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Spectral function of electron-phonon models by cluster perturbation theory
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Cluster perturbation theory in combination with the Lanczos method is used to compute the one-electron
spectral function of the Holstein polaron in one and two dimensions. It is shown that the method allows reliable
calculations using relatively small clusters, and at the same time significantly reduces finite-size effects.
Results are compared with exact data and the relation to existing work is discussed. We also use a strong-
coupling perturbation theory—equivalent to the Hubbard | approximation—to calculate the spectral function of
the quarter-filled Holstein model of spinless fermions, starting from the exact atomic-limit Green function. The
results agree well with previous calculations within the many-body coherent potential approximation.
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[. INTRODUCTION states increases. Consequently, standard ED methods—
employing some kind of Hilbert space truncation—are re-
Spectral properties, such as the one-electron spectral funstricted to very small clusters, especially for low phonon
tion, provide valuable insight into the usually complex phys-frequency and/or strong electron-phonon coupling. Again
ics of strongly correlated systems. However, reliable result§mproved methods such as the density matrix renormaliza-
for such quantities are difficult to obtain. Analytical methodstion group(DMRG), or the use of variational phonon bases
are often restricted to very simple limiting cases, and resultgllow one to extend the accessible parameter range. Never-
usually cannot be extended to more general situations. TwHeless, as electron-phonon interaction has been identified as
remarkable exceptions are the Holstein model with linea@n important ingredient in, e.g., high-temperature
electron dispersidi? and the Hubbard mod@&lboth in one  superconductot$ and manganite¥; further progress along
dimension(1D), which have been solved exactly. To study these lines is highly desirable.
more general models, numerical methods such as exact di- In this paper, we show that CPT can be successfully ap-
agonalization(ED) and quantum Monte CarltQMC) have  Pplied to electron-phonon models with(cal) coupling of
received much attention over the last decades. ED methodge Holstein type” We present results for the one-electron
allow very accurate calculations of ground-state as well agpectral function of the Holstein polaron, i.e., the Holstein
finite-temperature spectral properties, but are restricted tgrodel with one electron in one and two dimensions. The
rather small clusters due to the large dimension of the correHlolstein polaron problem has been investigated intensively
sponding Hilbert space. QMC can be used to obtain result# the past, and a wealth of information about its spectral
on large clusters even in higher dimensions, but here theroperties is available. We find that the use of CPT strongly
sign-problem and the ill-posed analytic continuation requirededuces finite-size effects giving results which are much
to obtain dynamic correlation functions for real frequenciescloser to the thermodynamic limit than the corresponding ED
are detrimental for many interesting app]ications_ data. Additionally, we consider the SDECia| case of a com-
The recently developed cluster perturbation théory Ppletely saturated ferromagnetic state at zero temperature in
(CPT) marks an important improvement of the situation. It isthe Holstein double-exchange motfefor colossal magne-
based on a breakup of the infinite system into identical, finitdoresistive manganites. The latter is then equivalent to the
clusters, on which the one-electron Green function is calcuHolstein model of spinless fermions, and we combine the
|lated exacﬂy_ Then, the hoppmg between clusters is treategxact atomic-limit one-particle Green function with CPT for
within strong-coupling perturbation theSry (SCPT. The @ single-site cluster to calculate the spectral function at quar-
method has been successfully used for various Hubbart®r filling. The results of this simple approach agree well
models, to calculate spectral functions as well as other quanith the previously developed many-body coherent potential
tities of interest, both for zef¢® and finite temperatur®. approximation:**°-19
Although the concept of CPT relies on a model with local ~The paper is organized as follows. In Sec. Il we give a
interactions only, it has also been applied with some succeg€view of CPT. Section Ill discusses the application to the
to thet-J model!®* For the calculation of the cluster Green Holstein polaron, while the SCPT for the many-electron case

function, the ED Lanczos methdébr a review see Ref. 32 is presented in Sec. IV. Finally, Sec. V contains our conclu-

can be used. sions.
For the case of coupled electron-phonon systems, such as
the Holstein model and its various extensions—e.g., the Il. CLUSTER PERTURBATION THEORY

Holstein-Hubbard or the Holstein double-exchange model—

the application of ED methods is hampered by the infinite The basic idea of CP™?is to divide the infinite lattice
number of possible phonon configurations, which gives risénto identical clusters, each containihgattice sites. Adopt-
to a rapidly growing requirement of computer memorying the notation of Ref. 5, the Hamiltonian of the system is
and/or CPU time as the number of lattice sites or phonomritten in the formH=H,+V where
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R RR 1 the Green function matri,,, correspond to addingemov-
Ho:; HE, V=2 VR cl.Crip. (1) ing) an electron to(from) |Q). Finally, the one-electron

