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Calculation of k2„T… for s-wave type-II superconductors

Takafumi Kita
Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

~Received 2 September 2003; published 4 November 2003!

This paper presents revised calculations for the Maki parametersk1 andk2 and the pair potentialD(r ) of
s-wave type-II superconductors near the upper critical fieldHc2 with arbitrary impurity concentration. It is
found that Eilenberger’s well-known results onk2 @Phys. Rev.153, 584 ~1967!# are not correct quantitatively,
which are modified appropriately. Calculations are also performed for a two-dimensional system with an
isotropic Fermi surface. The results on clean systems differ substantially from those for the three-dimensional
system with a spherical Fermi surface. This fact indicates the necessity of considering detailed Fermi-surface
structures for a quantitative understanding of the parameters. The coefficient ofD(r )}(Hc22B)1/2, which is
basic to any theoretical evaluation of the thermodynamic and transport properties nearHc2, is obtained
accurately.
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I. INTRODUCTION

Following the preceding studies,1–11 Eilenberger12 per-
formed an extensive calculation of the parametersk1(T) and
k2(T) introduced by Maki2 to distinguish temperature de
pendences of the upper critical fieldHc2 and the initial slope
of the magnetization]M /]H, respectively. Based on th
s-wave pairing with a spherical Fermi surface and tak
both s- and p-wave impurity scatterings into account, h
clarified a basic feature thatk2>k1>kGL , wherekGL is the
Ginzburg-Landau parameter nearTc .13,14 He also found a
large dependence of the parameters on thep-wave scattering
strength. This study is undoubtedly one of the basic work
the field and has been referred to frequently in analyz
experimental results on the quantities. It will be shown, ho
ever, that his results onk2 are not correct quantitatively du
to a couple of inappropriate approximations adopted.

This fact also tells us that we are still far from a quan
tative description of type-II superconductors. The parame
k2 is such a basic quantity that it is relevant to all therm
dynamic and transport properties nearHc2. Indeed, changes
of those quantities throughHc2 are proportional to the spatia
averagê uD(r )u2& of the pair potentialD(r ), and ^uD(r )u2&
is directly connected withk2, as seen below. Thus, an a
sence of a reliable theory onk2 also implies no quantitative
theories for all the other quantities nearHc2. The exact lim-
iting behaviors would be useful not only for their own sak
but also for getting an insight into the behaviors over 0<B
<Hc2. In addition, they would serve as a guide for a
detailed numerical studies for 0<B<Hc2.

With these observations, I here perform revised calcu
tions for the Maki parameters and the pair potential n
Hc2. Besides correcting Eilenberger’s results onk2 for the
spherical Fermi surface, I also perform two-dimensional c
culations of the quantities for an isotropic~i.e., cylindrical or
circle! Fermi surface. Thereby clarified will be a rather lar
dependence ofk1(T) and k2(T) on detailed Fermi-surface
structures. Indeed, even the empirical inequalityk2>k1
>kGL will be shown violated in some cases for the tw
dimensions, even without the spin paramagnetism.11
0163-1829/2003/68~18!/184503~13!/$20.00 68 1845
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The starting point adopted for these purposes is the q
siclassical Eilenberger equations.15 As emphasized by
Eilenberger15 and also by Serene and Rainer,16 the quasiclas-
sical equations have an advantage over Gor’kov equatio17

that they are easier to solve due to the absence of an i
evant energy variable. They have a rigorous microsco
foundation and hence form a firm basis for any quantitat
description of superconducting/superfluid Fermi liquids16

Thus, it seems somewhat surprising that few calculations
k2 have been performed based on the Eilenber
equations.18

This paper is organized as follows. Section II provides
formulation for thes-wave pairing with an isotropic Ferm
surface ands-wave impurity scattering, deferringp-wave im-
purity scattering to Appendix B. The main results are giv
in Secs. II E and II F, and the differences from Eilenberge
calculation are explained in Sec. II H. Section III prese
numerical results. Section IV summarizes the paper, w
possible extensions to include realistic Fermi surfaces fr
first-principles calculations and/or anisotropic pairings. A
pendix A derives an analytic expression for the magneti
tion.

II. FORMULATION

A. Eilenberger equations

I consider thes-wave pairing with an isotropic Fermi sur
face ands-wave impurity scattering in an external magne
field Hiz. The vector potential in the bulk can be writte
as19–24

A~r !5Bxŷ1Ã~r !, ~1!

whereB is the average flux density produced jointly by th
external current outside the sample and the supercurren
side it, andÃ expresses the spatially varying part of th
magnetic field satisfying*“3Ã dr50. I adopt the units
where the energy, the length, and the magnetic field are m
sured by the zero-temperature energy gapD(0) atH50, the
coherence lengthj0[\vF /D(0) with vF the Fermi velocity,
andB0[f0/2pj0

2 with f0[hc/2e the flux quantum, respec
©2003 The American Physical Society03-1
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tively. I also put\5kB51 and use the gauge where“•Ã
50. The Eilenberger equations15 now read

F«n1
^g&
2t

1
v̂

2
•~“2 iA!G f 5S D1

^ f &
2t Dg, ~2a!

D~r !ln
Tc

T
522pT(

n50

` F ^ f ~«n ,kF ,r !&2
D~r !

«n
G , ~2b!

2¹2Ã~r !52
i

k0
2
2pT(

n50

`

^v̂ g~«n ,kF ,r !&. ~2c!

Here«n is the Matsubara frequency,t is the relaxation time
in the second-Born approximation,^•••& denotes the Fermi
surface average satisfying^1&51, D(r ) is the pair potential,
and the unit vectorv̂5 k̂ specifies a point on the isotropi
Fermi surface. The quasiclassical Green’s functionsf and g
are connected by g5(12 f f †)1/2 with f †(«n ,kF ,r )
[ f * («n ,2kF ,r ), and the dimensionless parameterk0 is de-
fined by

k0[f0/2pj0
2Hc~0!, ~3!

whereHc(0)[A4pN(0)D(0) is the thermodynamic critica
field atT50 with N(0) the density of states per spin and p
unit volume. Equations~2a!–~2c! are to be solved self
consistently for a fixedB. Finally, the missing connection
between H and B is obtained by applying the Doria
Gubernatis-Rainer scaling25 to Eilenberger’s free-energ
functional.15 The details are given in Appendix A. The fina
result is given by

H5B1
1

BVE dr ~“3Ã!2

1
pT

2BVk0
2 (

n50

` E dr K f †v̂•~“2 iA! f 2 f v̂•~“1 iA! f †

11g L ,

~4!

whereV is the volume of the system.

