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Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems

Kim Louis and Claudius Gros
Fakultät 7, Theoretische Physik, University of the Saarland, D-66041 Saarbru¨cken, Germany

~Received 2 August 2003; published 26 November 2003!

Recently, the stochastic series expansion~SSE! has been proposed as a powerful Monte Carlo method, which
allows simulations at lowT for quantum-spin systems. We show that the SSE allows us to compute the
magnetic conductance for various one-dimensional spin systems without further approximations. We consider
various modifications of the anisotropic Heisenberg chain. We recover the Kane-Fisher scaling for one impurity
in a Luttinger liquid and study the influence of noninteracting leads for the conductance of an interacting
system.
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I. INTRODUCTION

In general, integrable one-dimensional models show
ideally conducting behavior in contrast to most real thr
dimensional materials.1 There has been intensive investig
tion of the influence of the integrability on the conductivi
for various model systems.1–4 The conductance of conduc
ing, nearly one-dimensional devices is, on the other hand
substantial experimental interest. Over the last years it
become possible to fabricate mesoscopic devices,5 such as
carbon nanotubes which can be viewed as a realizatio
systems with ballistic transport properties. Therefore
computation of dynamical transport quantities has recei
considerable interest.

A basic approach for the study of the conductance
been in the past via the Bosonization of appropriate mo
systems,6–8 valid in the low-temperature limit. Numerica
studies have so far involved the density-mat
renormalization-group~DMRG! technique9,10 and Monte
Carlo ~MC!.11,12 In the case of Ref. 9 a reduced set of state
was used in order to evaluate the dynamics; in Ref. 10
phenomenological formula by Sushkov13 was used to com-
pute the conductance. The simulations by Refs. 11 and
use an effective Bosonized Hamiltonian as a starting poi

Here we will discuss how to obtain the conductance w
quantum Monte Carlo~QMC! on the original lattice Hamil-
tonian. For this purpose the conductance will be calcula
on the imaginary frequency axis. We will show that a reliab
extrapolation to zero frequency can be performed at finite
low temperatures. We will thus obtain approximation-fr
results for the dynamics of inhomogeneous quantum-s
systems at low but finite temperatures, within a well defin
numerical accuracy defined by the statistics of the MC sa
pling and the accuracy of the zero-frequency extrapolatio

By the Jordan-Wigner transform a one-dimensional sp
less Fermionic system can be mapped to a hard-core b
model. Hence it is possible to calculate the conductance f
Fermionic system in a Bosonic one. This is vitally importa
since boson models can be easily analyzed by Monte C
simulations where the sign problem is absent. However,
an evaluation of the conductance one requires a highly
cient simulation method which performs well at low tem
peratures. Recently,14 such a powerful method has been pr
posed: the stochastic series expansion~SSE!. In this paper
0163-1829/2003/68~18!/184424~7!/$20.00 68 1844
n
-

of
as

of
e
d

s
el

a

2
.

d

ut

in
d
-

.
-
on
a

t
lo
r

fi-

we will compute the conductance in a hard-core boson lat
model by the aid of this method.

II. EXPLANATION OF THE METHOD

A. Definition of the conductance

We consider the anisotropicxxzHamiltonian

Hxxz5 (
n51

N21

Jx~Sn
1Sn11

2 1Sn
2Sn11

1 !/21JzSn
zSn11

z ,

where theSn
65Sn

x6 iSn
y are the raising/lowering operator

for spin-1/2 Heisenberg spins. The spin-current operatorj n at
a given siten follows from the continuity equation and i
given by ~see, e.g., Ref. 4!

j n5 iJxe~Sn
1Sn11

2 2Sn
2Sn11

1 !/~2\!.

