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By applying a quantum Monte Carlo procedure based on the loop algorithm we investigate thermodynamic
properties of the two-dimensional antiferromagn@ie 3 Heisenberg model coupled to Einstein phonons on
the bonds. The temperature dependence of the magnetic susceptibility, mean phonon occupation numbers, and
the specific heat are discussed in detail. We study the spin-correlation function both in the regime of weak and
strong spin phonon couplingoupling constantg=0.1, »=8J andg=2, w=2J, respectively. A finite-size
scaling analysis of the correlation length indicates that in both cases long-raeberbler is established in the
ground state.
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[. INTRODUCTION lattice. By comparing ground-state energies of three stati-
cally dimerized models Sirkeet al?* conclude that a stair-
During the past years, there has been considerable interdite distortion of the lattice is the energetically favored
in low-dimensional spin systems with spin phonon coupling.dimerization pattern, contradicting an older result by Tang
While one-dimensiona{1D) models including this mecha- and Hirsch” who find a plaquettelike distortion.
nism have been studied extensively, little is known about The aim of this paper is to investigate thermodynamic
two-dimensional2D) systems with spin phonon coupling. Properties of the 2D Helsenperg model coupled to bond
In 1D systems, the mechanism of spin phonon coupling ighonons. Such a model takes into account the elastic energy

closely connected with the phenomenon of the spin Peier/due to lattice distortions which is not included in statically
transition. Theoretical understanding of this phase transitior?'mer'zec_j m_odels. Fu_rtt)k|1er_more,tthetwholte range of phonon
goes back to the work of Pytlewho showed that a three- regrl;](;nc;ese:s_sacc);:eas:] e?j Igsofgzlore? T;]egéc Il we introduce
dimensional system consisting of uniform antiferromagneti Paper 1S organiz WS. Sl wel u

P e e he model Hamiltonian and describe our quantum Monte
S=3 Heisenberg chains is unstable towards dimerization o

the chains if led 1o three-di ional lati brati arlo algorithm. In Sec. Il we discuss the temperature de-
€ chains 1t coupled to three-dimensional lattice vibra Ionspendence of the magnetic susceptibility, mean phonon occu-
Additionally, he showed that in the adiabatic limit of small

i X X X ation numbers, and the specific heat. An analysis of the
phonon frequencies the dimerized phase can be described Eﬁin—correlation function is found in Sec. IV. Section V con-
a statically dimerized spin model with temperature-cjydes with a summary.
dependent dimerization. Cross and Fidtieproved on the
calculation of Ref. 1 by treating the spin part of the Hamil-
tonian in continuum field theoryTheir calculation yielded a
convincing description of the phonon softening in the limit
of small spin phonon couplings. In the case of CugeO  The model we consider is a generalization of the 1D bond
however, which was the first inorganic spin Peierls com-coupling model from Refs. 11 and 14. The Hamiltonian
pound discoverefi this treatment is not sufficient. For this read$?
reason various 1D dynamical models have been investigated,
taking into account the coupling of magnetic and phononic
degrees of freedom explicitly. Most publications on this issue H=
refer to two different models, both showing a quantum phase
transition between a dimerized and aeNerdered phase. 3N
While in the so-called difference coupling motiélthe mag- +5 > (gij01 ;41— 1) (1+g[b; +bl])
netic interaction between nearest neighbors depends on the hi=1
distancleO lL;Jletween neighbored sites, the bond coupling N
modeT'* is considered to be more realistic forltgescnbmg +w_2 (ai‘rj aj; +biT]_ bij)- (1)
the spin phonon coupling mechanism in CuGe® =1

