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Charge expulsion and electric field in superconductors
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Department of Physics, University of California, San Diego, La Jolla, California 92093-0319, USA

~Received 15 July 2003; revised manuscript received 2 September 2003; published 4 November 2003!

The theory of hole superconductivity predicts that when a metal goes superconducting negative charge is
expelled from its interior towards the surface. As a consequence the superconductor in its ground state is
predicted to have a nonhomogeneous charge distribution and an outward pointing electric field in its interior.
Here we propose equations to describe the behavior of the charge density and electric field in superconductors,
and solve them for a spherical geometry. The magnitude of the predicted interior electric field depends on
superconducting parameters such as the condensation energy and the London penetration depth and is found to
be of order 106 V/cm. A physical interpretation of the result is given. It is predicted that for small supercon-
ducting bodies~compared to the penetration depth! an electric fieldoutsidethe superconductor should result
from this physics. This may explain a recent experimental observation in Nb metal clusters.
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I. INTRODUCTION

In the currently accepted understanding of supercond
tivity no electric fields exist in superconductors in the a
sence of electric current~a ‘‘Bernoulli potential’’ is expected
to exist in the presence of a nonuniform supercurrent1!. The
London brothers2 originally proposed a set of equations
describe superconductivity that allowed for the presence
an electric field within a penetration depth of the surface o
superconductor. However H. London failed to detect such
electric field experimentally.3 Having confidence in his
brother’s experimental result, F. London modified the the
and discarded one of their original equations, and as a c
sequence the possibility of an electric field in supercondu
ors is no longer discussed in London’s definitive work.4

As is well known, normal metals allow for the existen
of magnetic fields but no electric fields in their interior. S
perconductors~type I! do not allow magnetic fields in thei
interior, but magnetic fields can exist within a penetrati
depth of the surface. Based on the theory of h
superconductivity5,6 we have recently proposed that when
metal goes superconducting negative charge is expelled
its interior towards the surface.7 Here we discuss the equa
tions governing the charge and electric field distribution
superconductors resulting from this physics. The possib
that a superconductor may have an electric field in its inte
has not been discussed in other theoretical frameworks to
knowledge; it is, however, a necessary consequence of
fundamental electron-hole asymmetry of condensed mat8

and the resulting ‘‘giant atom’’ description o
superconductors9 that results from the theory of hole supe
conductivity.

II. ENERGETICS

The qualitative picture of a superconductor proposed
Refs. 7 and 9 is shown in Fig. 1: it looks like a giant ato
with a higher density of negative charge near the surface
higher density of positive charge in the interior.10 Consider a
superconducting sphere of radiusR much larger than its Lon-
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don penetration depthlL . Assume that an amount of charg
q moves from the interior to the surface, resulting in a u
form charge distributionr0 in the interior:

r052
3q

4pR3
. ~1!

As we discuss later,q is negative and resides within a Lon
don penetration depth of the surface, with a volume cha
density

r25
q

4pR2lL

52
1

3

R

lL
r0 . ~2!

For lL!R we can also think of this charge as a ‘‘surfa
charge density’’

s5
q

4pR2
5r2lL . ~3!

This surface charge density isnot confined within a Thomas-
Fermi screening length of the surface as excess charge w

FIG. 1. Schematic picture of a spherical superconducting bo
Negative charge is expelled from the bulk to the surface. A
consequence, an outward-pointing electric field exists in the in
rior.
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be in ordinary metals, but within the much thicker surfa
layer defined by the penetration depth.

The electric field in the interior is given by

EW ~r !52
q

R3
rW, ~4!

and the inhomogeneous charge distribution gives rise
cost in Coulomb energy

UE5E
0

R

d3r
E~r !2

8p
5

q2

10R
~5!

under the assumptionlL!R. For a spherical geometry n
electric field exists outside the superconductor~assuming
charge neutrality!.

