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Calculation of k,(T) for sswave type-Il superconductors
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This paper presents revised calculations for the Maki parameteand «, and the pair potentiah (r) of
s-wave type-Il superconductors near the upper critical fléld with arbitrary impurity concentration. It is
found that Eilenberger’s well-known results @ [Phys. Rev153 584 (1967] are not correct quantitatively,
which are modified appropriately. Calculations are also performed for a two-dimensional system with an
isotropic Fermi surface. The results on clean systems differ substantially from those for the three-dimensional
system with a spherical Fermi surface. This fact indicates the necessity of considering detailed Fermi-surface
structures for a quantitative understanding of the parameters. The coeffici&it)of (H,— B)*/2, which is
basic to any theoretical evaluation of the thermodynamic and transport propertie$d geais obtained

accurately.
DOI: 10.1103/PhysRevB.68.184503 PACS nunifer74.25.0p, 74.25.Bt
[. INTRODUCTION The starting point adopted for these purposes is the qua-

siclassical Eilenberger equatiolts.As emphasized by
Following the preceding studiés* Eilenberget® per- E_ilenbergel(5 and also by Serene and Raifiethe quasiclas-
formed an extensive calculation of the parametardT) and ~ Sical equations have an advantage over Gor'kov equéfions
k5(T) introduced by Maki to distinguish temperature de- that they are easier to solve due to the absence of an irrel-
pendences of the upper critical fietth, and the initial slope  €vant energy variable. They have a rigorous microscopic
of the magnetizationdM/JH, respectively. Based on the foundation and hence form a firm basis for any quantitative
swave pairing with a spherical Fermi surface and takingdescrlptmn of superconducting/superfluid Fermi liquifis.
both s and p-wave impurity scatterings into account, he Thus, it seems somewhat surprising that few calculations on
clarified a basic feature that,=x,= kg, , Wherekg, is the <2 have been performed based on the Eilenberger

H 8
Ginzburg-Landau parameter ne@g.*'* He also found a equations.

. This paper is organized as follows. Section Il provides the
large dependence of the parameters orptheave scattering _formulation for thes-wave pairing with an isotropic Fermi

stren.gth. This study is undoubtedly one of the be.‘SiC work§ Surface and-wave impurity scattering, deferringwave im-
the field and has been referred to frequently in analyzing, iy, scattering to Appendix B. The main results are given
experimental results on the quantities. It will be shown, how-n, secs. 11 E and 1 F, and the differences from Eilenberger’s
ever, that his results ok, are not correct quantitatively due cgjculation are explained in Sec. Il H. Section Il presents
to a couple of inappropriate approximations adopted. numerical results. Section IV summarizes the paper, with
This fact also tells us that we are still far from a quanti- possible extensions to include realistic Fermi surfaces from
tative description of type-Il superconductors. The parametefirst-principles calculations and/or anisotropic pairings. Ap-
K, is such a basic quantity that it is relevant to all thermo-pendix A derives an analytic expression for the magnetiza-
dynamic and transport properties nédy,. Indeed, changes tion.
of those quantities througH ., are proportional to the spatial
average(|A(r)|?) of the pair potentiald(r), and{|A(r)|?) Il. FORMULATION
is directly connected withe,, as seen below. Thus, an ab-
sence of a reliable theory o, also implies no quantitative
theories for all the other quantities nddg,. The exact lim- | consider thesswave pairing with an isotropic Fermi sur-
iting behaviors would be useful not only for their own sake,face ands-wave impurity scattering in an external magnetic
but also for getting an insight into the behaviors ovet®  field H|z. The vector potential in the bulk can be written
<H,,. In addition, they would serve as a guide for anyas®2*
detailed numerical studies for<OB<H,,. o
With these observations, | here perform revised calcula- A(r)=Bxy+A(r), (1)

tions for the Maki parameters and the pair potential near . . -
H.,. Besides correcting Eilenberger's results enfor the whereB is the average flux density produced jointly by the

. ! . . xternal curren i h mple and th rcurrent in-
spherical Fermi surface, | also perform two-dimensional cal&Xternal current outs de the sample and the supercurrent

culations of the quantities for an isotroffice., cylindrical or ~ Side it, andA expresses the spatially varying part of the
circle) Fermi surface. Thereby clarified will be a rather largemagnetic field satisfyingf VXA dr=0. | adopt the units
dependence ok,(T) and «x,(T) on detailed Fermi-surface where the energy, the length, and the magnetic field are mea-
structures. Indeed, even the empirical inequality=«,  sured by the zero-temperature energy g4p) atH=0, the

= kg, Will be shown violated in some cases for the two coherence lengtlfo=7%vg/A(0) with v the Fermi velocity,
dimensions, even without the spin paramagnetism. andB,= ¢0/27T§§ with ¢o=hc/2e the flux quantum, respec-

A. Eilenberger equations
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tively. | also putfi=kz=1 and use the gauge whe¥ A
=0. The Eilenberger equatioRsnow read

Y f
sn+%+;'(v—iA)}f= A+%g, (2a)
A(r)ln%=—2ﬂ2 <f<sn,kF,r>>—A(”}, (2b)
n=0 €n

—V2A(r)=— #ZWTZO (Vg(en.ke,r)). (20
0 n=

Heree, is the Matsubara frequency,is the relaxation time
in the second-Born approximatioft,- - ) denotes the Fermi-
surface average satisfyiqd)=1, A(r) is the pair potential,
and the unit vectov=k specifies a point on the isotropic
Fermi surface. The quasiclassical Green’s functibasd g
are connected byg=(1—ffH¥2 with (e, ke,r)
=f*(en,—kg,r), and the dimensionless parametgris de-
fined by

K= o/2mEFH (0), 3

whereH.(0)=47N(0)A(0) is the thermodynamic critical
field atT=0 with N(0) the density of states per spin and per
unit volume. Equationg2a—(2c) are to be solved self-
consistently for a fixed. Finally, the missing connection
betweenH and B is obtained by applying the Doria-
Gubernatis-Rainer scalifty to Eilenberger's free-energy
functional®® The details are given in Appendix A. The final

result is given by
H=B+ — [ dr (Vx&)?
= '+E;? r( X )
T fV-(V—iA)f—fv- (V+iA)fT
N T 22 fdr< ( ) ( ) >’
2BVk§ n=0 1+g

(4)

whereV is the volume of the system.