As a perturbation we will use a local ‘‘voltage drop.’’ In th
hard-core boson notation this corresponds to a step in ch
cal potential—at sitem—which is equivalent to

Pm5e(
n.m

Sn
z ,

in terms of the Heisenberg-spin operators.
The conductance is then defined as the dynamical

sponse of the current operator at sitex to the voltage drop at
site y:

gª lim
z→0

Re
i

\E0

`

eizt^@ j x~ t !,Py#&dt. ~1!

For open boundary conditions~OBC’s! the relation
i @H,Px#5\ j x holds and a partial integration of Eq.~1!
yields

g5ReF ~2 iz!21
i

\ S ^@ j x ,Py#&2E
0

`

eizt^@ j x~ t !, j y#&dtD G .
Using Re(ab)5Rea Reb2Im a Im b in the above equation
gives two contributions to the conductance. With the defi
tion of the generalized Drude weight for two operatorsA and
B,
©2003 The American Physical Society24-1



n

d

n

tin

y

l

-

as
th

ic
-

.

ai

ian

l

e

a-
an

s.

e
.

tri-
he
by

he

at-
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^^AB&&[ lim
z→0

~2 iz!E
0

`

eitz^DA~ t !DB&dt,

where DA5A2^A& one can show using the Lehman
representation15 that the first contribution (Rea Reb) reads

^^ j x j y&&Re~2 iz!215^^ j x j y&&pd~Rez!. ~2!

The second factor in expression~2! @namely,
Re(2 iz)21] gives rise to a delta function, such that Eq.~2!
should be the dominating contribution tog. The first factor of
expression~2! ~namely, ^^ j x j y&&) is closely related to the
Drude peakD5^^JJ&&/N whereJ5(nj n is the total current
operator.

From the discussion of the Drude peak16 we know that
under OBC’s the Drude peak is zero@becauseD can be writ-
ten as the response to a static twist which can be remove
a gauge transformation of the form exp(i(nnSn

z) ~see Ref.
16!# whereas it is nonzero for periodic boundary conditio
~PBC’s!. In our casê ^ j x j y&& is zero under OBC’s@use a
gauge transform exp(i(n.ySn

z)]. Under PBC’s we find, be-
cause of translational invariance and because of the con
ity equation, that̂ ^ j x j y&& depends neither onx nor y. This
implies D5N^^ j x j y&&. Since the Drude peak is finite~at
least for the models we are interested in! we conclude that
expression~2! vanishes even under PBC’s in the thermod
namic limit. So we obtain

g5Re@~z\!21#ReE
0

`

eizt^@ j x~ t !, j y#&dt. ~3!

Restarting from Eq. ~1! we may—again by partia
integration—arrive at another formula,

g5ReF i

\ H 2^@Px ,Py#&2~ iz!E
0

`

eizt^@Px~ t !,Py#&dtJ G .
The first term in the square brackets does not contribute—
the potentialsPx and Py commute—and if we restrict our
selves to Rez50 we obtain

g52Im z ImS 1

\E0

`

eizt^@Px~ t !,Py#&dtD . ~4!

The latter formula is especially useful for MC simulations
it allows the computation of the conductance in terms of
diagonalSz-Sz correlators~under OBC’s!.

According to its definition as it is given by Eq.~1! the
conductance might in principle depend on the actual cho
of the positions of the voltage dropy and the current mea
surementx. Here, we point out that in the limitz→0 this is
not the case. In a rather general situation one can show~us-
ing the continuity equation! that the right-hand side of Eq
~1! gives the same result for any choice ofx and y ~see
Appendix A!.

It is instructive to consider the free fermion case in det
We denote the~formal! dependence onx and y by corre-
sponding subscripts. Of course, in a translational invar
systemgxy depends only on the differencex2y. The con-
ductanceg as a function ofv5Im z ~here and in the seque
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Rez50) is plotted for the free fermion case in Fig. 1. On
sees that the conductance in the limitv→0 approaches the
universal valuee2/h. Here we emphasize that a spatial sep
ration of voltage drop and current measurement leads to
exponential decrease ing(v) at smallv. Therefore we will
restrict our attention to the casesux2yu<1 for the rest of the
paper.

