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Motivated by the recent neutron-diffraction experiment on Y,y@e consider a microscopic model where
each V?* ion is occupied by two 8 electrons of parallel spins with twofold-degenerate orbital configurations.
The mean-field classical solutions of the spin-orbital superexchange model predicts an antiferro-orbital order-
ing at a higher temperature followed byCatype antiferromagnetic spin ordering at a lower temperature. Our
results are qualitatively consistent with the observed orbital phase transitier2@@ K and the spin phase
transition at~114 K in YVOs;.

DOI: 10.1103/PhysRevB.68.184402 PACS nuntder75.10—b, 75.25+z, 75.30.Kz

. INTRODUCTION study the spin-orbital ordering in YVQ
In this paper, we consider a microscopic model for insu-

The transition metal perovskite oxides exhibit many inter-lating YVO,, where each V ion has two electrons with par-
esting physical phenomena. In some of these compounds, tladlel spins favored by the large Coulomb repulsion and
orbital degrees of freedom play an important role in theirHund’s coupling. The distortion in the cubic crystal structure
magnetic properties due to the strong spin-orbitalalready present at room temperature splits the degeneracy of
coupling?~3 Examples include the Mott-Hubbard-type insu- the threet,, orbitals so that thel,, orbital is favored by the
lators YVO, and LaVQ,, which show very unusual magnetic crystal field. In our model, we take it as always singly occu-
properties. Although the early experiments on Yy/@nd  pied, while the other electron occupies either the or the
LaVO, were reported back in the mid 1970%, there has Uy, State. This description is consistent with the neutron dif-
been renewed interest in the past decade on thedEaction experiment>We consider the superexchange inter-
materials’~15 There are two magnetic phases in YYO action of the model and derive an_effec'uve _Ham|lton_|an for
C-type antiferromagnetic orddferromagnetic chains along ' YOs- We then study the mean-field classical solutions of
the z axis which stagger within the-y plane at temperature ]Ehed model, and t?'xalmms the spin arl]”!dhorbltal ordenngs% \INe
114 K>T>77 K, andG-type antiferromagnetic ordéstag- Im gg-type zg.,l.ta ;Sq; terlng at a dlg er tetmpleraturte ol-
gered in all three directionsit temperaturd <77 K.*~'The owed by an addiionat. fype Spin oraering at a lower tem-

tic order in Lavois al Ct The mi . perature. Our result is consistent with the observed orbital
magrr:e Ic °r|ero'|f‘ a gi:s g_gays yt[:))e. € mh|croscop|c hase transition at-200 K, and spin phase transition at
mechanism leading to the difference between these two comy 4 ¢ i, YVO;. In this scenario, the orbital ordering at

pounds is still under investigation, and it might be related to_ 54  js of the electronic origin, and the lattice distortion

the fact that at room temperature the cubic crystal structure ig; 200 K observed in the experiment is a consequence of
significantly distorted in YV@ but almost undistorted in  the orbital ordering and the electron-lattice coupling. The
LaVO;. Itis generally believed that the relevant orbital de-syperexchange interaction alone considered in our model
grees of freedom, the degenerate or almost degenetlatg;3  does not explain the phase transition at 77 K, which may

states are crucial to the observed magnetic properties.  require other interactions such as the Jahn-Teller effect as
There have also been interesting theoretical studies rgyroposed in previous articlé$®
lated to these magnetic behavidfs?*?>?°In particular, This paper is organized as follows. In Sec. II, we examine

Khaliullin et al*® considered a spin-orbital Hamiltonian a multiband Hubbard model at electron density two electrons
starting with three-fold degeneratg, orbitals, and com- per site, and consider the limit of large Coulomb repulsion
pared the free energies between @xype andG-type spin  and the large Hund’s coupling. We then derive an effective
states in YVQ@ by including an explicit Jahn-Teller energy in Hamiltonian based on the superexchange mechanism. In Sec.
the model. Ill, we discuss the mean-field classical solutions of the
Very recently, Blakeet al.*® reported neutron-diffraction model, and examine the phase diagram for the orbital and

experiment in YVQ@, which shows clear evidence that the spin orderings. A brief summary is given in Sec. IV.
orbital ordering has a sudden change from high temperature

