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Charge expulsion and electric field in superconductors
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The theory of hole superconductivity predicts that when a metal goes superconducting negative charge is
expelled from its interior towards the surface. As a consequence the superconductor in its ground state is
predicted to have a nonhomogeneous charge distribution and an outward pointing electric field in its interior.
Here we propose equations to describe the behavior of the charge density and electric field in superconductors,
and solve them for a spherical geometry. The magnitude of the predicted interior electric field depends on
superconducting parameters such as the condensation energy and the London penetration depth and is found to
be of order 16 V/icm. A physical interpretation of the result is given. It is predicted that for small supercon-
ducting bodiegcompared to the penetration dep#n electric fieldoutsidethe superconductor should result
from this physics. This may explain a recent experimental observation in Nb metal clusters.
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[. INTRODUCTION don penetration depth, . Assume that an amount of charge
g moves from the interior to the surface, resulting in a uni-
In the currently accepted understanding of supercondudorm charge distributiom, in the interior:
tivity no electric fields exist in superconductors in the ab-
sence of electric curreria “Bernoulli potential” is expected 3q
to exist in the presence of a nonuniform superculjefhe pPo=— 3
London brothers originally proposed a set of equations to 4mR

describe superconductivity that allowed for the presence O)S\s we discuss lateq is negative and resides within a Lon-

an electric field within a penetration depth of the surface of g, penetration depth of the surface, with a volume charge
superconductor. However H. London failed to detect such a@ensity ’

electric field experimentally. Having confidence in his
brother’s experimental result, F. London modified the theory
and discarded one of their original equations, and as a con- p_= Q __ 3 Ep ) 2)
sequence the possibility of an electric field in superconduct- 4R\ 3N

ors is no longer discussed in London’s definitive work.

As is well known, normal metals allow for the existence For A\ <R we can also think of this charge as a “surface
of magnetic fields but no electric fields in their interior. Su- charge density”
perconductorgtype ) do not allow magnetic fields in their
interior, but magnetic fields can exist within a penetration q
depth of the surface. Based on the theory of hole o= AmR2
superconductivity® we have recently proposed that when a &

metal goes superconducting negative charge is expelled frofnis syrface charge densityrist confined within a Thomas-

its interior towards the surfaceHere we discuss the equa- Fermi screening length of the surface as excess charge would
tions governing the charge and electric field distribution in

superconductors resulting from this physics. The possibility
that a superconductor may have an electric field in its interior
has not been discussed in other theoretical frameworks to our
knowledge; it is, however, a necessary consequence of the
fundamental electron-hole asymmetry of condensed nfatter,
and the resulting “giant atom” description of
superconductofsthat results from the theory of hole super-
conductivity.

(€Y

:p_)\L. (3)

II. ENERGETICS

The qualitative picture of a superconductor proposed in
Refs. 7 and 9 is shown in Fig. 1: it looks like a giant atom, F|G. 1. Schematic picture of a spherical superconducting bodly.
with a higher density of negative charge near the surface andegative charge is expelled from the bulk to the surface. As a
higher density of positive charge in the intefiConsider a  consequence, an outward-pointing electric field exists in the inte-
superconducting sphere of radiBsnuch larger than its Lon- rior.
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be in ordinary metals, but within the much thicker surface

layer defined by the penetration depth. €= i, (10
The electric field in the interior is given by Ns
and Eq.(8) becomes
E(r)=—%r, (4) 10 € 12
p-=eni 3 5| (11)
and the inhomogeneous charge distribution gives rise to a ©
cost in Coulomb energy relating the negative excess charge density in the surface
layer to the superfluid density, and the ratio of the conden-
Uoe fR 3 E(r)? B 9 5 sation energy of an electranto its rest energy, showing that
= ), %8 T IR ®) the excess charge density is a small fraction of the superfluid

density. The surface charge densitys given by Eq.(3), and
under the assumption; <R. For a spherical geometry no the maximum electric field attained within a penetration
electric field exists outside the superconductassuming |ength of the surface of the superconductor is
charge neutrality
In the superconducting state, the energy per unit volume Emax=—4mo=—4w\ p_, (12

is lowered by the superconducting condensation energy. Thaend is also independent of the sample’s dimensions.