In the case of the 2[B3=3 Heisenberg antiferromagnet .
with spin phonon coupling discussions of statically dimer-Hereo;; denote Pauli spin operators at lattice sitg) on a
ized models are found in the literatuf&2'As in one dimen-  square lattice, whilea;; and af; [b;; and bjj] are phonon
sion, these models are thought to describe the dimerizednnihilation and creation operators on the bond between site
phase of dynamical models in the adiabatic limit. In contras(i,j) and site {+1,j) [between sitesi(j) and (,j+1)].
to the 1D case though it is not clear how to place alternatindNote that we assume periodic boundary conditions.
magnetic couplings in both spatial directions on a square By shifting the phonon operators according to

Il. MODEL HAMILTONIAN AND QUANTUM MONTE
CARLO METHOD

N
”221 (oijoi1—1)(1+g[a;+af])

N &
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with rescaled coupling constanfs=J(1+g°J/w) andg’ FIG. 1. Magnetic susceptibility vs temperature for fixed

=gJ. Note that Eq(3) differs from EQ-(T]-) by the absenc% of =23 and spin phonon coupling between 0.5 and 2.0. For com-

the (unphysical static terms—Jg/2(aj;+a;;), —Jg/2(bjj  parison Monte Carlo results for the Heisenberg model are plotted.

+bjj). Model (3), however, cannot be analyzed directly in a

quantum Monte Carlo study because a sign problem occurs. gefore discussing the results in detail we add one further

For this reason we choqse Hamﬂtom@) as a starting point o5y concerning statistical errors. In our calculations we

for our analysis and shift the numerical results if needed. neglected autocorrelation effects and—as a rough estimate—
To study the properties of modél), we developed a calculated root-mean-squared errors only. If no error bars in

quantum Monte Carfd algorithm similar to the algorithm .
described in Ref. 11. First, the partition function of the 2Dthe plots of th's paper are shown, the errors are smaller than
the symbol size used.

guantum system(1) is mapped onto a three-dimensional
classical system. Technically, this is done by means of a
Trotter-Suzuki decompositioﬁ. We then apply an update IIl. THERMODYNAMIC PROPERTIES
procedure which treats spin and phononic degrees of free-
dom separately. For the spin updates, we make use of a In this section we discuss the finite-temperature properties
modified loop algorithrff** for quantum spin systems. The of model(1). We expect that the knowledge of how a non-
main advantage of the loop algorithm is that it allows globalvanishing spin phonon coupling influences the thermody-
spin updates, substantially reducing autocorrelation timesiamic properties will be of importance for the interpretation
Furthermore, so-called improved estimators can be used iof experiments. This might be of particular interest for sub-
the evaluation of the magnetic susceptibility and spin correstances which display, e.g., acoustic anomalies or for which
lations. To modify the phonon occupation numbers we applyit is known that the exchange integral depends sensitively on
local heat bath updates. By building clusters of phonons irthe positions of the ions.
imaginary time direction we extended the algorithm from Here, we confine ourselves to temperaturesJ€.5
Ref. 11, diminishing autocorrelation effects even more. Ob=<4J. In this temperature range, we find that the dependence
viously the detailed balance condition is fulfilled for both of measured guantities on the system size is negligible if we
steps separately and thus for the whole procedure. consider linear system sizé&=12. All results presented in
For the phonon updates we had to introduce a cutoff, althis section were calculated on a lattice withX1P2 sites,
lowing occupation numbers up to 40 phonons per bond. Theroviding statements about system properties in the thermo-
effect of such a truncation of the Hilbert space is negligible ifdynamic limit. If not stated differently, at each temperature
the measured mean phonon occupation numbers are mot€° spin updates were executed. For the Trotter number a
than an order of magnitude smaller than the cutoff. In Secvalue of M =80 was chosen.
[l B we show explicitly that this condition is fulfilled. In
order to take into account the high dimension of the phonon
subspace of the Hilbert space, we employed the importance
sampling technique and made 30 phonon updates per spin We start with a discussion of the magnetic susceptibility
update, using only the last configuration for the evaluation ofer sitex for vanishing magnetic fields. Figure 1 shows the
expectation values. Additionally, for each temperature thedlependence of the susceptibility on the spin phonon coupling
first 25% of the sweeps were skipped for thermalization. g for fixed phonon frequencw and Fig. 2 the dependence
For Monte Carlo simulations based on a Trotter-Suzukion o for fixed g. In both figures Monte Carlo results for the
decomposition the estimates of thermodynamic quantitiesusceptibility of the 2D Heisenberg model are included.
depend on the inverse Trotter number squaPdd. the fol- The results can be summarized as follows. For fixed
lowing sections we give the explicit value for the Trotter the overall height of the susceptibility is diminished with
numberM. With the values foM chosen, we find the statis- increasing spin phonon coupling. As in the 1D cHsaJarge
tical fluctuations of our results larger than the effect of thespin phonon coupling tends to reduce the magnetic response
finite Trotter number. of the system. On the other hand, for fixgdhe susceptibil-