B. Expansion nearH c2

NearHc2, the coupled equations~2! and~4! are expanded
in terms ofD(r ) as follows. First, let us rewrite24

v̂

2
•~“2 iA!5

ABsinu

2A2
@e2 iw~a1Ã!2eiw~a†1Ã* !#,

~5!

where (u,w) are the polar angles ofv̂, and the quantitiesa,
a†, andÃ are defined by

a[
1

A2B
S ]

]x
1 i

]

]y
1BxD ,
18450
r

a†[
1

A2B
S 2

]

]x
1 i

]

]y
1BxD , ~6a!

Ã[2 i
Ãx1 iÃy

A2B
, ~6b!

with @a,a†#51. The operators (a,a†) are the same as
(a2 ,a1) introduced by Helfand and Werthamer,5 and
(F2 ,F1) by Eilenberger.12

I then expandf, g, andÃ up to the third order inD(r ) as

f 5 f (1)1 f (3),

g512
1

2
f (1)†f (1),

Ã5Ã(2). ~7!

Substituting Eqs.~5! and ~7! into Eq. ~2a! and collecting
terms of the same orders, we obtain

@ «̃n1b~e2 iwa2eiwa†!# f (1)5D1
^ f (1)&

2t
, ~8a!

@ «̃n1b~e2 iwa2eiwa†!# f (3)

5
^ f (3)&

2t
2

f (1)†f (1)

2 S D1
^ f (1)&

2t D
1

^ f (1)†f (1)&
4t

f (1)

2b~e2 iwÃ(2)2eiwÃ(2)* ! f (1), ~8b!

with

«̃n[«n1
1

2t
, b[

ABsinu

2A2
. ~9!

Also, Eq. ~2b! is transformed into

D~r !ln
Tc

T
522pT(

n50

` F ^ f (1)&1^ f (3)&2
D~r !

«n
G . ~10!

The Maxwell equation~2c! is given in the leading order by

2¹2Ã(2)5
pT

A2Bk0
2 (

n
^ f (1)†f (1)eiwsinu&, ~11!

whereas Eq.~4! becomes

H2B5
pT

2A2Bk0
2V
E dr(

n
^ f (1)†~e2 iwa2eiwa†! f (1)sinu&.

~12!

C. Two-dimensional calculations

To investigate the dependence of the Maki parameters
the Fermi-surface structure, calculations will also be p
formed for a two-dimensional system with an isotrop
Fermi surface placed in thexy plane perpendicular toB. The
analytic expressions for this case can be obtained from th
of the three dimensions by simply putting sinu→1 and omit-
ting the integrations overu.
3-2
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D. Transformation into algebraic equations

Equations~8! and ~10!–~12! are solved with the Landau
level expansion method24 by expandingD, f (n) (n51,3),
andÃ(2) in terms of periodic basis functions of the flux-lin
lattice as

D~r !5AV (
N50

`

DN cNq~r !, ~13a!

f (n)~«n ,kF ,r !5AV (
m52`

`

(
N50

`

f mN
(n) ~«n ,u!eimwcNq~r !,

~13b!

Ã(2)~r !5 (
KÞ0

ÃK
(2)eiK•r. ~13c!

Here N denotes the Landau level,q is an arbitrary chosen
magnetic Bloch vector characterizing the broken trans
tional symmetry of the flux-line lattice and specifying th
core locations, andK is a reciprocal-lattice vector of th
magnetic Brillouin zone. See Ref. 24 for the explicit expre
sions of the basis functionscNq(r ); they are essentially
equivalent to Eilenberger’scN(r ur0)12 and reduce forN50
to Abrikosov’s solution for the Ginzburg-Landau equatio
nearHc2.26 It only suffices to know the properties:

^cNqucN8q&5dNN8 , ~14a!

a cNq5ANcN21q , ~14b!

a†cNq5AN11cN11q . ~14c!

On the other hand, the expansion inK in Eq. ~13c! was
introduced by Brandt22 for solving the Ginzburg-Landau
equations over 0<B<Hc2. This expansion enables us to in
tegrate the Maxwell equation appropriately so that*“

3Ãdr50 is satisfied automatically.
Quite a simplification results in Eq.~13! nearHc2 for the

s-wave pairing with an isotropic Fermi surface. Indeed,D(r )
can be described excellently with only the lowest Land
level as24

D~r !5AVD0c0q~r !. ~15!

Equation ~15! has a wide range of applicability overB
*0.1Hc2 both nearTc and in the dirty limit. However, the
region in the clean limit shrinks asT→0 to disappear even
tually. It should also be noted that higher Landau levels
evenN become relevant for anisotropic pairings and/or a
isotropic Fermi surfaces at low temperatures.

Substituting Eqs.~13b!, ~13c!, and ~15! into Eq. ~8! and
using the orthogonality ofeimw andcNq , we realize thatf mN

(n)

can be written as

f mN
(n) 5dmND0

n f̃ N
(n) . ~16!

Equations~8! and ~10!–~12! are thereby transformed int
algebraic equations forf̃ (1), f̃ (3), D0 , ÃK

(2) , andH2B as
18450
-

-

u

f
-

(
N8

M̃NN8 f̃ N8
(1)

5dN0S 11
^ f̃ 0

(1)&
2t

D , ~17a!

(
N8

M̃NN8 f̃ N8
(3)

5dN0

^ f̃ 0
(3)&

2t
1JN

(3)1JN
(A) , ~17b!

ln
Tc

T
522pT(

n50

` S ^ f̃ 0
(1)&1^ f̃ 0

(3)&D0
22

1

«n
D , ~17c!

ÃK
(2)52

2pTD0
2

k0
2K2 (

n50

`

(
N

JN
(2)~«n!I N11N~K !

AN11
, ~17d!