B. Expansion nearH .,

NearH.,, the coupled equatior(®) and(4) are expanded
in terms ofA(r) as follows. First, let us rewrité

Bsing

22

[e "?(a+A)—e?(al+A*)],

Voo
z'(V‘—IA
(5

where (9, ¢) are the polar angles of, and the quantities,
a’, andA are defined by

1 (a )
—+i
X

V2B

(9+B
ay x|

a
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- ( (9+' {9+B (6a)
a'=—| - —+i—+Bx]|,
J2B\  ax ay
~  AHiA,
A=—i , 6b
55 (6b)

with [a,a’]=1. The operators g,a') are the same as
(a_,a,) introduced by Helfand and Werthanterand
(F_,F.) by Eilenberget?

| then expand, g, andA up to the third order il (r) as

f=fW+£0O),
1
=1— —f(WTs(1)
g=1 2f i
A=A®), (7

Substituting Egs(5) and (7) into Eg. (28 and collecting
terms of the same orders, we obtain

~ : . (1)
[en+B(e 'Pa—e'vah)[f=A+ 5o (8a)
[e,+B(e *a—e?ah)]f®
<f(3)> FOT§(D) <f(1)>
~2r 2 (A+ 2T>
<f(1)Tf(1)>
AR 16D
+ e f
_B(e—iWA(Z)_ei<P"A(2)*)f(1)’ (8h)
with
~ 1 \/gsina
=g+ —, = . 9
nEnt2r 22
Also, Eq.(2b) is transformed into
T ” A(r
A(r)ln?°=—2ﬂ-T2 <f<1>>+<f<3>>—L (10)
n=0 €n

The Maxwell equatior2c) is given in the leading order by

dl .
= ; (fOTfWei¢sing),
0

_V2A@) =

(13)
whereas Eq(4) becomes

dr>, (fDf(e"*a—e*a’)fWsing).
n

(12

B T f
2\2Bk3V

C. Two-dimensional calculations

To investigate the dependence of the Maki parameters on
the Fermi-surface structure, calculations will also be per-
formed for a two-dimensional system with an isotropic
Fermi surface placed in they plane perpendicular tB. The
analytic expressions for this case can be obtained from those
of the three dimensions by simply putting g1 and omit-
ting the integrations ove#.
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D. Transformation into algebraic equations <f(1)>
Equations(8) and (10)—(12) are solved with the Landau- E MNN'fN’ Ono| 1+ 27 ) (17a
level expansion methddl by expandingA, f(*) (v=1,3),
andA® in terms of periodic basis functions of the flux-line )>
lattice as > ]\“ANN}&S,): Sno——t + I+ I, (170
N!
A=AV 2 Ay dng(1), (133 1
B |n—=—2ﬂ2 ( f(1)>+<f(3)>A2——), (179
n
fO) k £ glme "
(en kM) = \/_m—zioc §=:0 m(&n6) el A2 = 2wTAG I (en) s an(K) (17d
(130 KTTTEke &R NtL
AB(r)= > APe . (139 _2nTAf
o H-B : 2 2 W) (179

Here N denotes the Landau level, is an arbitrary chosen
magnetic Bloch vector characterizing the broken transla;
tional symmetry of the flux-line lattice and specifying the
core locations, anK is a reciprocal-lattice vector of the ~
magnetic Brillouin zone. See Ref. 24 for the explicit expres- Mun=Snnrent O —1BVN+1- 5N’N’+1'8\/N’
sions of the basis functiongyg (r) they are essentially

equivalent to Ellenberger$N(r|r0) and reduce foN=0  4nqJ,'s are given by

to Abrikosov’s solution for the Ginzburg-Landau equations

nearH,.%® It only suffices to know the properties: (=N

JP=
(¥ngl ¥nrg) = S (144

Here the matrixM is defined by

(18

IN+1ERLTOB), (199

(1)
L 8)

a o= VNihy-1q, A N R I TGN 105,100
2N 27

IN NN/N+N’0 "N/ TN+ N/
aT¢Nq: YN+ 1N 1q- (149

On the other hand, the expansion knin Eq. (130 was s > (
introduced by Brandt for solving the Ginzburg-Landau N’
equations over &B=<H_,. This expansion enables us to in-
teg~rate the ngyvell equatlgn appropriately so thd¥ J&A)E_ﬁ 2 [|*+1N(K)A(k2rf§\llll
X Adr=0 is satisfied automatically.

