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Theory for spin and orbital orderings in high-temperature phases in YVO3
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Motivated by the recent neutron-diffraction experiment on YVO3, we consider a microscopic model where
each V31 ion is occupied by two 3d electrons of parallel spins with twofold-degenerate orbital configurations.
The mean-field classical solutions of the spin-orbital superexchange model predicts an antiferro-orbital order-
ing at a higher temperature followed by aC-type antiferromagnetic spin ordering at a lower temperature. Our
results are qualitatively consistent with the observed orbital phase transition at;200 K and the spin phase
transition at;114 K in YVO3.
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I. INTRODUCTION

The transition metal perovskite oxides exhibit many int
esting physical phenomena. In some of these compounds
orbital degrees of freedom play an important role in th
magnetic properties due to the strong spin-orb
coupling.1–3 Examples include the Mott-Hubbard-type ins
lators YVO3 and LaVO3, which show very unusual magnet
properties. Although the early experiments on YVO3 and
LaVO3 were reported back in the mid 1970s,4–6, there has
been renewed interest in the past decade on th
materials.7–15 There are two magnetic phases in YVO3:
C-type antiferromagnetic order~ferromagnetic chains alon
thez axis which stagger within thex-y plane! at temperature
114 K.T.77 K, andG-type antiferromagnetic order~stag-
gered in all three directions! at temperatureT,77 K.4–7 The
magnetic order in LaVO3 is alwaysC type. The microscopic
mechanism leading to the difference between these two c
pounds is still under investigation, and it might be related
the fact that at room temperature the cubic crystal structur
significantly distorted in YVO3 but almost undistorted in
LaVO3. It is generally believed that the relevant orbital d
grees of freedom, the degenerate or almost degenerate 3d-t2g
states are crucial to the observed magnetic properties.

There have also been interesting theoretical studies
lated to these magnetic behaviors.16–22,25,26 In particular,
Khaliullin et al.19 considered a spin-orbital Hamiltonia
starting with three-fold degeneratet2g orbitals, and com-
pared the free energies between theC-type andG-type spin
states in YVO3 by including an explicit Jahn-Teller energy i
the model.

Very recently, Blakeet al.15 reported neutron-diffraction
experiment in YVO3, which shows clear evidence that th
orbital ordering has a sudden change from high tempera
G type to low temperatureC type at the 77 K magnetic phas
transition, manifested by a change in the Jahn-Teller-typ
distortion. The data also show clear evidence for the orb
transition from high-temperature disordered phase to
G-type ordered phase at;200 K. This has motivated us t
0163-1829/2003/68~18!/184402~7!/$20.00 68 1844
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study the spin-orbital ordering in YVO3.
In this paper, we consider a microscopic model for ins

lating YVO3, where each V ion has two electrons with pa
allel spins favored by the large Coulomb repulsion a
Hund’s coupling. The distortion in the cubic crystal structu
already present at room temperature splits the degenerac
the threet2g orbitals so that thedxy orbital is favored by the
crystal field. In our model, we take it as always singly occ
pied, while the other electron occupies either thedxz or the
dyz state. This description is consistent with the neutron d
fraction experiment.15 We consider the superexchange inte
action of the model and derive an effective Hamiltonian
YVO3. We then study the mean-field classical solutions
the model, and examine the spin and orbital orderings.
find a G-type orbital ordering at a higher temperature fo
lowed by an additionalC type spin ordering at a lower tem
perature. Our result is consistent with the observed orb
phase transition at;200 K, and spin phase transition a
114 K in YVO3. In this scenario, the orbital ordering a
;200 K is of the electronic origin, and the lattice distortio
at ;200 K observed in the experiment is a consequence
the orbital ordering and the electron-lattice coupling. T
superexchange interaction alone considered in our mo
does not explain the phase transition at 77 K, which m
require other interactions such as the Jahn-Teller effec
proposed in previous articles.17,19

This paper is organized as follows. In Sec. II, we exam
a multiband Hubbard model at electron density two electr
per site, and consider the limit of large Coulomb repulsi
and the large Hund’s coupling. We then derive an effect
Hamiltonian based on the superexchange mechanism. In
III, we discuss the mean-field classical solutions of t
model, and examine the phase diagram for the orbital
spin orderings. A brief summary is given in Sec. IV.