theory of hole superconductivity predicts that the charge ex- As an example appropriate for high, cuprates we take
pulsion describe above is a necessary consequence of super-_ 2000 A 'pld' ppf P Eq(9 ﬁ d densit
conductivity. Hence the Coulomb energy cdBg. (5)] is AL= 4 yielding, from Eq( .)’ a superfiuid densitns

) ~. =7.1x10 * electrons/AR. Assuming a condensation energy
balanced by an energy gain due to the charge expulgion, o¢ 190 ,ev per unit cell and a unit cell volume of 40°A
per unit volume, which is related but not necessarily equal t ields e=3.5 meV per superfluid electron, and =—1.5

the condensation energy of th_e superconductor. Equating th 10~*n.e so there is roughly one extra electron per 10 000
energy gain to the electrostatic energy cost, superfluid electrons in the outer layer. The surface charge

¢ 4 density isc=—23.5x10 ' C/cn?, and the maximum elec-
— = _—7R% (6) tric field near the surface iy a,=3.9x 10° V/cm. The po-
1R 3 tential difference between the center of the sphere and a
yields, for the “surface charge density,” point within a penetration depth of the surface As/
=EaR/2, so approximately 4000000 V for a sample of
5] 1-cm radius.
i ol U (7) As another example, for Nb the thermodynamic critical

. ) L _field is H,=1980 G, so the condensation energyis1.56
independent of the sphere’s radius. This indicates that if the 15 erg/cn?. From Eq.(7) the surface charge density is
physics discussed here indeed exists in superconductors, the- g g« 108 Clcn?, and takingh, =400 A for the pen-
charge density in the surface layer is an intensive quan- gtration depth yieldp _=0.017 C/cr for the surface layer

f[ity det_ermined by intrinsig properties of the superconducto_rvmume charge density, corresponding to approximately two
in particular the penetration depth and the thermodynamigycess electrons per million Nb atoms in the outer layer. The
critical field H; (which gives the condensation energin- maximum electric field near the surface from H42) is
stead, the interior positive charge dengityis not intensive Emax=0.77X 10° V/icm. This is not very different from the
but decreases with increasing radiits The electric field  agtimate for the high, case because the effects of a smaller
close to the surface, given by E@) for r~R, is also inde-  ¢ondensation energy and a smaller London penetration depth

pendent of the body’s dimensions. o partially compensate each other.
From Egs.(3) and (7) the volume charge density in the

surface layer is given by Ill. ELECTRIC FIELD EQUATIONS

1/2

5 . @® We start with the London equation for the supercurrent
_=— €
g 6\ . ng?.
_ _ j J=— A (13
Using the expression for the London penetration depth meC
1 4mn.e? with A the magnetic vector potential. Following the
== —52 9 Londong we assume thaA satisfies the Lorenz gauge con-
AL meC dition
with m, the free electron mass,the electron chargénega- 196
tive), andng the superfluid density per unit volume, and re- V.-A+ S EZO' (14)
placing’e in terms of the energy gained per superfluid elec-
tron € yields with ¢ the electric potential. The electric field is given by
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A S22 2
Eo_vg-R 15 $(1) = po(1) FALVZ(1), (233

V2po(r)=—4 23b
Using the continuity equation Po(1) ho (23b)

in the interior, and

o L (16)
at’ V2(r)=0, (230
and applying the divergence operator to both sides of Eq. )
(13) and using the gauge conditidkq. (14)] yields V2¢ho(r)=0 (230
) meC2 dp in the exterior of the body. Furthermore we assume that no