Quite a simplification results in Eq13) nearH,, for the
swave pairing with an isotropic Fermi surface. Indeadr) —Iune 1 (K)AP*ED 7, (190
can be described excellently with only the lowest Landau
level ag* with®*

N’ (4)/N,N <f(l)‘(1)>f(1) (19b)

A(r)= \/VAOIJqu(r). (15 IE\I4)N N N4 f ‘/’qu‘/’qu‘r/’N3q‘r/’N4qdr (209

Equation (15) has a wide range of applicability oveB

=0.1H., both nearT; and in the dirty limit. However, the

region in the clean limit shrinks a6— 0 to disappear even- InoN (K)EJ o an qe—iK.rdr_ (20b)

tually. It should also be noted that higher Landau levels of v v

evenN become relevant for anisotropic pairings and/or an- ~

isotropic Fermi surfaces at low temperatures. Equation(173 tells us thaff{(” is real; this fact has been
Substituting Eqs(13b), (130), and(15) into Eq.(8) and  used in writing down Eqs17b—(176. As for f&), numeri-

using the orthogonality 6™ and i, we realize that(?y,  cal calculations show thaf*’s appearing in Eq(19b) are all

can be written as real for the relevant hexagonal lattice, with

Fok= SmnA 0T (16) Ba=1{~1.16. 21)

Equations(8) and (10—(12) are thereby transformed into Also, 1. ;y(K) can be transformed with partial integrations
algebraic equations fd, ¥®, Ay, A®, andH—-B as as
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1 —iK
2|N+1N(K):\/mJ’ (aTqu)*que rdr
JN Ky—iK,
= — ] (K -~
\/m NN 1( )+\/m NN( )
i N
L L I S NTS) 22

J2B(N+1) Ni=o

Sincel yn(K) is real,J™ is also real from Eq(17d), and so
is TS,

It is desirable for a later purpose to expré$® in terms
of 1®) rather than ., ;y(K). This can be performed by first
substituting Eq(17d) into Eq.(190), and then using Eq22)
and the identityS ., """ )=Vs(r—r’')—1. The result
is given by

TR
W5z > X IIIN+IT

Wa(Zaw —1)
Ko n’=0 N’
\/—~ 21(In-anv— D), (23
where T, =TL 1 (,), 30=30)(e,) is given by Eq.

(193, andZy, is an average of®) defined by

N N’
; (4) R
(N+1)(N'+1) Ni=o g2y NaNiNaM

Iy (24

E. Solutions

We are now ready to solve Eqgdl.7g and (17b). To this
end, let us define

KN =(M Yy =(—DNVKY, (25

where the second equality originates fromM
=(—1)V*N' My Then Eq.(17a is transformed into

<‘f‘5“>)
27 |’

(26)

Solving Eq.(26) self-consistently foKf$") and substituting
the result into Eq(26), we obtain

1— (K2

% 27)
The denominator in Eq(27) corresponds to the so-called
“vertex correction.” Equation17b) for Afiff) may be handled
similarly. Using the symmetrK}=(—1)NK?,, we thereby
arrive at the expression for the relevant quan(fty’) in Eq.
(179 as

=3 COMAPAP+A). @
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The quantitySy(—1)NFPIW) in Eq. (28) may be trans-
formed further by using Eq$23) and (199 as

% (—DNFP(e)IP(en))

—Z I3 n)277T2 > 3G

n"=0 N’

8n (INN’ 1)

(29

We next consider the self-consistency equatibrc) for

the pair potential. Her&("(B) is expanded in terms of the
distanceH.,—B from H, as

TOB) =TV (He) ~ TP (Hep) (Hep—H+H—B),

(30

whereas the higher-order terfi’) is evaluated aH,. To

find an explicit expression fai{" in Eq. (30), let us differ-
entiate Eq(17a with respect tB:

<f8)

g (IN+ITE - N,

(31)

This equation can be solved in the same way as(Efp to
yield

ay_
2 M = 80

JMhy=-3 3@, (32)

N
WhereJ,(\lz) is defined by Eq(193. Let us substitute Egs.
(28)—(30) and(32) into Eq.(170), replaceH — B by the right-
hand side of Eq(17e, and regarH.,—H as second order.
Collecting first-order terms, we obtain the equation to fix the
second-order transition poikt=H_, as

T. 0~ 1
L (1) R
In— 2an20 [(fo (en)) o (33
The third-order terms determine the pair potentigland the
magnetizatiorH —B as a function oH.,—H as
Ho—H &5
e = (343
k5S4 1S5—SalS5 S2
He,—H Heo—
b= sz 2= ;2 . (34D
KoS4/S3=SalS;  (2k5—1)Ba
whereS,, S,;, andS, are defined by
szsszZ Z IP(e,), (353
1= NT

Si=-20T3 3 (- DM I o), (@50
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© o® o ® @ as shown by expanding Eg87a and(37b) with respect to
— 2 ~ N
Sp=(2T)22 2 2 2 I&(en) Iy (en) Inn the first and the last row, respectivélyThenKy for N’
(350 <N is obtained by also using standard techniques to solve
linear equatior as

with T, Jy, andZyn: given by Egs(27), (19), and(24), _
respectively. All the quantities in E¢B5) are to be evaluated KN = g | N! Dy Dy (39)
at H.,. The latter equality in Eq(34b) defines the Maki N Nt Dy
parameteric, with Ba=15th=1.16.

Equation(34) forms the main result of the paper, which is  This algorithm can be put into a more convenient form in
not only exact but also convenient for numerical calcula-terms of
tions. An extension to includp-wave impurity scattering is -
carried out in Appendix B, where it is shown that Eg4) is Rn=¢nDn+1/Dy, (409

still valid with the replacements df andJ$) by Eqs.(B8)

and (B9), respectively. Rn=enDn-1/Dy . (40b)
Sometimes it is physically more meaningful to exprags They satisfy
as a function oB instead ofH, because is the real average
field inside the bulk directly relevant to the spatial profile of 1
the pair potential. It is obtained, without the replacement of Rn-1= 1T ND2R (4139
H—B mentioned above Ed33), as +ND "R
— 1
He—B Ko Ras1=———— (41b)
AZZ ¢ _— (36) N+1 2 )
02, /2— S, /Se+1 S 1+ Nb"Ry
with R,=1 and
F. Calculation of K}’ b=p/3, . 42)

The key quantity in Eq(34) is K} defined by Eq(25), SN N , ,
as may be seen from Eq7), (19), and(35). An efficient ~ 1"enKy andKy for N"<N are obtained by
algorithm to calculate them is obtained as follows.