G type to low temperatur€ type at the 77 K magnetic phase
transition, manifested by a change in the Jahn-Teller-type of
distortion. The data also show clear evidence for the orbital In YVO,, the vanadium electron configuration isi%3
transition from high-temperature disordered phase to th@he compound has a cubic crystal structure, and each V ion
G-type ordered phase at200 K. This has motivated us to is surrounded by six oxygen ions. Due to the cubic crystal

1. MODEL
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figurations @,,,dy,) and (d,,,d,,). This last restriction in

oV orbital configurations is valid for YV@with strong lattice
distortion but not for LavVQ@ where the cubic structure is
@0 almost undistorted at room temperature.
We next introduce the intersite hopping Hamiltonidp,
given by
H=> > (t) 0 Cl oG ot H.C), )

.
v dyZ orbital

where the sum runs over all the nearest neighbor V-V pairs,
andt'rLym, is the electron hopping integral between two sites
andj from orbitalm to orbitalm’. Since the most important
contribution to the hopping integrals is from the path via the
_ _ _ . 2p state of the O ion between the two neighboring V ions,
field, the fivefold degenerated3orbitals are split into a the hopping integrals are diagonal in the present problem due
higher-energy doublet &, orbitals and a lower-energy trip- to the cubic symmetry. Namely, we hav';# m':ti%ém -

let tag orbitals. At low temperatures and for Iow?energy Therefore, there are only two independeﬁt hopping param-
physics, the relevant orbitals are the threeftjg orbitals: eterst?,=t5,=t, andt},=ti=t},=t};=t;, with the super-
dxy, dyz, andd,,. In the strong-coupling limit, the on-site jnqex indicating the direction of the two sites. In the limit
Coulomb repuls[on between the two electrons in the 3 ¢ t)<U,J,A, the system is an insulator with spin 1 on each
states and Hund's coupling are much larger than the intersitg jon However, the virtual hopping introduces an effective
electron hopping amplitudes, the system is a Mott insulatofersite coupling of spins and the occupied orbitals. The
with each V ion having two localized electrons of parallel ofactive Hamiltonian foH =Ho+H, can be derived by ap-
spins in two out of three degenerdtg orbitals. This sce- plying perturbation theory to second ordertinor t .

nario appears to be consistent with experiments. Let | ) =|s?,77,5%,7%) be a d M. f
N . ) . ) ij)=ISi 7 ,S] 7] ground state dfl, for two
As indicated in the recent diffraction experiméntthe Vionsi.|. wheres?—1 01 is the spirz component, and

cubic crystal is distorted at room temperature. As a result, th% a pseudospin-1/2 operator for the orbitats=1/2, if
V-O bond distances are anisotropic. Here we consider th% occupied, and?=—1/2, if d,, is occupied. Thé maytiix
1 1 Xz "

structure at room temperature, where the V-Q bond OIIStanc&lements between the unperturbed ground states of the two V

FIG. 1. Idealized crystal structure for Y\\Gstudied in this pa-
per. V-O bond distance along tlzedirection is shorter. The shown
orbital represent configuratior,d,, or dy,d,;.

alongc axis (perpendicular axjsis the smallestsee Fig. 1
This crystal structure further splits thg, states. Thed,,

orbital has a lower energy, and becomes always singly occ

pied. The othed electron is either i, , or d,, orbital. In the

diffraction experiment? the data also indicate a smaller dif-

ference in V-O bond lengths in they plane, which we shall
neglect here for simplicity.