H2B5
2pTD0

2

k0
2 (

n50

`

(
N

JN
(2)~«n!. ~17e!

Here the matrixM̃ is defined by

M̃NN8[dNN8«̃n1dN,N821bAN112dN,N811bAN,
~18!

andJN’s are given by

JN
(2)[

~21!N

B
AN11 ^ f̃ N11

(1) f̃ N
(1)b&, ~19a!

JN
(3)[2

1

2 (
N8

~21!N8I NN8N1N80
(4) f̃ N8

(1) f̃ N1N8
(1) S 11

^ f̃ 0
(1)&

2t
D

1
1

4t (
N8

~21!N8I NN8N8N
(4) ^ f̃ N8

(1) f̃ N8
(1)& f̃ N

(1) , ~19b!

JN
(A)[2

b

D0
2 (

KÞ0
@ I N11N* ~K !Ãk

(2) f̃ N11
(1)

2I NN21~K !Ãk
(2)* f̃ N21

(1) #, ~19c!

with24

I N1N2N3N4

(4) [VE cN1q* cN2q* cN3qcN4qdr , ~20a!

I N1N2
~K ![E cN1q* cN2qe

2 iK•rdr . ~20b!

Equation~17a! tells us thatf̃ N
(1) is real; this fact has been

used in writing down Eqs.~17b!–~17e!. As for f̃ N
(3) , numeri-

cal calculations show thatI (4)’s appearing in Eq.~19b! are all
real for the relevant hexagonal lattice, with

bA[I 0000
(4) 51.16. ~21!

Also, I N11N(K ) can be transformed with partial integration
as
3-3
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2I N11N~K !5
1

AN11
E ~a†cNq!* cNqe

2 iK•rdr

5
AN

AN11
I NN21~K !1

Ky2 iK x

A2B~N11!
I NN~K !

5
Ky2 iK x

A2B~N11!
(

N150

N

I N1N1
~K !. ~22!

SinceI NN(K ) is real,J(A) is also real from Eq.~17d!, and so
is f̃ N

(3) .
It is desirable for a later purpose to expressJ(A) in terms

of I (4) rather thanI N11N(K ). This can be performed by firs
substituting Eq.~17d! into Eq.~19c!, and then using Eq.~22!

and the identity(KÞ0e
iK•(r2r8)5Vd(r2r 8)21. The result

is given by

JN
(A)5

pTb

Bk0
2 (

n850

`

(
N8

JN8
(2)

@AN11 f̃ N11
(1) ~INN821!

2AN f̃N21
(1) ~IN21N821!#, ~23!

where f̃ N61
(1) [ f̃ N61

(1) («n), JN8
(2)[JN8

(2)(«n8) is given by Eq.
~19a!, andINN8 is an average ofI (4) defined by

INN8[
1

~N11!~N811!
(

N150

N

(
N1850

N8

I N1N
18N

18N1

(4)
. ~24!

E. Solutions

We are now ready to solve Eqs.~17a! and ~17b!. To this
end, let us define

K̃N
N8[~M̃21!NN85~21!N1N8K̃N8

N , ~25!

where the second equality originates fromM̃NN8
5(21)N1N8M̃N8N . Then Eq.~17a! is transformed into

f̃ N
(1)5K̃N

0 S 11
^ f̃ 0

(1)&
2t

D . ~26!

Solving Eq.~26! self-consistently for̂ f̃ 0
(1)& and substituting

the result into Eq.~26!, we obtain

f̃ N
(1)5

K̃N
0

12^K̃0
0&/2t

. ~27!

The denominator in Eq.~27! corresponds to the so-calle
‘‘vertex correction.’’ Equation~17b! for f̃ N

(3) may be handled

similarly. Using the symmetryK̃0
N5(21)NK̃N

0 , we thereby

arrive at the expression for the relevant quantity^ f̃ 0
(3)& in Eq.

~17c! as

^ f̃ 0
(3)&5(

N
~21!N^ f̃ N

(1)~JN
(3)1JN

(A)!&. ~28!
18450
The quantity(N(21)N^ f̃ N
(1)JN

(A)& in Eq. ~28! may be trans-
formed further by using Eqs.~23! and ~19a! as

(
N

~21!N^ f̃ N
(1)~«n!JN

(A)~«n!&

5
1

k0
2 (

N
JN

(2)~«n!2pT (
n850

`

(
N8

JN8
(2)

~«n8!~INN821!.

~29!

We next consider the self-consistency equation~17c! for
the pair potential. Here,f̃ N

(1)(B) is expanded in terms of the
distanceHc22B from Hc2 as

f̃ N
(1)~B!5 f̃ N

(1)~Hc2!2 f̃ N
(1)8~Hc2!~Hc22H1H2B!,

~30!

whereas the higher-order termf̃ N
(3) is evaluated atHc2. To

find an explicit expression forf̃ N
(1)8 in Eq. ~30!, let us differ-

entiate Eq.~17a! with respect toB:

(
N8

M̃NN8 f̃ N8
(1)85dN0

^ f̃ 0
(1)8&
2t

2
b

2B
~AN11 f̃ N11

(1) 2AN f̃N21
(1) !.

~31!

This equation can be solved in the same way as Eq.~17a! to
yield

^ f̃ 0
(1)8&52(

N
JN

(2) , ~32!

where JN
(2) is defined by Eq.~19a!. Let us substitute Eqs

~28!–~30! and~32! into Eq.~17c!, replaceH2B by the right-
hand side of Eq.~17e!, and regardHc22H as second order
Collecting first-order terms, we obtain the equation to fix t
second-order transition pointH5Hc2 as

ln
Tc

T
522pT(

n50

` F ^ f̃ 0
(1)~«n!&2

1

«n
G . ~33!

The third-order terms determine the pair potentialD0 and the
magnetizationH2B as a function ofHc22H as

D0
25

Hc22H

k0
2S4 /S2

22SA /S2
2

k0
2

S2
, ~34a!

H2B5
Hc22H

k0
2S4 /S2

22SA /S2
2
[

Hc22H

~2k2
221!bA

, ~34b!

whereS2 , S4, andSA are defined by

S2[2pT(
n50

`

(
N50

`

JN
(2)~«n!, ~35a!