B. Technical details of the MC method

We now turn to some technical details of our simulation
The second formula for the conductance, Eq.~4!, lends itself
to a study with Monte Carlo simulations~it requires OBC’s!.
At the Matsubara frequenciesvM52pM (b\)21, MPN we
may use the equivalent expression

g~vM !52vM /\ ReE
0

\b

^PxPy~ i t!&eivMtdt.

We employ a standard QMC method~SSE! to compute the
conductance. SincePx is diagonal in theSz-basis, the simu-
lation of ^HkPxH

L2kPy& can be easily performed with th
help of the SSE.14,17,18 Here, L is the approximation order
One may simply obtain̂PxPy( i t)& as a linear combination
of the terms^HkPxH

L2kPy& with binomial weight factors
B(t,k). We found it convenient to assume a Gaussian dis
bution for theB(t,k) instead of a binomial one, because t
former is easier to evaluate. The error that we introduce
this replacement is smaller than the statistical error ifL
.100. ~Note that in our simulationsL is typically of the
order of 104–105.!

What remains to be done in order to get

g~vM !52vM /\E
0

\b

cos~vMt!^PxPy~ i t!&dt

is an integration in the final step. We performed it with t
Simpson rule and a grid of 800t values.

We are now left with the standard problem of extrapol
ing g(v) from the Matsubara frequenciesvM to v50. Un-

FIG. 1. The conductance of thexy chain atT50.01 versus fre-
quency on the imaginary axis for various distances (x2y52n,n
PN) between voltage drop~y! and current measurement (x).
4-2
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QUANTUM MONTE CARLO SIMULATION FOR THE . . . PHYSICAL REVIEW B 68, 184424 ~2003!
fortunately, the spacing of the Matsubara frequencies is
ear inT, so our method becomes unstable when we incre
T.

To see that an application of our MC method makes o
sense at low temperatures we compare it to a sim
method: exact diagonalization. Figure 2 showsg(v) for
various system sizesN at T5Jx /kB . One sees that conve
gence withN is rather fast~at high temperatures!. Hence one
can determineg(v) for v.Jx /\ with exact diagonalization
To computeg(v) at somev<Jx /\ with MC methods one
needs to work at a temperatureT,Jx /(2pkB), and even
then exact diagonalization is preferable as it yieldsg(v) in a
continuous interval rather than on a discrete set of poi
Hence at high temperatures the MC method is inferior t
simple exact diagonalization.

In our simulation we make one ‘‘MC sweep’’ betwee
two measurements which consists of one diagonal up
and several loop updates14 between two measurements. W
are able to run approximately 105 sweeps.

C. Test with Jordan-Wigner

If Jz50 then g(v) can be exactly evaluated—for arb
trary system size—not only atv50 ~see below!.

We can exploit this fact in two regards: First, we test o
MC method by comparing it with the exact curve obtain
by Jordan-Wigner. The result can be seen in Fig. 3.

Second, we can test which frequencies~and hence which
temperatures! we need such that a linear extrapolation can
carried out without introducing a larger error than the sta
tical one. One sees also which system sizes are neede
determineg(v) without detectable finite-size error. Our co
clusion is that our method works forT,0.02. At T'0.01 a
system size ofN'200–300 is appropriate.