A. Magnetic susceptibility
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FIG. 2. Magnetic susceptibility vs temperature for fixger 1 FIG. 4. Temperature dependence of the magnetic susceptibility
and phonon frequencies between 2 and 8. Again for compari- in d=1 andd=2 for g=0.5 andw=2J. For comparison ind
son Monte Carlo results for the Heisenberg model are shown. =1 the exact result from Refs. 27 and 28 andiin2 Monte Carlo

data for the Heisenberg model are shown.

ity is growing with increasing phonon frequency. In the an-
tiadiabatic limit phononic degrees of freedom are sup- Qualitatively the influence of the spin phonon coupling is
pressed, yielding the results of the Heisenberg model. Theimilar in d=1 andd=2. In Fig. 4 the exact result from
curves show a broad maximum which is typical for antifer-Refs. 27 and 28 for the 1D and the Monte Carlo results for
romagnetic spin models. This maximum is shifted to higheithe 2D Heisenberg model are shown. Both in 1D and 2D we
temperatures with increasirg)/ . find a significant shift of the maximum and a strong reduc-

We find that both the shift of the position of the maximum tion of the maximum height as compared to the Heisenberg
and the reduction of magnetic response with increagitie model.
are mainly due to the static terms in E@). In units of the
rescaled magnetic couplinyj from the transformed Hamil- B. Mean phonon occupation numbers

tonian Eq.(3) the shift of the maximum is reduced signifi- Further insight into the model can be gained by studying

cantly (see Fig. 3, and the reduction of the magnetic re- he infl f th in oh i h h
sponse due to the spin phonon coupling is not very strong‘Be INfluence ot th€ spin phonon coupling on the mean pho-

The same behavior has already been reported for the 1 on occupation numbers:
bond coupling model in Ref. 14.
For comparison betweed=1 andd=2 we return to <n>=i > (atay) (4)
model (1) without phonon shift. Figure 4 shows the suscep- N2 5 e
tibilities for g=0.5, ®=2J. Compared to the 1D case, the
overall height of the susceptibility of the 2D model is dimin- 1
ished. This effect is explained by the larger coordination (my=— > (b bij)- (5)
number in the 2D case, reducing the response of the system N? J

to an external magnetic field.
as compared to the free phonon case. These numbers can be

0.08 . , : , : | : viewed as a measure of the strength of lattice vibrations and
o--0 Heisenberg model therefore allow to analyze how the lattice is influenced by
&--0 g=0.5 o= the spin degrees of freedom.

0.06 Z:g:}j i As expected, we find no difference in the mean occupa-
v g=2 tion numbergn) and(my), and therefore restrict the follow-

ing discussion to the behavior ¢f). Figure 5 shows the
Monte Carlo results fo¢n) for different values ofy andw in

a plot vsT/w. The data are compared to the Bose distribu-
tion for free Einstein phonons:

= 0.04

0.02

Nree T) = 6

ea)/T_ 1 !

which is also shown in Fig. 5. Again we find a striking simi-
larity to the 1D bond coupling model. Id=1 it has been