The atomic Hamiltoniaft is then given byH,=3H;,
where the sum overruns all the V sites, and

Hi=5 >

mm’ o0’

(1_ 5mm’ 500’)Umm’nimanim’a’

T T
—J E (nimrrnim’(r+ Cim(rcimf(rcim/ ﬂrcim’(r

mm’ o

T T
_Cim’—acim’acimvcimfu)_l_mEU AmNpg - (1)

In the above HamiltonianciTmU(cimU) creates(annihi-
lates an electron of orbitaim and spino at sitei, njy,
=¢! Cims- A1=A,=0 andA;=A<0, withm=1,2,3 rep-
resenting orbitalsl,,, d,,, andd,,, respectivelyU . is

the on-site direct interaction, ardis the exchange interac-

tion, or Hund’s coupling. For the,, orbitals, Uy,,=U
=Unw +2J for m"#m. In the caseJ,J>A, this Hamil-
tonian leads to an atomic ground state with eachd?-Bn

t
u-

ions can be calculated within the second-order perturbation
heory, and it is given by

(ralHdDH{IH i)
<¢kI|Heff|¢ij>:2l < ItEO—E,t - (3

where the sum is over all the intermediate eigenstdjesf

Ho corresponding to the eigen enery, and E, is the
ground-state energy dfl,. Two-electron states with total
spinS=1 are given in Ref. 21. The electronic configuration
of the intermediate staf¢) is 3d® on one V ion and @* on
the other. In the Appendix, we list all the states %6:3d°,
and the corresponding energy differerige- E,. The effec-
tive Hamiltonian can be derived from these matrix elements.
Defining for each site a spin-1 opera®mand a pseudospin-
1/2 operatorr that act on thes” and 7* degrees of freedom, it
can then be expressed as below,

Hm% [17(r,m)S-S+L"(7,7)], (4)

where v=x,y,z gives the direction of the bondj). The
first term corresponds to spin-dependent orbital couplings
while the second corresponds to orbital couplings which are
spin independent. The first term also shows that the effective
spin-spin couplings depend on orbital configuration. Equiva-
lently, by definingl”=K% +K” and L"=K’ —K”, Hg¢s

having a total spirs=1 with twofold degenerate orbital con- can be written as
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In the limit J/JU=0, 53,=71,=1, anda=0, and so we
Her= X [KZ(7,7)(S-S+D+K"(7,7)(S-S—1],  havek? =Q?, and KO&Y=— (1, 12) (7, + 7,,) + &. The or-
Wy (5) bital coupling between the two V ions of antiparallel spins
vanishes, and the orbital coupling between the two V ions of
so that 2(1 and X” are interpreted as the intersite orbital para||e| Spins remains to be pseudospin(swymmetric
couplings for parallel spinssf=1, s{=1) and antiparallel alongz direction and pseudospin Ising symmetric alongr
spins /=1, sjz= —1) respectively. We choose the energyy directions. FordJ/U=0, the lack of the global pseudospin
unit to be tf/U, and denoten=J/U, 53,=1/(1-37), _SU(2) symmetry is due to the anisotropic hopping integrals
n12=1(1+27), and Q=t, /t;. KL can be expressed in in the system.

terms of parameter@ and 7, and are given below. Our effective Hamiltonian here is similar to the Hamil-
tonian proposed previously by Khaliulliet al*® with the
K(j"y)=n3,2(7izrjz—%), following differences. These authors considered a model
with three-foldt,y orbital degeneracy, while we consider a
KZ =2Q2% 94 ;i.;j_%), two-fold orbital degeneracy witll,, orbital being always
singly occupied. Below we shall compare the two Hamilto-
K(f'}')=a(7'iz7',~z— D431+ 9y nians by considering the spin- orbital coupling between two

V ions alongz direction, namelyH;;, with j=i+z. This
may be carried out by imposing the orbits, being always