III. CONDUCTANCE IN VARIOUS SYSTEMS

A. Results for a dimerized Jordan-Wigner chain

One may derive a simple analytical result for the cond
tance in the free fermion case. Here, we consider the slig
more difficult case—but also more interesting as the sys
has a gap19—of a dimerized chain with magnetic fieldB, i.e.,

FIG. 2. Conductanceg as a function ofv. The arrow indicates
the result of the thermodynamic limit.
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Jz50 and the hopping parameter alternates: (Jx)2n,2n11
5J1 and (Jx)2n11,2n125J2. The energy dispersion is give
by

Ek
65B6AJ1

21J2
212J1J2cos~2k!/2

and we assume a positive dispersionEk5Ek
1 if k

P@0,p/2#ø@3p/2,2p# andEk5Ek
2 else. The gapEg is Eg

5Ep/2
1 2Ep/2

2 at k56p/2. The evaluation of the formula fo
the conductance Eq.~1! is in principle straightforward~see
Appendix B!. One obtains the compact result

g5
e2

2h
@ tanh~E0b/2!2tanh~Epb/2!2tanh~Ep/2

1 b/2!

1tanh~Ep/2
2 b/2!#. ~5!

In the case of zero magnetic field this reduces to

g5
e2

h
@ tanh~E0b/2!2tanh~Ep/2

1 b/2!#.

TheT50 value of the conductance as a function of magne
field is quantized: It is zero ifuBu is smaller than the zero
field gapEp/2

1 or larger than the zero-field band widthE0,
and it is 1 between these values, and precisely at these va
it is 1/2 ~all values in units ofe2/h).

B. Comparison with the Apel-Rice formula

At low temperatures thexxzchain can be described by
Luttinger liquid. For this model the conductance was o
tained by Apel and Rice in the 1980s:7,20

gApelRice5
e2

h

p

2~p2u!
, ~6!

where cosu5Jz/Jx . This formula may be derived from Eq
~4! if we use concrete expressions for^Sn

zSm
z ( i t)& which are

available from conformal field theory.22 Figure 4 shows our
QMC results forg(v) on the imaginary axis for thexxz
model; in Fig. 5 we display a comparison, as a function

FIG. 3. Monte Carlo data~symbols! in comparison with the
exact Jordan-Wigner result~dotted lines!. The curves forT50.02
are offset by 0.1 for clarity.~We use OBC’s.!
4-3
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KIM LOUIS AND CLAUDIUS GROS PHYSICAL REVIEW B68, 184424 ~2003!
Jz , between theg(v50) extrapolated from Fig. 4, and th
exact Bosonization result, Eq.~6!.

We note that the statistical error of the QMC results p
sented in Fig. 5 does not increase much with the param
Jz . This is due to our using the ‘‘directed loops’’ as d
scribed in Ref. 21. The choice for transition probabiliti
which was proposed there makes the SSE algorithm m
effective. Here the improvement is remarkable.

C. System with one impurity

Now, we consider the Hamiltonian

H5Hxxz1BImpSN/2
z ,

i.e., we add an impurity in the middle of the system. Th
model was studied in a paper by Kane and Fisher.8 Later, this
kind of model received considerable attention by oth
authors.12,23–26By an RG approach, Kane and Fisher fou
that the perturbationBImp is relevant for repulsive interac
tions ~i.e., Jz.0). This means that at zeroT the chemical
potential anomaly ‘‘cuts’’ the system into two halves, su

FIG. 4. Monte Carlo data~symbols! for various interaction
strengths atT50.01Jx /kB ~using OBC’s and 23105 Monte Carlo
sweeps!. Shown is the conductance as a function of imaginary f
quency.

FIG. 5. Conductance of thexxz spin chain atT50.01Jx /kB in
comparison with the exact result by Apel and Rice@Eq. ~6!# for a
Luttinger liquid. The Monte Carlo data are obtained by extrapo
ing the results of Fig. 4 tov50.
18442
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that the conductance is zero. This result cannot be dire
confirmed by Monte Carlo methods since these are neces
ily finite-temperature methods.

Fortunately, the scaling behavior~with temperature! of the
conductance is also known. ForK51/2 one may derive an
exact formula for the conductance by a re-Fermionizat
technique:6,23

g5e2/hF12
BImp

2

2p2T
c8S 1/21

BImp
2

2p2T
D G , ~7!

wherec is the digamma function. So we can compare o
MC data once again with an exact result. In Fig. 6 we pres
two different QMC results for the conductance on the ima
nary axis of the Heisenberg chain with one impurity, f
different impurity strengths.

