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Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems
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Recently, the stochastic series expans®8E has been proposed as a powerful Monte Carlo method, which
allows simulations at lowTl for quantum-spin systems. We show that the SSE allows us to compute the
magnetic conductance for various one-dimensional spin systems without further approximations. We consider
various modifications of the anisotropic Heisenberg chain. We recover the Kane-Fisher scaling for one impurity
in a Luttinger liquid and study the influence of noninteracting leads for the conductance of an interacting
system.
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I. INTRODUCTION we will compute the conductance in a hard-core boson lattice
model by the aid of this method.

In general, integrable one-dimensional models show an
ideally conducting behavior in contrast to most real three- [l. EXPLANATION OF THE METHOD
dimensional materiats There has been intensive investiga-
tion of the influence of the integrability on the conductivity
for various model systems* The conductance of conduct- ~ We consider the anisotropicxz Hamiltonian
ing, nearly one-dimensional devices is, on the other hand, of
substantial experimental interest. Over the last years it has . . s
become possible to fabricate mesoscopic devicassh as Hixz= n§=:1 ISy S 1t Sy She )24 35,8041
carbon nanotubes which can be viewed as a realization of
systems with ballistic transport properties. Therefore thaevhere theS; =S'+iS’ are the raising/lowering operators
computation of dynamical transport quantities has receivegor spin-1/2 Heisenberg spins. The spin-current operatat
considerable interest. a given siten follows from the continuity equation and is

A basic approach for the study of the conductance hagiven by (see, e.g., Ref.)4
been in the past via the Bosonization of appropriate model
system$® valid in the low-temperature limit. Numerical in=i3,e(S'Sy. 1~ S, S5, )/(24).
studies have so far involved the density-matrix
renormalization-group(DMRG) techniqué'® and Monte As a perturbation we will use a local “voltage drop.” In the
Carlo (MC).212|n the case of Ref9 a reduced set of states hard-core boson notation this corresponds to a step in chemi-
was used in order to evaluate the dynamics; in Ref. 10, &al potential—at siten—which is equivalent to
phenomenological formula by SushKkdwvas used to com-
pute the conductance. The simulations by Refs. 11 and 12 = :ez &
use an effective Bosonized Hamiltonian as a starting point. m TS

Here we will discuss how to obtain the conductance with ) )
quantum Monte CarléQMC) on the original lattice Hamil- in terms of the Heisenberg-spin operators.
tonian. For this purpose the conductance will be calculated The conductance is then defined as the dynamical re-
on the imaginary frequency axis. We will show that a reliableSPonse of the current operator at sitto the voltage drop at
extrapolation to zero frequency can be performed at finite bu$it€ Y-
low temperatures. We will thus obtain approximation-free i
results for the dynamics of inhomogeneous quantum-spin T T
systems at low but finite temperatures, within a well defined g:=lim Reg Jo (LD, Pyldt @
numerical accuracy defined by the statistics of the MC sam-
pling and the accuracy of the zero-frequency extrapolation.For open boundary conditiongOBC’s) the relation

By the Jordan-Wigner transform a one-dimensional spini[H,P,]=7%]j, holds and a partial integration of Edl)
less Fermionic system can be mapped to a hard-core bosgields
model. Hence it is possible to calculate the conductance for a _
Fermionic system in a Bosonic one. This is vitally important g ] . T .
since boson models can be easily analyzed by Monte Carlo g=Re{(—|z) lﬁ(mx'PyD_ fo eIZt<[Jx(t)vJy]>dt”-
simulations where the sign problem is absent. However, for
an evaluation of the conductance one requires a highly effidsing Re@b)=Rea Reb—Imalmb in the above equation
cient simulation method which performs well at low tem- gives two contributions to the conductance. With the defini-
peratures. Recently,such a powerful method has been pro- tion of the generalized Drude weight for two operatarand
posed: the stochastic series expandi868B. In this paper B,

A. Definition of the conductance

N-1

z—0
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((AB))EIim(—iz)Jxe‘“(AA(t)AB}dt,
z—0 0

where AA=A—(A) one can show using the Lehmann
representatiof? that the first contribution (Rea Reb) reads

(ixiy))Re(—iz) " *=((jxiy)) m6(Rez). @)

The second factor in expression2) [namely,
Re(—iz) 1] gives rise to a delta function, such that £g)
should be the dominating contributiongoThe first factor of
expression(2) (namely, ((jyj,))) is closely related to the