X,y
+ T(l"' 712 (Tiz+ 7j2), singly occupied in the Hamiltonian of Khaliulliet al. We
find that r;,7;, terms are the same in the two theories. How-
KZ_:QZ{ZQ(TiZTjZ_%H%(l.;. 712 — $(73— 1) ever, the Hamiltonian of Khaliulliret al. does not include

the pseudospin flip termffrj*+H.c.). As we illustrated
X(r 7 +7 7)) = 3(1=m) (7 7/ + 7 77)}.  (6)  above, the pseudospin flip term is nonzero. As we shall see in
. L the following section, this pair flip term does not affect the
In the above equationsy=—3(1+273,-3712) and  mean-field results, which depend only on theomponents
ly=—1and+1, respectively. For a bond in thelirection, o hseudopsin in the present case. It will be an interesting

where thed,, orbital is inert due to zero hopping amplitude gyestion to examine if the pseudospin flip term is important
and thed,, andd,, hopping is isotropic, our model is similar {5 the orbital fluctuations.

to the original Kugel-Khomskii mod& with two differ-

ences. T_he first is the replacement of spin 1/2_by spin 1. Them_ MEAN-EIELD THEORY AND THE PHASE DIAGRAM
second is the effect of thd,, occupation which changes

Hund’s coupling contribution to the on-site energies. We sctart with the classical solutionsiéf;. The Hamil-

We first discuss the intersite pseudospin couplings betonian has a global S@) symmetry in spin space, so that we
tween two parallel spins. In this case, the psuedospin has@n assume the spin ordering along thealirection. The
SU(2) symmetry alongz direction. Alongx or y direction,  Hamiltonian is invariant under the simultaneous transforma-
however, the virtual hopping integral for orbital 2 or orbital tion of global Z2) (reversing orbitals at all sit¢gnd a 90°
1 vanishes, so there is no exchange term in the pseudospifatation of the lattice about theaxis. In general, we should
and K is of the Ising form. The pseudospin coupling consider orbital ordering along an arbitrary orientation.
between the two V ions of antiparallel spins is quite differ- However, for the present problem, the orbitatomponent
ent. There is a linear termr{,+ 7;,) alongx ory direction, terms are always larger or equal to tkeor y-component
which either favorsd,, or dy, orbital occupation to gain terms inKX of Eq. (6). Therefore, we can discuss the clas-
energy via the virtual hopping process. The pseudospin cowical solutions by considering tiiecomponent of the orbital
pling along z direction includes both the exchange term ordering only?’ In other words, the classical solutions are the
(r 7y +H.c.) and the pair flip termvCTjJr+ H.c.). In spite  same as the Ising solutions in the present case. In Table I, we
of an isotropic matrix in the direction, the orbital Hamil- show the energies per site in various classical states. Note
tonian is not SW2) symmetric because of the presence ofthat n,,<1, and n3,=1, where the equality holds if and
Hund’s coupling. In particular, the pair flip term is related to only if J=0. We consider below the case with nonzero
superexchange processes involving those intermediate statdsind’s couplingd>0. In this case, the two states listed in
listed in Table Il that are split in energy due to Hund’s cou-Table | with C type antiferro-orbitalCO) configuration have
pling. To illustrate this point further, we consider a pair of V higher energies. Also, we can see that Gwype antiferro-
ions alongz direction with antiparallel spins and pseudospinsmagnetic spifGS) and G-type antiferro-orbitalGO) phase
are 7, = 7j,= 1/2. The relevant intermediate states in the su-has a higher energy than the CS-GO phase. Therefore, the
perexchange are the states listed in the second and the fifthound state is either ferromagnetic sgFS and GO, or
rows in Table Il. Because these states have different energie€S-GO. In both FS-GO and CS-GO phases, the orbital is
there is nonzero amplitude for the pseudospins to flip;jo  antiparallel in all three directions, favored by the combina-
=1j,=—1/2. The pseudospin pair flip process is actuallytion of the symmetries in hopping integratiue to the cubic
quite common in orbital physics. For example, there are paicrystal symmetryand Hund’s coupling. The asymmetry be-
flip terms in the effective Hamiltonian for spin-1/2 systemstween the spin configuration along thexis and in thex-y
with orbital degeneracy derived by Castellanial * plane is a result of the splitting of tha, orbital level from
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the other twot,, orbitals. As expected, the FS-GO phase is c=—A.(2m?r?+q),
energetically more favored at a largéwhere Hund’s cou-
pling dominates, and the CS-GO phase is more favored at a 2d=—C-m?r’+E.-m?+Br?—A-q?, )