= RO_ 1 /=
Let us defineDy (Dy) for N=0,1,2 ... as thedetermi- Ko=Ro/en, (439
nant of the submatrix obtained by removiggtaining the RN (R R RN 435
first N rows and columns of the tridiagonal mati of Eq. N= (R R)KN-1, (430
18), namely, N ~
e Y KN = VNbR \KN_ ;. (439
En VN+18 0 T Numerical calculations oRy may be carried out by starting
~ N+1g p WNT28 - from Ry =1 for an appropriately chosen lardé,, and
Dy=de " using Eq.(419 to decreaséN. One can check the conver-

0 —VN+28 €n R gence by increasindl.. It turns out thatN.,~=1 is suffi-
o cient both neail . and in the dirty limit, thereby reproducing
the analytic results by Gor’kd? and Caroli, Cyrot, and de
(379 Gennes? respectively. In contras,,= 1000 is required in
) . the clean limit at low temperatures.
P Jig - e .. Noting _that Eq(33 with Eq. (27) should be equivalent to
B \/IB = the equation foH., obtained by Helfand and Werthanrer,
n

we get an alternative expression ¥} as

5NEdel . _
~ o~ 2 (=
€n N—1p3 Kg(sn’ﬁ):\/;j Le_lezdx. (44)

0 2+x2B2

J The equivalence between Eqg.3a and (44) can also be
(387b  checked numerically.

They satisfy
G. Expression of kg

Dy-1=&nDn+ NB? Dy 1, (383 Near T, where 8<%, holds, we may choosh =1 in
- - B Egs. (41)—(43) and expand the resulting expressions with
Dys1=enDy+NB2Dy_1, (380  respect toBle,. This yields Kd~1/e,— B%/e3 and K?
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~ple?, so that Eq(27) can be approximated b~ 1/e,, N NN, = BA(NIN|N +N20)(NgN,[N; +N,0)
— (BPen+(BA)I27) 1262 and TV~ Ble e, . Using these re-
sults in Eq.(35) and retaining only terms of the leading order _ (Ng+Ny)! 8
i i = A
in B, we obtain 2N N2 [N TN NGEN!

5 = 1 i 1 =I §\|41EN)2N3N4 : (49)

2d(7T)? =0 (2n+1)*(2n+1+1/277T,) Now Eilenberger’s approximation fok, is given by Egs.
(453 (2.7), (2.8), and(6.5) of his papel® and corresponds to
7((3) Ko~ (KGSy 1285 Bp) =K, (50
W= 5 BA; (45b)
8(7T,)

in Eq. (34b), whereS{P) is obtained from Eq(35b) by re-
) placingl ™ by 1“B). Indeed, this procedure yields numerical
SaA= S84, (450 agreements with his results. As seen below in Sec. Il B,

. . . .. _however, this approximation is not correct quantitatively far
where d=2,3 is the dimension of the system. Subsututmgbeyond his estim;tiorrl% g y

qu. (45) into Eq. (34D, we find the expression Okg It should also be noted that Eilenberger’s definitiorkgf
=xy(Tc) as by Eq. (50) is different from Maki’'s through Eq(34b) with

respect to
d 7T A\7L(3)/2
KgL™ Ko- (46)
> [(2n+1)2(2n+1+1/277T,)] L
n

| resume Maki's definition through Eq34b) wherex, has a
one-to-one correspondence with the initial slope of the mag-
netization. This is certainly more preferable than expressing
the slope with two parameters,® and 7.

| finally comment on Eilenberger’s analytic expression for
7. In addition to approximation49), it was obtained by
integrating the Maxwell equation with a removal of a com-
mon operator; see the argument above Baj).> However,

This expression enables us to eliminatgin favor of kg, .
The case witlp-wave impurity scattering may be treated
similarly by using Egs.(B8) and (B9) for T and J{,
respectively. The resultingg, is given by Eq.(46) with a
replacement of by the transport lifetimer, defined through

i: }_ i 47 this procedure may bring an erroneous constant. Indeed, his
Te T T Bo(r) of Eq. (6.4 does not satisfy the required condition
JIBo(r)dr=0. Thus, his expression faj is incorrect in the
in agreement with Eilenbergéf. two respects and cannot be obtained by adopting approxima-

tion (49) in Eq. (51).
H. Eilenberger’s results

| now clarify the connection with Eilenberger’s well- . NUMERICAL RESULTS
known results? They are obtained by extracting from
1N nan, OF EQ. (208 @ part which may be expressed in
terms of 84,=1.16 of Eq.(21).