RR' spectral function is defined as

In the most general formulation of CPThe subscripts, b Ak e)=—m1 lim Img(k,e+in). (5
denote different orbitals within a cluster, but here we restrict 70

ourselves to the case of one orbital per site so #ab Since CPT is based on a perturbation expansion in the
=1,... N. The vectorsR, R’ correspond tOR sites in the jntercluster hopping, the method can be expected to work
superlattice of clustersee Ref. 5 In Eq. (1), Hg represents  egpecially well in the strong-coupling regime. This is also

a Hamiltonian of a single cluster—containing local interac-jjlustrated by the fact that it becomes exact in the atomic
tions only—andV describes the hopping between clusters jimit, as mentioned above. On the other hand, for weak or
i.e., the hopping amplitude between siteof clusterR and  jntermediate coupling, the electronic kinetic energy is not

site b of clusterR’ is given by the matrix elemerwg‘;ff'. small compared to the local interactions. Consequently, the
Although long-range hopping can also be includede shall ~ size of the cluster has to be large enough in order to obtain
only consider models with nearest-neighbor hopping so thaccurate results. In fact, from previous applications of CPT,
VRR'_ _t for neighboring sites, b in adjacent cluster®,  ©:0- to the one- and two-dimensional Hubbard mddéthe

R’. Within CPT, an approximation for the Green function of cluster sizeN emerged as the main control parameter of the
the original systeng(k,e) is obtained using an analytical method. In the case of the one-dimensional Hubbard model,

strong-coupling perturbation expansion up to first order of©" ex.amp.ler,?lNzh'll is_ idelntical to the HUbb"’I‘r? '
the intercluster hoppiny (for details of the derivation see approximatiort,” while N=2 already gives a spectral func-
Ref. 5. The resulting equation relating the Green function oftion that C(_)ntams most_of the re_zleva_nt f_eatures_such as short-
the original lattice to the energy-dependent cluster Greef2N9€ antiferromagnetic orderifigWith increasingN, the

function G(z) read4® CPT Green_ fgn.ction approachgs sy_stematically_the exact re-
sult for the infinite system. For identical cluster size, the CPT
G(2) spectrum contains many more poles with significant residues
gab(Q,Z)=(—) (2)  than the corresponding results of ED. In fact, also in the
1-V(QG(®@)/,, one-dimensional Hubbard model, the spectrum obtained with

) ) CPT on a four-site cluster is already comparable in quality to
Here z=e+iz, G(z) andV(Q) stand forNXN matrices, ho EpD spectrum foN=12 (Refs. 4 and & An additional
and the intercluster hoppiny has been partially Fourier- advantage of CPT is the possibility to evaluatek,e) at
transformed exploiting the translational symmetry of thecinious wave vectols in contrast to ED which restricts

cluster sgper.latticeéw@tlﬁg being a wave vegtor of the re- k to theN vectors of the first Brillouin zone of the cluster, of
duced Brillouin zon€'Finally, the Green functioGz, canbe iy only N/2+1 are physically distinct. Finally, finite-

transforme_d from the mixed representation of E2), real temperature Lanczos methods can also be combined with
space within a cluster and reciprocal space between clusteréPT to calculate thermodynamic propertles.
using Concerning the application of the Lanczos method to cal-
culate the cluster Green functioB,,, it is important to
stress the need for open boundary conditidBE's). At-
tempts have been made to use periodic BC’s and subtract the
corresponding terms afterward in the perturbative treatment
to obtain the familiar representation of the one-electrorof the intercluster hopping, but it has been found that the
Green functiong(k,z) as given by Eqs(2) and(3) becomes  accuracy of the results is much better for the case of open
exact in the atomic limit=0 (Refs. 4 and b Moreover, it BC's. Although the latter are physically more intuitive in
also reduces to the exact result for the case of noninteractingpnnection with CPT, the calculation of the cluster Green
electrond” since, in this case, Eq2) corresponds to the function with the Lanczos method becomes more difficult as
exact resummation of the perturbation series. Finally, CPne cannot exploit translational symmetry. Other symmetries
also becomes exact in the limit—o (Refs. 4 and b The  such as the inversion group can be used in principle, but are
one-electron cluster Green function at zero temperature  usually not as effective in saving computer memory by re-
ducing the size of the corresponding Hamiltonian matrix and
1 N Lanczos vectors.
mcdfw We want to point out that CPT does not, in principle, rely
on the ED method. In fact, the cluster Green function may be
calculated using any method availablendeed we will see
in Sec. IV that it is possible to combine the exact analytic
solution for the atomic-limit Green function with CPT to
can be calculated exactly for any pair of site indiee® in obtain results which agree surprisingly well with the many-
the cluster using, e.g., the Lanczos method. Hegeés the  body coherent potential approximatioh.
energy of the ground stat€)) of the cluster, and a spin In addition to the spectral function considered here, other
index has been suppressed in the notation. The two parts physical properties of the system can also be calculated with