(17 surface charges can exist in the superconductor, and hence

a nge? Jt that both¢ and its normal derivativé¢/dn are continuous
hence on the surface of the body, as are of coufgeanddgq/on.
Note that the existence of an electric field in the interior
. mec? . R of the superconductor implies neither a time variation of the
(r,t)=— o p(r,t)+ ¢o(r). (18 current, as one would expect in a “perfect conductor,” nor

s even theexistenceof a current as in an ordinary metal. Tak-

The London brothers postulated Ea8) with ¢4(r)=0 as a ing th_e time d_erivative of Eq(13) and using the Maxwell
possible equation applicable to superconductdysder sta- €auation(15) yields
tionary conditions,

a3 ne€® . .
(1) =—4mIp() (19) A m, (VOTE) 24
and using Maxwell's equation so that in a stationary situation there can be an electric field
V. E(F)=amp(P), (20 thatis derivable from a potentiaE( — V ¢) and it does not
lead to a time-varying supercurrent. Whether a stationary
Egs.(15) and(19) yield supercurrent exists or not depends on the magnetic vector
R rey = potential A through Eq.(13) and not on the electric field.
p(r)=N{Vp(r), (219 In a spherical geometry, the solution of Eg§2a is
E(r)=N\2V2E(r), 21 sinh(r/\)
(N =\V2E(T) (21 p(r) = po— k2 (25

r
which imply that a nonzero charge density and an electric

field can exist within a penetration depth of the surface of theand for charge neutrality the constadnis given by
superconductor but not in the interior. H. London attempted

to measure the electric field predicted by E2{1) by mea- 1pR® 1

suring the change in capacitance of a capacitor with super- -3 Z2 f(RIN)’ (263
conducting plates when it is cooled beldw.® However, he -

failed to detect any effect. f(x) = x coshx— sinhx. (26b)

Here we propose that E@L8) is valid for superconduct-
ors with a nonzerog,(r) resulting from a uniform charge For R>\, the charge density at the surface is
densityp, deep in the interior of the superconductor, as dis-

cussed in the previous section. Equati¢d$) and (18) then _ 1R} R
become p(R)=po 1= 5+ 3, PO 27)
) =po+N2V2p(r), 22 in accordance with Eqs(l) and (2), and forr<R—\,
P poTALYR D (229 p(r)~po. The electric field is given by
E(r)=Eq(r)+\2V2E(r), (22 . . 1 = teno]. .
s - - r)=zmpo| 1= =35 r.
(1) =—4mNEp(1)+ bo(T), (229 3 r3 F(RIA)

It goes to zero at =R and is maximum at a distance of a

with Eo(r)=—Vyo(r) and V-Ey(r)=4mp,. We propose genetration depth inside the surface, given by

that these equations hold for the interior of superconductor

of arbitrary shape in the absence of magnetic fields and elec- 4

tric currents, withp, a positive number determined by the Emax~ 3 TPoR=—4m\ p(R), (29
microscopic parameters of the superconductor as well as the

geometry, as discussed in Sec. Il. The potential obeys in agreement with Eq12) for p(R)=p_, as expected.
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LR RN AN RN R tronic charge will rearrange to nullify such a field. How can
5 (@ the existence of an electric field in a superconductor be un-
derstood?

0.5

0.0F Consider Eq(24). It states that no electric current will be
a L ] generated in the presence of an interior electric field, pro-
3 C ] vided the field derives from a potentigl. Now an electric
0.5 — field exerts a force on electrons, so why is it that electrons in
C ] the superconductor do not get accelerated by the interior
1.0 _T. bl i L ._.— electric field and generate an electric current?
0.0 0.2 0.4 0.6 0.8 1.0 The Lorentz force equation in the absence of a magnetic
r/R field
SERRN RN RN BN B B dv .
-0 S5 R/ -1090 3 Me gy —©E (32)
0.8 — —
E 10 = indicates that the velocity of an electron will change in the
UJE 0.6 e presence of an electric field. From the relation between ve-
O 0.4 3 locity and current
o 3.5 ]
0.2~ — J=eny (33
0 P e S S T I
0-9%5 o!z 0.4 06 08 1_0' = one may be tempted to conclude that E@2) and(33) are

r/R incompatible with Eq.(24). However, this isnot the case,
because Eq.24) is alocal time derivative and Eq32) is a