S4[22pT(
n50

`

(
N50

`

~21!N^ f̃ N
(1)~«n!JN

(3)~«n!&, ~35b!
3-4
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SA[~2pT!2(
n50

`

(
n850

`

(
N50

`

(
N850

`

JN
(2)~«n!JN8

(2)
~«n8!INN8 ,

~35c!

with f̃ N
(1) , JN , andINN8 given by Eqs.~27!, ~19!, and~24!,

respectively. All the quantities in Eq.~35! are to be evaluated
at Hc2. The latter equality in Eq.~34b! defines the Maki
parameterk2 with bA[I 0000

(4) 51.16.
Equation~34! forms the main result of the paper, which

not only exact but also convenient for numerical calcu
tions. An extension to includep-wave impurity scattering is
carried out in Appendix B, where it is shown that Eq.~34! is
still valid with the replacements off̃ N

(1) andJN
(3) by Eqs.~B8!

and ~B9!, respectively.
Sometimes it is physically more meaningful to expressD0

as a function ofB instead ofH, becauseB is the real average
field inside the bulk directly relevant to the spatial profile
the pair potential. It is obtained, without the replacement
H2B mentioned above Eq.~33!, as

D0
25

Hc22B

k0
2S4 /S2

22SA /S2
211

k0
2

S2
. ~36!

F. Calculation of K̃N
N8

The key quantity in Eq.~34! is K̃N
N8 defined by Eq.~25!,

as may be seen from Eqs.~27!, ~19!, and ~35!. An efficient
algorithm to calculate them is obtained as follows.

Let us defineDN (D̄N) for N50,1,2, . . . as thedetermi-
nant of the submatrix obtained by removing~retaining! the
first N rows and columns of the tridiagonal matrixM̃ of Eq.
~18!, namely,

DN[detF «̃n AN11 b 0 •••

2AN11b «̃n AN12b •••

0 2AN12b «̃n •••

••• ••• ••• •••

G ,

~37a!

D̄N[det3
«̃n A1 b ••• ••• •••

2A1 b «̃n ••• ••• •••

••• ••• ••• ••• •••

••• ••• ••• «̃n AN21 b

••• ••• ••• 2AN21 b «̃n

4 .

~37b!

They satisfy

DN215 «̃nDN1Nb2DN11 , ~38a!

D̄N115 «̃nD̄N1Nb2D̄N21 , ~38b!
18450
-

f

as shown by expanding Eqs.~37a! and~37b! with respect to

the first and the last row, respectively.27 Then K̃N
N8 for N8

<N is obtained by also using standard techniques to so
linear equations27 as

KN
N85bN2N8AN!

N8!

DN11D̄N8
D0

. ~39!

This algorithm can be put into a more convenient form
terms of

RN[«̃nDN11 /DN , ~40a!

R̄N[«̃nD̄N21 /D̄N . ~40b!

They satisfy

RN215
1

11Nb2RN

, ~41a!

R̄N115
1

11Nb2R̄N

, ~41b!

with R̄151 and

b[b/ «̃n . ~42!

Then K̃N
N and K̃N

N8 for N8,N are obtained by

K̃0
05R0 / «̃n , ~43a!

K̃N
N5~RN /R̄N!K̃N21

N21 , ~43b!

K̃N
N85ANbR NK̃N21

N8 . ~43c!

Numerical calculations ofRN may be carried out by starting
from RNcut

51 for an appropriately chosen largeNcut and
using Eq.~41a! to decreaseN. One can check the conve
gence by increasingNcut. It turns out thatNcut51 is suffi-
cient both nearTc and in the dirty limit, thereby reproducing
the analytic results by Gor’kov17 and Caroli, Cyrot, and de
Gennes,10 respectively. In contrast,Ncut*1000 is required in
the clean limit at low temperatures.

Noting that Eq.~33! with Eq. ~27! should be equivalent to
the equation forHc2 obtained by Helfand and Werthamer5

we get an alternative expression forK̃0
0 as

K̃0
0~ «̃n ,b!5A2

pE0

` «̃n

«̃n
21x2b2

e2x2/2 dx. ~44!

The equivalence between Eqs.~43a! and ~44! can also be
checked numerically.

G. Expression ofkGL

Near Tc whereb! «̃n holds, we may chooseNcut51 in
Eqs. ~41!–~43! and expand the resulting expressions w
respect to b/ «̃n . This yields K̃0

0'1/«̃n2b2/ «̃n
3 and K̃1

0

3-5



er

ng

d

l-

in

e

ed

-

al
B,

far

ag-
ing

or

-

, his
n

ima-

of

al-
et
at-

of
he

sing

r

TAKAFUMI KITA PHYSICAL REVIEW B 68, 184503 ~2003!
'b/«̃n
2 , so that Eq.~27! can be approximated byf̃ 0

(1)'1/«n

2(b2«n1^b2&/2t)/«n
2«̃n

2 and f̃ 1
(1)'b/«n«̃n . Using these re-

sults in Eq.~35! and retaining only terms of the leading ord
in b, we obtain

S25
1

2d~pTc!
2 (

n50

`
1

~2n11!2~2n1111/2ptTc!
,

~45a!

S45
7z~3!

8~pTc!
2
bA , ~45b!

SA5S2
2bA , ~45c!

where d52,3 is the dimension of the system. Substituti
Eq. ~45! into Eq. ~34b!, we find the expression ofkGL
[k2(Tc) as

kGL5
d pTcA7z~3!/2

(
n

@~2n11!2~2n1111/2ptTc!#
21

k0 . ~46!

This expression enables us to eliminatek0 in favor of kGL .
The case withp-wave impurity scattering may be treate

similarly by using Eqs.~B8! and ~B9! for f̃ N
(1) and JN

(3) ,
respectively. The resultingkGL is given by Eq.~46! with a
replacement oft by the transport lifetimet tr defined through

1

t tr
[

1

t
2

1

t1
, ~47!

in agreement with Eilenberger.12

H. Eilenberger’s results

I now clarify the connection with Eilenberger’s wel
known results.12 They are obtained by extracting from
I N1N2N3N4

(4) of Eq. ~20a! a part which may be expressed

terms ofbA51.16 of Eq.~21!.
To see this, let us start from an alternative expression

I N1N2N3N4

(4) for N11N25N31N4:

I N1N2N3N4

(4) 5(
Na

V

2 (
a51

2

ucNa0a~0!u2^N1N2uN11N22NaNa&

3^N3N4uN11N22NaNa&. ~48!

