems to be always
if the vortex solid is melted atl,,, belowH,,, we have only realized. However, it is theoretically valuable to clarify
short-ranged orders for both the phase and the vortex posivhether Fig. &) may be realized or not in real systems.
tion in the vortex liquid abovél , with no finite shear modu- Results of our numerical simulation, performed for examin-
lus, and thus, the vortex liquid should be continuously coning our theoretical arguments given above, will be reported
nected with the normal phase aboMe,.%?° In this sense, below.
the MF-FOT atH., should not occur. Further, to understand
this from another point of view, let us note that the quasi-2D
SC order parameter in the lowest LL has the f6tm

B. Simulation results

In this subsection, we explain our methods and results of
oo Nl Monte Carlo(MC) simulations for the model Eq49). Our
W(£2)=Az)eY W [] [é-&(2)], (52 simulation method closely follows that used in the
=0 simulation$™*2 for the familiar GL model with a positive
whereé=x+1y, z=js, &(z) is the complex coordinate per- quartic term in place of-|8| in Eq. (50). On a fixed SC
pendicular toH of theith vortex, and a Landau gauge was layer, the pair-fieldV is expanded in terms of the LLL basis
assumed for the external gauge field. Since the vortex posfunctions¢,(x,y) consistent with a quasi periodic boundary
tions are highly disordered abow,,, the fluctuation effect condition’ as ¥ =3, c,¢,(X,y), and the system sizes,
above H, is essentially described only by the amplitudeand L, of a rectangular cell satisfy the commensurability
A(z). However, A(z) depends only oz irrespective othe  with a triangular lattice ground state through the relation
form of the higher order GL terms. That is, since the ampli-L, /L= \/§NX/2Ny (=2NX/\/§NY) in the 2D (layered case.
tude fluctuation itself has a reduced dimensionality and ifNote that, as mentioned earlier, the ground state in the
1D-like in 3D system® even in the present case, the ampli- present case is, due to the neglect of nonlocality in the GL
tude fluctuation will push the vortex lattice freezing fi¢lg,  higher order terms, a triangular lattice, although the pairing
down to a lower field, and the MF-FOT should not be real-state assumed originally is a fourfoliwave one[see the
ized as a true FOT in real 3D systeffs. sentences above E@1)]. In the layered case, a periodic
Once noting that theﬁ form of the tilt elastic term in  boundary condition is assumed across the layers. The system
H<Hgro is replaced inH>Hgr o by (Jg,]—qm)? the  sizes we studied wereN(,N,)=(6,4) and(8,6) in the 2D
above argument precluding a genuine FOTHat can be case and6,6) in the layered case. The Markov chains égr
applied to such higher fields with no modification. Note alsoare generated by the Metropolis algorithm. For the 2D case
that the continuous transition Bler o is astructuraltransi-  (layered case we used 5 10°(1.5x 10°) MC steps for ther-
tion between the ordered vortex solids and, hence, togethenalization and another %610° MC steps for further obser-
with FFLO-like states themselves, will not be lost due to thevation in both cases. As in the figures in Sec. Il, we have
SC fluctuationas far as H,>Hgg o (see Sec. IV. assumed the value 0.8 ftprnggb(O)IZWTco. Further, when
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=3.0 (plus symbols Dashed and solid curves are the correspond-
ing MF results. According to Eq43), the MF transition point cor-
responds tax=0.75(1.69 in 8=2.0(3.0). The system siz¢6,4)
was commonly used.

A\.
0 \0‘
Al "(
!«Il'izl\‘\‘é"
assuming &l (0) value appropriate to CeCgliRef. 33 and

that T/T,,=0.1, the|B(T)| value is estimated to be in the .os
range between 2.0 and 3.0 used in the simulations.

To study fluctuation effects on the MF-FOT, the mean-
squared average of the pair fig{t¥’|?) was calculated. It
corresponds to the magnetization whag is the measure,
primarily, of H. Hence, if it does not show a true discontinu-
ous jump but aroundedbehavior atH., broadening with
decreasings|, a genuine FOT atl., is judged to be absent.
Further, as a measure of the vortex-positional ordering
(vortex-solidification, we have examined the structure factor
S(k) defined® as the Fourier transform of the correlation
function of |W(r)|2. In the figures, thex dependences of
these physical quantities are shown. Although a change of
implies a change dfl at a fixedT, the vortex density is fixed -0s™
at any simulation. '

First, let us present and explain 2D simulation results in
W.h'Ch y=0. The obtained resglt(e.symbols) are shown in FIG. 10. S(k) data corresponding to tHg|=2.0 data in Fig. 9
Figs. 9 and 10. The corresponding MF curves are also drawn = _