smallerJ. It may be helpful to understand these two possible B
ground states by examining the following limiting caseshereB=B_, and

more explicitly. In the limit of large Hund's couplingy _ 2
—1/3, the terms in the energy expression in Table | propor- Ax=4(napt @)(Q7=1),
tional to 73, dominate. Hence the FS-GO phase has the _ _ 2—
lowest energy. In the limil—0", 7,,—~1—0%, and 73, B:=4(732~ @) (Q7+ 1),
—1+4+0", so that the CS-GO phase has the lowest energy. C.=4(pypt a)(Q?+ 1),
It should be noted that although tidg, orbital is always -
singly occupied, the virtual hopping of the,, electron D.=(1+ 719)(Q%+3) = (9gpt+ a)(Q2= 1),
means that our model is not identical to a model with one B
electron occupying degeneratig, and d,, orbitals. In that Er=—(1+710)(Q*= )+ (3t @)(Q*=3).  (9)

model, for G-type orbital ordering, the ground state with

nonzero Hund’s coupling would always be ferromagnetic. The mean-field Hamiltonian can be solved easily to obtain

This is also true if we compare our model to a model withthe thermal averages &, 7i,, andS;,;,, from which we

one electron occupying triply degenerajg orbitals?32* obtain the following self-consistent equations for the order
We now discuss the finite temperature phases and thegarametersn, r, andq (with 8 the inverse temperature

transitions. We introduce three types of order parameters,

namely the spin order parameter=(S;,), the orbital order o 2 sin(Ba)
parameter;=(r;,), and the spin-orbital order parametgr (Siz)=m= [1+2 coslipa)]’

=(S,7;). We shall consider the order parameters corre-

sponding to the FS-GO and CS-GO phases, since other or- (1) =r=—3tanh(Bb/2),

dered states are not energetically favorable. In both the

FS-GO and CS-GO phases, we divide the lattice into two sinh( Bc/2)

sublatticesA andB accordingly. For the FS-GO ordering, we (Sz7i)=09=~ [1+2 coshicia)]’ (10

considem; =m for all the sites, andr;=r andqg;=q for i at o ] o
sublatticeA, andr;=—r andq;=—q for i at sublatticeB. ~ The free energy per site in the mean-field theory is given by

For the CS-GO ordering, we considex=m, r;=r, and

gi=q for i at sublatticeA, andm;=—m, ri=—r, andq; f=— l|n(4 costi 8b/2)[ 1+ 2 costiBc/2)]

=q for i at sublatticeB. We use a mean-field theory to ex- B

amine the thermodynamically stable phases described b

these order parame%/ers, and ):1eglect bgth quantum and the);- X[1+2 costipa)]) +d. (1)

mal fluctuations. The effective Hamiltoniat+; is then ap- We solve the self-consistent equations for different or-

proximated by, dered states at various temperatures. The phases studied are

(i) paramagnetic spifPS and paraorbitalPO) state (PS-

Hue=>, (aS,+br,+cS,7,+d) (7) PO with m=r=q=0; (ii) CS-PO state withC-type spin

‘ orderingm= 0 andr =q=0; (iii) PS-GO state with+# 0 and
In the above equations, coefficierts b, c, andd are func-  M=0=0; (iv) CS-GO state; andv) FS-GO state. In the
tions of 7 andQ, as well as of the mean fields, r, andg. ~ States(iv) and (v) m,r,q#0. When more than one set of
They are denoted by, the subscript upper)(and lower ~ Mean-field(MF) solutions exist at a given temperature, we
(+) signs corresponding to the CS-GO and FS-GO phase§ompare their free energies to determine the thermodynami-

respectively, cally stable phase diagram.
In Fig. 2 and Fig. 3, we plot the phase diagrams obtained
a=A.-mr’+D.m, from the mean-field theory fop=1.3 andQ=0.5, respec-
tively. The phase diagram f@=1 is qualitatively the same
b=A-m?r—B-r, as that forQ=1.3. The ground state is found to be CS-GO

TABLE |. Mean-field classical ground-state energies for various phases.