In the superconducting state, the energy per unit volu
is lowered by the superconducting condensation energy.
theory of hole superconductivity predicts that the charge
pulsion describe above is a necessary consequence of s
conductivity. Hence the Coulomb energy cost@Eq. ~5!# is
balanced by an energy gain due to the charge expulsioẽ
per unit volume, which is related but not necessarily equa
the condensation energy of the superconductor. Equating
energy gain to the electrostatic energy cost,

q2

10R
5

4

3
pR3ẽ ~6!

yields, for the ‘‘surface charge density,’’

s5F 5

6p
ẽG1/2

, ~7!

independent of the sphere’s radius. This indicates that if
physics discussed here indeed exists in superconductors
charge density in the surface layerr2 is an intensive quan
tity determined by intrinsic properties of the superconduc
in particular the penetration depth and the thermodyna
critical field Hc ~which gives the condensation energy!. In-
stead, the interior positive charge densityr0 is not intensive
but decreases with increasing radiusR. The electric field
close to the surface, given by Eq.~4! for r;R, is also inde-
pendent of the body’s dimensions.

From Eqs.~3! and ~7! the volume charge density in th
surface layer is given by

r252F 5

6plL
2
ẽG 1/2

. ~8!

Using the expression for the London penetration depth

1

lL
2

5
4pnse

2

mec
2

, ~9!

with me the free electron mass,e the electron charge~nega-
tive!, andns the superfluid density per unit volume, and r
placing ẽ in terms of the energy gained per superfluid ele
tron e yields
18450
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ns
, ~10!

and Eq.~8! becomes

r25ensS 10

3

e

mec
2D 1/2

, ~11!

relating the negative excess charge density in the sur
layer to the superfluid densityns and the ratio of the conden
sation energy of an electrone to its rest energy, showing tha
the excess charge density is a small fraction of the superfl
density. The surface charge densitys is given by Eq.~3!, and
the maximum electric field attained within a penetrati
length of the surface of the superconductor is

Emax524ps524plLr2 , ~12!

and is also independent of the sample’s dimensions.
As an example appropriate for highTc cuprates we take

lL52000 Å, yielding, from Eq.~9!, a superfluid densityns
57.131024 electrons/Å3. Assuming a condensation energ
of 100 meV per unit cell and a unit cell volume of 40 Å3

yields e53.5 meV per superfluid electron, andr2521.5
31024nse so there is roughly one extra electron per 10 0
superfluid electrons in the outer layer. The surface cha
density iss523.531027 C/cm2, and the maximum elec
tric field near the surface isEmax53.93106 V/cm. The po-
tential difference between the center of the sphere an
point within a penetration depth of the surface isDV
5EmaxR/2, so approximately 4 000 000 V for a sample
1-cm radius.

As another example, for Nb the thermodynamic critic
field is Hc51980 G, so the condensation energy isẽ51.56
3105 erg/cm3. From Eq.~7! the surface charge density
s56.831028 C/cm2, and takinglL5400 Å for the pen-
etration depth yieldsr250.017 C/cm3 for the surface layer
volume charge density, corresponding to approximately t
excess electrons per million Nb atoms in the outer layer. T
maximum electric field near the surface from Eq.~12! is
Emax50.773106 V/cm. This is not very different from the
estimate for the highTc case because the effects of a smal
condensation energy and a smaller London penetration d
partially compensate each other.

III. ELECTRIC FIELD EQUATIONS

We start with the London equation for the supercurren

JW52
nse

2

mec
AW , ~13!

with AW the magnetic vector potential. Following th
Londons2 we assume thatAW satisfies the Lorenz gauge con
dition

¹W •AW 1
1

c

]f

]t
50, ~14!

with f the electric potential. The electric field is given by
2-2
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EW 52¹W f2
1

c

]AW

]t
. ~15!

Using the continuity equation

¹W •JW52
]r

]t
, ~16!

and applying the divergence operator to both sides of
~13! and using the gauge condition@Eq. ~14!# yields

]f

]t
52

mec
2

nse
2

]r

]t
; ~17!

hence

f~rW,t !52
mec

2

nse
2

r~rW,t !1f0~rW !. ~18!