. . . . at(a a=0.75 andb) —2.0. (c) S(k) at = —2.0 for larger system
for comparison. The feature, that the simulation data I'esize(8 6
above the MF curve i, ,<H<H,,, is not surprising but e
presumably a reflection of a dimensionality dependence oiihg transition is widely believed to bewweakFOT, and this
the amplitude fluctuatiotcompare with Fig. 11 belowltis  should be foun#t in Monte Carlo simulations as a tiny dis-
found in the literatur® that a similar dimensionality depen- continuity in thermodynamic quantities. Unfortunately, due
dence appears in the magnetization in the case with a pogprimarily to numerical difficulties, our simulation is re-
tive quartic coefficient. As is clear particularly from the| stricted to systems too small to observe such a discontinuity.
=2 data of Fig. 9, the nearly discontinuous jump(p¥|?) For our purpose of determinird,,,, however, it is sufficient
atH., is rounded due to the fluctuation, and thus, no genuindo find where the Bragg peaks of the vortex lattice disappear.
FOT has occurred dtl,,. We note thatoo(T=0.1T.,o)=50 Figure 10 shows snapshots of the structure factor on
for the parameter values used here. Hence, if the abscissa [ (r,)|?> when |8|=2.0. No vortex positional ordering is
Fig. 9 is reexpressed as the reduced fi¢ld-(H,)/Hy, even  seen aH.,. By comparing Figs. 1@ and 1@b) with Fig. 9,
this rounded behavior dffW|?) for | 8|=2 cannot be distin- one finds that nearly sharp Bragg peaks appeét,abelow
guished from a strictly sharp discontinuity, and the differenceH ., while most of the entropy has been lost nklgp above
Hq—H,, will not be visible (see Sec. IY. Thus, the pres- it. The two field (or temperaturescales, one characterizing
ence of a genuine FOT cannot be argued through merely the steep growth of| '|?) and another corresponding to the
steep growth of | ¥|?) in a real system with weak SC fluc- sudden growth of vortex positional ordering, are clearly dis-
tuation. tinguished.

Next, let us examine whether the melting position coin- We have also examined the size dependenc lof data.
cides or not with the MF transition field .,(T). The melt- By comparing the data in Figs. 1@®) and 10(c) with each
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hanced, and no hysteresis is present accompanying this be-
e H,, (Bi=3.0) havior atH .,. The simulation results given above imply that,
m ) at least for| 8|=3.0, the correct phase diagram is Figa)8
Next, we report on consequences of an extension of simu-
lation for the layered system composed of four layers to
* weakerfluctuation cases withg|>3.0 (i.e., at lower tem-

*i peratures As the numerical data in Fig. (& show, a hys-
1 i teresis in the vicinity ofH., suggestive of a genuine FOT
" appears between tw@W¥|?) curves for|B|=3.5, respec-
o * tively, in increasingH (corresponding to a heatihgnd de-
-10 -5 0 5 10 : X h :
creasingH (corresponding to a coolingHowever, this hys-
o

teresis isnot due to the vortex lattice freezing or melting

FIG. 11. Numerical data ¢f ¥'|?) in the layered case composed ipcluded in t.he scenario of Fig(i because, as Fhe simula-
of four layers. The crossed symbdisius symbols are results in 10N results in[ 8[<3 have shown, the hysteresis accompa-
|8]=2.0(3.0. nying the melting is unobservably sméhithough the melt-

ing field H,, is estimated to lie close ta=2.0 throughS(k)

other, it will be clear that the sixfold symmetry of Bragg data, it is not easy to conclude a separation betvi¢grand
peaks is more remarkable in the former, i.e., in a smaller
size. It means that the solidification is enhanced by the
boundary condition in a smaller system. This size depen-
dence will be sufficient for justifying our expectation that the
vortex solidification(or melting occurs belowH .

The corresponding results in a layengpliasi-2D system & 2.0 ] H-increase
consisting of four layers are shown in Figs. 11 and 12, where = ‘l
the parameter valueg=0.25 and|8|=2.0 or 3.0 were as- = |
sumed. The obtained computation results are essentially th 4 g /‘l
same as in 2D case, except the feature that the differenc 1
He,—H,, became narrower in the layered case. Thus, the H-decrease ‘\

anisotropy or dimensionality, i.e., the magnitudeygf does

not seem to induce an essential change of the true phas 0 . . . . .
diagram. The nearly discontinuous behaviorHat, is also 0 1.0 2.0 3.0 4.0
smeared out in this quasi 2D case as the fluctuation is en

20 0=2.0""