FIG. 3. The data from Fig. 1 in terms of the rescaled magnetidound that the mean phonon occupation numbers obey the
couplingJ’. relation*
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FIG. 5. Mean phonon occupation numbgng as a function of FIG. 7. Over the temperature range Ds5T<3J averaged val-
T/w. The solid line shows the Bose dlStrIbUthﬂee for free Ein- uesng Vvs. gZJZ/wz. The solid line shows the result from linear
stein phOnOnS. regression.
(MU(T)=No+ Npred T) () measured mean occupation numbers are more than an order

with a temperature-independent constagt As a good ap- of r_nagnitude sm_all_er t_h_an the_ cutoff 40. In retrospect our
proximation, this relation is valid in a temperature rangechoice therefore is justified. With Eqez) and (8) we have

0.5]<T=3J in the 2D case as well. This can be seen mos@/S0 found an expression that might be important for other

clearly in Fig. 6, which shows the same results as Fig. 5 wittflumerical methodse.g., exact diagonalizatiprwhich de-
relation (6) subtracted from the Monte Carlo data. pend crucially on dlow) cutoff in the phonon numbers.

In order to derive an expression fop, we averaged the
differences(n) —ny.. Over the temperature range 05T C. Specific heat
=<3J and plotted these values ¢8J%/ w? (see Fig. 7. By
applying linear regression we find that oh=2 the shift
obeys the relation

Another important thermodynamic quantity is the specific
heat per siteC. Although in principle this observable is di-
rectly accessible in the experiment, it is dominated by lattice

gJ\2 vibrations, making it difficult to extract its magnetic part.
no~(1.375+- 0.003() . (8) Even for a simple model as given by Hamiltoniél), we
@ find this behavior confirmed. Figure 8 shows Monte Carlo
Thus the only difference between the relations for the meanlata for the specific heat in a system wifl-2 andw=2J
phonon occupation numbers in the 1D and 2D cases is giveand the exact result
by the numerical prefactor in E@8), the value being 1.375
ind=2 and 2 ind=1." 3 ; , . , . .

We close this section with a technical remark concerning

our choice for the cutoff for the phonon occupation numbers. L 1

As can be seen in Fig. 5, in the whole temperature range the 3 T tes e o o
2+ & :‘&::Z‘:::ﬁ-%‘;&e'g0000#—?&4-&&?—32_
2.5 . . : : : : . .
o--0 g=0.5, ©=2J
I B-a g=1, ®=2J i O r
L o0 g=1.5, 0=2J .
2 and §=2, w=21 o =2, =11
L t g=1, o=4] . 1~ =--e Heisenberg model =
v g=1, ©=8J — free phonons, exact solution
2 1.5 o ’ N R = +-- Heisenberg + free phonons
g | ALLALALDALLAN DA p BABANL ﬂﬁ_A.A_AA_ " Aﬂ’js = 855 B‘&nﬁ_,
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I GeEaE8eTRas0asEsRoIEasE0tEsERREnEaa] FIG. 8. Specific heat plotted vs. temperature @or2 and w
i ol =2J. The solid line shows resu(®) for free phonons of the same
0y ' : T ' ' ‘ ) frequency. Plotted are also Monte Carlo results for the 2D Heisen-
Tio berg model and the sum of the free phonon and Heisenberg results.
The number of spin updates is<BL0° for the system with spin
FIG. 6. Differencegn) —nyee Vs T/ w. phonon coupling and £0n the Heisenberg case.
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Ched T)= 2( T)
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T
Heisenberg model