II. MODEL

In YVO3, the vanadium electron configuration is 3d2.
The compound has a cubic crystal structure, and each V
is surrounded by six oxygen ions. Due to the cubic crys
©2003 The American Physical Society02-1
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field, the fivefold degenerate 3d orbitals are split into a
higher-energy doublet ofeg orbitals and a lower-energy trip
let t2g orbitals. At low temperatures and for low-energ
physics, the relevant orbitals are the threefoldt2g orbitals:
dxy , dyz , anddzx . In the strong-coupling limit, the on-sit
Coulomb repulsion between the two electrons in thed
states and Hund’s coupling are much larger than the inte
electron hopping amplitudes, the system is a Mott insula
with each V ion having two localized electrons of paral
spins in two out of three degeneratet2g orbitals. This sce-
nario appears to be consistent with experiments.

As indicated in the recent diffraction experiment,15 the
cubic crystal is distorted at room temperature. As a result,
V-O bond distances are anisotropic. Here we consider
structure at room temperature, where the V-O bond dista
alongc axis ~perpendicular axis! is the smallest~see Fig. 1!.
This crystal structure further splits thet2g states. Thedxy
orbital has a lower energy, and becomes always singly oc
pied. The otherd electron is either indyz or dzx orbital. In the
diffraction experiment,15 the data also indicate a smaller di
ference in V-O bond lengths in thexy plane, which we shall
neglect here for simplicity.

The atomic Hamiltonian21 is then given byH05( iHi ,
where the sum overi runs all the V sites, and

Hi5
1

2 (
mm8,ss8

~12dmm8dss8!Umm8nimsnim8s8

2J (
mm8,s

~nimsnim8s1cims
† cim2scim82s

† cim8s

2cim82s
† cim8s

† cimscim2s!1(
m,s

Dmnms . ~1!

In the above Hamiltonian,cims
† (cims) creates~annihi-

lates! an electron of orbitalm and spins at site i, nims

5cims
† cims . D15D250 andD35D,0, with m51,2,3 rep-

resenting orbitalsdyz , dzx , and dxy , respectively.Umm8 is
the on-site direct interaction, andJ is the exchange interac
tion, or Hund’s coupling. For thet2g orbitals, Umm5U
5Umm812J for m8Þm. In the caseU,J.D, this Hamil-
tonian leads to an atomic ground state with each V-3d2 ion
having a total spinS51 with twofold degenerate orbital con

FIG. 1. Idealized crystal structure for YVO3 studied in this pa-
per. V-O bond distance along thez direction is shorter. The shown
orbital represent configurationsdxydyz or dxydxz .
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figurations (dxy ,dxz) and (dxy ,dyz). This last restriction in
orbital configurations is valid for YVO3 with strong lattice
distortion but not for LaVO3 where the cubic structure i
almost undistorted at room temperature.

We next introduce the intersite hopping HamiltonianHt ,
given by

Ht5(̂
i j &

(
mm8,s

~ tm,m8
i j ci ,m,s

† cj ,m8,s1H.c.!, ~2!

where the sum runs over all the nearest neighbor V-V pa
andtm,m8

i j is the electron hopping integral between two sitei
and j from orbital m to orbital m8. Since the most importan
contribution to the hopping integrals is from the path via t
2p state of the O ion between the two neighboring V ion
the hopping integrals are diagonal in the present problem
to the cubic symmetry. Namely, we havetm,m8

i j
5tm

i j dm,m8 .
Therefore, there are only two independent hopping para
eters,t11

z 5t22
z 5t' andt22

x 5t33
x 5t11

y 5t33
y 5t i , with the super-

index indicating the direction of the two sites. In the lim
t' ,t i!U,J,D, the system is an insulator with spin 1 on ea
V ion. However, the virtual hopping introduces an effecti
intersite coupling of spins and the occupied orbitals. T
effective Hamiltonian forH5H01Ht can be derived by ap
plying perturbation theory to second order int' or t i .