Drude pealD =((JJ))/N whereJ=X,j, is the total current ) 0.2
operator. olJ, /7]
From the discussion of the Drude pédkve know that
under OBC'’s the Drude peak is zdioecausd can be writ- FIG. 1. The conductance of they chain atT=0.01 versus fre-

ten as the response to a static twist which can be removed Isjgency on the imaginary axis for various distances y=2n,n
a gauge transformation of the form e@[(nszh) (see Ref. e N) between voltage drofy) and current measuremerx)(
16)] whereas it is nonzero for periodic boundary conditions
(PBC’s). In our case((j4jy)) is zero under OBC'Yuse a Rez=0) is plotted for the free fermion case in Fig. 1. One
gauge transform eXifEn>ySﬁ)]- Under PBC’s we find, be- sees that the conductance in the limit-0 approaches the
cause of translational invariance and because of the continuniversal valuee?/h. Here we emphasize that a spatial sepa-
ity equation, that(j,j,)) depends neither or nory. This ration of \_/oltage drop _and current measurement Ieads_ to an
implies D=N((j«j,)). Since the Drude peak is finiteat exponential decrease g(w) at smallw. Therefore we will
least for the models we are interested e conclude that restrict our attention to the casps-y|=<1 for the rest of the
expression2) vanishes even under PBC’s in the thermody-Paper.
namic limit. So we obtain
. B. Technical details of the MC method
g= Re[(Zﬁ)fl]Ref e[} «(t),jy1)dt. 3 We now turn to some technical details of our simulations.
0 The second formula for the conductance, &, lends itself
Restarting from Eq.(1) we may—again by partial to a study with Monte Carlo simulatiorig requires OBC's.

integration—arrive at another formula, At the Matsubara frequencies, =27M(B8%) "1, M e N we
may use the equivalent expression
i (e
QZRG[%[‘“PX’PyD—('Z)f e|2t<[Px(t),Py]>dtH, .
0 d(wy)=—wy/h Re <Pxpy(|T)>e|wMTdT.
0

The first term in the square brackets does not contribute—as
the potentialsP, and P, commute—and if we restrict our- \ye employ a standard QMC meth¢8SE to compute the

selves to Rg=0 we obtain conductance. SincB, is diagonal in theS*-basis, the simu-
1 (= lation of (HKPXHL*“PBQ can be easily performed with the

9= —Imzlm(%J' ei2‘<[Px(t),Py]>dt)- (4)  help of the SSE**"*®Here, L is the approximation order.

0 One may simply obtaiP,P(i7)) as a linear combination

kp pL- AP -
The latter formula is especially useful for MC simulations as®f the terms(HP,H="*P,) with binomial weight factors

it allows the computation of the conductance in terms of the3(7:K). We found it convenient to assume a Gaussian distri-
diagonalS*-S7 correlators(under OBC'3. bution for theB( 7,k) instead of a binomial one, because the

According to its definition as it is given by Eql) the former is easier to evaluate. The error that we introduce by
conductance might in principle depend on the actual choicdiS replacement is smaller than the statistical errot if

of the positions of the voltage drapand the current mea- — 100. (Note that in our simulations. is typically of the
surementx. Here, we point out that in the limit—0 this is  order of 16-10°.)

not the case. In a rather general situation one can ghew What remains to be done in order to get

ing the continuity equationthat the right-hand side of Eq. -

1) gives the same result for any choice »fandy (see ' :
(Agpgendix n y y( g(wM)z—wM/hfo c0g wyy 7)(PyPy(i7)d7

It is instructive to consider the free fermion case in detail.
We denote thgformal) dependence ox andy by corre- is an integration in the final step. We performed it with the
sponding subscripts. Of course, in a translational invarianSimpson rule and a grid of 809 values.
systemg,, depends only on the difference-y. The con- We are now left with the standard problem of extrapolat-
ductanceg as a function ofw=1I1mz (here and in the sequel ing g() from the Matsubara frequencies, to ®=0. Un-
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FIG. 2. Conductancg as a function ofw. The arrow indicates
the result of the thermodynamic limit. FIG. 3. Monte Carlo datgsymbolg in comparison with the
exact Jordan-Wigner resultiotted lineg. The curves forT=0.02

fortunately, the spacing of the Matsubara frequencies is lin@' offset by 0.1 for clarityWe use OBC'S.