1.6
15 1.6 1.7 1.8 1.9 2.0

[x 108]
Monte Carlo step

()

FIG. 13. (a) Numerical data, similar to Fig. 11, f¢B|=3.5. (b)
The history of{|¥|?) at«=2.0 and 2.19 in thél-increase process.
FIG. 12. Structure factor defined from the correlation function Note the strong dependence on Monte Carlo steg$f?) when

of [ (r)|? for |8|=3.0 at(a) «=1.65 and(b) a=1.25. a=2.19, i.e., in the vicinity oH,.
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6 here for comparison because the fluctuation in the 3D GL
model within the LLL is expected to be similar to that of the
corresponding 1D GL model in zero field. We chose the val-
H-increase ues|w|=5.0 andf=4.0, together with a system size com-

v / posed of 18 sites. Due to a smaller number of degrees of
' freedom in SC fluctuations in this 1D case, a tendency of a
» / full relaxation to the thermal equilibriurti.e., a disappear-
H-decrease

ance of hysteresjisas Fig. 14b) shows, manages to be veri-
fied within the practically observable MC steps. In contrast,
in the case of quasi 2D systems expressed by(Hq, it is
- quite difficult to verify such a full relaxation within practi-
cally possible MC steps because of a much larger number of

a degrees of freedom in a quasi-2D vortex state.

(a) Summarizing this subsection, for ahg| value withH,,

lying belowH_,, no true FOT occurs dtl.,, and the phase

‘ diagram([Fig. 8@)] is justified. For larget 8| values when
H,, may not be distinguished frofd,, it is practically dif-
ficult to verify whether Fig. &), in place of Fig. &), is
realized as a true phase diagram, and a hysteresis can appear
in numerical experiments atl., even without a genuine
FOT occurring there.

/ H-increase

IV. DISCUSSION

-

H-decrease ] ) o
/ As explained in Sec. |, the present work was originally
motivated as an extension of the problem of the vortex phase
10 20 3.0 2.0 5.0 diagram to the more general cases with Sjparamagnetic
[x 106] depairing. Since the absence of a MF second order transition
atH., in lower fields is well established, it is unreasonable
to expect the MF-FOT atl, resulting from the Pauli para-
b magnetic depairing in higher fields to truly occur as a genu-
(b) ine FOT. The recent finding of an FOT-like nearly discon-

FIG. 14. (8 (|¥|?) Data similar to Fig. 1) for the 1D GL  tinuous  crossover atHc in the heavy fermion
model [Eq. (53)], taken at MC steps % 1CP. (b) Data ata=4.74  Superconductor CeCajrin H|/c (Refs. 15 and 16provides
show a recovery of thermal equilibrium after many MC steps. ~ Us With a good occasion of a detailed comparison between

the present theory and real data. Further, recent ddtalio

H, for this casg¢ Further, since, as mentioned below Eg. (Ref. 13 showing a small hysteresis in heat capacity and
(51), an increase of3(T)| can be regarded as a decreasesuggesting a second order transition between the FFLO-like
only of T in the partition function(49) under the same |,  vortex solid and the ordinary vortex solid will stimulate de-
[Eq. (4D)], it is difficult to imagine a scenari8in which the  tajled theoretical studies of vortex phase diagram in the re-
MF result would become exact in a very low biiite T gion with paramagnetic depairing.
region. Actually, the hysteresis in Fig. (B3 is not due to a As shown in Sec. Il, in quasi-2D systems under fields
genuine FOT in thermal equilibrium: The=2.19 data in  perpendicular to the layers, a FOT Ht, should naturally
Fig. 13b) show that the system, at least in the vicinity of occur inT<T* at the mean-field level in clean enough su-
Hc,, has not reached the thermal equilibrium even during thgerconductors with a moderately strong paramagnetic depair-
MC steps we could observe. ing, and the onset temperatufeg o from which an FFLO-

Actually, a similar situation occurs, if the fluctuation is |ike vortex solid begins to appear lies mubblow T. The
weak enough, in other systems with a MF-FOT hottrue  results, that this modulated solid state is rarely seen com-
phase transition. To illustrate this statement, in Fig. 14 weyared with theapparentFOT atH,, and is easily lost by a
show results, corresponding to Fig. 13, for a familiar 1D GLsmall amount of impurities, are consistent with the