1 .
Gk2)= 2 Garlkz)e e 3

Gap(e)= <Q|Ca

.
+<Q|Cbmca|ﬂ> (4
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CPT. This includes, e.g., the ground-state energy of the infiphonon states. We employ a widely used truncation scieme
nite system, the electronic kinetic energy, or the Fermiof the phonon Hilbert space which is spanned by the basis
surface> The strength of CPT lies in the calculation of the states

one-particle Green function and related quantities such as the

density of states. The numerical effort is relatively small o0

compared to more sophisticated methods like DMRG or |r>ph:H W(bi)yi 10) ph (8
QMC. An additional advantage of CPT is the fact that it can LA

easily be applied also to two-dimensional systems, in CONghere 1" denotes the number of phonons at lattice §ite

trast to, e.g., DMRG. Finally, an important disadvantage ofyoy the truncation consists of restricting the basis states to
CPT should be mentioned: Within the current formulation,ine subset with

two-particle Green functions cannot be calculated. Conse-

N

guently, it is not possible to compute, e.g., the dc conductiv- N
ity or other interesting two-particle correlation functions. E vi(”szh 9
i=
lll. HOLSTEIN POLARON leading to (Npn+N—1)!1/(Np!(N—1)!) allowed phonon

configurations. The convergence of the results Wy can
be monitored using the ground-state eneggf the cluster
with open BC’s. In all results of this papéeX,,, was chosen
H=—t> (¢, +hc)+w> blbi—g> ni(b+by), such that the relative error for the ground state with one
(D ' ' © electron, |[E(Nyn+ 1)~ E(Np)|/|E(Np)|, was smaller than
1075, We find that convergence d& also ensures a well-
whereci*g (¢i,) and biJr (b;) are creationannihilation op-  converged spectral function. Moreover, the influence of the
erators for an electron with spir and a phonon of fre- number of phonons kept in the calculation is much larger for
quencyw at lattice sitei, respectively. The electron occupa- the incoherent part of the spectrum than for the coherent,
tion number is defined as;=X,n;, with n;,= CiTaCiaa and low-energy quasiparticle peak which determifeésee Sec.
the parameters of the model are the hopping integral foll A). Finally, a refined truncation scheme which allows for
nearest-neighbor hoppirigind the electron-phonon coupling extremely accurate resulfselative error<10~’) has been
strength, denoted ag It is common to define a dimension- proposed by Welleiret al >
less coupling parametex=g?/(2wW), where 2V is the Before we come to a discussion of the results obtained
bandwidth of the bare electron band, and a dimensionlesgith CPT, we want to comment on some of the existing work
phonon frequency= w/t. The Holstein model can then be on spectral properties of the Holstein polaron. As indicated
described using only these two parameters. Moreover, weefore, the most reliable method to calculate dynamic quan-
shall express all energies in units ofAs mentioned above, tities, such asA(k,e), is ED which has been used exten-
here we only consider the one-electron limit of Hamiltoniansively in the past>~*'Most of this work has focused on the
(6) which is also called the Holstein polaron problem. Al- polaron band structurg(k) instead of the spectral function,
though there is only a single electron in the system, the cousince it is often easier to interpret, especially in the strong-
pling to the phonons makes it a complex many-body probcoupling regime where the structure Ak €) is rather com-
lem, which has been the focus of much theoretical work. Theplicated. However, as pointed out by Well@hal.,* the two
restriction to one electron greatly simplifies calculations withquantities are closely related. In fact the position of the
the Lanczos method since both, the number of required phdowest-energy peak irA(k,e), obtained from the Green
non state¥ and the number of electron configurations growfunction (7), follows exactly the polaron band structure as
noticeably with the number of particles. However, in Sec. IV,we varyk. Moreover, as discussed by Wellein and Fetike,
we will use the exact result for the atomic-limit Green func- the integral over this first peak is equivalent to the quasipar-
tion and CPT for a single-site cluster to calculate the spectraicle (QP) weight z(k) =|(#5}|c{|0)|2, where y§}) denotes
function of the Holstein model of spinless fermions at quar-the lowest-energy single-polaron state in the sector with total

The Hamiltonian of the Holstein modélreads

ter filling. momentumk. Other numerical methods which have been
Following other author$®~?® we calculate the Green used to calculate the spectrum of the Holstein polaron in-
function clude DMRG (Refs. 32 and 3B(in one dimensiop finite-

cluster strong-coupling perturbation thet{1D, 2D), QMC
(Refs. 35 and 36(1D-3D), and variational method&3°
(1D-4D.