ear inT, so our method becomes unstable when we increase ,
T J,=0 and the hopping parameter alternates;)4, on+1
To see that an application of our MC method makes only= 91 @1d @x)zn+1,2m+2=J2. The energy dispersion is given

sense at low temperatures we compare it to a simple?Y

method: exact diagonalization. Figure 2 showfw) for . —

various system sizel at T=J,/kg. One sees that conver- B =B= \/‘]1+‘]2+2‘]1‘]2C032k)/2

gence withN is rather fastat high .temperatu.resHeng:e ON€ and we assume a positive dispersi@=E; if Kk

can dete”‘t"”@(“’) Ior 0=/ ﬁ "/";:h ?t’;]af\;g'agot%a':jzat'on- e[0,7/2]U[3m/2,27] andE,—E; else. The gafk, is E,

no %Omtpuvsgsl?) f S?TnewF txﬂ'e<YJVI/ ool me r?d S \(/)nr? =E},—E_,atk=* 7/2. The evaluation of the formula for
eeds 1o work at a temperatu x/(2mks), and eve the conductance Ed1) is in principle straightforwardsee

then_exact Q|agonal|zat|on is preferable_as it yigde) in a Appendix B. One obtains the compact result
continuous interval rather than on a discrete set of points.

Hence at high temperatures the MC method is inferior to a e2
simple exact diagonalization. g= %[tanh EoB/2) —tanhE . B/2) —tanHE ,B/2)

In our simulation we make one “MC sweep” between
two measurements which consists of one diagonal update +tanh(E_,B/2)]. (5)
and several loop updatésbetween two measurements. We
are able to run approximately 18weeps. In the case of zero magnetic field this reduces to

e?
C. Test with Jordan-Wigner g= F[tanr( EoB/2)—tanh(E} ,B/2)].

If J,=0 theng(w) can be exactly evaluated—for arbi-

trary system size—not only ai=0 (see below. The T=0 value of the conductance as a function of magnetic

We can exploit this fact in two regards: First, we test ourfield is quantized: It is zero ifB| is smaller than the zero-
MC method by comparing it with the exact curve obtainedfield gapE},, or larger than the zero-field band widEy,
by Jordan-Wigner. The result can be seen in Fig. 3. and it is 1 between these values, and precisely at these values
Second, we can test which frequenciaad hence which it is 1/2 (all values in units ok?/h).
temperatureswe need such that a linear extrapolation can be
carried out without introducing a larger error than the statis- B. Comparison with the Apel-Rice formula
tical one. One sees also which system sizes are needed to
determineg(w) without detectable finite-size error. Our con-
clusion is that our method works fdr<0.02. AtT~0.01 a

system size oN~200-300 is appropriate.

At low temperatures th&xz chain can be described by a
Luttinger liquid. For this model the conductance was ob-
tained by Apel and Rice in the 19864°

2

e 7
I1l. CONDUCTANCE IN VARIOUS SYSTEMS gApeIRice:F m’ (6)
A. Results for a dimerized Jordan-Wigner chain where co9=J,/J,. This formula may be derived from Eq.

One may derive a simple analytical result for the conduc<{4) if we use concrete expressions {&:S/,(i 7)) which are
tance in the free fermion case. Here, we consider the slightiavailable from conformal field theofy.Figure 4 shows our
more difficult case—but also more interesting as the syster@MC results forg(w) on the imaginary axis for thexz
has a gap’—of a dimerized chain with magnetic fieB| i.e., model; in Fig. 5 we display a comparison, as a function of
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FIG. 4. Monte Carlo datasymbolg for various interaction ] )
strengths alf=0.01),/kg (using OBC's and X 10° Monte Carlo ~_FIG. 6. Conductance of the Heisenberg chal—400 sites
sweeps Shown is the conductance as a function of imaginary fre-With one impurity afT =0.01, /kg for different impurity strengths
quency. and positions of voltage drop and current measurentasing

OBC's). A possible extrapolation te =0 is proposed by the dashed
J,, between thay(w=0) extrapolated from Fig. 4, and the 'Nes:

exact Bosonization resu_lt,_Etﬁ). that the conductance is zero. This result cannot be directly
We note that the statistical error of the QMC results pré-,nirmed by Monte Carlo methods since these are necessar-
sented in Fig. 5 does not increase much with the paramet% finite-temperature methods.