Let uf i j &5usi
z ,t i

z ,sj
z ,t j

z& be a ground state ofH0 for two
V ions i , j , wheresz51,0,21 is the spinz component, andt
is a pseudospin-1/2 operator for the orbitals:tz51/2, if dyz
is occupied, andtz521/2, if dxz is occupied. The matrix
elements between the unperturbed ground states of the tw
ions can be calculated within the second-order perturba
theory, and it is given by

^fkluHe f fuf i j &5(
I

^fkluHtuI &^I uHtuf i j &
E02EI

, ~3!

where the sum is over all the intermediate eigenstatesuI & of
H0 corresponding to the eigen energyEI , and E0 is the
ground-state energy ofH0. Two-electron states with tota
spin S51 are given in Ref. 21. The electronic configuratio
of the intermediate stateuI & is 3d3 on one V ion and 3d1 on
the other. In the Appendix, we list all the states forV-3d3,
and the corresponding energy differenceEI2E0. The effec-
tive Hamiltonian can be derived from these matrix elemen
Defining for each site a spin-1 operatorS and a pseudospin
1/2 operatort that act on thesz andtz degrees of freedom, i
can then be expressed as below,

He f f5 (
^ i j &,n

@ I n~t i ,t j !Si•Sj1Ln~t i ,t j !#, ~4!

where n5x,y,z gives the direction of the bond̂i j &. The
first term corresponds to spin-dependent orbital coupli
while the second corresponds to orbital couplings which
spin independent. The first term also shows that the effec
spin-spin couplings depend on orbital configuration. Equi
lently, by defining I n5K1

n 1K2
n and Ln5K1

n 2K2
n , He f f

can be written as
2-2
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THEORY FOR SPIN AND ORBITAL ORDERINGS IN HIGH- . . . PHYSICAL REVIEW B 68, 184402 ~2003!
He f f5 (
^ i j &,n

@K1
n ~t i ,t j !~Si•Sj11!1K2

n ~t i ,t j !~Si•Sj21!#,

~5!

so that 2K1
n and 2K2

n are interpreted as the intersite orbit
couplings for parallel spins (si

z51, sj
z51) and antiparallel

spins (si
z51, sj

z521) respectively. We choose the ener
unit to be t i

2/U, and denoteh5J/U, h3/251/(123h),
h1/251/(112h), and Q5t' /t i . K6

n can be expressed i
terms of parametersQ andh, and are given below.

K1
(x,y)5h3/2~t izt jz2 1

4 !,

K1
z 52Q2h3/2~tW i•tW j2

1
4 !,

K2
(x,y)5a~t izt jz2 1

4 !1 3
4 ~11h1/2!

1
l x,y

4
~11h1/2!~t iz1t jz!,

K2
z 5Q2$2a~t izt jz2 1

4 !1 1
2 ~11h1/2!2 1

3 ~h3/221!

3~t i
1t j

21t i
2t j

1!2 1
2 ~12h1/2!~t i

1t j
11t i

2t j
2!%. ~6!

In the above equations,a52 1
6 (112h3/223h1/2) and

l x,y521 and11, respectively. For a bond in thez direction,
where thedxy orbital is inert due to zero hopping amplitud
and thedxz anddyz hopping is isotropic, our model is simila
to the original Kugel-Khomskii model22 with two differ-
ences. The first is the replacement of spin 1/2 by spin 1.
second is the effect of thedxy occupation which change
Hund’s coupling contribution to the on-site energies.