for free phonons of the same frequerftlye factor 2 accounts I E
for two phonons per lattice siteThere is only a small dif- 40
ference in the overall height & andCy,... At high tempera- = |
tures, both curves approach the same constant value, yieldingZ 30 8- KPhgst
the Dulong-Petit rule. i e L
The spin phonon coupling influences the specific heat sig- 20 o-o N*=12x12
nificantly though. As can be seen in Fig. 8 as well, the curve a--a NP 14x14
for the system with spin phonon coupling differs signifi- 10 v-v N°=16x16
cantly from the sum of Monte Carlo results for the 2D << N’=18x18
Heisenberg model and contributiof®) for free Einstein 0
phonons. Note that both the strong fluctuations and the di- (@) s
vergency of the data for — 0 are due to difficulties in evalu-
ating the specific heat within Monte Carlo procedures as dis- ¢ | ,
cussed in Ref. 29. 60 ——T—7—
2=0.1, ©=8J
50+ .
IV. SPIN-CORRELATION FUNCTION AND GROUND- H §40_ o 7 1
STATE PROPERTIES w5,
We now turn our attention towards ground-state properties =
of model (1). In principle the Monte Carlo method is only £ *°[ ° o--0 N’=8x8
applicable at finite temperatures. By analyzing the behavior -8 N’=10x10
of the spin-correlation function at low temperatures, how- 200 oo N°=12x12
ever, it is possible to make statements about system proper- a4 N’=14x14
ties atT=0. 10~ % v N=16x16
The argument is as follows. Suppose that we choose the M
coupling constants in Ed1) sugh that the system is Heisen- 08 s 3
berg like, showing long-range MEorder in the ground state. (b)
Then for reasons of universality we expect that the spin-
correlation function 60 - | - - |
O =2, 0=2J
1 - e -
)= Er) (0707+3) (10) N
401 0L " - i y
obeys the result known for the 2D Heisenberg mdtiéf -t s A
= 30 0 [ | -
G(d)~ (— 1)+ %2 d| Ne~ldEm, ap 7L PR i
=10x
with the algebraic exponenk closé! to the classical 0 j"iN§=12X12 ]
Ornstein-Zernike value ofi. Here £(T) is the spin- \ ey
correlation length which can be interpreted as the mean size or N=texte
of domains with antiferromagnetic order. At=0 these do- . ¢_woé¢';{iia""f . -.

mains get macroscopic, because for-0 the correlation i 0.5 1 1.5 2
length diverges exponentiaff)>3 AssumingA=% in Eq. () aln

(11), this means that the static structure factor . . .
FIG. 9. Static structure factds(q,q) of spin correlations as a

function of momentuny for a diagonal cut through the first Bril-
louin zone aff=0.1J’ for different system sizes. Shown are results
for the 2D Heisenberg modgktop) and for model(1) with g

. > . . =0.1, »=8J (middle) andg=2, w=2J (bottom), respectively. In
d]verges fgg momentuffi 4= (, ) W'th the Ilngar system plots the inset shows the height of the maximumaf#) as a
size likeN**. As long as the correlation length in the infinite ¢ tion of N32

system stays significantly larger than the system sizes con-
sidered, this behavior should be visible at low temperatures.

We first illustrate this in case of the 2D Heisenberg modelength in the infinite system is of the order of “L@ttice
[g=w=0 in Eq. ()] at T=0.1J, taking 1§ spin updates spacings’ **As can be seen in the upper plot of Fig. 9, the
and choosing a Trotter number Bf= 160 for the evaluation static structure factor shows a pronounced maximung at
of spin correlations. At this temperature, the correlation=(,), and the peak height roughly scales with the system