Jz. This is due to our using the “directed loops” as de- ~ gqryynately, the scaling behavitwith temperaturgof the
scribed in Ref. 21. The choice for transition probabilities .onquctance is also known. F&r=1/2 one may derive an

which was proposed there makes the SSE algorithm morgyact formula for the conductance by a re-Fermionization
effective. Here the improvement is remarkable. technique®2

BI2mp ,( BI2mp )
! 27T v et 27T
H=H...+B. S where ¢ is the digamma function. So we can compare our
xxz - ZImpENGZ: MC data once again with an exact result. In Fig. 6 we present
i.e., we add an impurity in the middle of the system. Thistwo different QMC results for the conductance on the imagi-
model was studied in a paper by Kane and Fi§hexter, this nary axis of the Heisenberg chain with one impurity, for
kind of model received considerable attention by otherdifferent impurity strengths.
authorsi223-26By an RG approach, Kane and Fisher found For the upper set of curves in Fig. 6 the position of volt-
that the perturbatiorB,,, is relevant for repulsive interac- age drop and the position of the current measuremenx are
tions (i.e., J,>0). This means that at zefb the chemical =Yy=N/2; and for the lower set of curves they are
potential anomaly “cuts” the system into two halves, such=N/2, y=N/2—1. The curves are not as smooth as the ones
in Fig. 4, so we use a quadratic fit from the first three Mat-
I L A subara frequencies instead of a linear extrapolation to esti-
s &2 MC data | mateg(w=0). We also note that the curves with-y=1
- (2-2acos(Jz)/ 1) are better suited for extrapolation than those withy be-
cause the slope ai=0 is smaller. The statistical error is less
than one percent. The result from the extrapolation is given
in Fig. 7 along with the exact curves from EJ). We used
*x system sizes oN=400 for T=0.01J,/kg and N=800 for
> T=0.005), /kg . We performed X 10° MC sweeps. The er-
‘ T ror bars are smaller than the symbol size, so the error that we
i see in the figure is mainly due to our extrapolation method
[and to possible logarithmic finite-temperature corrections to
Eq. (7)]. We see that the quadratic fit tends to underestimate

0 025 05 075 1 the correct value.
AN

C. System with one impurity

g=e?/h , 7)

Now, we consider the Hamiltonian

o

o]

|“>|l'
B

g(w=0) [€°/h]

o
[e]

0.4

. . . D. Inh it
FIG. 5. Conductance of thexz spin chain aflf =0.01, /kg in NNOMOgEneous systems

comparison with the exact result by Apel and Ri&s). (6)] for a Several years after the publication of E6) by Apel and
Luttinger liquid. The Monte Carlo data are obtained by extrapolat-Rice it was generally agreed updri®that it does not reflect
ing the results of Fig. 4 te=0. the (correc) physical behavior one would encounter in an
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FIG. 7. Conductance of the Heisenberg chain with one impurity ) ) ) .
at various temperaturesNE800 for T=0.005), /ks and N FIG. 8. Conductance, in units @f/h, of the Heisenberg chain
=400). MC datasymbol3 are drawn in comparison with the exact With noninteracting leads; see E@). The system size isl=320.

formula (solid lineg by Weisset al. (Ref. 23 for a Luttinger liquid 1€ values for tempera"[ur'égnd size of the inte_racting regiav
at the isotropic poinK =13 (i.e., J,=J,). are given(We use OBC's, T0MC sweeps, ana=y for the volt-

age drop.

experimental realization. Experiments are never performed

on a closed system but on one coupled to reservoirs whictiddle of the system, but this should not help much. The

make it possible for the particles to leave and enter the Sysproblem is that the particles still have to travel a long dis-

tem. These reservoirs can be modeled by attaching two lead@nce until they see the leads. Hemgt@) will be unaffected
consisting of infinite noninteracting spin half chains to ourPY the introduction of leads i is sufficiently large. This

model. expectation is confirmed by the QMC data presented in Fig.
The complete Hamiltonian then reads 8. In this figure the exponential decay @fw) at smallw is
apparent, and the curves illustrate clearly that this decay is
(N+N;=3)/2 induced by the length scalé,—because it becomes stronger
H=H,,(J,=0)+ 2 SESEL g, (8) with increasingN, . It is this decay that prevents us from

n=(N=N;+1)22 discussing largeN, . If we increaseN, the decay becomes

i.e., the interaction is confined to a small region in the middleStronger, hence we need to evaluglgn) for more (and
consisting ofN, sites. This approach has been followed bySmalley frequencies in order to extrag{w=0) reliably. But
many authors, e.g., in Refs. 10 and 29-31. Generally, thémaller frequencies are only available at smaller tempera-

presence of leads yields a conductance which is independeftres. As we cannot decreagemuch below 0.03,/kg we
of J,,%"? namely, restrict ourselves tdl;<<20. If we considered a system with

N,=200(at T=0.01),/kg) we would not see any difference
g=e?/h, from a system without leads, because the difference occurs at
small w.