To see this, let us start from an alternative expression o
HON NN, TOr Nyt Np=Ng+ Ny:

A. Numerical procedures

| have adopted the same parameters as those of
?ilenbergerl.2

fE/|trEl/27TTCTtr, Itl’/IETtr/Ti (52)

v 2 to express different impurity concentrations. Numerical cal-
|§\141)N2N3N4: > 5 Z | 4,04 0)|2(N1NN; +Np—N2Ng) culations of Eqs(33)—(35) have been performed for each set
Na < a=1 of parameters by restricting every summation over the Mat-
X (N3Na|N;+Ny—N,N,). (48)  subara frequencies for those satisfyiag<e.. Choosing
£.,=50-100 has been sufficient to obtain an accuracy of
Hefel/fNaoa(O) and({N;N,|N;3N,) are the quasiparticle wave ~0.01% for k,. On the other hand, summations over the

function and the overlap integral defined by E(&12 and ~ Landau levels have been trunca’teth: Ne, where | put
(3.23 of Ref. 28, respectively. This identity can be provedRNcm=l in the calculation ofkKY ; see Sec. Il F for the

by using Egs.(3.22 and (3.24 of Ref. 28 and noting details. Enough convergence has been obtained by choosing
Pi(r) = ¥ (2r) which both denote the presegtiq(r). If  Ng,=4, 40, 100, 200, 500, and 2000 fg¢/l,=50, 1.0,

we retain only terms ofN,=0 in Eq. (48 and use 0.5, 0.1, and 0.05, respectively. Finally, integrations ofer
(V/2)2i11|¢000(0)|2=/8A, we obtain an approximate ex- have been performed by Simpson’s formula wit,+ 1
pression for Eq(48) as integration points for & o< =/2.

184503-6
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25 1.5 : : : :
= _ 1/1=1.0
Egfl, = 0.0 W/l=10 a5 el =005 ’ ]
20} :
S * 13} 0.23 ]
3 = 05
o L5l 025 12k ]
' 1.0 5
W\ 1.1 X _
1.0 ' ‘ - 0 50.0 , :
00 02 04 06 08 10 00 02 04 06 08 1.0
/T

C

FIG. 2. Temperature dependence mfdefined by Eq.(51) for
several values ofg/ly with |,/ =1.0.

ues are larger than those of Eilenberger’s. This fact implies
that x,(T) for kg ~1 becomes smaller than the evaluation
of Eilenberger.

To see the dependence &b/xg_ on kg explicitly, |
have performed a calculation @, near the type-I—type-ll
boundary ofkg =1.0. Figure 3 plots the results f@i/l,,
=0.0-50.0 and/I=1. Compared with Fig. (), we ob-
serve that each curve is slightly shifted downward. However,
the changes are surprisingly small, considering the closeness
to the type-l-type-Il boundary. We thus realize that the fac-
tor SA/S§= 7B in Eq. (34b) can be neglected practically for
kg =5, as already observed by Eilenbertfer.

The above calculations are performed for an idealized
spherical Fermi surface. However, real superconductors are
often characterized by complicated Fermi surfaces. To see
) . ] the dependence ok,/kxg_ on Fermi-surface structures, |
~ Figure 1 showsc, /g as a function ofl /T, for different  paye performed an isotropic two-dimensional calculation de-
impurity concentrations. The upper one is fp/l =1.0, i.e.,  scribed in Sec. Il C. Figure 4 shows the results, where the
the case withoup-wave impurity scattering, whereas the parameters are the same as those in Fig. 1. The curves for
lower one is for ./ =2.0. They are calculated in an extreme &/1,=50 are almost the same as those in Fig. 1. Thus, in
type-Il case ofxg =50, so that they directly correspond to the dirty limit, we have a universal curve which depends
Eilenberger’s results fdr,/|=1 and 2, respectivelif. These  neither on detailed Fermi-surface structures nor fine features
curves show qualitatively the same behaviors as those &ff the impurity scattering. As the system becomes cleaner,
Eilenberger,s, inCIUding the diVergence in the clean limit for however, differences due to the two factors emerge eventu-
T—0, as predicted by Maki and TsuzukExcept the curves ally. In fact, we observe that each curve f&g/l,<1.0 in
in the dirty limit, however, marked quantitative differences fig. 4 deviates far less from 1 than the corresponding one in

are seen. For examples,(T=0)/kg. for (&e/ly.ly/l)  Fig. 1, and the temperature dependence is also weaker. An-
=(1.0,1.0) is 1.40 from the present calculation, whereas it is

1.50 from Eilenberger’s. Thus, we realize that Eilenberger’s

Kz/KGL

(b)

FIG. 1. Temperature dependenceof/ kg for several values
of &/l in the extreme type-Il caseg =50. (a) I,,/1=1.0; (b)
l/1=2.0.

B. Results for «,

approximation(50) yields quantitative errors o£20% for =
the deviationx,/«xg —1. Comparing the two figures, we
observe the following(i) The results in the dirty limit are the 20
same betweet, /=1 and 2; (ii) p-wave scattering has a o
general tendency to lower the values ©f, and also pro- ¥
duces a nonmonotonic behavior i3 /x5 as a function of ) Ls
gE/I tr- .
Figure 2 displaysy defined by Eq(51) as a function of
T/T, for &:/1,=0.05-50.0 and, /| =1.0. This quantity be- 10
comes relevant for small values of, at low temperatures, 0.0
as may be realized by Eq34b). The curves also deviate /T
substantially from Eilenberger’s results. For exampjefor ¢
éelly=0.25 atT=0 is 1.34 from the present calculation,  FIG. 3. Temperature dependence wf/ kg, for kg =1 with

whereas it is~1.11 from Eilenberger’s. Generally, the val- 1,/1=1.0.
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1.4 T T 1.3 T T T
&g/l = 0.05 d=2 0.1 d=3
13F 07 IJ1=10 1 I f1=1.0
. 1.2E - 1
= 0.25 53] Ep/l, =00
é‘j 1.2k 1 <
™ .
* 10 L1 0.25 1
1.1r B
50.0 1.0
50.0
‘l .0 1 | 1 | 1'0 L L I 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T1T, 1T,
(@) (@)
14 ' ' ' 12 . . . .
d=2 d=2
1 =0.05
130 S/l 1/1=20 Ex/l,. =500
-
0.1
0 = 1.1
EN 1.2¢ 025 1 2
-
< : o
1.1+ R
50.0 10
1.0
1.0 ‘ : : : . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
/T, T/T,
® )
FIG. 4. Temperature dependence ©f/«q_ for an isotropic FIG. 5. Temperature dependenceqf/ kg, for several values

two-dimensional system in the extreme type-ll casg=50. (a) of &/, with 1,,/1=1.0. (8 d=3 ; (b) d=2.
ly/1=1.0; (b) 1,,/1=2.0.