FIG. 2. Radial dependence of the charge der(sityaind electric  total time derivative. Using the relatidh
field (b) for R/A =0.5,1,3.5,10, and 10@ome numbers next to the

lines). The electric field increases monotonically with increasing do v 2
R/\, . The charge density at the origin is smallest R¥n, =100, — = —+V——0X(VX0) (34)
and decreases with decreasRf\| for R/A | <3.5. dt 4t 2

we conclude that a stationary situation with an electric field

Figure 2 shows the radial dependence of the charge deri‘ﬁ the interior of the superconductor is indeed possible, pro-
sity and electric field for various values Bf\| . When the vided that P P P

dimensions of the sample are much larger than the penetra-

tion depth there is a small uniform positive charge density in . m
the interior and the electric field increases linearly towards E=—
the surface. The compensating negative charge resides within e
a penetration length of the surface and the electric field drops . .

to zero in that region. As the dimensions of the sample de- If we assume that the superfluid electrons traverse circular
crease the positive charge density in the interior increase%rb'ts with speed(r) we have
and is maximum folR/\| ~3.5, wherep,~—0.56p_, and 2

decreases again for even smaller samples. This is under the ﬁL—Jx(ﬁx5)= -
assumption that superconducting properties are not affected 2

by the size of the sample, i.ea,. and\ | are assumed inde- d th d is obtained f E d(28
pendent ofR. In the limit R/A <1 the charge density is and the speed is obtained from E¢S5) and (28) as

v? L L L
V?—UX(VXU) . (35

2
0 (r)F, (36)

given by 3
vz(r):_fTreporz _R_ f(r/nD) , 37
Po 3 3 Mg r3 f(R/)\L)
p<r>=—2[—R2—r2}, (30)
BAILD which of course simply describes the balance between cen-

: . - tripetal acceleration and electric Lorentz force
so that it changes sign atR=0.77, and the electric field by P

Mev? E (38)
- . 2Tpo _, 5 - r=—e,
(r)_E)\_E[R —re]r. (31

as appropriate for a circular orbit. Deep in the interior of the
superconductor Eq.37) describes a “rigid rotation” of the
IV. MICROSCOPIC INTERPRETATION superfluid,v (r) = or, with constant angular velocity

The existence of an electric field in the interior of a su- Arpee) 12
perconductor may seem surprising. In normal metals, electric w:( _2TPo ) ] (39)
fields cannot exist in the interior because the mobile elec- 3me
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As we approach the surface the angular velocity decreases tehere¢(r) follows from Eq.(23b). The total energy of the
zero due to the screening of the electric field by the negativelectron is the sum of the kinetic and potential energy,
charge in the surface layer.
We conclude from this interpretation that the “rigidity” of 1 , 2 )
the wave functiofi that allows for an electric field in the Etot=5Mev ™~ 3 7poeI”, (46)
interior arises from the fact that superfluid electrons traverse
macroscopic orbits at high speed; a radial electric field willand is a constant of motion. Indeed, E46) is the same as
not change the radial speed of electrons for the same reasdy. (44b), with the integration constark=2E;,;/m,.. The
that an orbiting planet is not attracted towards the sun: thallowed values ok are such that the maximum elongation
radial force provides the centripetal acceleration for the ort ., for which v goes to zero obeys,,,,=R. Whenk is
bital motion. such thatr ., approachesR, the motion is slightly faster
However, one may also ask: if there is a finite velocity asthan in the harmonic oscillator potential near the region of
given by Eq.(37), should not there be a finite current and anmaximum elongatiohas given by Eq(44a], due to screen-
associated magnetic field? In fact E§3) is an oversimpli-  ing by the negative charge near the surface. For sRyal|
fication, which assumes that all electrons at positianove  instead the velocity is very different than E@4b) and is

with the same velocity . However, electrons also have a 91Ven by
spin quantum number. As the simplest resolution to this

question we may assume that the velocity field for spin di- 24 2mepo 2 g2 f (47
rection o (with respect to a chosen quantization gabeys v 15me\? 20
JU( F)= —J_U( F), (40 Also note that an electron that moves in a harmonic oscilla-

tor potential does not give rise to a uniform charge density,

but rather the electron density and hence negative charge are

largest near the region of maximum classical elongation.