HerecNa0a(0) and^N1N2uN3N4& are the quasiparticle wav
function and the overlap integral defined by Eqs.~3.12! and
~3.23! of Ref. 28, respectively. This identity can be prov
by using Eqs.~3.22! and ~3.24! of Ref. 28 and noting
cNq

(c)(r )5cNq
(r) (2r ) which both denote the presentcNq(r ). If

we retain only terms ofNa50 in Eq. ~48! and use
(V/2)(a51

2 uc00a(0)u25bA , we obtain an approximate ex
pression for Eq.~48! as
18450
of

I N1N2N3N4

(4) 'bA^N1N2uN11N20&^N3N4uN11N20&

5
~N11N2!!

2N11N2AN1!N2!N3!N4!
bA

[I N1N2N3N4

(4E) . ~49!

Now Eilenberger’s approximation fork2 is given by Eqs.
~2.7!, ~2.8!, and~6.5! of his paper12 and corresponds to

k2'~k0
2S4

(E)/2S2
2bA!1/2[k2

(E) , ~50!

in Eq. ~34b!, whereS4
(E) is obtained from Eq.~35b! by re-

placingI (4) by I (4E). Indeed, this procedure yields numeric
agreements with his results. As seen below in Sec. III
however, this approximation is not correct quantitatively
beyond his estimation;1%.

It should also be noted that Eilenberger’s definition ofk2
by Eq. ~50! is different from Maki’s through Eq.~34b! with
respect to

h[SA /S2
2bA . ~51!

I resume Maki’s definition through Eq.~34b! wherek2 has a
one-to-one correspondence with the initial slope of the m
netization. This is certainly more preferable than express
the slope with two parametersk2

(E) andh.
I finally comment on Eilenberger’s analytic expression f

h. In addition to approximation~49!, it was obtained by
integrating the Maxwell equation with a removal of a com
mon operator; see the argument above Eq.~6.4!.12 However,
this procedure may bring an erroneous constant. Indeed
B0(r ) of Eq. ~6.4! does not satisfy the required conditio
*B0(r )dr50. Thus, his expression forh is incorrect in the
two respects and cannot be obtained by adopting approx
tion ~49! in Eq. ~51!.

III. NUMERICAL RESULTS

A. Numerical procedures

I have adopted the same parameters as those
Eilenberger:12

jE/ l tr[1/2pTct tr , l tr / l[t tr /t, ~52!

to express different impurity concentrations. Numerical c
culations of Eqs.~33!–~35! have been performed for each s
of parameters by restricting every summation over the M
subara frequencies for those satisfying«n<«c . Choosing
«c550–100 has been sufficient to obtain an accuracy
;0.01% for k2. On the other hand, summations over t
Landau levels have been truncated atN5Ncut where I put

RNcut
51 in the calculation ofKN

N8 ; see Sec. II F for the
details. Enough convergence has been obtained by choo
Ncut54, 40, 100, 200, 500, and 2000 forjE/ l tr550, 1.0,
0.5, 0.1, and 0.05, respectively. Finally, integrations oveu
have been performed by Simpson’s formula withNcut11
integration points for 0<u<p/2.
3-6
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B. Results for k2

Figure 1 showsk2 /kGL as a function ofT/Tc for different
impurity concentrations. The upper one is forl tr / l 51.0, i.e.,
the case withoutp-wave impurity scattering, whereas th
lower one is forl tr / l 52.0. They are calculated in an extrem
type-II case ofkGL550, so that they directly correspond
Eilenberger’s results forl tr / l 51 and 2, respectively.12 These
curves show qualitatively the same behaviors as those
Eilenberger’s, including the divergence in the clean limit f
T→0, as predicted by Maki and Tsuzuki.8 Except the curves
in the dirty limit, however, marked quantitative differenc
are seen. For example,k2(T50)/kGL for (jE/ l tr ,l tr / l )
5(1.0,1.0) is 1.40 from the present calculation, whereas
1.50 from Eilenberger’s. Thus, we realize that Eilenberge
approximation~50! yields quantitative errors of&20% for
the deviationk2 /kGL21. Comparing the two figures, w
observe the following:~i! The results in the dirty limit are the
same betweenl tr / l 51 and 2; ~ii ! p-wave scattering has
general tendency to lower the values ofk2, and also pro-
duces a nonmonotonic behavior ink2 /kGL as a function of
jE/ l tr .

Figure 2 displaysh defined by Eq.~51! as a function of
T/Tc for jE/ l tr50.05-50.0 andl tr / l 51.0. This quantity be-
comes relevant for small values ofkGL at low temperatures
as may be realized by Eq.~34b!. The curves also deviat
substantially from Eilenberger’s results. For example,h for
jE/ l tr50.25 at T50 is 1.34 from the present calculatio
whereas it is;1.11 from Eilenberger’s. Generally, the va

FIG. 1. Temperature dependence ofk2 /kGL for several values
of jE / l tr in the extreme type-II casekGL550. ~a! l tr / l 51.0; ~b!
l tr / l 52.0.
18450
of
r

is
’s

ues are larger than those of Eilenberger’s. This fact imp
that k2(T) for kGL;1 becomes smaller than the evaluati
of Eilenberger.

To see the dependence ofk2 /kGL on kGL explicitly, I
have performed a calculation ofk2 near the type-I–type-II
boundary ofkGL51.0. Figure 3 plots the results forjE/ l tr
50.0–50.0 andl tr / l 51. Compared with Fig. 1~a!, we ob-
serve that each curve is slightly shifted downward. Howev
the changes are surprisingly small, considering the close
to the type-I–type-II boundary. We thus realize that the fa
tor SA /S2

25hbA in Eq. ~34b! can be neglected practically fo
kGL*5, as already observed by Eilenberger.12

The above calculations are performed for an idealiz
spherical Fermi surface. However, real superconductors
often characterized by complicated Fermi surfaces. To
the dependence ofk2 /kGL on Fermi-surface structures,
have performed an isotropic two-dimensional calculation
scribed in Sec. II C. Figure 4 shows the results, where
parameters are the same as those in Fig. 1. The curve
jE/ l tr550 are almost the same as those in Fig. 1. Thus
the dirty limit, we have a universal curve which depen
neither on detailed Fermi-surface structures nor fine featu
of the impurity scattering. As the system becomes clea
however, differences due to the two factors emerge eve
ally. In fact, we observe that each curve forjE/ l tr&1.0 in
Fig. 4 deviates far less from 1 than the corresponding on
Fig. 1, and the temperature dependence is also weaker.