duces nonmonotonicity ikq/kg_ as a function ofég/l, .
Especially in two dimensions foég/l,=0.1-1.0, k1 /g
becomes smaller than 1 over finite temperature ranges, i.e.,
the empirical inequalityx,= k1= kg IS not satisfied here,
even without spin paramagnetism.

€ A substantial dependence bff,, on Fermi-surface struc-

other point to be mentioned is that, even frl,=0.05, we
see no trace of divergence as-0. Indeed, a closer exami-
nation of the analytic results by Maki and TsuZukind
Eilenbergel enables us to realize that it is the regiénr 0

in three dimensions which is responsible for the divergenc

of k5. Thus, we may conclude that, in two dimensions a5 may be realized more clearly by looking at the tempera-

remains finite even in the clean limit &-0. Ingeneralx; 116 dependence of the reduced critical field introduced by
will remain finite if the relevant Fermi surface does not CloseHeIfand and Werthamer:

along the direction of the magnetic field.

ch(t)

C. Results for x; h*(t)= —dHe(t)/dt]_,"
- c2 t=1

(54)
The Maki parametek; is defined by

_ wheret=T/T,. Figure 7 comparek* (t) between two and
k1=Hea/ V2He, (53 three dimensions for both the clean and dirty limits. The
whereH.=H(T) is the thermodynamic critical field. The curves coincide in the dirty limit, whereas those in the clean
preceding results fok, suggest that(T)/xg_ may also limit show a marked quantitative difference. We also observe
exhibit considerable dependence on detailed Fermi-surfad@ath* (t) in two dimensions is a rather sensitive function of
structures. purity. A considerable reduction &f_,(t) in the pure limit
Figure 5 compareg(T)/ kg between two and three di- from h}_;(t) may be attributed to the pair breaking by su-
mensions foll, /[=1.0. The curves fo€g/l,=50 show al-  percurrent. This effect is more effective in two dimensions.
most the same behavior. &g /l,, becomes smaller, however, Indeed, a point on the cylindrical Fermi surface is equivalent
the two cases display a marked difference. Indeed{o a point on the equator of the spherical Fermi surface per-
k1(T)/ kg is seen to increas@ecreasgin three (two) di- pendicular toH where the pair breaking is most effective.
mensions agg/l,—0. This fact can be seen clearly in the polar-angle dependence
Figure 6 shows curves ot,(T)/«g_ in two and three of the density of states calculated by Brandt, Pesch, and
dimensions fol,/I=2.0. Again thep-wave impurity scat- Tewordt?® Put it another way, if the relevant Fermi surface
tering is seen to lower the value &f /xg , and also intro- does not have a closed orbit perpendiculaHtothe corre-
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K/KgL

00 02 04 06 08 1.0
T/T,
(@)
1.2 ,
£l =500 d=2
Bl 1J1=2.0
;;D 1.1
>
1.0
. 0725 . .
00 02 04 06 08 1.0
T/T,
(b)

FIG. 6. Temperature dependencef/ xg_ for several values
of &/l with I,/1=2.0. (@) d=3; (b) d=2.

spondingh* (t) in the clean limit will be enhanced over the
prediction for the spherical Fermi surface.
A considerable reduction di* (t) or «4(t) in the pres-

PHYSICAL REVIEW B 68, 184503 (2003

KgL= 350

0.8 1.0

1.0

0.9

£/l =0.05

0.8 ko= 50

0.2 04 0.6 0.8
/T

[

(b)

FIG. 8. The coefficient(T)=(1—B/H)Y?A(T)/Ag(B,T) in
the extreme type-Il caseg =50 as a function off /T, for several
values ofég/ly, . (a) 1 /1=1.0; (b) I,,/1=2.0.

0.0 1.0

pair potential and relevant to all thermodynamic and trans-

ence of spin paramagnetism was established by Werthamegyort properties neatl,. It is physically more meaningful to

Helfand, and Hohenbefgand also by Maki! The present

express it as a function of the real average fild the bulk

results indicate unambiguously that the Fermi-surface strudnstead ofH. Equation(36) shows that\ 4(B) is proportional

ture is also an important factor fo* (t) in clean systems, as
already noticed by Helfand and Werthamétohenberg and
Werthamer? and Werthamer and McMilla?t:

D. Results for the pair potential

A quantity of fundamental importance is the coefficient
A, which is equal to the spatial averagé|A(r)[?) of the

0.8 : : : :
dirty limit (d = 2,3)
0.6+ -
Ep/ly=0.0(d=3)
i 04r &/, =00d=2) .
0.2+ -
00 1 1 1 1
00 02 04 06 08 10
T/T,

v

to (H.,—B)Y? nearH.,. | here express thid, by using the
energy gapA(T) atB=0 as

Ao(B, T)=c(T)(1—B/H)Y?A(T). (55)

Then the coefficient(T) should be of the order of 1.