1
d(k,€)=(0lcy =7 xl0), @
where|0) represents the ground state of the phonons and the
vacuum state for the electrons. The spin index can be sup-
pressed due to the symmetry of the problem. The corre- As mentioned above, the critical parameter of CPT is the
sponding one-electron spectral function is given by &y.  number of sites in the cluster. To demonstrate the advantage

Compared to the class of Hubbard models for which CPTof CPT over the standard ED meth¢gke, e.g., Ref. 34ve
has been originally developed, we are facing an additiongbresent in Fig. 1 the spectral functiét{0,e) in one dimen-
difficulty arising from the ariori infinite number of allowed sion for different cluster size®l. We chosew=2 and\

A. Comparison with exact diagonalization

184304-3



HOHENADLER, AICHHORN, AND VON DER LINDEN PHYSICAL REVIEW B68, 184304 (2003
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=0.5, which is the regime where an extended polaron exists A closer look at the CPT results in Fig. 1 reveals small
(see, e.g., Ref. 29 Consequently, significant finite-size ef- additional peaks—not present in the ED spectra—which
fects can be expected for small clusters, which is exactlynove from the incoherent part 8f(k, €) toward the QP peak
what we see in the ED results. For the latter periodic BC'swith increasingN. Additional calculations for larger clusters
have been used. Figure 1 clearly shows that the shape of t@ve shown that these peaks vanish systematically with in-
large QP peak at~ — 2.4 changes very little with increasing créasingN, so that the CPT spectrum approaches the exact
N for both ED and CPT but a noticeable shift can be ob-"ésult in the thermodynamic lim=, as expected. Con-
served in the case of the ED spectra as we go floa®2 to ;equer)tly, these peal§s are.not a defect of CPT,.but represent
N=4. The influence oN is much larger for the incoherent finite-size effects which arise from the approximate treat-

part of the spectrum, which lies about a distancabove the ment of mterc’:luster hopping. The latter, in combination w!th
QP peak. The ED spectra display sharp, well-se aratel® open BC’s used to calculate the cluster Green function,

eakz W.hereas the Eorres onélainy CPTp(’jata—coEtainineadS to a system which does not have perfect translational
P ' | bl P hg | th ted &/mmetry. The situation is equivalent to ED with open BC’s:
many more poles—resemble MUch closer the eXpected Tes, .\, ., e spectrum approaches the results of an infinite
sults for an infinite system. The latter has been |nvest|gateg

ol usi ; ) luster. However, in contrast to CPT, the effects for fite
by Marsiglig™ using Migdal-Eliashberg theory. For the same 5.6 11y,ch more significant. Moreover, these finite-size effects

parameters, he found that the QP peak remains almost Uanifest themselves in a slightly different way than in the
changed as®\— o, while the incoherent part evolves into a ¢ase of periodic BC's, where no additional peaks—showing
continuous band that fits well to the CPT results even fokhe aforementioned behavior—are found. In the case of CPT,
rather small clusterdl=6. We have also compared(k,e)  already for the small cluster sizes shown in Fig. 1, the spec-
for k#0, and the observed influence of finite-size effectstral weight of these additional peaks is extremely small com-
agrees perfectly with previous work of Wellein and Feh¥ke. pared to the rest of the spectrum. For other values aind

As k increases fronk=0 to k=, the size of the polaron \, a similar behavior has been found. Although not discussed
increases, and the deviations of the ED data from the CPDy the authors, similar effects can also be expected for the
results become larger. In the strong-coupling or small-case of the Hubbard mod®?;® although they may be larger
polaron regime, not shown here, finite-size effects are knowfor the Holstein polaron due to the higher sensitivity of pho-
to be small. Consequently, even for very small clusters, ED1on excitations to the BC’s.

and CPT both give well-converged results for the QP peak
which determines, e.g., the ground-state energy. However, in
the case of ED, the incoherent part of the spectrum for wave
vector k, corresponding to excitations of an electron with  In one dimension, the general picture emerging from pre-
momentumg and a phonon with momentui—q, still ex-  vious work on the Holstein polaron problem is as follows
hibits the typical multipeak structure of a finite system, (see, e.g., Ref. 29 and references therémthe nonadiabatic
whereas the CPT results again reproduce much better thegime @>1), a so-called Lang-Firsov polaron is formed
incoherent band found in the thermodynamic limit. More-which, due to the instant response of the phonons to the
over, as mentioned in Sec. Il, CPT allows us to calculateelectronic motion, represents a very localized object. As the
A(k,€) for continuousk, while ED on aN-site cluster is electron-phonon coupling increases, its mobility or effective
restricted toN/2+ 1 physically nonequivalent wave vectors. hopping amplitude exhibits a gradual decrease, and for