The data presented in Fig. 8 clearly indicate an upturn of
d(w) for ®—0, indicating thag(w = 0) is unaffected by the
A " = P interaction in the low-temperature limit. Our result may,
of N, a fact which was already reported in Ref. tAsimilar  povever, not be totally convincing, since we can only ana-
effect was also found in the Hubbard mod®lIn the fol-  |yze relatively small interacting regions. One might argue
lowing we will only consider the case &, odd. A detailed  hat the enhanced conductance is not due to the leads but
discussion ofN, even/odd and a comparison with Ref. 10 gimply to the reduced “mean” interaction—which is close to
will be presented elsewhere. zero as only few sites interact. To invalidate this argument

The “natural” choice for current measurement and Vvolt-\ye considered another model. We have performed QMC
age drop would be at the two ends of the interacting regiongjmy|ation of a system where we attach a lead onlypre
But here is caution advised. From Fig. 1—which is again forgjge such that we obtain a chain which is noninteracting in
the free Fermion case—one learns two things: Fgsipes  one half and interacting in the other. For this system we
not depend on the choice afandy. Second, ifx andy are  foung no deviation at all imaginary frequencies from the
some distance apart, convergence withbecomes slow, sjtyation where the interacting region extends over the whole

hence one needs to go to Iow'Erand Iarger system sizes if chain even though there are as many interacting as
one wants to extra@(w =0) reliably. A simple phenomeno- jnteraction-free bonds.

logical explanation for this is the following: If the place of

the measurement is far from the voltage drop the particles _ I . ) . : ,

have to travel a long distance and hence one has to wait aE Spin Hamiltonian with third-nearest-neighbor interaction

long time before one can determiige We can now place Monte Carlo simulations allow the inclusion of long-
both the voltage drop and our current measurement at thenge hopping, and thus breaking the integrability of the pure

in sharp contrast to E@6). The noninteracting semichains—
which we call leads—play the role of reservoirs.
We note that the behavior @f{ w) depends on the parity
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3 \ , In conclusion we have developed a QMC technique which
allows the evaluation of the dc conductance for a wide range
of nonfrustrating quantum-spin chains at low but finite tem-
peratures. We have presented several stringent tests for this
technique, like the Kane-Fisher scaling for the conductance
through an impurity in a Luttinger liquid.

N

APPENDIX A: PROOF THAT THE RIGHT-HAND SIDE OF
EQ. (1) IS INDEPENDENT OF x AND y

g(0=0) [e*/h]

—

79 7y 7y

S N g
\

Here we provide a general argument which relies on the
(physica) assumption that some linear-response functions
are finite in the thermodynamic limit.

J ] ' Theorem: In a spin system Fhe conductancggg does
x3Hx not depend on x and y if the linear response of an operator

FIG. 9. Conductance of the Hamiltonian EE) (with 400 sites, ~Sp t0 @ perturbation R, is bounded in the thermodynamic
T=0.01) as a function ofl,5 for various anisotropies. Squares: limit.
quadratic fit from the first three Matsubara frequencies; diamonds: Proof: )
linear fit from the first six frequenciesWe use OBC'’s, 19MC First we consider li oz 5e'*{[Si(t),Pn])dt. This ex-
sweeps, ana=y+ 1 for the voltage drop. pression corresponds to a plateau value of the response func-

tion o(t) =i([Pm,Si(t)]), i.e.,
xxzHamiltonian, as long as the resulting system is not frus-

trated. We thus consider a Hamiltonian with a third-nearest- ; " izt ez o
neighbor interaction: lim Zfo e ([Sn(t),Pdet—t“m o(t).

z—0 —00

o

_ _ The response function may be written in the following way
H = HXXZ+‘]X3; [(S;Sn+3+sn S:+3)/2+JZ/‘]XSﬁSﬁ+3] (by Kubo's |dent|t933

€)
For simplicity we assumed that the anisotropy is independent . .
of the hopping rangé.e., J,5=J,3J,/J,). In this context we Here (-,-) is the Mori scalar producifor operatorsA
emphasize that the long-range hopping in the spin syste@nd B: B(B,A) = [ §TrBT exp(—H)Aexp (r— B)H]d7/
does not transform under Jordan-Wigner to a long-rangd’ €xp(—AH)) andL is the Liouville operator. To prove that
hopping in a Fermionic system but to a more complicatedp(t)—0 ast—, it is sufficient to show tha® as a func-
four-sites operator. tion of t is bounded.