For the upper set of curves in Fig. 6 the position of vo
age drop and the position of the current measurement ax
5y5N/2; and for the lower set of curves they arex
5N/2, y5N/221. The curves are not as smooth as the o
in Fig. 4, so we use a quadratic fit from the first three M
subara frequencies instead of a linear extrapolation to e
mateg(v50). We also note that the curves withx2y51
are better suited for extrapolation than those withx5y be-
cause the slope atv50 is smaller. The statistical error is les
than one percent. The result from the extrapolation is giv
in Fig. 7 along with the exact curves from Eq.~7!. We used
system sizes ofN5400 for T>0.01Jx /kB and N5800 for
T50.005Jx /kB . We performed 23105 MC sweeps. The er-
ror bars are smaller than the symbol size, so the error tha
see in the figure is mainly due to our extrapolation meth
@and to possible logarithmic finite-temperature corrections
Eq. ~7!#. We see that the quadratic fit tends to underestim
the correct value.

D. Inhomogeneous systems

Several years after the publication of Eq.~6! by Apel and
Rice it was generally agreed upon27,28 that it does not reflect
the ~correct! physical behavior one would encounter in a

-

-

FIG. 6. Conductance of the Heisenberg chain (N5400 sites!
with one impurity atT50.01Jx /kB for different impurity strengths
and positions of voltage drop and current measurement~using
OBC’s!. A possible extrapolation tov50 is proposed by the dashe
lines.
4-4
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QUANTUM MONTE CARLO SIMULATION FOR THE . . . PHYSICAL REVIEW B 68, 184424 ~2003!
experimental realization. Experiments are never perform
on a closed system but on one coupled to reservoirs w
make it possible for the particles to leave and enter the
tem. These reservoirs can be modeled by attaching two le
consisting of infinite noninteracting spin half chains to o
model.

The complete Hamiltonian then reads

H5Hxxz~Jz50!1 (
n5(N2NI11)/2

(N1NI23)/2

Sn
zSn11

z , ~8!

i.e., the interaction is confined to a small region in the mid
consisting ofNI sites. This approach has been followed
many authors, e.g., in Refs. 10 and 29–31. Generally,
presence of leads yields a conductance which is indepen
of Jz ,27,28 namely,

g5e2/h,

in sharp contrast to Eq.~6!. The noninteracting semichains—
which we call leads—play the role of reservoirs.

We note that the behavior ofg(v) depends on the parity
of NI a fact which was already reported in Ref. 10.~A similar
effect was also found in the Hubbard model.32! In the fol-
lowing we will only consider the case ofNI odd. A detailed
discussion ofNI even/odd and a comparison with Ref. 1
will be presented elsewhere.

The ‘‘natural’’ choice for current measurement and vo
age drop would be at the two ends of the interacting reg
But here is caution advised. From Fig. 1—which is again
the free Fermion case—one learns two things: First,g does
not depend on the choice ofx andy. Second, ifx andy are
some distance apart, convergence withv becomes slow,
hence one needs to go to lowerT and larger system sizes
one wants to extractg(v50) reliably. A simple phenomeno
logical explanation for this is the following: If the place o
the measurement is far from the voltage drop the partic
have to travel a long distance and hence one has to w
long time before one can determineg. We can now place
both the voltage drop and our current measurement at

FIG. 7. Conductance of the Heisenberg chain with one impu
at various temperatures (N5800 for T50.005Jx /kB and N
5400). MC data~symbols! are drawn in comparison with the exa
formula ~solid lines! by Weisset al. ~Ref. 23! for a Luttinger liquid
at the isotropic pointK5