B. Results: One dimension
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FIG. 2. Top: Spectral functiom(k,e) of the one-dimensional FIG. 3. Top: Spectral functiod(k,e) of the one-dimensional

Holstein polaron calculated with CPT fot=14, N,,=6, and»  Holstein polaron calculated with CPT fé¥=12, Ny,=6, and 7

=0.02. Bottom: Density plot of the same data for 100 pointkin = 0-02. Bottom: Density plot of the same data for 100 pointin
space. Symbols represent results of Boatal3® space. Symbols represent results of Boatal.

strong coupling a nearly-localized small polaron moving inand repel each other near the point where they would be
an exponentially narrow band exists. In contrast, in the adiagegenerate, i.e. folE(k) — E(0)|~ . This coincides with
batic (w<<1), weak-coupling regime the electron drags With o region where the flattening of the polaron band occurs
it an extended cloud of phonons. This object is usually called,,§ iy fact. for largetk the phonon becomes the lowest-
a large polaron. AtA~1, a shar_p but continuoffstransi- energy excitation. However, most of the spectral weight is
tionto a Igss mobile small Holstein polayon tgkes place. Th%ontained in the broad, incoherent band which follows the
two conditions for small-polaron formation, independent of oo jeciron dispersion. The density plot in Fig. 2 also con-

the value ofw, are A\>1 and A/w>0.52° Moreover, as : .
. ' . ' tains data for the polaron band structlé€k) which have

ointed out by Caponet al,* the formation of small po- . . . ) o
P y ~ap PO~ heen obtained by Bomcet al® using their variational ED

larons is determined by>1 for <1 and by\/w>0.5 for hod. The | has b h X
@>1. Here we restrict ourselves to the most interesting reMethod. The latter has been shown to give very accurate

gime of phonon energies comparable to the electronic hoﬂ_esults for the .infinite system, altl_wough i_t becomes somewhat
ping, i.e.,@~1. For intermediat@ and\, no reliable ana- less accurate in the strong—coupllng regime and for large val-
lytical methods exist, so that numerical approaches represeHgS Ofk (Ref. 38. As mentioned beforéz (k) corresponds to
the most important source of information. the lowest-energy band iA(k,e) and we find very good

In Fig. 2 we present results fok(k,e) for ®=0.8, A agreement with our data throughout the Brillouin zone.
=0.25, and\ =14 as well as a density plot of the same data. Figure 3 shows results for a similar phonon frequency
As mentioned before, the spectrum consists of a low-lying=1.0 but for stronger electron-phonon coupling 0.5 and
QP peak and an incoherent part at higher energies. The phys=12. Compared to the weak-coupling case discussed
ics behind the observed behavior Afk,e) has been dis- above, the polaron band is separated more clearly from the
cussed, e.g., by Steph&hand is typical for electronic sys- incoherent part of the spectrum and, as expected, the band
tems weakly interacting with dispersionless optical phononswidth is further reduced. Additionally, even more spectral
For smallk, most of the spectral weight resides in the QPweight has been transfered to the high-energy, incoherent
peak which corresponds to a weakly-dressed electron. Fdrand. On top of that, a gap shows up in the upper band at
the case considered here, in which the phonon energy lieaboutk= 7/2. Again the polaron band fits very well the re-
inside the bare electron band, electron and phonon hybridizsults forE(k) of Bonca et al®
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FIG. 4. Top: Spectral functiof(k,e) of the one-dimensional FIG. 5. Top: Spectral functiod(k,e) of the one-dimensional
Holstein polaron calculated with CPT fod=8, N,,=9, and » Holstein polaron calculated with CPT fdd=4, N,,=25, and
=0.02. Bottom: Density plot of the same data for 100 pointkin =0.02. Bottom: Density plot of the same data for 100 pointsin
space. Symbols represent results of Baftfc space. Symbols represent results of Baffc

We next consider the case of intermediate coupling for the shape of the cluster is not unique, and different clus-
=1.0, withw=1 andN=8 (Fig. 4). For these parameters, ters may lead to slightly different results. This possibility has
an extended polaron exists which still has a relatively largdbeen investigated for the Hubbard model, and the effect of
band width, compared to the small-polaron case discussdtie cluster shape oA(k,e) was found to be rather small.
below. Moreover, the incoherent part of the spectrum ha&or the case of the Holstein polaron, where the physics is
split up into several subbands separated in energywby dominated by local correlations, the influence of the geom-
which correspond to excitations of an electron and one ogtry of the cluster is expected to be even smaller.
more phonons. As before, we find very good agreement be- As discussed, e.g., by Welleiet al,* similar to 1D, a
tween the low-energy band i(k,e) and the polaron band small polaron is formed in two dimensions provided tRat

energyE(k) calculated by Bore*? >1 and\/»>0.5. While the behavior in the nonadiabatic
Finally, in Fig. 5, we report the spectral function fer  regime @>1) is only weakly affected by dimen-