In general, adding a new term to the Hamiltonian changes But this is just the assumption that we made in the state-
the current operator which is defined via the continuity equament of the theorem becaué(t),P,,,) represents the linear
tion, Vj:=(jnr1—jn)=i[S:,1,H]/%. In a one-dimensional response of the operatéf, to the perturbatiorP, .
system with OBC’s the continuity equation is solved, how- Finally, we can prove our main assertion. We want to
ever, by the relation,=i[H,P,]/% (see Sec. Il Asuch that show g(x,y)=g(x",y") Vx,y,x",y’. This follows easily
Eq. (4) still applies. Nonetheless, it is useful to look at thefrom  g(x,y)=g(x+1y) Vx,y and g(x,y)=9(xy

@(t)=B(Pp,iLe"'S) =:9,D(t).

current operator for this case. It reads +1) Vx,y. We will consider only the second equalitthe
o _ . _ proof of the first equality is analogous by the symmetric
In=inatingtin-13tin-23 structure of Eq(4)].

Using Eq.(4) and our previous result we see that
wherej,, (=iJ,&(Sh Sk Sh Shi )/ (2%). If we compare it g Ea.(4) P

with the current operator of thexz chain we see that the . o
long-range hopping,s gives rise to three additional terms 9(X,¥) —g(X,y+1)=limIm Zf e[ S5, 1(1),P])dt=0.
which are analogous to the first one. 20 0

We compute the conductance as a function of the hopping Q.E.D.
amplitudesJ,s/J, and present the result in Fig. 9. I,
=0 the conductance is, of course, given by the Apel-Rice
result Eqg.(5). However, if J,3>J, we may eventually ne-
glect the nearest-neighbor-hopping term such that we end up For eigenvaluesE,, and E, the respective one-particle
with three uncoupled chains. Thus we conclude that the coreigenstates will be denoted by) and|k), the annihilation
ductance will grow towards three times the Apel-Rice resultoperators byc,, andc,, and the occupation numbers by
when we increasé,;. From the figure we see that the cross-and ny. For the current operator we findN(k,j,k)=ev
over between these two values is shifted to smaller values of-e/%i(dE/dk) and(—Kk,j,k)=0.
Jy3 When the anisotropy is increaseth fact, at the isotropic In a free Fermion system one can derive a simple expres-
point the increasing of is barely visible) sion for (A(iwy)B)=[Bdre'“M(AB(i7)) [with iwy=w

APPENDIX B: DERIVATION OF EQ. (5)
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+i8=2mM/(%8)] when A and B are one-particle operators In the continuum limit we replaces\N~*— [(dk/2m)
(e, A=,  Ancicy): =[(dEJ27|tivy]). _ _
‘ Performing the integration over the varialileand then
_ AnBin taking w—0 yields
(AB)(i wM)_gk mfkn

2
B
where  fi,=sinH B(E,~EQ/2]/2 coshBE/2)coshBEJ2) 9= 57 f §|ﬁv(k)|m
=((n)—(ny)). (A(z= w+i6)B) may then be obtained by .
analytic continuation. In our cask andB are local current e (7 dk hosgrk)B2 €2 (k= dEB/2
operators; for the conductance we use & = ?J > m: ka . WBE/@
- Kk = k!

. (njxk)(k, Jyn>

9:;'”‘% iy +E,—E, & 2 {n.jxk) J’EOB’Z f oy, L
~2h E 12812 COS*‘F(X) " 2h EBI2 cosﬁ(x)
. 1)
X (k,jyn) > fkn- e
(hw+E,—Ep)°+6 [tanr(EOEIZ) tani( E . 8/2) —tanh(E ,3/2)
For 6—0
+taniE_,B/2)].
¢ —m8(hwo+E,—Ep). N.ote th_at the conductance does .not depend on th+e energy
(hw+E,—Ep )%+ 6° dispersion but only on the band widBy, and the gafE_,.
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