S(q)=>, €99G(d) (12)
d
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size likeN®?. Note that deviations from thi®? dependence I B e e o e e I ELE
might indicate that in the quantum systevrdiffers slightly 35+ o N=10x10 Y .
from the value of; chosen above. B o N=12x12 _—_— ]
We now return to mode{l) with spin phonon coupling ° N'=l4x14 £ ., 5 o
and discuss our results for two different choices of coupling 230 & N’=20x20 5 g 5 o ° ]
constants. To compare our results for different valueg of . 2 v N'=24x24 g 7
and o we drop the unphysical termng/Z(afj +a;), § L5 . ° .
—Jg/2(bf +by;) in Eqg. (1). We therefore measure the tem- =~ - . §
perature in units of the rescaled magnetic couplh@f the 051 o i
effective Hamiltonian(3). We calculated spin correlations at i o ® 1
T=0.1)', taking 5x 10° spin updates an® =160 in our 0.’#,,"" 2=0.1, ®=8J
calculations. First, we consider a system with a small value 03[ ]
for gJ/w (g=0.1, »=8J) where no dimerization is ex- S
pected. Again the static structure factor shows a pronounced (a) 02 04 06 08 1 Jlfzr t4 16 18 2 22
peak forq=(,), and the peak height scales with the sys-
tem size likeN®? (middle of Fig. 9, indicating Heisenberg- R B B B L B B
like behavior as anticipated. 35+ o N’=10x10 T
For the second system we choa@se2 andw=2J. In the 3k @ N=12x12 1 2 -
1D case this choice corresponds to a system which strongly [ ° Nz=l4x14 R h
dimerizes in the ground stat& Even here we find a pro- T N=20k20 o . s o @
nounced peak o8 for (,7) (bottom of Fig. 9, the maxi- L [ 7 N=2 L8850 °° 7]
. . . 3/2 . . . s [ ] g i
mum height scaling likéN*'“. The interpretation is that even F L5r ‘ 88
in the regime of large values f@J/w the system shows 1+ s ¥ .
antiferromagnetic order in the ground state. This is a striking 5[ o ]
difference to the 1D bond coupling model. Compared to the r o
case withg=0.1 andw=8J, however, we find that the spin L 69000 ¢ g=2,0=2] |

phonon coupling counteracts the tendency of the system to 03|
order antiferromagnetically in the ground state. As can be -1

PR T NN AN IR NSO NP AU NS N B!
0 02 04 06 08 1 12 14 16 18 2 22

seen in Fig. 9, for fixed system size the peak heid{ts, ) (b) FIT
in the case of strong spin phonon coupling are slightly di-
minished as compared to the weak coupling regime. FIG. 10. Natural logarithm of finite system correlation lengths

Our results can be confirmed by a direct analysis of they vs inverse temperature for five different system sizes gor
temperature dependence of the spin-correlation length. For0.1, ®=8J (top) andg=2, »=2J (bottom), respectively. Note
both systems and at various temperatures we extracted finiteat all temperatures are given in units 3t
system correlation length&, by fitting the function

e am(N-ldDe the case of strong spin phonon coupling the graph _shows
€ € very similar featuregbottom of Fig. 10. We therefore find
\/T + F ) 13 Heisenberg-like behavior of at finite temperatures also in

|d] N-—|d| the regime of strong spin phonon coupling. The main differ-
with two free parameters, ¢ to our data for system sizes €Nce between the two cases is that at the same effective

N=10,12,14,20,24. Fag=0.1 andw=8J, we selected val- temperature the correlation length fge=2, w=2J is sig-
uesM =120 for temperatures Q5 T<0.9) andM =80 for  Nificantly smaller than fog=0.1, w=8J. The analysis of
T=J, taking 16 spin updates(for N=24 we choseM therefore als_o implies that a strong spin phon_on coupling
=120 for all temperaturg¢sForg=2 andw=2J the choice weakens antiferromagnetic order. Both observations are con-
was M =160 for 1.9<T<1.9J, M=120 for 2J<T<4J, sistent with the conclusions drawn from the analysiS(@af).
andM =80 for T=5J, again averaged over iMonte Carlo  Note that in both plots of Fig. 10 the temperatures are given
sweeps(for N=20 we took 1.5 10°, for N=24 and 1.3  in units ofJ".
<T=<1.9 we took 2x 10° spin updates The values for the By means of scaling arguments our analysis can be ex-
Trotter number are sufficiently large to avoid finite-size ef-tended to make direct statements about ground-state proper-
fects in Trotter direction. ties. Suppose the system shows long-rangel eder in the