The London brothers postulated Eq.~18! with f0(rW)50 as a
possible equation applicable to superconductors.2 Under sta-
tionary conditions,

f~rW !524plL
2r~rW ! ~19!

and using Maxwell’s equation

¹W •EW ~rW !54pr~rW !, ~20!

Eqs.~15! and ~19! yield

r~rW !5lL
2¹2r~rW !, ~21a!

EW ~rW !5lL
2¹2EW ~rW !, ~21b!

which imply that a nonzero charge density and an elec
field can exist within a penetration depth of the surface of
superconductor but not in the interior. H. London attemp
to measure the electric field predicted by Eq.~21! by mea-
suring the change in capacitance of a capacitor with su
conducting plates when it is cooled belowTc .3 However, he
failed to detect any effect.

Here we propose that Eq.~18! is valid for superconduct-
ors with a nonzerof0(r ) resulting from a uniform charge
densityr0 deep in the interior of the superconductor, as d
cussed in the previous section. Equations~21! and~18! then
become

r~r !5r01lL
2¹2r~r !, ~22a!

EW ~r !5EW 0~r !1lL
2¹2EW ~r !, ~22b!

f~rW !524plL
2r~rW !1f0~rW !, ~22c!

with EW 0(rW)52¹W f0(rW) and ¹W •EW 0(rW)54pr0. We propose
that these equations hold for the interior of superconduc
of arbitrary shape in the absence of magnetic fields and e
tric currents, withr0 a positive number determined by th
microscopic parameters of the superconductor as well as
geometry, as discussed in Sec. II. The potential obeys
18450
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f~rW !5f0~rW !1lL
2¹2f~rW !, ~23a!

¹2f0~rW !524pr0 ~23b!

in the interior, and

¹2f~rW !50, ~23c!

¹2f0~rW !50 ~23d!

in the exterior of the body. Furthermore we assume that
surface charges can exist in the superconductor, and h
that bothf and its normal derivative]f/]n are continuous
on the surface of the body, as are of coursef0 and]f0 /]n.

Note that the existence of an electric field in the inter
of the superconductor implies neither a time variation of
current, as one would expect in a ‘‘perfect conductor,’’ n
even theexistenceof a current as in an ordinary metal. Tak
ing the time derivative of Eq.~13! and using the Maxwell
equation~15! yields

]JW

]t
5

nse
2

me
~¹W f1EW !, ~24!

so that in a stationary situation there can be an electric fi
that is derivable from a potential (EW 52¹W f) and it does not
lead to a time-varying supercurrent. Whether a station
supercurrent exists or not depends on the magnetic ve
potentialAW through Eq.~13! and not on the electric field.

In a spherical geometry, the solution of Eq.~22a! is

r~r !5r02k
sinh~r /lL!

r
, ~25!

and for charge neutrality the constantk is given by

k5
1

3

r0R3

lL
2

1

f ~R/lL!
, ~26a!

f ~x!5x coshx2sinhx. ~26b!

For R@lL the charge density at the surface is

r~R!5r0S 12
1

3

R

lL
D;2

R

3lL
r0 , ~27!

in accordance with Eqs.~1! and ~2!, and for r !R2lL ,
r(r );r0. The electric field is given by

EW ~r !5
4

3
pr0F12

R3

r 3

f ~r /lL!

f ~R/lL!G rW. ~28!

It goes to zero atr 5R and is maximum at a distance of
penetration depth inside the surface, given by

Emax;
4

3
pr0R524plLr~R!, ~29!

in agreement with Eq.~12! for r(R)5r2 , as expected.
2-3
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Figure 2 shows the radial dependence of the charge
sity and electric field for various values ofR/lL . When the
dimensions of the sample are much larger than the pen
tion depth there is a small uniform positive charge density
the interior and the electric field increases linearly towa
the surface. The compensating negative charge resides w
a penetration length of the surface and the electric field dr
to zero in that region. As the dimensions of the sample
crease the positive charge density in the interior increa
and is maximum forR/lL;3.5, wherer0;20.56r2 , and
decreases again for even smaller samples. This is unde
assumption that superconducting properties are not affe
by the size of the sample, i.e.,r2 andlL are assumed inde
pendent ofR. In the limit R/lL!1 the charge density is
given by

r~r !5
r0

6lL
2 F3

5
R22r 2G , ~30!

so that it changes sign atr /R50.77, and the electric field by

EW ~rW !5
2p

15

r0

lL
2 @R22r 2#rW. ~31!