FIG. 2. Temperature dependence ofh defined by Eq.~51! for
several values ofjE / l tr with l tr / l 51.0.

FIG. 3. Temperature dependence ofk2 /kGL for kGL51 with
l tr / l 51.0.
3-7
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other point to be mentioned is that, even forjE/ l tr50.05, we
see no trace of divergence asT→0. Indeed, a closer exam
nation of the analytic results by Maki and Tsuzuki8 and
Eilenberger12 enables us to realize that it is the regionu;0
in three dimensions which is responsible for the diverge
of k2. Thus, we may conclude thatk2 in two dimensions
remains finite even in the clean limit asT→0. In general,k2
will remain finite if the relevant Fermi surface does not clo
along the direction of the magnetic field.

C. Results for k1

The Maki parameterk1 is defined by2

k1[Hc2 /A2Hc , ~53!

whereHc5Hc(T) is the thermodynamic critical field. Th
preceding results fork2 suggest thatk1(T)/kGL may also
exhibit considerable dependence on detailed Fermi-sur
structures.

Figure 5 comparesk1(T)/kGL between two and three di
mensions forl tr / l 51.0. The curves forjE/ l tr550 show al-
most the same behavior. AsjE/ l tr becomes smaller, howeve
the two cases display a marked difference. Inde
k1(T)/kGL is seen to increase~decrease! in three ~two! di-
mensions asjE/ l tr→0.

Figure 6 shows curves ofk1(T)/kGL in two and three
dimensions forl tr / l 52.0. Again thep-wave impurity scat-
tering is seen to lower the value ofk1 /kGL , and also intro-

FIG. 4. Temperature dependence ofk2 /kGL for an isotropic
two-dimensional system in the extreme type-II casekGL550. ~a!
l tr / l 51.0; ~b! l tr / l 52.0.
18450
e

ce

,

duces nonmonotonicity ink1 /kGL as a function ofjE/ l tr .
Especially in two dimensions forjE/ l tr50.1–1.0, k1 /kGL
becomes smaller than 1 over finite temperature ranges,
the empirical inequalityk2>k1>kGL is not satisfied here
even without spin paramagnetism.11

A substantial dependence ofHc2 on Fermi-surface struc
tures may be realized more clearly by looking at the tempe
ture dependence of the reduced critical field introduced
Helfand and Werthamer:5

h* ~ t ![
Hc2~ t !

2dHc2~ t !/dtu t51
, ~54!

wheret[T/Tc . Figure 7 comparesh* (t) between two and
three dimensions for both the clean and dirty limits. T
curves coincide in the dirty limit, whereas those in the cle
limit show a marked quantitative difference. We also obse
thath* (t) in two dimensions is a rather sensitive function
purity. A considerable reduction ofhd52* (t) in the pure limit
from hd53* (t) may be attributed to the pair breaking by s
percurrent. This effect is more effective in two dimension
Indeed, a point on the cylindrical Fermi surface is equival
to a point on the equator of the spherical Fermi surface p
pendicular toH where the pair breaking is most effectiv
This fact can be seen clearly in the polar-angle depende
of the density of states calculated by Brandt, Pesch,
Tewordt.29 Put it another way, if the relevant Fermi surfac
does not have a closed orbit perpendicular toH, the corre-

FIG. 5. Temperature dependence ofk1 /kGL for several values
of jE / l tr with l tr / l 51.0. ~a! d53 ; ~b! d52.
3-8
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spondingh* (t) in the clean limit will be enhanced over th
prediction for the spherical Fermi surface.

A considerable reduction ofh* (t) or k1(t) in the pres-
ence of spin paramagnetism was established by Wertha
Helfand, and Hohenberg,6 and also by Maki.11 The present
results indicate unambiguously that the Fermi-surface st
ture is also an important factor forh* (t) in clean systems, a
already noticed by Helfand and Werthamer,5 Hohenberg and
Werthamer,30 and Werthamer and McMillan.31

D. Results for the pair potential

A quantity of fundamental importance is the coefficie
D0, which is equal to the spatial averageA^uD(r )u2& of the

FIG. 6. Temperature dependence ofk1 /kGL for several values
of jE / l tr with l tr / l 52.0. ~a! d53; ~b! d52.

FIG. 7. Temperature dependence of the reduced critical fi
h* (t) for the dirty limit of d52,3 ~mid curve! and the clean limit of
d52 ~lower curve! andd53 ~upper curve!.
18450
er,

c-

t

pair potential and relevant to all thermodynamic and tra
port properties nearHc2. It is physically more meaningful to
express it as a function of the real average fieldB in the bulk
instead ofH. Equation~36! shows thatD0(B) is proportional
to (Hc22B)1/2 nearHc2. I here express thisD0 by using the
energy gapD(T) at B50 as

D0~B,T!5c~T!~12B/Hc2!1/2D~T!. ~55!

Then the coefficientc(T) should be of the order of 1.
Figure 8 calculated for the spherical Fermi surface d

plays temperature dependence ofc(T) in an extreme type-II
case ofkGL550 for ~a! l tr / l 51.0 and~b! l tr / l 52.0. Thus
c(T);1, as expected, having the same value 0.929 atTc .
Differences among differentjE/ l tr grow at lower tempera-
tures, andc(T) for jE/ l tr&0.1 drops rapidly nearT50. In-
deed,c(T) in the clean limit for three dimensions is expect
to reach 0 asT→0, corresponding to the divergence ofk2.
This also implies that the expansion inD(r ) nearHc2 is no
longer valid in this limit.14 The curves in the dirty limit are
the same betweenl tr / l 51.0 andl tr / l 52.0. ForjE/ l tr&1.0,
however, each curve forl tr / l 52.0 at low temperatures ha
larger values than the corresponding one forl tr / l 51.0. Thus,
finite p-wave scattering in clean systems tends to incre
c(T).