1
2 ~i.e., Jz5Jx).
18442
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middle of the system, but this should not help much. T
problem is that the particles still have to travel a long d
tance until they see the leads. Henceg(v) will be unaffected
by the introduction of leads ifv is sufficiently large. This
expectation is confirmed by the QMC data presented in F
8. In this figure the exponential decay ofg(v) at smallv is
apparent, and the curves illustrate clearly that this deca
induced by the length scaleNI—because it becomes strong
with increasingNI . It is this decay that prevents us from
discussing largerNI . If we increaseNI the decay become
stronger, hence we need to evaluateg(v) for more ~and
smaller! frequencies in order to extractg(v50) reliably. But
smaller frequencies are only available at smaller tempe
tures. As we cannot decreaseT much below 0.01Jx /kB we
restrict ourselves toNI,20. If we considered a system wit
NI5200 ~at T50.01Jx /kB) we would not see any differenc
from a system without leads, because the difference occu
small v.

The data presented in Fig. 8 clearly indicate an upturn
g(v) for v→0, indicating thatg(v50) is unaffected by the
interaction in the low-temperature limit. Our result ma
however, not be totally convincing, since we can only an
lyze relatively small interacting regions. One might arg
that the enhanced conductance is not due to the leads
simply to the reduced ‘‘mean’’ interaction—which is close
zero as only few sites interact. To invalidate this argum
we considered another model. We have performed Q
simulation of a system where we attach a lead only atone
side such that we obtain a chain which is noninteracting
one half and interacting in the other. For this system
found no deviation at all imaginary frequencies from t
situation where the interacting region extends over the wh
chain, even though there are as many interacting
interaction-free bonds.

E. Spin Hamiltonian with third-nearest-neighbor interaction

Monte Carlo simulations allow the inclusion of long
range hopping, and thus breaking the integrability of the p

y
FIG. 8. Conductance, in units ofe2/h, of the Heisenberg chain

with noninteracting leads; see Eq.~8!. The system size isN5320.
The values for temperatureT and size of the interacting regionNI

are given.~We use OBC’s, 105 MC sweeps, andx5y for the volt-
age drop.!
4-5
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KIM LOUIS AND CLAUDIUS GROS PHYSICAL REVIEW B68, 184424 ~2003!
xxzHamiltonian, as long as the resulting system is not fr
trated. We thus consider a Hamiltonian with a third-neare
neighbor interaction:

H5Hxxz1Jx3(
n

@~Sn
1Sn13

2 1Sn
2Sn13

1 !/21Jz /JxSn
zSn13

z #.

~9!

For simplicity we assumed that the anisotropy is independ
of the hopping range~i.e.,Jz35Jx3Jz /Jx). In this context we
emphasize that the long-range hopping in the spin sys
does not transform under Jordan-Wigner to a long-ra
hopping in a Fermionic system but to a more complica
four-sites operator.

In general, adding a new term to the Hamiltonian chan
the current operator which is defined via the continuity eq
tion, ¹ jª( j n112 j n)5 i @Sn11

z ,H#/\. In a one-dimensiona
system with OBC’s the continuity equation is solved, ho
ever, by the relationj x5 i @H,Px#/\ ~see Sec. II A! such that
Eq. ~4! still applies. Nonetheless, it is useful to look at t
current operator for this case. It reads

j n5 j n,11 j n,31 j n21,31 j n22,3,

wherej n,k5 iJxe(Sn
1Sn1k

2 2Sn
2Sn1k

1 )/(2\). If we compare it
with the current operator of thexxz chain we see that the
long-range hoppingJx3 gives rise to three additional term
which are analogous to the first one.

We compute the conductance as a function of the hopp
amplitudesJx3 /Jx and present the result in Fig. 9. IfJx3
50 the conductance is, of course, given by the Apel-R
result Eq.~5!. However, if Jx3@Jx we may eventually ne-
glect the nearest-neighbor-hopping term such that we en
with three uncoupled chains. Thus we conclude that the c
ductance will grow towards three times the Apel-Rice res
when we increaseJx3. From the figure we see that the cros
over between these two values is shifted to smaller value
Jx3 when the anisotropy is increased.~In fact, at the isotropic
point the increasing ofg is barely visible.!