Figure 8 calculated for the spherical Fermi surface dis-
plays temperature dependencec¢T) in an extreme type-II
case ofkg =50 for (a) I,/I=1.0 and(b) I,,/1=2.0. Thus
c(T)~1, as expected, having the same value 0.929_at
Differences among differengz/1,, grow at lower tempera-
tures, andc(T) for &g/1,=0.1 drops rapidly neaf=0. In-
deedc(T) in the clean limit for three dimensions is expected
to reach 0 a§—0, corresponding to the divergence of.
This also implies that the expansion &{r) nearH, is no
longer valid in this limit!* The curves in the dirty limit are
the same betweel, /| =1.0 andl /I =2.0. Foré&g/l,=<1.0,
however, each curve fdr,/1=2.0 at low temperatures has
larger values than the corresponding onel fdit = 1.0. Thus,
finite p-wave scattering in clean systems tends to increase
c(T).

FIG. 7. Temperature dependence of the reduced critical field The coefficientc(T) also increases mildly agg  be-

h* (t) for the dirty limit of d=2,3(mid curve and the clean limit of
d=2 (lower curvg andd=3 (upper curve

comes smaller, as realized by comparing Fig. 94gr=1
with Fig. 8@) for kg =50.
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nearH,. Eilenberger’s results fok, have been corrected
appropriately, as described in Sec. Il H. The analytic expres-
sions derived in Secs. Il E and Il F have been useful to carry
out efficient calculations for both two and three dimensions
with isotropic Fermi surfaces and arbitrary impurity concen-
trations. Thereby found are large quantitative differences of
the parameters between two and three dimengiexsept in

the dirty limit where there are no differences between the

-1 two cases For example, no trace of divergence a3(T
KGL . L . .
. . . . —0) is found for the clean limit in two dimensions.
0.0 0.2 0.4 0.6 0.8 1.0 The present results clearly indicate the necessity of con-
T/T sidering detailed Fermi-surface structures from first-

[

principles calculations for a quantitative understanding of the
FIG. 9. The coefficient(T) for kg =1 as a function ofl/T, Maki parameters in clean superconductors. This was already

for several values ofg /I with |, /I=1.0. recognized by Helfand and Werthamidny Hohenberg and

Werthamer? and also by Werthamer and McMill&hwhen

tiorfslgueﬂ:'folrr?]é)éo\}\;c’m:et?gfageth2&?’%?;:?2;'&%2'6Ci‘;’l‘l(I::Li’la' eir strong-coupling calculation could not explain a large
§ P 9 Yeviation of ky/kg. observed in pure niobiu#a®® and

The curves for the dirty limit are the same between two and 34 from the theoretical prediction of Helfand and

three dimensions. As the system becomes cleaner, howev .
- . . erthamer. Efforts have been made along this line to estab-
the coefficientc(T) for two dimensions becomes larger than

. . ; lish a realistic calculation ok;, or equivalentl ,30.35-44
the corresponding one for three dimensions. Thus, for clea wever. little broaress seelms toqhave begrgchieved with
systems, we observe once again a considerable dependenc% ’ prog

. - réspect tox,.
of the coefficientc(T) on Fermi-surface structures. The method developed here fas and x, may be ex-

IV. SUMMARY teno!ed e_a_sily to include Fermi-surface structures and_aniso-
tropic pairings. Some of the necessary modifications(gre
This paper has presented revised calculations of the Makb use the general expansi¢ida with evenN for the pair
parameters, andx, as well as the spatial averagje (r)|?) potential, rather than Eq15); (i) to use more convenient
basis functions thae'™? in Eq. (13b) for describing thekg

1.2 . .
Jen dependence of(e,,kg,r), such as the Fermi-surface har-
Li=10 monics of Allen®*~*8 The corresponding matri®1 in Egs.
11k 0.25 ]L _ 5'0 (179 and(17b) is no longer tridiagonal, but may be inverted
' GL rather easily with present high-speed computers.
<
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1.2
APPENDIX A: DERIVATION OF EQ. (4)
1.1 To obtain Eq.(4), let us start from Eilenberger’s free-
energy functionaP per unit volume withB chosen as an
© independent variable instead 6f. It is given in units of
Lok N(0)A(0)? as
09 | , | ‘ F(B) 1 <5 s, o T
00 02 04 06 08 10 v :Vf dri - [B*+(VXA)T+[A(r)] InT-
1T,
= TIA(N]?
®) +2aT > [' i ) —<|(8n,kp,r)>H, (A1)
=0
FIG. 10. The coefficientc(T) in two dimensions withkg, " "
=50 as a function ofl/T; for several values o&c/l,. (@ Iy /I
=1.0; (b) I,/1=2.0. wherel is defined by
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fEN+(HT g(g)—1 Using the thermodynamic relation(F/V)/dB, |y 1= x3H
I=A*f+AfT+26,(g— 1)+ ar T in the present units, we arrive at Ed).
~ IV =iAF—f(V+iA)fT
+(g—21)v- . (A2)
offt APPENDIX B: EXTENSION TO THE CASE

. . . WITH p-WAVE IMPURITY SCATTERING
The functional derivatives of E4A1) with respect ta ', A, P

and A lead to Eqs(2a—(20), respectively. The last term in
Eq. (A2) is slightly different from the original functional of
Eilenberger wheregv appears in place ofg—1)v.*® Al-
though it does not change E@) at all, it is found numeri-
cally that the modification is necessary fBrto have its [

n

In the presence gb-wave impurity scattering, Eq2a) is
replaced by

absolute minimum with respect ta, A, and f=f(A,A) (9) dk-(k'g) v _
o S . + + - (V—-iA)|f
satisfying Eq.(2a), as anticipated by Eilenberg®rlt should 27 2