Phase Energy per site
G-type spin ands-type orbital(GS-GO —2(5+2Q%+ (1+Q?) napt 371
C-type spin anda-type orbital(CS-GO —2(5+(1+Q?) nant 371
G-type spin andC-type orbital(GS-CO — 3(10+3Q%+273,+3(2+Q?) 710)
C-type spin andC-type orbital(CS-CO —2(5+ 93+ 371
Ferro spin ands-type orbital(FS-GO —2(1+ Q) 53
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Temperature
Temperature

JU ' ' J/U

FIG. 2. Phase diagram for the anisotropic hopping parameter g|g. 3. Phase diagram fa@=t, /t;=0.5. For details, see the
Q=t, /t=1.3 in the parameter space of temperature and relativ%aption of Fig. 2.

Hund’s couplingd/U. Temperature is shown in units thU. Solid

line is the phase boundary between paraortie®) and G-type  tem first undergoes a transition to tBetype antiferro-orbital

antiferro-orbital (GO) states, the dashed line is the boundary be-q gered phase. Only at lower temperatures does the spin be-

tween paramagneti®3 andC-type antiferromagneticCS) states,  come C-type antiferromagnetic ordered. For smal@r the

the dotted line is the phase boundary between PS and ferromagnebq;]ase transitions depend on Hund’s coupling as we can see

(FS states. from Fig. 3. At intermediate/U, the orbital transition tem-
perature is higher than the spin’s, while at smalldd, the

for smallerJ/U, and FS-GO for larged/U, consistent with  spin transition temperature is higher than the orbital's. Since

our previous discussions. In general, the spin and orbital orfor YVO3, Q=1, and the estimated values forandJ are

dering occur at different temperatures. This feature is in dis~4.5 eV andJ~0.68 eV1"!8our theory suggests orbital

tinction from the model for YO, for which spin and orbital ordering first at a higher temperature followed by a subse-

order at the same temperatdfé® Within the mean-field quent spin ordering at a lower temperature in Y)/@his is

theory, the phase transition between CS-GO and FS-GO igualitatively consistent with the experimental findings for

first order, and all other transitions between the differentYVOg3 above 77 K.

phases in Figs. 2 and 3 are second or(Erne lattice distor- As recently reported by Blakeet al,’® the neutron-

tion associated with the orbital ordering, which is not in- diffraction experiment shows that the orbital ordering in

cluded in our model, may change the nature of the phas¥VO; takes place aTso=200 K, which is far above the

transition) antiferromagnetic ordering temperatdrgs= 116 K. The or-

In passing, we note that the spin-orbital ordering de-bital ordering is evidenced by the changes of the V-O bond
scribed by the order parametgiis always zero unless both lengths in thexy plane. Our theory is consistent with these
the spins and the orbitals are ordered in the present systembservations. Orbital ordering and lattice distortion are often
This result indicates that the spin-orbital ordering parameteobserved simultaneously in experiments. It is usually diffi-
g introduced in our mean-field theory in addition to the spincult to distinguish if the lattice distortion is due to the orbital
order parametem and the orbital order parametemay not  ordering or vice versa. Our theory suggests a scenario, in
be as significant in the present problem in altering the qualiwhich the orbital ordering is of electronic origin, and the
tative physics as in the S4) model*® lattice distortion observed above 77 K is a consequence of

In what follows, we shall focus on the phases relevant tahe orbital ordering and the electron-phonon coupling.
YVOg3, and discuss the sequential phase transitions from In YVO,, as temperature decreases further, there is an-
PS-PO to CS-GO. As we can see from Fig. 2, as the temether phase transition at a lower temperatiiggs=77 K,
perature decreases from the disordered state PO-PS, the spglow which the system is in thé-type antiferromagnetic
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TABLE Il. Intermediate eigenstatgk) and corresponding energy differen&gs- E,. The degeneracy shown is respected with the orbital
configurations.