Monte Carlo step

model with a negative quartic coefficient,

dw¥(x)
a|W ()24 f|—5—°

Fld: J dx

lw 1
- 7|‘I’(X)|4+ §|‘1’(><)|6 ,

whereWV is a function only ofx, anda in this case may be

observations in a heavy fermion superconductor CeCgln

in H||c but seem to be a contrast to the conclusions on phase
diagram in previous works: Further, the range of* (0.2
<T*/T,<0.36) shown in Fig. 6 following from the value
woHP(0)/27To=0.8 and small ¢T.,) ~*-values is com-
parable with that T*/T.,=0.25) in CeColg under
Hl|c.2>151When theN(0) value in CeColnin zero field®

is used further, we find the nearly discontinuous jump value

regarded as a temperature variable. This 1D model is usedf magnetization atl ., whenT =50 (mK) to become 2QG)
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which is comparable to the estimated value (8) in Ref.  the organic materials. On the other hand, since such a up-
15. Further, the widtlAH(T) of the magnetization jump at ward H,(T) curve is not visible in the heavy fermion ma-
H., will be roughly estimated using the numerical data ofterial CeColg with a much weaker anisotropy, one might
Fig. 11 as follows. Using the relationsay(T)  wonder why these crossover and transition arising from the
=~50(0.1T.,/T)?® and B(T)«T 13 given in Sec. lll, and spin depairing have occurred in this material. This puzzling
assuming|B(T=0.1T.,)|=2.0, the data in Fig. 11 imply facts are easily resolved by taking account of fluctuation ef-
AH(T=0.1T,)=0.06T) and AH(T=0.03T)=0.02 (T), fects examined in this paper. Typically, in the organic and
which seem to be comparable with those in availablecuprate material®*¢the fluctuation effect is much stronger
datal>?’ compared with those of CeCalnActually, a shorter coher-
As shown and mentioned in Sec. I, the absence of a truence length tends to result in a larger Maki parameter and
FOT at H,, should be an appropriate interpretation for Simultaneously to enhance the fluctuation even in the parallel
observation§*°at least inH||c where no measurable hyster- field case’:** Consequently, as shown in Sec. Ill, the MF-
esis was observed although the ordinary magnetic hysteresiOT behavior is rounded, and is transmuted into a broad
related to the peak effect nek,, (Ref. 35 might appear. continuous crossover by the SC fluctuation, reflecting the
On the other hand, observations of a tiny hysteresis wergbsence of the true FOT Bt;,. Further, a remarkable field
recently reported in specific heat d5t& and also in mag- and temperature range of the vortex liquid region in which
netization dat® of CeColny in HLlc. Examining micro- the resistance is finite may be created beldyy(T) curve
scopic aspects inHL ¢ leading to a MF phase diagram is even in the parallel field caSbwhere the fluctuation effect is
beyond the scope of the present paper, and will not be corminimized. Since the FFLO-like state is limited to a narrow
sidered here. However, the issue of the genuine phase difield range belowH,, and the modulation parallel to the
gram in Sec. Il is more generic and may be applicable to thdield does not lead to any ordering in the vortex liquid, the
H_ c case in CeColn Because the fluctuation effectfiL c vortex liquid region should mask and erase the FFLO-like
is weaker than that it c at the samd, the observed hys- phase in a strongly fluctuating superconductor. For these rea-
teresis in Refs. 13,15, and 18 can be understood within thgons, cleaner superconducting materials witakerfluctua-
present theory arguing the absence of a genuine F®Iat  tion such as CeColnare the best candidates for examining
if it has the same origin as a hysteresis in numerical simulathe MF high field phase diagram in the case with Pauli para-
tions atlow enough T shown in Figs. 13 and 14, which magnetic effects.
arises from arincompleterelaxation at long but finite time

scales in a system with a strong MF-FOT. In relation to this, ACKNOWLEDGMENTS
we point out that the onset of hysteresis in Ref. 13 lies ) ) ]
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branches from the MF-FO[i.e., H,(T)] line. This implies stage of our numerical computations and to T. Sakakibara, Y.
that the onset of hysteresis has nothing to do with the appeaf/atsuda, K. Machida, K. Izawa, T. Tayama, C. Capan, H.
ance of the FFLO-like state and thus that there is no physicdgadovan, and R. Movshovich for informative and stimula-
reason favoring a termination of some genuine GGper- tive discussions. Part of the numerical computation in this
conducting FOT. Alternatively, the observed hysteresis WOrk has been carried out at the Supercomputer Center, In-
might accompany a truenagnetic FOT induced by the stitute for Solid State Physics, University of Tokyo, and at
(|A]?) nucreation atH., as a consequence of a coupling the Yukawa Institute Computer Facility in Kyoto University.
between the SC and a magnetic order parameter. In relation

to this, we point out the observation of a large magnetic APPENDIX A: DERIVATION OF K,

hysteresi¥ in HLc just below Hg,, to which the corre- . . .
sponding one was not seen in the vanishing of resistivity N this appendix we present how to solve the eigenvalue