As has been said above, in case of the Heisenberg modgfound state. In terms of the renormalization group this
in |eading ordek behaves likee’T at low temperature -33 means that there is a critical fixed pOInt'lért:O which con-
In the upper panel of Fig. 10 the natural logarithméafis ~ trols the system properties at low temperatures. In this case a
plotted vs 1T for g=0.1 andw==8J. At high temperatures, finite-size scaling ansatz *°
no dependence on the system size is visible, and as expected
we find the same behavior as in the Heisenberg model. At
low temperatures finite-size effects become important and Ean(T) _ (fN(T))
the curves branch off from the asymptotic linear behavior. In En(T) N

f(6)=a(—1)d1+dz<

(14
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FIG. 11. Test of the scaling predictidd4) for g=0.1, ©=8J FIG. 12. Static structure facto®'°(q) of spin correlations vs
(top) andg=2, w=2J (bottom). momenturmy in the 1D case for different system sizes and tempera-

ture T=0.13". In the upper graph the coupling constants gre
=0.1 andw=28J, in the lower graphg=2 and w=2J. In both
holds, whereF is a universal scaling function. With the data plots the inset shows the height of the maximgti( ) as a func-
from Fig. 10 it is possible to test the scaling predictidd4).  tion of N.
Plotting &,n/&n VS én/N with N=10,12 we find that both
for g=0.1, ®=8J (top of Fig. 1) andg=2, w=2J (bot-
tom of Fig. 11 the data lie on one curve. The shape of thedecays exponentially at finite temperatures, with a rate given
scaling functionF in Eq. (14), however, depends on the by the correlation lengt§*Poc1/T.%~*°At T=0, there is a
choice of the coupling constants. The interpretation is that ifffossover to an algebraic deé¢dy*
the weak- and in the strong-coupling regimes mo¢Bl _1)d
shows long-range N# order in the ground state, strongly GlD(d)N( ) (16)
confirming the conclusions drawn from our analysis of the d ’
static structure factor at low temperatures.
It is instructive to compare these results to the low-

and atT=0 the static structure factor

temperature behavior of spin correlationdisr 1. Our argu- N
mentation is completely analogous to the 2D case. As has S!P(q)= >, €99G!P(d) (17)
been discussed in Sec. |, the 1D model shows a quantum d=1

phase transition between a ®leordered and a dimerized jyerges for momenturg= like the Nth partial sum of the
phase/:***Though only the approximate shape of the phase,aymonic series with the system size. Asdr 2, signs of
separation line in coupling constant space has been detefs divergence should be visible at low temperatures.
mined, it is known that for small valueg;]/cg the system is For large valuesyJ/w, on the other hand, the chain
Heisenberg like, showing quasi-long-rangeeNerder in the  gimerizes. This means that long-range dimer order is estab-
ground state. This means that the 1D correlation function |ished in the ground state. Therefore the spin-correlation
N length £1P stays finite atT=0, and we expect no depen-
S (61614 a) (15 dence ofS'P on N in the low-temperature regime.

= In Fig. 12 the static structure facto8P for two systems

Z|l -

G*0(d)=
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o—— T L L B fitting procedure (we chose M=400 for T
oL o om0l s =0.05),0.079,0.13; M=360 for T=0.15); and M =160
Ll et e e e B__Eg=2;(;)=21 for T=0.2).