Eigenstate Spin and orbital configuration E,—E,
(cirezresp|o) 45
1 1
E(51;15;15;1+C11‘15215§T+C11‘TC;TC§1)|0) _3(@ + @ + @)
U—-3J
1 1
ﬁ(511‘15515;‘1+C11‘TC;15§1+C11‘152151;T)|0) _3(@ + @ * @)
(CLCLCQ)IO) @

U
1
E(CLCLC;‘T—c;Tc;lchNO) — @_@)
1 e s (three-fold)
E(CITCUCM_CZTCZLC31)|0> —

1
_(251;15;15;1_511551551_51‘15%5%”0) -

V6 6(
1 T .1 .7 T .1 .7 T .7 .7
%(261162163T_CllCZTC3l_ClTCZLC3l)|0> _6
1 T .1 .7 T .7 .7

E(cncuc‘ﬁ—cllc2Tc3T)|0) —

ﬁ(c}c;lc;l—c‘{lchcgl)|0)

1
—(511‘1511‘15;‘1+C;TC;15;‘T)|0> -

2 >

) U+2J

1 (three-fold)
E(C}‘TCLCQ+CZLC;TC§1)|0> - )

and C type antiferro-orbital state. There have beenexplain the lower temperature phaseGfype spin ordering,
proposals’°to attribute this lower-temperature phase tran-which may require considerations in addition to the superex-
sition to the Jahn-Teller energy which favdEstype orbital  change interaction, our theory provides a starting point for
ordering. It is an interesting issue to further understand theinderstanding the unusual magnetic properties of Y¥VO
nature of the low-temperature phase transition. After we completed the present calculations, we learned
of a very recent inelastic neutron scattering experiment of
Ulrich et al3! They reported an energy gap in the spin-wave
IV. SUMMARY spectrum of YVQ in the C type spin ordering phase, and

In summary, we have studied the electronic structure othey interpreted it as an evidence for the orbital Peierls state

the insulating YVQ, and derived an effective Hamiltonian &l0ng thez direction. The classical solutions we study here
based on the superexchange interaction. We started with tr]?léj rt]ot tPfed'Ct anly S![O'” olr ?t,rb'ta_l ItDelerLS transmont.) Quantum
atomic limit where each V-6° has a spin-1 and twofold s:i:ﬁeu?olrotrrzsisOurnﬁselj:azosr:a%:;ge interactions may be respon
degenerate orbital configuratiors,d,, and dy,d,,. This

consideration is consistent with the recent neutron-diffraction
experiment af >77 K. We studied the classical solutions of
the model within mean-field theory, and foun@-type
antiferro-orbital ordering at a higher temperature followed by This work was in part supported by NSF Grant No.
a second phase transition where the spins becGnigpe 0113574, and by the Chinese Academy of Sciences. M.M.
ordered. Our theory explains the orbital and spin ordering oacknowledges the hospitality of the Hong Kong University
YVO, at temperature$>77 K. While our model does not of Science and Technology.
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APPENDIX atomic ground state energy i5=2(U—3J). The excited
In this Appendix, we present all the intermediate eigen-_Statesll> ?re_z (V= 3d1)—(V—3d3_) with S'XTOIQ. degeneracy
stateg|) and their corresponding energy differences with the" V—3d" ion. Here we consider the I|m|t|ng3casLé,J
ground stateg, — E,, of the fourt,, electrons in two Vions. >4, and neglect the effect od on the V=3d" states.
These states are used in the second-order perturbation thedf§jthin this approximation, these excited states are split into
to derive the effective Hamiltoniahie in the text. The three multiples due to Hund's coupling:>x4 states with
atomic ground states of the system are @ -fold degener- energy U—3J+Eg), 10xX6 states with energyU+E),

ate, with each ion occupied by two electrons of parallel spingnd 6xX6 states with energyU+2J+Eg). The spin and

in the orbital configurations d,d,,) or (d,d,,). The orbital configurations of V- 3d3 are listed in Table II.
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