n This is consistent with the assumption that the charge density

J=e—=(v,+v)) (41)  in the superconductor is positive in the interior and negative
2 near the surface. Similarly, circular “Bohr orbits” in a har-

will be zero and no magnetic field will be generated: how-Mmonic oscillator potential “bunch up” for a large radius as

with v, given by Eq.(37). In that case the totatharge
current

ever, there will be &pin current discu_ssed in Ref. 9 giving rise to a larger negative charge
density near the surface.
5o _eMss s 42 The assumptio’V X v =0 implies a linear motion where
Spi“_eE(UT_Ul)' (42) the electrons oscillate through the origin. Relaxing this con-

o o ) dition many other trajectories become possible. Deep in the
which is not zero. The direction of the spin current would bejnterior the motion is simply described by independent har-
determined by spin-orbit coupling as discussed in Ref. 9. monic motion in the three directions with a frequency given

A different simple solution of Eq(39) is obtained under  py Eq.(39), which in general describes elliptical orbits. The
the assumptio’V Xv =0. In that case, we have simply linear oscillator and circular motion described above are two
particular examples of these orbits where it is simple to ob-
tain the corrections due to the outer layer of negative charge,
as given by Eqs(44g and(37).

_)_%.) 2
E= Zer , (43

and the velocity profile is readily obtained by integration of
Eq. (28) as V. SUPERCONDUCTORS OF GENERAL SHAPE

From Eq.(22a9 we have
R3 sinh(r/\ )

13 f(RIN)

T€po ,

e

4
vz(r)=§ - +k, (44a

Pp(N)=\_V2p(r) (48)

with k an integration constant. Deep in the interior of theqr % 1) = (1) — p,.

Laue has shown rigurousfthat for a
superconductor we havgor R/\; >1)

body of arbitrary shape the solution of E@8) decays to
Arrpee zero rapidly towards the interior, on the length scale of the
2_ZTPo 24k b penetration depth\; . Hence we can conclude that, quite
v r : (44b) . ;
3me generally for superconductors of dimensions much larger

Equation(44b) has a simple physical interpretation. The po- than \_, the charge distribution in the int_erior is constgnt
tential in which the electron moves in the interior of the @Nd €qual iy, and that the expelled negative charge resides

superconductor is a harmonic oscillator potential: within A of the surface.
Similarly, using that

2
U(r)=edo(r)=— 3 mpoer”, (45 VX (VX Eq) = V(¥ o)~ V2E, (49
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. u?
[VU|?+ —
A

as well asVxEy=0 andV-Ey=const, we conclude that f ,
d°r
v L

V2E,=0 and, hence from Eq22b),

_ fﬁuaud .

N T henceU is identically zero in the interior. If no electric field
VAE—Eq)= F(E_EO)' (50 existed outside we would hawe=const andd¢/dn=0 on
L ~
the surface of the body, and the functignwould be over-
This equatio_n is_ the_same as the_ London equation satisfied letermined, i.e., there is in general no solution to the differ-
t_he magnetic f|eld in non-rotating superconductors, givingential equation(54) with both é and 9é/dn specified on a
rise to the Meissner effect. Again, Laue showethat the  josed surface.
vector quantity satisfying Eq(50) decays rapidly to zero 1o solve the problem in general numerically we suggest
&ve;]r a \S'Stan?‘el 0; aﬂf)etn;atratmn deptz frf)m thf S‘éf{""ceme following procedure. Assume an initial guessic(f) on
ence we conclude that for supercoh 9‘3 or.s O_ abitral{he surfacefor example constajptSolve the Dirichlet prob-
shape away form the surface the electric field is giverlegy o, for ¢ inside and outside, and fingkp/Jn at the surface
originating in the.umf.orm charge.dlstnt.)utmpo. For ex- . coming from the inside and the outside, which in general will
ample, for an e_II|p50|d of revolution with symmetry axis not match. Hencel¢/dn is discontinuous at the surface
along thez direction, which implies the presence of a surface charge density