The coefficientc(T) also increases mildly askGL be-
comes smaller, as realized by comparing Fig. 9 forkGL51
with Fig. 8~a! for kGL550.

ld

FIG. 8. The coefficientc(T)[(12B/Hc2)1/2D(T)/D0(B,T) in
the extreme type-II casekGL550 as a function ofT/Tc for several
values ofjE / l tr . ~a! l tr / l 51.0; ~b! l tr / l 52.0.
3-9
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Figure 10 plots results of the two-dimensional calcu
tions performed with the same parameters as those in Fi
The curves for the dirty limit are the same between two a
three dimensions. As the system becomes cleaner, how
the coefficientc(T) for two dimensions becomes larger tha
the corresponding one for three dimensions. Thus, for cl
systems, we observe once again a considerable depend
of the coefficientc(T) on Fermi-surface structures.

IV. SUMMARY

This paper has presented revised calculations of the M
parametersk1 andk2 as well as the spatial average^uD(r )u2&

FIG. 9. The coefficientc(T) for kGL51 as a function ofT/Tc

for several values ofjE / l tr with l tr / l 51.0.

FIG. 10. The coefficientc(T) in two dimensions withkGL

550 as a function ofT/Tc for several values ofjE / l tr . ~a! l tr / l
51.0; ~b! l tr / l 52.0.
18450
-
8.
d
er,
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nearHc2. Eilenberger’s results fork2 have been corrected
appropriately, as described in Sec. II H. The analytic expr
sions derived in Secs. II E and II F have been useful to ca
out efficient calculations for both two and three dimensio
with isotropic Fermi surfaces and arbitrary impurity conce
trations. Thereby found are large quantitative differences
the parameters between two and three dimensions~except in
the dirty limit where there are no differences between
two cases!. For example, no trace of divergence ink2(T
→0) is found for the clean limit in two dimensions.

The present results clearly indicate the necessity of c
sidering detailed Fermi-surface structures from fir
principles calculations for a quantitative understanding of
Maki parameters in clean superconductors. This was alre
recognized by Helfand and Werthamer,5 by Hohenberg and
Werthamer,30 and also by Werthamer and McMillan31 when
their strong-coupling calculation could not explain a lar
deviation of k1 /kGL observed in pure niobium32,33 and
vanadium34 from the theoretical prediction of Helfand an
Werthamer.5 Efforts have been made along this line to esta
lish a realistic calculation ofk1, or equivalently,Hc2.30,35–44

However, little progress seems to have been achieved
respect tok2.

The method developed here fork1 and k2 may be ex-
tended easily to include Fermi-surface structures and an
tropic pairings. Some of the necessary modifications are~i!
to use the general expansion~13a! with evenN for the pair
potential, rather than Eq.~15!; ~ii ! to use more convenien
basis functions thaneimw in Eq. ~13b! for describing thekF
dependence off («n ,kF ,r ), such as the Fermi-surface ha
monics of Allen.45–48 The corresponding matrixM̃ in Eqs.
~17a! and~17b! is no longer tridiagonal, but may be inverte
rather easily with present high-speed computers.
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APPENDIX A: DERIVATION OF EQ. „4…

To obtain Eq.~4!, let us start from Eilenberger’s free
energy functional15 per unit volume withB chosen as an
independent variable instead ofH. It is given in units of
N(0)D(0)2 as

F~B!

V
5

1

VE dr H k0
2

2
@B21~“3Ã!2#1uD~r !u2ln

T

Tc

12pT(
n50

` F uD~r !u2

«n
2^I ~«n ,kF ,r !&G J , ~A1!

whereI is defined by
3-10
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I[D* f 1D f †12«n~g21!1
f ^ f †&1^ f & f †

4t
1

g^g&21

2t

1~g21!v̂•
f †~“2 iA! f 2 f ~“1 iA! f †

2 f f †
. ~A2!

The functional derivatives of Eq.~A1! with respect tof †, D,
andA lead to Eqs.~2a!–~2c!, respectively. The last term in
Eq. ~A2! is slightly different from the original functional o
Eilenberger wheregv̂ appears in place of (g21)v̂.15 Al-
though it does not change Eq.~2! at all, it is found numeri-
cally that the modification is necessary forF to have its
absolute minimum with respect toD, A, and f 5 f (D,A)
satisfying Eq.~2a!, as anticipated by Eilenberger.15 It should
be noted that Pesch and Kramer49 also adopted Eq.~A1! as a
basis for their numerical calculations. More recently, End
and Rainer50 performed a numerical calculation of the fre
energy for both an SN contact and a single vortex based
Eq. ~A1!, and compared the results with those from thr
free-energy functionals obtained from the Luttinger-Wa
functional. They found numerical agreements among the
ues from four different expressions.

Following Doria, Gubernatis, and Rainer,25 I now rewrite
the right-hand side of Eq.~A1! in terms of

r 8[r /l, Bl[l2B, Ãl~r 8![lÃ~lr 8!,

Dl~r 8![D~lr 8!, f l~«n ,kF ,r 8![ f ~«n ,kF ,lr 8!.
~A3!

I then differentiate the resulting expression with respect tl
and putl51. Since procedure~A3! does not change th
value of F/V, we have (]/]l)(F/V)ul5150 from the left-
hand side. As for the right-hand side, the only implicit d
pendence to be considered is the one fromBl ; those from
f l , Dl , and Ãl can be neglected due to the stationarity
Eq. ~2!. We thereby obtain

05
]~F/V!

]Bl

]Bl

]l U
l51

22k0
2B22

2k0
2

V E dr ~“3Ã!2

2
pT

V (
n50

` E dr K f †v̂•~“2 iA! f 2 f v̂•~“1 iA! f †

11g L .

~A4!
18450
s

n
e

l-

-

f

Using the thermodynamic relation](F/V)/]Blul515k0
2H

in the present units, we arrive at Eq.~4!.