—1 and\=2.0. The results have been obtained using only sionality?>*®important differences exist in the adiabatic re-

four-site cluster, which is sufficient to get very good agree-gimew<1: In contrast to the one-dimensional case, where a
ment with Bona’s data forE(k), with only minor deviations large polaron is formed for any>0, the electron remains

at large values ok where finite-size effects are most pro- quasifree for <1, as indicated by an almost unaffected ef-
nounced, as discussed in Sec. lll A. This is a consequence &ctive hopping amplitude. Moreover, for the same value of
the predominantly local effects in the strong-coupling re-w, the cross over to a small polaronkat 1 is much sharper
gime, which also manifest themselves in terms of a veryin 2D than in 1D.

narrow polaron band. Here we simply aim to demonstrate the possibility of cal-
culating the 2D spectral function with CPT. Therefore, we
restrict ourselves to one set of parameters, nameh2.0
and A=0.945, which has also been treated usiimgte-

To illustrate the applicability of CPT, we also calculated cluster strong-coupling perturbation theo#.In contrast to
the spectral function of the Holstein polaron on a two-standard SCPT based on the Lang-Firsov transformation, the
dimensional cluster witiN=28, which has the shape of a latter has been shown to give reliable results also for inter-
tilted square. In contrast to CPT in one dimension, the choicenediateN andw, which is a consequence of the inclusion of

C. Results: Two dimensions
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T T T o T successfully applied, e.g., to the many-electron Hubbard

j‘ B A=0% model*>89 the electron-phonon coupling in the Holstein

k=00 M 54 model greatly complicates calculations using Lanczos ED.
For finite electron density, we combine CPT with the exact

K= G0} T analytic result for the Green function in the atomic limit. For

% the atomic limit, the Green function has been obtained for

. = many models using the equation-of-motion methband
i H@&E here it will allow us to obtain results for the many-electron
S case which will be compared with the many-body coherent
k=(0,0) N

T B i potential approximation discussed below.

e/t
A. Many-body coherent potential approximation
al = | Extending previous work of Edwardst al'’*® for the
= pure double-exchangéDE) model (see, e.g., Ref. 14
4l = ] Greert® studied the Holstein DE model using a many-body

ﬁ coherent potential approximatig@PA) which, owing to the

= more complicated form of the Holstein DE Hamiltonian,

= o _ﬂ i constitutes a considerable extension of the Hubbard Il
@ — — approximatior®® The many-body CPA successfully describes
-2ﬂ many aspects of the manganites, and we refer the reader to a
recent review of this work by Edward$ Here we only con-
'4;#_;,.-?? —"‘i_; sider the special case of a completely saturated ferromagnetic
% state at temperaturé=0, with all itinerant spins having

spin, say. Consequently, the DE term which couples local
and itinerant spir$ becomes merely a constant shift in en-
ergy, and the Holstein DE model is equivalent to the pure
Holstein model of spinless fermions, i.e., with no doubly
FIG. 6. Top: Spectral functiod\(k,e) of the two-dimensional _occupied sites? An important feature ‘?f the many-body CPA
Holstein polaron calculated with CPT fod=8, Ny=9 and » IS that the one-electron Green function reduces to the exact

=0.02. Bottom: Density plot of the same datsee text atomic limit for t=0, which takes the forfi

n 1-n
+ )} (10

etwr e—owr

0,0) (0,m) (m,m) 0,0)
k

longer-ranged effect®:3*While in the one-dimensional case AL 1
the density plot ofA(k,€) contains all 100 values df used Gir(e)=e % -+
in CPT, in two dimensions we have used 400 pointkin
space. However only 60, lying alodgMXT', are shown in  where a=g%w?, and the polaron binding energy
Fig. 6. —(9%/w)n (n=0,1) has been absorbed into the chemical
From the above discussion, and for the parameters corpotential. The general result f@*- of the Holstein model
sidered here, we expect a rather broad polaron band. This {§ith electrons of both spins has been given by Gréamd
clearly confirmed by the spe_ctral function shown in Fig. 6,,e drop the spin index in the sequel. As discussed by
and the lowest-energy band in our data resembles closely T@dwardsl;4 for an elliptic density of states, the local Green