2 2 2
X“+ z
2y + ) =1, (51) o= i @ — @ . (56)
a b Aw|\on). an .
inside outsid
the electric field is given b Since we assume no such surface charge is possible in su-
2 1 perconductors it indicates that the initial guess mf) on
(EO)x:_ﬂ'po(S—_)Xv (52a  the surface was incorrect. We next compute the average of
3 P d¢lon inside and outside the surface, and solve the corre-

sponding Neumann problem for that boundary condition in-

(Eo) :fw Z (52b) side and outside. The resulting(r) on the surface will in
0/z=3 7Po p’ general be discontinuous, so we calculate its average coming
from inside and outside and solve again the Dirichlet prob-
with p=Db/a. Equation(52) is approximately valid for 0.8 lem with the new boundary condition. Thus solving a se-
<p<5. In particular, the surface of a uniformly charged quence of alternating Dirichlet and Neumann problems the
ellipsoid isnot an equipotential surface, and this is of coursesolution should converge to a unique solution with bgth
also the case for a body of arbitrary nonspherical shape. andd¢/dn continuous at the surface.

In the presence of the expelled negative charge we argue These considerations also indicate that for superconduct-
that, in general, the surface of the body will still not be anors of dimensions much larger than the penetration depth the
equipotential surface, and hence that electric fields will exishegative charge near the surface will arrange laterally so as
outside the superconductor. This is seen as follows: we dde nullify any tangential electric field, and hence that the
fine surface of the body will be very nearly an equipotential sur-

face. This is because the surface charge denEity (56)]
?i’(F)Z ¢,(F)_ ¢>0(F) +47.,)\Ep0, (53 required for it can be achieved by arranging the charge in the
surfacelayer of thicknessk| appropriately. In other words,
which obeys the differential equation the solution to the differential equations where the surface
chargeo in Eq. (56) is spread out over the layer of thickness
:b(F)ZKEVZTﬁ(F) (549 AL and ¢ is very nearly constant on the surface will be the
unique solution for a body of dimensions much larger than
inside the body, and L. If ¢ is constant on the surface and the body is charge
neutral, no electric field lines can exist outside: for any ex-
VZh(r)=0 (54p  terior electric field line starting on the surface would have to
return to another point on the surface, and the integral of the

outside. Furthermore, botlgp and its normal derivative electric field along that line would yield a difference in po-

Jdlan are continuous on the surface of the body. The funciential at the initial and final points, both on the surface.

tion % satisfving the diff ial 064 | iquel Hence we conclude that for a charge neutral superconductor
ion ¢ satisfying the differential equatiob4) is uniquely of large dimensions essentially no electric field lines will

determined by specifyingither ¢ or d¢/dn on the surface exist outside the superconductor, and it is not possible to
of the body. For Eq(54b) this is well knowrt®; for Eq. (548 detect the nonuniform charge distribution in the interior by
it follows similarly from Green'’s theorem since for any two measurements outside the superconductor.

solutions of Eq.(54a with the same boundary values their  |nstead, for superconductors of dimensions comparable to
differenceU(r) satisfies or smaller than the penetration depth the negative charge
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Prolate

@ Oblate
T FETIIN

Q<0

FIG. 3. Charge density in ellipsoids of revolution of dimensions
comparable to the penetration defglchematit There will be a net
guadrupole momeninegative for prolate, positive for oblatgiv-
ing rise to an electric field outside the superconductor whose mag-
nitude decays as the fourth power of the distance to the center of the
ellipsoid.