We first discuss the intersite pseudospin couplings
tween two parallel spins. In this case, the psuedospin h
SU~2! symmetry alongz direction. Alongx or y direction,
however, the virtual hopping integral for orbital 2 or orbit
1 vanishes, so there is no exchange term in the pseudo
and K1

(x,y) is of the Ising form. The pseudospin couplin
between the two V ions of antiparallel spins is quite diffe
ent. There is a linear term (t iz1t jz) alongx or y direction,
which either favorsdzx or dyz orbital occupation to gain
energy via the virtual hopping process. The pseudospin c
pling along z direction includes both the exchange ter
(t i

1t j
21H.c.) and the pair flip term (t i

1t j
11H.c.). In spite

of an isotropic matrix in thez direction, the orbital Hamil-
tonian is not SU~2! symmetric because of the presence
Hund’s coupling. In particular, the pair flip term is related
superexchange processes involving those intermediate s
listed in Table II that are split in energy due to Hund’s co
pling. To illustrate this point further, we consider a pair of
ions alongz direction with antiparallel spins and pseudosp
aret iz5t jz51/2. The relevant intermediate states in the
perexchange are the states listed in the second and the
rows in Table II. Because these states have different ener
there is nonzero amplitude for the pseudospins to flip tot iz
5t jz521/2. The pseudospin pair flip process is actua
quite common in orbital physics. For example, there are p
flip terms in the effective Hamiltonian for spin-1/2 system
with orbital degeneracy derived by Castellaniet al.21
18440
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In the limit J/U50, h3/25h1/251, anda50, and so we
haveK2

z 5Q2, andK2
(x,y)52( l x,y/2)(t iz1t jz)1 3

2 . The or-
bital coupling between the two V ions of antiparallel spi
vanishes, and the orbital coupling between the two V ions
parallel spins remains to be pseudospin SU~2! symmetric
alongz direction and pseudospin Ising symmetric alongx or
y directions. ForJ/U50, the lack of the global pseudospi
SU~2! symmetry is due to the anisotropic hopping integr
in the system.

Our effective Hamiltonian here is similar to the Ham
tonian proposed previously by Khaliullinet al.19 with the
following differences. These authors considered a mo
with three-fold t2g orbital degeneracy, while we consider
two-fold orbital degeneracy withdxy orbital being always
singly occupied. Below we shall compare the two Hamilt
nians by considering the spin- orbital coupling between t
V ions alongz direction, namelyHi j , with j 5 i 1z. This
may be carried out by imposing the orbitaldxy being always
singly occupied in the Hamiltonian of Khaliullinet al. We
find thatt izt jz terms are the same in the two theories. Ho
ever, the Hamiltonian of Khaliullinet al. does not include
the pseudospin flip term (t i

1t j
11H.c.). As we illustrated

above, the pseudospin flip term is nonzero. As we shall se
the following section, this pair flip term does not affect th
mean-field results, which depend only on thez components
of pseudopsin in the present case. It will be an interest
question to examine if the pseudospin flip term is import
to the orbital fluctuations.

III. MEAN-FIELD THEORY AND THE PHASE DIAGRAM

We sctart with the classical solutions ofHe f f . The Hamil-
tonian has a global SU~2! symmetry in spin space, so that w
can assume the spin ordering along thez direction. The
Hamiltonian is invariant under the simultaneous transform
tion of global Z~2! ~reversing orbitals at all sites! and a 90°
rotation of the lattice about thez axis. In general, we should
consider orbital ordering along an arbitrary orientatio
However, for the present problem, the orbitalz component
terms are always larger or equal to thex- or y-component
terms inK6