IV. MICROSCOPIC INTERPRETATION

The existence of an electric field in the interior of a s
perconductor may seem surprising. In normal metals, elec
fields cannot exist in the interior because the mobile e

FIG. 2. Radial dependence of the charge density~a! and electric
field ~b! for R/lL50.5,1,3.5,10, and 100~some numbers next to th
lines!. The electric field increases monotonically with increasi
R/lL . The charge density at the origin is smallest forR/lL5100,
and decreases with decreasingR/lL for R/lL,3.5.
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tronic charge will rearrange to nullify such a field. How ca
the existence of an electric field in a superconductor be
derstood?

Consider Eq.~24!. It states that no electric current will b
generated in the presence of an interior electric field, p
vided the field derives from a potentialf. Now an electric
field exerts a force on electrons, so why is it that electrons
the superconductor do not get accelerated by the inte
electric field and generate an electric current?

The Lorentz force equation in the absence of a magn
field

me

dvW

dt
5eEW ~32!

indicates that the velocity of an electron will change in t
presence of an electric field. From the relation between
locity and current

JW5ensvW ~33!

one may be tempted to conclude that Eqs.~32! and ~33! are
incompatible with Eq.~24!. However, this isnot the case,
because Eq.~24! is a local time derivative and Eq.~32! is a
total time derivative. Using the relation11

dvW

dt
5

]vW

]t
1¹W

v2

2
2vW 3~¹W 3vW ! ~34!

we conclude that a stationary situation with an electric fi
in the interior of the superconductor is indeed possible, p
vided that

EW 5
me

e F¹W v2

2
2vW 3~¹W 3vW !G . ~35!

If we assume that the superfluid electrons traverse circ
orbits with speedv(r ) we have

¹W
v2

2
2vW 3~¹W 3vW !52

v2~r !

r
r̂ , ~36!

and the speed is obtained from Eqs.~35! and ~28! as

v2~r !52
4

3

per0

me
r 2F12

R3

r 3

f ~r /lL!

f ~R/lL!G , ~37!

which of course simply describes the balance between c
tripetal acceleration and electric Lorentz force

mev
2

r
52eE, ~38!

as appropriate for a circular orbit. Deep in the interior of t
superconductor Eq.~37! describes a ‘‘rigid rotation’’ of the
superfluid,v(r )5vr , with constant angular velocity

v5S 2
4pr0e

3me
D 1/2

. ~39!
2-4
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As we approach the surface the angular velocity decreas
zero due to the screening of the electric field by the nega
charge in the surface layer.

We conclude from this interpretation that the ‘‘rigidity’’ o
the wave function4 that allows for an electric field in the
interior arises from the fact that superfluid electrons trave
macroscopic orbits at high speed; a radial electric field w
not change the radial speed of electrons for the same re
that an orbiting planet is not attracted towards the sun:
radial force provides the centripetal acceleration for the
bital motion.