FIG. 4. Charge density in a body of low enough symmetry that

distribution cannot be regarded as a “surface charge,” and itt €@ give rise to an electric dipole momefschematig For di-
will not cancel the potential differences at different points of Mensions of the body comparable to or smaller than the penetration
the surface originating in the positive charge. Hence the eleciePth there will be a net electric dipole moment along the vertical
tric field will “leak out” to the exterior of the superconductor direction giving rise to a dipolar electric field outside the supercon-
and become observable. ductor.

The simplest shape that can give rise to such effect is an

ellipsoid of revolution, described by Ed@51). For a uni- (r)—ﬂ 2a%+ bz_r2 -
formly charged ellipsoid with charge density the dipole p= 6)\5 5
moment(with respect to the center of mads zero, but the
quadrupole moment is given by to ensure charge neutrality, and calculating the inteldggl
(57)] over the volume of the ellipsoid yields
- 8
Q= | d®p(r)(32%2—r2)= —mab(b?>—a?)py. (57) 8
15 _ 2 3 2 2 3,Po
Q——ﬁswa b(b—a)(3a°+3a“b+4ab“+4b )F.

For the charge neutral superconductor, if negative charge is L(60)

expelled towards the surface the charge distribution looks
qualitatively as in Fig. 3. If the dimensions of the body areFor small distortion from sphericity, in terms 8~a~Db,
not much larger than the penetration depth it is plausible to

assume that the negative charge will not rearrange laterally 2 poR®
but instead will remain approximately uniform. It is clear Q:—Eﬂazb(b—a))\LX 153 | (61)
from Fig. 3 that the negative charge will give a larger con- M

iributiontio the q?‘adfup‘."e moment than thg positive charggypich js similar to Eq(58) for R~\ . If we relatepy to p_
Consequently this will give rise to a neegativequadrupole using Eq.(59) with p_=p(r=R) Egs.(61) and (58) differ
moment for a prolate ellipsoidob¢>a with b in the z direc- by a factor 4/3

tion), and a netpositive quadrupole moment for an oblate For body shapes with less symmetry than the ellipsoid, a

ellipsoid (b<a). . dipole moment also becomes possible. As an example, con-
For body dimensions comparable to but somewhat [argegiqer the hody of revolution shown in Fig. 4, with radius
than the penetration depth we can estimate the quadrupole

moment assuming charge density within distance\, of 2
the surface angg in the interior. The net quadrupole mo- r(z)=a+(b—a)ﬁ (62
ment that results is

and O<sz=h. For a uniformly charged such body with

16 charge densityp the dipol t relative tor €0

_ 0 o p pole moment relative tor €0,z
Q=ggmab(b=alip-, 58 Zh2) is given by

so that it is negativépositive for a prolate(oblate ellipsoid. wh? _

The electric field at a distangefrom the centeputsidethe p= f(b —a“)p. (63

body is of orderE~Q/r* and should be measurable.

For a body of dimensions much smaller than the London/Ve assume again that the expelled negative charge does
penetration depth we can estimate the net quadrupole maot rearrange laterally for body dimensions not much larger
ment as follows. The charge densfgq. (30)] for the ellip-  than the penetration depth. The net dipole moment is then
soid becomes given by
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- a2+ ab+ b2 exterior of the superconductor if the body’s dimensions are
p= 1—2p,h h(b?~a% —h'(b'?~a'?)—————1|, larger than the penetration depth; otherwise, the electric field
a’“+a’b’+b canleak outfrom the superconductor to the exterior, unless
64  the body has perfect spherical symmetry.
with h’=h—-2x_, a’=r(\\)—\_, and b’=r(h—X\)) The latter fact should allow for an experimental detection