n of Eq. ~6!. Therefore, we can discuss the cla
sical solutions by considering thez component of the orbita
ordering only.27 In other words, the classical solutions are t
same as the Ising solutions in the present case. In Table I
show the energies per site in various classical states. N
that h1/2<1, andh3/2>1, where the equality holds if and
only if J50. We consider below the case with nonze
Hund’s couplingJ.0. In this case, the two states listed
Table I withC type antiferro-orbital~CO! configuration have
higher energies. Also, we can see that theG-type antiferro-
magnetic spin~GS! andG-type antiferro-orbital~GO! phase
has a higher energy than the CS-GO phase. Therefore
ground state is either ferromagnetic spin~FS! and GO, or
CS-GO. In both FS-GO and CS-GO phases, the orbita
antiparallel in all three directions, favored by the combin
tion of the symmetries in hopping integrals~due to the cubic
crystal symmetry! and Hund’s coupling. The asymmetry be
tween the spin configuration along thez axis and in thex-y
plane is a result of the splitting of thedxy orbital level from
2-3
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the other twot2g orbitals. As expected, the FS-GO phase
energetically more favored at a largerJ where Hund’s cou-
pling dominates, and the CS-GO phase is more favored
smallerJ. It may be helpful to understand these two possi
ground states by examining the following limiting cas
more explicitly. In the limit of large Hund’s coupling,h
→1/3, the terms in the energy expression in Table I prop
tional to h3/2 dominate. Hence the FS-GO phase has
lowest energy. In the limitJ→01, h1/2→1201, and h3/2
→1101, so that the CS-GO phase has the lowest energ

It should be noted that although thedxy orbital is always
singly occupied, the virtual hopping of thedxy electron
means that our model is not identical to a model with o
electron occupying degeneratedxz and dyz orbitals. In that
model, for G-type orbital ordering, the ground state wi
nonzero Hund’s coupling would always be ferromagne
This is also true if we compare our model to a model w
one electron occupying triply degeneratet2g orbitals.23,24

We now discuss the finite temperature phases and t
transitions. We introduce three types of order paramet
namely the spin order parametermi5^Siz&, the orbital order
parameterr i5^t iz&, and the spin-orbital order parameterqi
5^Sizt iz&. We shall consider the order parameters cor
sponding to the FS-GO and CS-GO phases, since othe
dered states are not energetically favorable. In both
FS-GO and CS-GO phases, we divide the lattice into t
sublatticesA andB accordingly. For the FS-GO ordering, w
considermi5m for all the sitesi, andr i5r andqi5q for i at
sublatticeA, and r i52r and qi52q for i at sublatticeB.
For the CS-GO ordering, we considermi5m, r i5r , and
qi5q for i at sublatticeA, and mi52m, r i52r , and qi
5q for i at sublatticeB. We use a mean-field theory to ex
amine the thermodynamically stable phases described
these order parameters, and neglect both quantum and
mal fluctuations. The effective HamiltonianHe f f is then ap-
proximated by,

HMF5(
i

~aSiz1bt iz1cSizt iz1d! ~7!

In the above equations, coefficientsa, b, c, andd are func-
tions of h andQ, as well as of the mean fieldsm, r, andq.
They are denoted by, the subscript upper (2) and lower
(1) signs corresponding to the CS-GO and FS-GO pha
respectively,

a5A7mr21D7m,

b5A7m2r 2B7r ,
18440
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c52A7~2m2r 21q!,

2d52C7m2r 21E7m21Br22A7q2, ~8!

whereB5B2 , and

A654~h3/21a!~Q261!,

B654~h3/22a!~Q271!,

C654~h3/21a!~Q26 1
2 !,

D65~11h1/2!~Q263!2~h3/21a!~Q261!,

E652~11h1/2!~Q26 3
2 !1~h3/21a!~Q26 1

2 !. ~9!

The mean-field Hamiltonian can be solved easily to obt
the thermal averages ofSiz , t iz , andSizt iz , from which we
obtain the following self-consistent equations for the ord
parametersm, r, andq ~with b the inverse temperature!

^Siz&5m52
2 sinh~ba!

@112 cosh~ba!#
,

^t iz&5r 52 1
2 tanh~bb/2!,

^Sizt iz&5q52
sinh~bc/2!

@112 cosh~bc/2!#
. ~10!