APPENDIX B: EXTENSION TO THE CASE
WITH p-WAVE IMPURITY SCATTERING

In the presence ofp-wave impurity scattering, Eq.~2a! is
replaced by

F«n1
^g&
2t

1
dk̂•^k̂8g&

2t1
1

v̂

2
•~“2 iA!G f

5S D1
^ f &
2t

1
d k̂•^k̂8 f &

2t1
D g, ~B1!

where^ k̂8g&[^k̂8g(«n ,kF8 ,r )&, for example, andd52,3 is
the dimension of the system. This brings additional terms
the right-hand side of Eqs.~17a! and ~17b! as

(
N8

M̃NN8 f̃ N8
(1)

5dN0S 11
^ f̃ 0

(1)&
2t

1
dcosu ^ f̃ 0

(1)cosu8&
2t1

D
1dN1

dsinu ^ f̃ 1
(1)sinu8&

4t1
~B2!

(
N8

M̃NN8 f̃ N8
(3)

5dN0S ^ f̃ 0
(3)&

2t
1

dcosu^ f̃ 0
(3)cosu8&

2t1
D

1dN1

dsinu^ f̃ 1
(3)sinu8&

4t1
1JN

(3)1JN
(A) ,

~B3!

whereJN
(A) is given by Eq.~19c!, andJN

(3) is defined instead
of Eq. ~19b! by
JN
(3)[2

1

2 (
N8

~21!N8I NN8N1N80
(4) f̃ N8

(1) f̃ N1N8
(1) S 11

^ f̃ 0
(1)&

2t
1

dcosu^ f̃ 0
(1)cosu8&

2t1
D

1
1

4 (
N8

~21!N8I NN8N8N
(4) S ^ f̃ N8

(1) f̃ N8
(1)&

t
1

dcosu^ f̃ N8
(1) f̃ N8

(1)cosu8&

t1
D f̃ N

(1)

1
dsinu

8t1
(
N8

~21!N8@2I NN8N1N8211
(4) f̃ N8

(1) f̃ N1N821
(1) ^ f̃ 1

(1)sinu8&

1I NN8N821N11
(4) ^ f̃ N8

(1) f̃ N821
(1) sinu8& f̃ N11

(1) 1I NN8N811N21
(4) ^ f̃ N8

(1) f̃ N811
(1) sinu8& f̃ N21

(1) #. ~B4!
3-11
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Equation~B2! can be solved in the same way as Eq.~26! to yield

f̃ N
(1)5K̃N

0 S 11
^ f̃ 0

(1)&
2t

1
dcosu ^ f̃ 0

(1)cosu8&
2t1

D 1K̃N
1

dsinu^ f̃ 1
(1)sinu8&

4t1
. ~B5!

From Eq.~B5!, we obtain self-consistent equations for^ f̃ 0
(1)&, ^ f̃ 0

(1)cosu&, and^ f̃ 1
(1)sinu& as

KF ^ f̃ 0
(1)&

^ f̃ 0
(1)cosu&

^ f̃ 1
(1)sinu&

G5F ^K̃0
0&

^K̃0
0cosu&

^K̃1
0sinu&

G , ~B6!

where the matrixK is defined by

K[3
12

^K̃0
0&

2t
2

d^K̃0
0cosu&
2t1

d^K̃1
0sinu&
4t1

2
^K̃0

0cosu&
2t

12
d^K̃0

0cos2u&
2t1

d^K̃1
0sin2u&
8t1

2
^K̃1

0sinu&
2t

2
d^K̃1

0sin2u&
4t1

12
d^K̃1

1sin2u&
4t1

4 . ~B7!

Noting KN8
N

5KN8
N ( «̃n ,b) as seen from Eqs.~41!–~43! with b defined in Eq.~9!, we immediately realize that^K̃0

0cosu&50 in

Eq. ~B6! andK2 j5Kj 250 for j 51,3 in Eq.~B7!. Thus, Eq.~B6! can be solved easily witĥf̃ 0
(1)cosu&50. Substituting the

resulting expressions of^ f̃ 0
(1)& and ^ f̃ 1

(1)sinu& into Eq. ~B5!, we obtain

f̃ N
(1)5

S 12
d

4t1
^K̃1

1sin2u8& D K̃N
0 1

d

4t1
^K̃1

0sinu8&K̃N
1 sinu

S 12
1

2t
^K̃0

0& D S 12
d

4t1
^K̃1

1sin2u8& D1
d

8tt1
^K̃1

0sinu8&2

. ~B8!

Equation~B4! is also simplified into

JN
(3)[2

1

2 (
N8

~21!N8I NN8N1N80
(4) f̃ N8

(1) f̃ N1N8
(1) S 11

^ f̃ 0
(1)&

2t
D 1

1

4t (
N8

~21!N8I NN8N8N
(4) ^ f̃ N8

(1) f̃ N8
(1)& f̃ N

(1)

1
dsinu

8t1
(
N8

~21!N8@2I NN8N1N8211
(4) f̃ N8

(1) f̃ N1N821
(1) ^ f̃ 1

(1)sinu8&1I NN8N821N11
(4) ^ f̃ N8

(1) f̃ N821
(1) sinu8& f̃ N11

(1)

1I NN8N811N21
(4) ^ f̃ N8

(1) f̃ N811
(1) sinu8& f̃ N21

(1) #. ~B9!

Equation~B3! can be treated similarly to obtain^ f̃ 0
(3)& which appears in Eq.~17c!. Then a straightforward calculation lead

to the same expression~28! for ^ f̃ 0
(3)& with f̃ N

(1) andJN
(3) replaced by Eqs.~B8! and~B9!, respectively. Another relevant quantit

in Eq. ~17c! is ^ f̃ 0
(1)8&, as seen from Eq.~30!. Differentiating Eq.~B2! with respect toB and solving the resulting equatio

self-consistently, we also obtain Eq.~32! for ^ f̃ 0
(1)8& with f̃ N

(1) in Eq. ~19a! replaced by Eqs.~B8!.

It hence follows that Eqs.~34! and~35! remain the same in the presence of thep-wave impurity scattering withf̃ N
(1) andJN

(3)

replaced by Eqs.~B8! and ~B9!, respectively.
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