the findings of StephaifFig. 2 of Ref. 34. In particular, : o _
similar to the one-dimensional case considered in Sec. IlI BI:JO?IC“O” G(z) for complex energy satisfies the CPA equa

a flattening of the polaron band near/@,7) is found which

has also been noted by Wellet al?° Above the polaron G(2) =G (z— W2Gl4) (11)
band, also similar to 1D, there lie several other incoherent

bands which correspond to multiphonon excitations and ar@nd the self-energy can be obtained ffém

therefore separated in energy by _

In summary, the results of this section clearly demonstrate 2(2)=2-G - Wg/a. (12)
that CPT is applicable not only in the strong-coupling re-Finally, the one-electron spectral function is given by
gime, but also for weak and intermediate electron-phonon
interaction. The quality of the resulting spectra is superior to Ak,e)=—mtIm[z— e,—2(2)], (13
ED data for the same cluster size, and a very good agreemen
has been found with the variational method of Baecal®®  V'€'€
in one dimension. Moreover, we have shown that CPT also 3

allows accurate calculations éf(k, €) in two dimensions. €= —2t 2 cosk,, (14)
m=1

>

r=1

©

al’
rt

IV. MANY-ELECTRON CASE .
is the band energy for wave vector

In the last section, we have restricted ourselves to the In order to compare with angle-resolved photoemission
Holstein model with one electron. Although CPT has beerdata on the bilayer manganite L&r; Mn,O;, nominally
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' ' the many-body CPA does not give coherent states with infi-
nite lifetime at the Fermi level, even fdr=0. This is typical

for any CPA, and here it leads to an incoherent polaron sub-
band around the Fermi level. Nevertheless, outside the cen-
tral band arouncEg, the imaginary part of the self-energy
displays the correct behavior, i.e., it vanishes in the gap,
between the polaron bands.

B. SCPT

In this section we use the exact result for the atomic-limit
Green function of the Holstein model of spinless fermions,
G”' [Eq. (10)], and combine it with CPT to compare the
resulting spectrum with the many-body CPA. For this case of

. ' a single-site clustera=b), Egs.(2) and (3) reduce to a
single equation for the one-electron Green function
y=0.0
02 ? G(k,2) " @ ! (15)
y=0. Z)= —
ymos = 1-6G*(2) z—e—3"(2)
y=05 /
y0s with z=e+i7n ande¢, as defined by Eq.14). Hence, as men-
— | tioned before, CPT foN=1 is equivalent to the Hubbard |
y=08 - approximatiorf but here with the more complicated atomic-
y=10 LN limit Green function of the Holstein model given by Eqg.
-2 -1 0

(10). In the sequel, we shall refer to this approximation as
SCPT. This is justified by the fact that the approach becomes

FIG. 7. Comparison of the spectral function of the Holstein e_xact fort=0. Historically, a similar strong-coupling expan-

model of spinless fermions &t=0, calculated with SCPTtop) and ~ Si°n for the 'Hubbard moo‘éT.—incIu_ding higher order
with the many-body CPAbottom, taken from Ref. 19 Here the corrections—has been the starting point for the development

wave vectork is given byk=(1,y,0) with y as indicated in the of CPT. ) )
figure. The plot is fore/W=0.05 andg/W=0.2. The SCPT results Before we discuss the results, we would like to comment

have been broadened using a smearing paramgW=0.05. on the quality of the SCPT used here: While the many-body
CPA requires a self-consistent, iterative solution of 84,
with n=0.6, Hohenadler and Edwards chose a stronghe SCPT Green function is obtained from the Lehmann rep-
electron-phonon coupling/W=0.2, as deduced from the resentation of the atomic-limit Green functioh0), and the
low Curie temperature of this materfdlTo simplify calcu-  subsequent use of the resulting self-ene¥dy in Eq. (15).
lations, they also used= 0.5 for which the chemical poten- Similar to the original Hubbard | approximatighthe result-
tial =0 by symmetry. We want to point out that the many-ing Green function consists of peaks corresponding to
body CPA assumes a homogeneous system, so that rstates with infinite lifetime. However, due to the poles in the
tendencies toward charge-density-wave order occun ss  self-energy, there are no states at the Fermi level and the
varied® As in previous work® Hohenadler and Edwards system is not a Fermi liquid. As in the many-body CRA,
used W=1 eV and w/W=0.05 (see also Ref. 14 The depends ork only through the band energy,, whereas the
result$® for A(k,€), shown in Fig. 7, support the theory of self-energy is local. This reliance on the atomic limit is rea-
Alexandrov and BratkovsKy that in these manganites, small sonable in the strong-coupling regime considered here,
polarons exist in the ferromagnetic state. A similar interprewhere small polarons move in an extremely narrow band.
tation of the experimental data—based on standard smallconsequently, the simple perturbative treatment of the hop-
polaron theory—had also been given by Desstal*’ Well ping term can be expected to give sensible results. Neverthe-
away from the Fermi surface, a well-defined peak existdess, in SCPT, we have to use an artificial imaginary part
which broadens a& approaches the Fermi lev@l aty = »—which does not depend on energy—to obtain peaks of
=0.5. Ifyis increased further, most of the spectral weight isfinite width. Although for large enough there will be states
transfered abov&r. Moreover, the peaks never approachat the Fermi level, the latter have only finite lifetime even for
the Fermi level closely, in agreement with the experimentall =0. Hence, both the SCPT and the many-body CPA never
data. This indicates the existence of a pseudogap in the ongive a Fermi liquid, but the self-consistent CPA Green func-
electron density of states. However, in the gap, there exigdion yields an imaginary part of the self-energy that shows
small polaron subbandsee Fig. 4 of Ref. 1)6and one of the correct, strong energy dependence except for the region
them, at the Fermi level, presumably gives rise to the low buinside the very small, incoherent polaron band arobpdas
finite conductivity of the system. As discussed by Edwafds, discussed in Sec. IV A. Thus, as could be expected from the