The free energy per site in the mean-field theory is given

f 52
1

b
ln~4 cosh~bb/2!@112 cosh~bc/2!#

3@112 cosh~ba!# !1d. ~11!

We solve the self-consistent equations for different
dered states at various temperatures. The phases studie
~i! paramagnetic spin~PS! and paraorbital~PO! state ~PS-
PO! with m5r 5q50; ~ii ! CS-PO state withC-type spin
orderingmÞ0 andr 5q50; ~iii ! PS-GO state withrÞ0 and
m5q50; ~iv! CS-GO state; and~v! FS-GO state. In the
states~iv! and ~v! m,r ,qÞ0. When more than one set o
mean-field~MF! solutions exist at a given temperature, w
compare their free energies to determine the thermodyna
cally stable phase diagram.

In Fig. 2 and Fig. 3, we plot the phase diagrams obtain
from the mean-field theory forQ51.3 andQ50.5, respec-
tively. The phase diagram forQ51 is qualitatively the same
as that forQ51.3. The ground state is found to be CS-G
TABLE I. Mean-field classical ground-state energies for various phases.

Phase Energy per site

G-type spin andG-type orbital~GS-GO! 2
2
3 (512Q21(11Q2)h3/213h1/2)

C-type spin andG-type orbital~CS-GO! 2
2
3 (51(11Q2)h3/213h1/2)

G-type spin andC-type orbital~GS-CO! 2
1
3 (1013Q212h3/213(21Q2)h1/2)

C-type spin andC-type orbital~CS-CO! 2
2
3 (51h3/213h1/2)

Ferro spin andG-type orbital~FS-GO! 22(11Q2)h3/2
2-4
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THEORY FOR SPIN AND ORBITAL ORDERINGS IN HIGH- . . . PHYSICAL REVIEW B 68, 184402 ~2003!
for smallerJ/U, and FS-GO for largerJ/U, consistent with
our previous discussions. In general, the spin and orbital
dering occur at different temperatures. This feature is in d
tinction from the model for V2O3 for which spin and orbital
order at the same temperature.28,29 Within the mean-field
theory, the phase transition between CS-GO and FS-G
first order, and all other transitions between the differ
phases in Figs. 2 and 3 are second order.~The lattice distor-
tion associated with the orbital ordering, which is not i
cluded in our model, may change the nature of the ph
transition.!

In passing, we note that the spin-orbital ordering d
scribed by the order parameterq is always zero unless bot
the spins and the orbitals are ordered in the present sys
This result indicates that the spin-orbital ordering parame
q introduced in our mean-field theory in addition to the sp
order parameterm and the orbital order parameterr may not
be as significant in the present problem in altering the qu
tative physics as in the SU~4! model.30

In what follows, we shall focus on the phases relevan
YVO3, and discuss the sequential phase transitions f
PS-PO to CS-GO. As we can see from Fig. 2, as the t
perature decreases from the disordered state PO-PS, the

FIG. 2. Phase diagram for the anisotropic hopping param
Q5t' /t i51.3 in the parameter space of temperature and rela
Hund’s couplingJ/U. Temperature is shown in units oft i

2/U. Solid
line is the phase boundary between paraorbital~PO! and G-type
antiferro-orbital~GO! states, the dashed line is the boundary b
tween paramagnetic~PS! andC-type antiferromagnetic~CS! states,
the dotted line is the phase boundary between PS and ferromag
~FS! states.
18440
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tem first undergoes a transition to theG-type antiferro-orbital
ordered phase. Only at lower temperatures does the spin
comeC-type antiferromagnetic ordered. For smallerQ, the
phase transitions depend on Hund’s coupling as we can
from Fig. 3. At intermediateJ/U, the orbital transition tem-
perature is higher than the spin’s, while at smallerJ/U, the
spin transition temperature is higher than the orbital’s. Sin
for YVO3, Q>1, and the estimated values forU andJ are
U;4.5 eV andJ;0.68 eV,17,18 our theory suggests orbita
ordering first at a higher temperature followed by a sub
quent spin ordering at a lower temperature in YVO3. This is
qualitatively consistent with the experimental findings f
YVO3 above 77 K.