60 . Figure 13 shows the correlation lengths in a plot vs the
inverse temperature in units of the rescaled effective cou-
| pling J’. In both systems we find the expected behavior: In
i the Heisenberg-like system the correlation length grows lin-
1 early with the inverse temperature, while in the dimerized
301 7 system &P takes small values and shows no such depen-
sl e ] dence in the temperature range shown.
i e | We close this section with a final remark concerning the
10 o - 2D model(1). The results from this section need not mean
F ] that the model shows no lattice distortion. In both the stati-
% 10 20 30 40 0 & cally dimerized stair and plaquette models, e.g., a phase with
7T coexisting dimerization and long-range antiferromagnetic or-
der is knowr?! For model(1) it is therefore conceivable that
FIG. 13. Correlation lengthg'® vs inverse temperature in the small lattice distortions appear which cannot be detected by
1D case. Note that the temperatures are given in unit¥ offhe analyzing spin correlations at low temperatures. Even a
inset shows the finite-size behavior &f° for g=0.1, »=8J atT finite-temperature phase transition seems possible, because
=0.08)". due to the Mermin-Wagner theoréfra breaking of the dis-
crete lattice symmetry at finite temperatures cannot be ex-
cluded in a 2D system. However, we find no hints on a
with the same choice of coupling constants aslin2 are finite-temperature phase transition in the behavior of thermo-
plotted. As ind=2, we measure the temperature in units ofdynamic properties in the temperature range discussed in
the rescaled magnetic couplidg of the 1D counterpart of Sec. Ill. Further investigations of the model seem appropri-
Eqg. (3). We selectedT=0.13' and M=160, executing 5 ate to clarify whether dimerization appears and which dimer-
X 10° spin updates. In both systerS&® shows a maximum ization pattern is realized.
at g=. In the Heisenberg-like system the maximum is
more pronounced though, and for small system sizes the V. SUMMARY
peak height depends dw For larger system sizes, however,
such a behavior is not visible. This leads to the conclusior}Or

: : . hononic degrees of freedom we have developed a quan-
Fha}t'm contrast to the 2D case the correlatlor_1 Iength in the[umpMonte Carlg algorithm to study the propertiespof thquD
infinite system is not larger than the system sizes in consid:

eration. In the system with dimerization in the ground stateantlferromagnetw Heisenberg model coupled to bond

) S 10 phonons.
we find the expected bghay|or: The val ; () do not As thermodynamic quantities are concerned, we studied
depend on the system size, indicating t&H is very small.

: . th tibility, h ti bers, and
By analyzing the temperature dependencé’&fit is pos- © SuSceplibilty, mean pnonon occuparion NUMBErs, -an

ible to distinauish learlv bet the t , specific heat in the temperature rangeJ&T<4J. The
sIble 10 distinguish more clearly between the ",;’0 re_g'mesproperties of the model at finite temperatures are similar to
Similar tod=2 we extracted correlation lengtis® by fit-

i tial d ith two f ters to oute_LD Case.
Ing an exponential decay wi 0 free parameters 1o our g temperatures Q5= T<3J, we derived an expression

gata. Foré]=0|.1 Z&df);s%‘]’ v;/](_a ﬁ)feclzuted 510° ipin up- ,q for the mean phonon occupation numbers which is of prac-
ates and selectdd =160, which Is large enough to avold ;.o\ ya|ye for further investigations of the model.

effects by the finite Trotter number.. F_urth'ermore, the SYSte”? We investigated the temperature dependence of the spin-
S'.ET’S were chosefn that_large that finite slz€ effectfs are neglisorrelation length for two choices of coupling constants. Our
gible (N=500 for T=0.025,0.09, N=400 for T analysis indicates that the model shows long-rangel Ne

=0.075),0.128; andN=300 forT=0.13,0.13). This can e i the ground state both in the regime of weak and strong
be seen in the inset of Fig. 13, whezg“fig;D is plotted vsN at spin phonon coupling.

T=0.05)~0.05)". Forg=2 andw=2J also 5<10° spin
updates were made. The correlation lengths are that small
that a chain length oN=200 is sufficient to make state-
ments about the thermodynamic limit. The effect of the finite  The authors would like to thank M. Braden, A. Khper,
Trotter number is more important in this system. Bdr  E. Muller-Hartmann, C. Raas, W. Weber, and R. Werner for
=400 at the lowest temperatures, however, the effect ivaluable discussions. We acknowledge funding by the DFG
smaller than the error which enters our analysis during thén the Sonderforschungsbereich 608.

sol 101 - _
T=0.05)" o

=] L I 1
""‘40_ 00 200 400 600

By combining loop updates for spin and cluster updates
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