—\., and points along the direction. The sign op is not ~ Of these electric fields around small superconducting par-
simply determined, e.g., fds<a it is generally positive but ticles of nonspherical shape. Remarkably, very recently

can become negative for large Moro et al. reported on the detection of spontaneous electric
dipole moments in Nb clustérsat low temperatures. Their
VI. DISCUSSION observations that the effect is strongest é@ennumber of

electrons in the cluster and that it occurs only at low tem-

We have proposed that the ground state charge distribyperatures suggests that the effect is related to
tion in superconductors is different from what is convention-superconductivity as proposed by the authors. Magbal.
ally assumed. Rather than being uniform and locally chargeoncluded from their observations that an internal electric
neutral as normal metals, we propose that the charge distriield in the interior of the metal cluster of the order of
bution in superconductors is inhomogeneous, with morel0® VV/cm exists, and stressed that such an internal electric
negative charge near the surface and more positive charge field cannot occur in an ordinary metal and suggests a “ri-
the interior, reflecting the fundamental charge asymmetry ogjidity” of the electronic wave functions as well as a collec-
matter. tive effect. The theory discussed here suggests that dipole

The charge inhomogeneity is a consequence of the faghoments should arise from clusters of irregular shape, such
that the superfluid electrons are highly mobile and haveas shown in Fig. 4. Experimentally, the relation between the
quantum-mechanical coherence over the macroscopic dimemeasured dipole moment and the shape of the cluster has not
sions of the sample. These electrons have “undressed” frorbeen examined, and it would be interesting to do so to com-
the electron-ion and electron-electron interactidiand be-  pare with predictions of this theory. Concerning the magni-
come completely free-electron-like, except for the pairingtude of the expected effect, in Sec. | we estimated a maxi-
correlations that bin&?T and —k| electrons. The quantum- mum electric field for Nb comparable to the one inferred by
mechanical lowering of kinetic energy of the light electrons oo et al. under the assumption that the enetgin Eq. (7)
due to delocalization causes the electronic charge density {9 the condensation energy. However, the magnitude of the
be larger near the boundaries of the sample, just as electrogfectric field will be much smaller for cluster dimensions
do not remain confined within the dimensions of the positivesmajler than the penetration depth according to the results in
nucleus in an ordinary atom. Sec. Ill, so that our prediction may be inconsistent with the

We argue that the eleciric f.'eld m_the interior of SUPEICON- s rvation unlese is assumed to be much larger than the
ductors is not screened as in ordinary metals because ttz:%ndensation energy

grouf‘d state wave funct.|on has “rigidity,” and the macro- For small clusters of more regular shape such as ellipsoids
scopic quantum-mechanical coherence prevents local def(')(r)—f revolution, no dipole moment but a quadrupole moment

mations that would screen the electric field. As discussed iy Suld be observed. as discussed earlier. An experimental

S S e S ot & t<determinton of quactupole moments in Superconduciing
tar?ces and their velocity has the oroper aradient Aﬁ finitemetal clusters has not been reported, and it would be inter-
y Proper g ' esting to search for this effect to compare with the theory

:ﬁ;ntpaergt#éfsmgg\rgi\éir iE:ha?Ire c%rk?e?eli? :ﬁg'tggeq#]‘;s'F\’/\i;ﬂg'gﬁ’scussed here. For example, it has been reported that tin
picaty ' y lusters adopt prolate geometri€sif so, according to the

why they do not screen the electric field. We suggest th eory discussed here tin clusters at low temperatures should

they are unable to6screen the interior field because they Ahibit anegativequadrupole moment. Further consequences
positively charged® and as a consequence they are alsg

pushed out towards the surface. of this physics will be discussed in future work.

In the Meissner effect the supercurrents can shield the
magnetic field so that it is zero in the interior of the super- ACKNOWLEDGMENT
conductor only if the body’s dimensions are larger than the
penetration depth; otherwise, the magnetic field penetrates The author is grateful to Michel Viret for calling Ref. 17
the superconductor. Similarly, we have argued that the negde his attention, and to W.A. de Heer for a stimulating dis-
tive charge can shield the electric field so that it is zero in theussion.
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