As recently reported by Blakeet al.,15 the neutron-
diffraction experiment shows that the orbital ordering
YVO3 takes place atTGO5200 K, which is far above the
antiferromagnetic ordering temperatureTCS5116 K. The or-
bital ordering is evidenced by the changes of the V-O bo
lengths in thexy plane. Our theory is consistent with thes
observations. Orbital ordering and lattice distortion are of
observed simultaneously in experiments. It is usually di
cult to distinguish if the lattice distortion is due to the orbit
ordering or vice versa. Our theory suggests a scenario
which the orbital ordering is of electronic origin, and th
lattice distortion observed above 77 K is a consequence
the orbital ordering and the electron-phonon coupling.

In YVO3, as temperature decreases further, there is
other phase transition at a lower temperatureTGS577 K,
below which the system is in theG-type antiferromagnetic

er
e

-

tic

FIG. 3. Phase diagram forQ5t' /t i50.5. For details, see the
caption of Fig. 2.
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TABLE II. Intermediate eigenstatesuI & and corresponding energy differencesEI2E0. The degeneracy shown is respected with the orb
configurations.
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ity
and C type antiferro-orbital state. There have be
proposals17,19 to attribute this lower-temperature phase tra
sition to the Jahn-Teller energy which favorsC type orbital
ordering. It is an interesting issue to further understand
nature of the low-temperature phase transition.

IV. SUMMARY

In summary, we have studied the electronic structure
the insulating YVO3, and derived an effective Hamiltonia
based on the superexchange interaction. We started with
atomic limit where each V-3d2 has a spin-1 and twofold
degenerate orbital configurationsdxydxz and dxydyz . This
consideration is consistent with the recent neutron-diffract
experiment atT.77 K. We studied the classical solutions
the model within mean-field theory, and foundG-type
antiferro-orbital ordering at a higher temperature followed
a second phase transition where the spins becomeC type
ordered. Our theory explains the orbital and spin ordering
YVO3 at temperaturesT.77 K. While our model does no
18440
-

e

f

he

n

y

f

explain the lower temperature phase ofG-type spin ordering,
which may require considerations in addition to the super
change interaction, our theory provides a starting point
understanding the unusual magnetic properties of YVO3.

After we completed the present calculations, we learn
of a very recent inelastic neutron scattering experiment
Ulrich et al.31 They reported an energy gap in the spin-wa
spectrum of YVO3 in the C type spin ordering phase, an
they interpreted it as an evidence for the orbital Peierls s
along thez direction. The classical solutions we study he
do not predict any spin or orbital Peierls transition. Quant
fluctuations or electron-lattice interactions may be resp
sible for this unusual state.31,20
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APPENDIX

In this Appendix, we present all the intermediate eige
statesuI & and their corresponding energy differences with
ground state,EI2E0, of the fourt2g electrons in two V ions.
These states are used in the second-order perturbation th
to derive the effective HamiltonianHe f f in the text. The
atomic ground states of the system are 636 -fold degener-
ate, with each ion occupied by two electrons of parallel sp
in the orbital configurations (dxydxz) or (dxydyz). The
ys

d

lid

hy

oc

nd

l.

-

n-

18440
-
e

ory

s

atomic ground state energy isE052(U23J). The excited
statesuI & are (V23d1)2(V23d3) with sixfold degeneracy
in V23d1 ion. Here we consider the limiting caseU,J
@D, and neglect the effect ofD on the V23d3 states.
Within this approximation, these excited states are split i
three multiples due to Hund’s coupling: 436 states with
energy (U23J1E0), 1036 states with energy (U1E0),
and 636 states with energy (U12J1E0). The spin and
orbital configurations of V23d3 are listed in Table II.
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