(i.e., a SC ordering problem ofF(2 or equivalently ofD. Using the identity 1d
Finally, let us point out that the present theory easily ex-=fodpe™ “?, after energy integration we get the differential

plains why, in fields parallel to the layers, the transition to anoperator of infinite order:

FFLO-like phase and the nearly discontinuous crossover at

H¢,, implying the MF-FOT, were measured not in organic N _ ? o —(2e+1n)p [0z
materials with larger anisotropy but in a heavy fermion ma- Dd(zs)_go 0 dpe Joj 2dsin -] p
terial with weaker anisotropy. At least at the MF level, the

case with a field parallel to the layers in more anisotropic xcog 2l p)[(|wp|?e™ "V P)s+cc], (AL

materials is subject to a stronger paramagnetic depairing and ) _ .
is the best candidate for observing the paramagnetic effectéN€reJo is the zeroth order Bessel function. Expanding the

such as the FFLO-like state and the MF-FOT. The organi(,exponential and averaging on the Fermi surface, we have

materials satisfy this requirement, and actually, the upwardly 5
increasingH .,(T) curve determined resistivielyunder high [_2( p )

m

fields parallel to the layers is an evideﬁ?:ehat the spin (w |2e*iV'HP>A:e*(%)ZE 27y “mom
depairing is microscopically important without being dis- p p H < (m!)2 +1-
turbing by an impurity effect. However, both the MF-FOT

and a transition to a FFLO-like state have not been seen in + (off diagonal termg, (A2)
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where . are given in Eq(18), and a circular Fermi surface sufficient to know the form o&!" \"7)“;+u0,k(ri). Using the
was assumed. As explained above E), we have only to above identity to obtain
focus on the diagonal terms. Noticing that the eigenvalue of

7T 7™ in the Nth Landau level igN!/(N—m)! and perform- I R Y
ina them summation, we finally obgain Ecgg). P el 2T — g ANty X1y g T, (B2)
APPENDIX B: EXPRESSIONS OF I, AND I ¢ and noticinge*’xg(x) =g(x+ a) for any nonsingular func-

tion g(x), we finally have
In this appendix, we derive the expressions péndl g in

terms of a convenient expression fef¥ Mug,(r,). If we

ipVve _ 2_3\2y _ 2,
denote the position on @vo-dimensional Fermi surface by PV Tug,(r,) =~ WA= W2y kg #1) T iky,
a complex numbes{=v,+iv, and define\ =p*/ 74, we (B3)
have
n N “ “ FRS _ 232y _ \\2_;
eipv_H:ei,@(m+ﬂ*w_):e,|k|2,4e(i,\fg)hﬁ+e(i,\5§)k*ﬁ_ elpvl‘[*uak(rl):e (LA (N =22 o= (U)K +kry—N) 2 —iky
(B1) (B4)

where we used the operator identieg " B=e" V2" BleRe®  \wjith the help of the above identities, the following results
valid when[A,B] is a constant. From this expression it is are easily derived:

dr, . « .
f S el(pavily =pav iz tpavlly +p4V'H4)U3,k1(H DUok, (M2 UG (Tia)Uok,(Fra)lr )
H ,

1
= 2 O, +kq Kyt Ky

1 2,002 2
Eﬁ5kl+k3,k2+k4e (il kad] (N }), (BS)
d’r,

S,

4
e—(r'f,m)(k§3+ k§4)e—(1/4)[_ zlm\2+(1/2)(>\’1‘32+>\§4)+(>\{ FNE) g+ hg) +2r i (kgah Ta— Kogh 24)]
-

i( = VI + = pyveI;
el(i:oddplv N ')ug,kl(ﬁl)uo,kz(Uz)Ug,ks(U3)Uo,k4(rLA)US,kS(Us)Uo,kG(UG)

rlyi—»rj_

1

2 2
- ~(r26) 3 K2
\/§5k1+k3+k5,k2+k4+k69 il

3 3 3 3 3 3 3
X e*(1/4)2i6:1|)‘i|2+(1/4)(i_§dd}‘r2+i:eveﬁ‘i2)*(1/12)(i -odd +izeverh)?— (216)((j ,j):odd\ﬁz+(i ,j):ever?‘isz(rHB)((i ,j):odd<ij7\i*j ~(i,j):everfijij)
1

V3

where (,j)={(1,3).(3,5),(5,1),(2,4).(4,6).(6.2)

—(r? 2
Ok, + Ky + kg Kyt gtk (rH/G)(Ej)k” le({Ni}), (B6)
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