2
be noted that Pesch and Krafffealso adopted EqA1) as a

basis for their numerical calculations. More recently, Endres

and Rainet’ performed a numerical calculation of the free

energy for both an SN contact and a single vortex based on

Eq. (Al), and compared the results with those from three

free-energy functionals obtained from the Luttinger—WardWhere<|2'g>z<|2'g(8n,k'F,r», for example, andi=2,3 is
functional. They found numerical agreements among the vakhe dimension of the system. This brings additional terms on

ues from four different expressions. _ the right-hand side of Eq$178 and(17b) as
Following Doria, Gubernatis, and Rairfér| now rewrite

the right-hand side of EA1) in terms of

dR-(R’f})g

+
.
(f)
A= (B1)

r'=r/N, By=A?B, A,(r')=NA(Ar'),

1+

(M) ) dcos6 (f{Pcosh’)
27 27'1

2 MNN’TE\}I):&NO
A)\(r’)EA()\I"), f)\(en1kF1r,)Ef(8n1kF1)\r’)' N

(A3) dsing (fVsing’)
| then differentiate the resulting expression with respect to +6n1 4r, (B2)
and putA=1. Since procedur¢A3) does not change the
value of F/V, we have ¢/d\)(F/V)|,-1=0 from the left-
hand side. As for the right-hand side, the only implicit de- ~ ~
pendence to be considered is the one filBf those from ~ T3 dcoso(fPcoss’)
f\, A,, andA, can be neglected due to the stationarity of %: Mun 7= no 27 + 27,
Eq. (2). We thereby obtain
dsin 6(f{>sin ¢’
_A(FIV) 9B, 0 252 zxéf a4 (Vs R2 + Nl#ﬂﬁ”ﬂ@,
T By an|,_, O v ) ar( ) ! -
B B3
7T < V- (V=iA)f—fv- (V+iA)fT
s f oo V(YA = (VAT
\Y n=0 1+g

whereJ{V is given by Eq.(19¢), andJ{) is defined instead
(A4) of Eq. (19b) by

J(3>E_; (CONI@  FWR

T NN’N+N’0" N’ "N+N’ 1+

fMy  dcoso(fHPcoss’)
+
27 27'1

: [T deosa(T)Tcoser) | |
4 < - i
dsiné ~ i
N1 (LF(D) i
+ 87’1 %; (_1) [_INN’NJFN’*llfN’fN+Nr,1<fg_ )Sln9’>
4 F(1rz(1 . ~(1 4 1 . o
+|E\]lzl/N/—lN+l<f§\|/rf§\]/)_1$|n0’>f§\lll+IF\][EIVN/+1N_1<f§\l,)?E\‘I)+lSIn 01>f§\|31]- (B4)
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Equation(B2) can be solved in the same way as E2f) to yield

ey~ (FM) .\ dcosd (fMcosh’)

PHYSICAL REVIEW B 68, 184503 (2003

21 dsino(f{Msing’)

(1)_ 0
fN KN 1+ 27' 2'7'1 N 47'1 (BS)
From Eq.(B5), we obtain self-consistent equations {d§"), (f{"cosé), and(f{"sin ) as
(Ko)
K| (fMcoso) | =| (K3coss) (B6)
(f{Vsin ) (KYsin 6)
where the matrixC is defined by
[ (K9 d(K3cos®)  d(K%ing)
27 - 2n 41y
Kdcoso d(K3cog6)  d(K%sin2¢
= _ (Kgeosf)  d(Kgcos'h)  d(K;sin26) (87)
27 274 87,
(KSsin ) d(K9sin26) d(K1sir?g)
. 2r - 4n 4

Noting KN,— KN,(:;n ,B) as seen from Eq$41)—(43) with B defined in Eq(9), we immediately realize thakJcos6)=0 in
Eq. (B6) and ;= K;,=0 for j=1,3 in Eq.(B7). Thus, Eq.(B6) can be solved easily Wlthfgl)cos@—o. Substituting the
resulting expressions df{") and(f{"sin 6) into Eq. (B5), we obtain

d _ —, d _ .
(1—4—71<K§sin29’> Kﬁ+4—Tl<Kgsin9’>K§,sin0
FO= . (B8)
U LRy (1o L (Rsiey | + O (Rosingry?
27 0 47,01 871\t

Equation(B4) is also simplified into

)1
. 4 1Y (1 < 0 (4 17§ (1 1
W=-3 2 (DY Nt | 1+ 5=+ 72 NE (= DV T TE
dSIn0 4 ~(17%(1 (1) s 4 DFA)  winpr\F(L
+ 2 (DN o FOE o FPsing )y +1850 i FUFG) siney T,
4 71
+1§ )’N’+1N (TR asing) T 0. (B9)

Equation(B3) can be treated similarly to obta{ﬁgg)> which appears in Eq17¢. Then a straightforward calculation leads
to the same expressi@@8) for (f$) with T’ andJ®) replaced by Eq¥B8) and(B9), respectively. Another relevant quantity
in Eq. (170 is (Té”’), as seen from Eq30). Differentiating Eq.(B2) with respect toB and solving the resulting equation
self-consistently, we also obtain E@2) for (f"") with (M in Eq. (19 replaced by Eqs(B8).

It hence follows that Eq€34) and(35) remain the same in the presence of pr@ave impurity scattering Witﬁf\}) ande\f)
replaced by Eqs(B8) and(B9), respectively.
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