Energy relative to E_in eV

184304-8



SPECTRAL FUNCTION OF ELECTRON-PHONON MODH.. .. PHYSICAL REVIEW B 68, 184304 (2003

Hubbard I-like approximation in Eq(15), the many-body for the one-electron spectral functioh(k,e), which be-
CPA is superior to SCPT, although both approaches becomgomes exact in the weak- and strong-coupling limit 0
exact in the atomic limit. andt=0, respectively, and for the case of an infinite cluster.

The spectral function obtained with SCPT using E8),  Calculations for continuous values of the wave vedtare
also shown in Fig. 7, resembles quite closely to the results ghossible and, more importantly, finite-size effects are signifi-
Hohenadler and Edward$ Although there are some differ- cantly reduced compared to standard ED. Our results extend
ences concerning the width and the position of the peaks, t'}@revious applications of CPT to Hubbard and models,
overall behavior is very similar. In particular, the broadeningshowing that the method is also well suited for electron-
of the QP peak near the Fermi surfaceyat0.5 is well  phonon models with local interactions. In particular, using
reproduced. Clearly, the success of SCPT consists of a SUCPT, we have been able to calculate the complete spectral
prisingly good agreement with the CPA data for lllDe-  function of the Holstein polaron for continuous valueskof
spite this agreement, CPT fails to reproduce the polaron subFhis is in contrast to Exact Diagonalization, which is re-
bands, and the sharp edge to the pseudogap for large valugsicted to rather small numbers lof/alues, and QMC which
of y. Moreover, the gap is larger than in the CPA data. Thesgjives reliable results only for the polaron band structsee
shortcomings are a consequence of the rather crude approec. |1l). As pointed out before, for more than one electron in
mation. Nevertheless, keeping in mind the simplicity of thethe system, it becomes increasingly difficult to include
ansatz, the agreement with the many-body CPA is satisfaGnough phonon states so as to obtain converged results. Fu-
tory. We would like to point out that the SCPT presented herqyre work may therefore combine optimized phonon
can also be generalized to the Holstein DE model with quanapproachég and CPT to investigate more Comp”ca_ted prob_
tum spins(e.g.,S=3/2 appropriate for the manganitdsand  |ems such as the many-electron case, or extended models
at finite temperature, using the atomic-limit Green fUI’lCtiOﬂinduding, e.g.,a Hubbard term. The major advantage of such
given by Edwards? Finally, the approximation could be sys- an approach is the possibility of using relatively small clus-
tematically improved by increasing the number of sites in theers while still obtaining results which are only weakly influ-
cluster, which is exactly the idea behind CPT. enced by finite-size effects.

However, forN>1 the cluster Green function can no  Additionally, we have used the exact atomic-limit Green
longer be calculated analytically and one has to resort teunction of the Holstein model of spinless fermions to calcu-
numerical methods such as ED as in Sec. lll. Such calculgate the spectral function for the case of quarter filling and
tions are extremely difficult for the case of quarter-filled two- strong electron-phonon coupling. The results of this approxi-

or three-dimensional clusters, small phonon frequency anghation at the Hubbard | level agree surprisingly well with
strong electron-phonon coupling. Future work along thesghe many-body CPA.

lines—employing optimized phonon approacdfiesee also
Sec. VJ—is highly desirable in order to assess the quality of ACKNOWLEDGMENTS
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