However, one may also ask: if there is a finite velocity
given by Eq.~37!, should not there be a finite current and
associated magnetic field? In fact Eq.~33! is an oversimpli-
fication, which assumes that all electrons at positionrW move
with the same velocityvW . However, electrons also have
spin quantum number. As the simplest resolution to t
question we may assume that the velocity field for spin
rections ~with respect to a chosen quantization axis! obeys

vW s~rW !52vW 2s~rW !, ~40!

with vs given by Eq. ~37!. In that case the totalcharge
current

JW5e
ns

2
~vW ↑1vW ↓! ~41!

will be zero and no magnetic field will be generated; ho
ever, there will be aspin current

JW spin5e
ns

2
~vW ↑2vW ↓!, ~42!

which is not zero. The direction of the spin current would
determined by spin-orbit coupling as discussed in Ref. 9

A different simple solution of Eq.~35! is obtained under
the assumption¹W 3vW 50. In that case, we have simply

EW 5
me

2e
¹W v2, ~43!

and the velocity profile is readily obtained by integration
Eq. ~28! as

v2~r !5
4

3

per0

me
r 2F122

R3

r 3

sinh~r /lL!

f ~R/lL! G1k, ~44a!

with k an integration constant. Deep in the interior of t
superconductor we have~for R/lL@1)

v25
4pr0e

3me
r 21k. ~44b!

Equation~44b! has a simple physical interpretation. The p
tential in which the electron moves in the interior of th
superconductor is a harmonic oscillator potential:

U~r !5ef0~r !52
2

3
pr0er2, ~45!
18450
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wheref0(r ) follows from Eq.~23b!. The total energy of the
electron is the sum of the kinetic and potential energy,

Etot5
1

2
mev

22
2

3
pr0er2, ~46!

and is a constant of motion. Indeed, Eq.~46! is the same as
Eq. ~44b!, with the integration constantk52Etot /me . The
allowed values ofk are such that the maximum elongatio
r max for which v goes to zero obeysr max<R. When k is
such thatr max approachesR, the motion is slightly faster
than in the harmonic oscillator potential near the region
maximum elongation@as given by Eq.~44a!#, due to screen-
ing by the negative charge near the surface. For smallR/lL
instead the velocity is very different than Eq.~44b! and is
given by

v25k81
2per0

15melL
2

r 2FR22
r 2

2 G . ~47!

Also note that an electron that moves in a harmonic osci
tor potential does not give rise to a uniform charge dens
but rather the electron density and hence negative charge
largest near the region of maximum classical elongati
This is consistent with the assumption that the charge den
in the superconductor is positive in the interior and negat
near the surface. Similarly, circular ‘‘Bohr orbits’’ in a ha
monic oscillator potential ‘‘bunch up’’ for a large radius a
discussed in Ref. 9 giving rise to a larger negative cha
density near the surface.

The assumption¹W 3vW 50 implies a linear motion where
the electrons oscillate through the origin. Relaxing this co
dition many other trajectories become possible. Deep in
interior the motion is simply described by independent h
monic motion in the three directions with a frequency giv
by Eq. ~39!, which in general describes elliptical orbits. Th
linear oscillator and circular motion described above are t
particular examples of these orbits where it is simple to
tain the corrections due to the outer layer of negative cha
as given by Eqs.~44a! and ~37!.

V. SUPERCONDUCTORS OF GENERAL SHAPE

From Eq.~22a! we have

r̃~rW !5lL¹2r̃~rW ! ~48!

for r̃(rW)5r(rW)2r0. Laue has shown rigurously12 that for a
body of arbitrary shape the solution of Eq.~48! decays to
zero rapidly towards the interior, on the length scale of
penetration depthlL . Hence we can conclude that, qui
generally for superconductors of dimensions much lar
than lL , the charge distribution in the interior is consta
and equal tor0, and that the expelled negative charge resid
within lL of the surface.

Similarly, using that

¹W 3~¹W 3EW 0!5¹W ~¹W •EW 0!2¹2EW 0 ~49!
2-5
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as well as¹W 3EW 050 and ¹W •EW 05const, we conclude tha
¹2EW 050 and, hence from Eq.~22b!,

¹2~EW 2EW 0!5
1

lL
2 ~EW 2EW 0!. ~50!