FIG. 9. Conductance of the Hamiltonian Eq.~9! ~with 400 sites,
T50.01) as a function ofJx3 for various anisotropies. Square
quadratic fit from the first three Matsubara frequencies; diamon
linear fit from the first six frequencies.~We use OBC’s, 105 MC
sweeps, andx5y11 for the voltage drop.!
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In conclusion we have developed a QMC technique wh
allows the evaluation of the dc conductance for a wide ra
of nonfrustrating quantum-spin chains at low but finite te
peratures. We have presented several stringent tests for
technique, like the Kane-Fisher scaling for the conducta
through an impurity in a Luttinger liquid.

APPENDIX A: PROOF THAT THE RIGHT-HAND SIDE OF
EQ. „1… IS INDEPENDENT OF x AND y

Here we provide a general argument which relies on
~physical! assumption that some linear-response functio
are finite in the thermodynamic limit.

Theorem: In a spin system the conductance gxy[g does
not depend on x and y if the linear response of an opera
Sn

z to a perturbation Pm is bounded in the thermodynam
limit.

Proof:
First we consider limz→0z*0

`eizt^@Sn
z(t),Pm#&dt. This ex-

pression corresponds to a plateau value of the response
tion w(t)ª i ^@Pm ,Sn

z(t)#&, i.e.,

lim
z→0

zE
0

`

eizt^@Sn
z~ t !,Pm#&dt5 lim

t→`

w~ t !.

The response function may be written in the following w
~by Kubo’s identity!:33

w~ t !5b~Pm ,iLeiLtSn
z!5:] tF~ t !.

Here (•,•) is the Mori scalar product„for operatorsA
and B: b(B,A) 5 * 0

b Tr B† exp(2tH)Aexp@ (t2b )H #dt /
Tr exp(2bH)… andL is the Liouville operator. To prove tha
w(t)→0 ast→`, it is sufficient to show thatF as a func-
tion of t is bounded.

But this is just the assumption that we made in the sta
ment of the theorem because„Sn

z(t),Pm… represents the linea
response of the operatorSn

z to the perturbationPm .
Finally, we can prove our main assertion. We want

show g(x,y)5g(x8,y8) ;x,y,x8,y8. This follows easily
from g(x,y)5g(x11,y) ;x,y and g(x,y)5g(x,y
11) ;x,y. We will consider only the second equality@the
proof of the first equality is analogous by the symmet
structure of Eq.~4!#.

Using Eq.~4! and our previous result we see that

g~x,y!2g~x,y11!5 lim
z→0

Im zE
0

`

eizt^@Sy11
z ~ t !,Px#&dt50.

Q.E.D.

APPENDIX B: DERIVATION OF EQ. „5…

For eigenvaluesEn and Ek the respective one-particl
eigenstates will be denoted byun& and uk&, the annihilation
operators bycn and ck , and the occupation numbers bynn
and nk . For the current operator we find:N^k, j xk&5evk
ªe/\(dE/dk) and ^2k, j xk&50.

In a free Fermion system one can derive a simple exp
sion for ^A( ivM)B&5*0

bdteivMt^AB( i t)& @with ivM5v

s:
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1id52piM /(\b)] when A and B are one-particle operator
~i.e., A5(n,kAnkcn

†ck):

^AB&~ ivM !5 (
nÞk

AnkBkn

i\vM1En2Ek
f kn ,

where f kn5sinh@b(En2Ek)/2#/2 cosh(bEn/2)cosh(bEk/2)
5(^nk&2^nn&). ^A(z5v1 id)B& may then be obtained b
analytic continuation. In our caseA andB are local current
operators; for the conductance we use Eq.~3!:

g5
1

v
Im(

nÞk

^n, j xk&^k, j yn&
i\vM1En2Ek

f kn52
1

v (
nÞk

^n, j xk&

3^k, j yn&
d

~\v1En2Ek!
21d2

f kn .