This equation is the same as the London equation satisfie
the magnetic field in non-rotating superconductors, giv
rise to the Meissner effect. Again, Laue showed12 that the
vector quantity satisfying Eq.~50! decays rapidly to zero
over a distance of a penetration depth from the surfa
Hence we conclude that for superconductors of arbitr
shape away form the surface the electric field is given byEW 0
originating in the uniform charge distributionr0. For ex-
ample, for an ellipsoid of revolution with symmetry ax
along thez direction,

x21y2

a2
1

z2

b2
51, ~51!

the electric field is given by14

~E0!x5
2

3
pr0S 32

1

pD x, ~52a!

~E0!z5
4

3
pr0

z

p
, ~52b!

with p5b/a. Equation~52! is approximately valid for 0.8
,p,5. In particular, the surface of a uniformly charge
ellipsoid isnot an equipotential surface, and this is of cour
also the case for a body of arbitrary nonspherical shape

In the presence of the expelled negative charge we a
that, in general, the surface of the body will still not be
equipotential surface, and hence that electric fields will e
outside the superconductor. This is seen as follows: we
fine

f̃~rW !5f~rW !2f0~rW !14plL
2r0 , ~53!

which obeys the differential equation

f̃~rW !5lL
2¹2f̃~rW ! ~54a!

inside the body, and

¹2f̃~rW !50 ~54b!

outside. Furthermore, bothf̃ and its normal derivative
]f̃/]n are continuous on the surface of the body. The fu
tion f̃ satisfying the differential equation~54! is uniquely
determined by specifyingeither f̃ or ]f̃/]n on the surface
of the body. For Eq.~54b! this is well known13; for Eq. ~54a!
it follows similarly from Green’s theorem since for any tw
solutions of Eq.~54a! with the same boundary values the
differenceU(rW) satisfies
18450
by
g

e.
y

ue

t
e-

-

E
V
d3r F u¹W Uu21

U2

lL
2 G5 R

S
U

]U

]n
da; ~55!

henceU is identically zero in the interior. If no electric field
existed outside we would havef5const and]f/]n50 on
the surface of the body, and the functionf̃ would be over-
determined, i.e., there is in general no solution to the diff
ential equation~54! with both f̃ and ]f̃/]n specified on a
closed surface.

To solve the problem in general numerically we sugg
the following procedure. Assume an initial guess forf(rW) on
the surface~for example constant!. Solve the Dirichlet prob-
lem for f̃ inside and outside, and find]f̃/]n at the surface
coming from the inside and the outside, which in general w
not match. Hence]f/]n is discontinuous at the surface
which implies the presence of a surface charge density

s5
1

4p F S ]f

]n D
inside

2S ]f

]n D
outside

G . ~56!

Since we assume no such surface charge is possible in
perconductors it indicates that the initial guess forf(rW) on
the surface was incorrect. We next compute the averag
]f/]n inside and outside the surface, and solve the co
sponding Neumann problem for that boundary condition
side and outside. The resultingf(rW) on the surface will in
general be discontinuous, so we calculate its average com
from inside and outside and solve again the Dirichlet pro
lem with the new boundary condition. Thus solving a s
quence of alternating Dirichlet and Neumann problems
solution should converge to a unique solution with bothf
and]f/]n continuous at the surface.

These considerations also indicate that for supercond
ors of dimensions much larger than the penetration depth
negative charge near the surface will arrange laterally so
to nullify any tangential electric field, and hence that t
surface of the body will be very nearly an equipotential s
face. This is because the surface charge density@Eq. ~56!#
required for it can be achieved by arranging the charge in
surfacelayer of thicknesslL appropriately. In other words
the solution to the differential equations where the surfa
charges in Eq. ~56! is spread out over the layer of thickne
lL andf is very nearly constant on the surface will be t
unique solution for a body of dimensions much larger th
lL . If f is constant on the surface and the body is cha
neutral, no electric field lines can exist outside: for any e
terior electric field line starting on the surface would have
return to another point on the surface, and the integral of
electric field along that line would yield a difference in p
tential at the initial and final points, both on the surfac
Hence we conclude that for a charge neutral supercondu
of large dimensions essentially no electric field lines w
exist outside the superconductor, and it is not possible
detect the nonuniform charge distribution in the interior
measurements outside the superconductor.

Instead, for superconductors of dimensions comparabl
or smaller than the penetration depth the negative cha
2-6
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distribution cannot be regarded as a ‘‘surface charge,’’ an
will not cancel the potential differences at different points
the surface originating in the positive charge. Hence the e
tric field will ‘‘leak out’’ to the exterior of the superconducto
and become observable.

The simplest shape that can give rise to such effect is
ellipsoid of revolution, described by Eq.~51!. For a uni-
formly charged ellipsoid with charge densityr0 the dipole
moment~with respect to the center of mass! is zero, but the
quadrupole moment is given by

Q[E d3rr~rW !~3z22r 2!5
8

15
pa2b~b22a2!r0 . ~57!

For the charge neutral superconductor, if negative charg
expelled towards the surface the charge distribution lo
qualitatively as in Fig. 3. If the dimensions of the body a
not much larger than the penetration depth it is plausible
assume that the negative charge will not rearrange late
but instead will remain approximately uniform. It is cle
from Fig. 3 that the negative charge will give a larger co
tribution to the quadrupole moment than the positive cha
Consequently this will give rise to a netnegativequadrupole
moment for a prolate ellipsoid (b.a with b in the z direc-
tion!, and a netpositive quadrupole moment for an oblat
ellipsoid (b,a).

For body dimensions comparable to but somewhat lar
than the penetration depth we can estimate the quadru
moment assuming charge densityr2 within distancelL of
the surface andr0 in the interior. The net quadrupole mo
ment that results is

Q5
16

15
pa2b~b2a!lLr2 , ~58!

so that it is negative~positive! for a prolate~oblate! ellipsoid.
The electric field at a distancer from the centeroutsidethe
body is of orderE;Q/r 4 and should be measurable.

For a body of dimensions much smaller than the Lond
penetration depth we can estimate the net quadrupole
ment as follows. The charge density@Eq. ~30!# for the ellip-
soid becomes

FIG. 3. Charge density in ellipsoids of revolution of dimensio
comparable to the penetration depth~schematic!. There will be a net
quadrupole moment~negative for prolate, positive for oblate! giv-
ing rise to an electric field outside the superconductor whose m
nitude decays as the fourth power of the distance to the center o
ellipsoid.
18450
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r~r !5
r0

6lL
2 F2a21b2

5
2r 2G ~59!

to ensure charge neutrality, and calculating the integral@Eq.
~57!# over the volume of the ellipsoid yields

Q52
8

1575
pa2b~b2a!~3a313a2b14ab214b3!

r0

lL
2

.

~60!

For small distortion from sphericity, in terms ofR;a;b,

Q52
16

15
pa2b~b2a!lL3F 2

15

r0R3

lL
3 G , ~61!

which is similar to Eq.~58! for R;lL . If we relater0 to r2

using Eq.~59! with r2[r(r 5R) Eqs. ~61! and ~58! differ
by a factor 4/3.

For body shapes with less symmetry than the ellipsoid
dipole moment also becomes possible. As an example,
sider the body of revolution shown in Fig. 4, with radius

r ~z!5a1~b2a!
z

h
~62!

and 0<z<h. For a uniformly charged such body wit
charge densityr the dipole moment relative to (r 50,z
5h/2) is given by

p5
ph2

12
~b22a2!r. ~63!

We assume again that the expelled negative charge
not rearrange laterally for body dimensions not much lar
than the penetration depth. The net dipole moment is t
given by

g-
he

FIG. 4. Charge density in a body of low enough symmetry t
it can give rise to an electric dipole moment~schematic!. For di-
mensions of the body comparable to or smaller than the penetra
depth there will be a net electric dipole moment along the vert
direction giving rise to a dipolar electric field outside the superc
ductor.
2-7
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p5
p

12
r2hFh~b22a2!2h8~b822a82!

a21ab1b2

a821a8b81b82G ,

~64!

with h85h22lL , a85r (lL)2lL , and b85r (h2lL)
2lL , and points along thez direction. The sign ofp is not
simply determined, e.g., forb,a it is generally positive but
can become negative for largeh.