For d→0

d

~\v1En2Ek!
21d2

→pd~\v1En2Ek!.
-

L.

,

18442
In the continuum limit we replace(kN
21→*(dk/2p)

5*(dEk/2pu\vku).
Performing the integration over the variablen and then

taking v→0 yields

g5
e2

2\E dk

2p
u\v~k!u

b/2

2 cosh2~bEk/2!

5
e2

\ E
2p

p dk

2p

\vksgn~k!b/2

4 cosh2~bEk/2!
5

e2

h Ek50

k5p dEb/2

2 cosh2~bEk/2!

5
e2

2hEEp/2
1 b/2

E0b/2

dx
1

cosh2~x!
1

e2

2hEEpb/2

Ep/2
2 b/2

dx
1

cosh2~x!

5
e2

2h
@ tanh~E0b/2!2tanh~Epb/2!2tanh~Ep/2

1 b/2!

1tanh~Ep/2
2 b/2!#.

Note that the conductance does not depend on the en
dispersion but only on the band widthE0 and the gapEp/2

1 .
N.

K.

ys.
1H. Castella, X. Zotos, and P. Prelovsˇek, Phys. Rev. Lett.74, 972
~1995!.

2X. Zotos and P. Prelovsˇek, Phys. Rev. B53, 983 ~1996!.
3X. Zotos, F. Naef, and P. Prelovsˇek, Phys. Rev. B55, 11 029

~1997!.
4J.V. Alvarez and C. Gros, Phys. Rev. Lett.88, 077203~2002!;

Phys. Rev. B66, 094403~2002!.
5Y. Imry, Introduction to Mesoscopic Physics~Oxford University

Press, New York, 1997!.
6A. Gogolin, A. Nersesyan, and A. Tsvelik,Bosonization and

Strongly Correlated Systems~Cambridge University Press, Cam
bridge, England, 1998!.

7W. Apel and T.M. Rice, Phys. Rev. B26, 7063~1982!.
8C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett.68, 1220 ~1992!;

Phys. Rev. B46, 15 233~1992!.
9M.A. Cazalilla and J.B. Marston, Phys. Rev. Lett.88, 256403

~2002!; 91, 049702 ~2003! @reply to comment H.G. Luo, T.
Xiang, and X.Q. Wang,ibid. 91, 049701~2003!#.

10R.A. Molina, D. Weinmann, R.A. Jalabert, G.-L. Ingold, and J.-
Pichard, Phys. Rev. B67, 235306~2003!; see also V. Meden and
U. Schollwoeck,ibid. 67, 193303~2003!.

11K. Moon, H. Yi, C.L. Kane, S.M. Girvin, and M.P.A. Fisher
Phys. Rev. Lett.71, 4381~1993!.

12K. Leung, R. Egger, and C.H. Mak, Phys. Rev. Lett.75, 3344
~1995!.

13O.P. Sushkov, Phys. Rev. B64, 155319~2001!.
14A.W. Sandvik, Phys. Rev. B59, R14 157~1999!.
15K. Louis and C. Gros, Phys. Rev. B67, 224410~2003!.
16W. Kohn, Phys. Rev.133, A171 ~1964!.
17A. Dorneich and M. Troyer, Phys. Rev. E64, 066701~2001!.
18A.W. Sandvik and J. Kurkija¨rvi, Phys. Rev. B43, 5950 ~1991!;

A.W. Sandvik, J. Phys. A25, 3667~1992!.
19E. Orignac, R. Chitra, and R. Citro, Phys. Rev. B67, 134426

~2003!.
20T. Giamarchi and H.J. Schulz, Phys. Rev. B37, 325 ~1988!.
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