VI. DISCUSSION

We have proposed that the ground state charge distr
tion in superconductors is different from what is conventio
ally assumed. Rather than being uniform and locally cha
neutral as normal metals, we propose that the charge d
bution in superconductors is inhomogeneous, with m
negative charge near the surface and more positive char
the interior, reflecting the fundamental charge asymmetry
matter.

The charge inhomogeneity is a consequence of the
that the superfluid electrons are highly mobile and ha
quantum-mechanical coherence over the macroscopic dim
sions of the sample. These electrons have ‘‘undressed’’ f
the electron-ion and electron-electron interactions9,15 and be-
come completely free-electron-like, except for the pairi
correlations that bindk↑ and2k↓ electrons. The quantum
mechanical lowering of kinetic energy of the light electro
due to delocalization causes the electronic charge densi
be larger near the boundaries of the sample, just as elec
do not remain confined within the dimensions of the posit
nucleus in an ordinary atom.

We argue that the electric field in the interior of superco
ductors is not screened as in ordinary metals because
ground state wave function has ‘‘rigidity,’’ and the macr
scopic quantum-mechanical coherence prevents local de
mations that would screen the electric field. As discusse
Sec. IV, an electric field can exist in a superconductor if
superfluid electrons are delocalized over macroscopic
tances and their velocity has the proper gradient. At fin
temperatures however there are also excited quasipart
that are not macroscopically coherent, and one may won
why they do not screen the electric field. We suggest t
they are unable to screen the interior field because they
positively charged,16 and as a consequence they are a
pushed out towards the surface.

In the Meissner effect the supercurrents can shield
magnetic field so that it is zero in the interior of the sup
conductor only if the body’s dimensions are larger than
penetration depth; otherwise, the magnetic field penetr
the superconductor. Similarly, we have argued that the ne
tive charge can shield the electric field so that it is zero in
18450
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exterior of the superconductor if the body’s dimensions a
larger than the penetration depth; otherwise, the electric fi
can leak outfrom the superconductor to the exterior, unle
the body has perfect spherical symmetry.

The latter fact should allow for an experimental detecti
of these electric fields around small superconducting p
ticles of nonspherical shape. Remarkably, very recen
Moro et al. reported on the detection of spontaneous elec
dipole moments in Nb clusters17 at low temperatures. Thei
observations that the effect is strongest forevennumber of
electrons in the cluster and that it occurs only at low te
peratures suggests that the effect is related
superconductivity,17 as proposed by the authors. Moroet al.
concluded from their observations that an internal elec
field in the interior of the metal cluster of the order
106 V/cm exists, and stressed that such an internal elec
field cannot occur in an ordinary metal and suggests a
gidity’’ of the electronic wave functions as well as a colle
tive effect. The theory discussed here suggests that di
moments should arise from clusters of irregular shape, s
as shown in Fig. 4. Experimentally, the relation between
measured dipole moment and the shape of the cluster ha
been examined, and it would be interesting to do so to co
pare with predictions of this theory. Concerning the mag
tude of the expected effect, in Sec. I we estimated a m
mum electric field for Nb comparable to the one inferred
Moro et al.under the assumption that the energyẽ in Eq. ~7!
is the condensation energy. However, the magnitude of
electric field will be much smaller for cluster dimension
smaller than the penetration depth according to the resul
Sec. III, so that our prediction may be inconsistent with t
observation unlessẽ is assumed to be much larger than t
condensation energy.

For small clusters of more regular shape such as ellips
of revolution, no dipole moment but a quadrupole mome
should be observed, as discussed earlier. An experime
determination of quadrupole moments in superconduc
metal clusters has not been reported, and it would be in
esting to search for this effect to compare with the the
discussed here. For example, it has been reported tha
clusters adopt prolate geometries.18 If so, according to the
theory discussed here tin clusters at low temperatures sh
exhibit anegativequadrupole moment. Further consequenc
of this physics will be discussed in future work.
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