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Spectral function of electron-phonon models by cluster perturbation theory
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Cluster perturbation theory in combination with the Lanczos method is used to compute the one-electron
spectral function of the Holstein polaron in one and two dimensions. It is shown that the method allows reliable
calculations using relatively small clusters, and at the same time significantly reduces finite-size effects.
Results are compared with exact data and the relation to existing work is discussed. We also use a strong-
coupling perturbation theory—equivalent to the Hubbard I approximation—to calculate the spectral function of
the quarter-filled Holstein model of spinless fermions, starting from the exact atomic-limit Green function. The
results agree well with previous calculations within the many-body coherent potential approximation.
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I. INTRODUCTION

Spectral properties, such as the one-electron spectral f
tion, provide valuable insight into the usually complex phy
ics of strongly correlated systems. However, reliable res
for such quantities are difficult to obtain. Analytical metho
are often restricted to very simple limiting cases, and res
usually cannot be extended to more general situations.
remarkable exceptions are the Holstein model with lin
electron dispersion1,2 and the Hubbard model,3 both in one
dimension~1D!, which have been solved exactly. To stu
more general models, numerical methods such as exac
agonalization~ED! and quantum Monte Carlo~QMC! have
received much attention over the last decades. ED meth
allow very accurate calculations of ground-state as wel
finite-temperature spectral properties, but are restricted
rather small clusters due to the large dimension of the co
sponding Hilbert space. QMC can be used to obtain res
on large clusters even in higher dimensions, but here
sign-problem and the ill-posed analytic continuation requi
to obtain dynamic correlation functions for real frequenc
are detrimental for many interesting applications.

The recently developed cluster perturbation theor4,5

~CPT! marks an important improvement of the situation. It
based on a breakup of the infinite system into identical, fin
clusters, on which the one-electron Green function is ca
lated exactly. Then, the hopping between clusters is tre
within strong-coupling perturbation theory6,7 ~SCPT!. The
method has been successfully used for various Hubb
models, to calculate spectral functions as well as other qu
tities of interest, both for zero4,5,8 and finite temperature.9

Although the concept of CPT relies on a model with loc
interactions only, it has also been applied with some succ
to thet-J model.10,11For the calculation of the cluster Gree
function, the ED Lanczos method~for a review see Ref. 12!
can be used.

For the case of coupled electron-phonon systems, suc
the Holstein model and its various extensions—e.g.,
Holstein-Hubbard or the Holstein double-exchange mode
the application of ED methods is hampered by the infin
number of possible phonon configurations, which gives r
to a rapidly growing requirement of computer memo
and/or CPU time as the number of lattice sites or phon
0163-1829/2003/68~18!/184304~10!/$20.00 68 1843
c-
-
ts

ts
o
r

di-

ds
s
to
e-
lts
e

d
s

e
-

ed

rd
n-

l
ss

as
e

e
e

n

states increases. Consequently, standard ED metho
employing some kind of Hilbert space truncation—are
stricted to very small clusters, especially for low phon
frequency and/or strong electron-phonon coupling. Ag
improved methods such as the density matrix renormal
tion group~DMRG!, or the use of variational phonon bas
allow one to extend the accessible parameter range. Ne
theless, as electron-phonon interaction has been identifie
an important ingredient in, e.g., high-temperatu
superconductors13 and manganites,14 further progress along
these lines is highly desirable.

In this paper, we show that CPT can be successfully
plied to electron-phonon models with a~local! coupling of
the Holstein type.15 We present results for the one-electro
spectral function of the Holstein polaron, i.e., the Holste
model with one electron in one and two dimensions. T
Holstein polaron problem has been investigated intensiv
in the past, and a wealth of information about its spec
properties is available. We find that the use of CPT stron
reduces finite-size effects giving results which are mu
closer to the thermodynamic limit than the corresponding
data. Additionally, we consider the special case of a co
pletely saturated ferromagnetic state at zero temperatur
the Holstein double-exchange model16 for colossal magne-
toresistive manganites. The latter is then equivalent to
Holstein model of spinless fermions, and we combine
exact atomic-limit one-particle Green function with CPT f
a single-site cluster to calculate the spectral function at qu
ter filling. The results of this simple approach agree w
with the previously developed many-body coherent poten
approximation.14,16–19

The paper is organized as follows. In Sec. II we give
review of CPT. Section III discusses the application to t
Holstein polaron, while the SCPT for the many-electron ca
is presented in Sec. IV. Finally, Sec. V contains our conc
sions.

II. CLUSTER PERTURBATION THEORY

The basic idea of CPT4,5,20 is to divide the infinite lattice
into identical clusters, each containingN lattice sites. Adopt-
ing the notation of Ref. 5, the Hamiltonian of the system
written in the formH5H01V where
©2003 The American Physical Society04-1
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H05(
R

H0
R, V5 (

R,R8
a,b

Va,b
R,R8cRa

† cR8b . ~1!

In the most general formulation of CPT,5 the subscriptsa, b
denote different orbitals within a cluster, but here we rest
ourselves to the case of one orbital per site so thata, b
51, . . . ,N. The vectorsR, R8 correspond to sites in th
superlattice of clusters~see Ref. 5!. In Eq. ~1!, H0

R represents
a Hamiltonian of a single cluster—containing local intera
tions only—andV describes the hopping between cluste
i.e., the hopping amplitude between sitea of clusterR and

site b of clusterR8 is given by the matrix elementVa,b
R,R8 .

Although long-range hopping can also be included,5 we shall
only consider models with nearest-neighbor hopping so

Va,b
R,R852t for neighboring sitesa, b in adjacent clustersR,

R8. Within CPT, an approximation for the Green function
the original systemG(k,e) is obtained using an analytica
strong-coupling perturbation expansion up to first order
the intercluster hoppingV ~for details of the derivation se
Ref. 5!. The resulting equation relating the Green function
the original lattice to the energy-dependent cluster Gr
function G(z) reads4,5

Gab~Q,z!5S G~z!

12V~Q!G~z! D
a,b

. ~2!

Here z5e1 ih, G(z) and V(Q) stand forN3N matrices,
and the intercluster hoppingV has been partially Fourier
transformed exploiting the translational symmetry of t
cluster superlattice, withQ being a wave vector of the re
duced Brillouin zone.5 Finally, the Green functionGab can be
transformed from the mixed representation of Eq.~2!, real
space within a cluster and reciprocal space between clus
using5

G~k,z!5
1

N (
a,b51

N

Gab~k,z!e2 ik•(ra2rb) ~3!

to obtain the familiar representation of the one-elect
Green function.G(k,z) as given by Eqs.~2! and~3! becomes
exact in the atomic limitt50 ~Refs. 4 and 5!. Moreover, it
also reduces to the exact result for the case of noninterac
electrons4,5 since, in this case, Eq.~2! corresponds to the
exact resummation of the perturbation series. Finally, C
also becomes exact in the limitN→` ~Refs. 4 and 5!. The
one-electron cluster Green function at zero temperature

Gab~e!5^Vuca

1

z2~H02E0!
cb

†uV&

1^Vucb
† 1

z1~H02E0!
cauV& ~4!

can be calculated exactly for any pair of site indicesa, b in
the cluster using, e.g., the Lanczos method. HereE0 is the
energy of the ground stateuV& of the cluster, and a spin
index has been suppressed in the notation. The two par
18430
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the Green function matrixGab correspond to adding~remov-
ing! an electron to~from! uV&. Finally, the one-electron
spectral function is defined as

A~k,e!52p21 lim
h→01

Im G~k,e1 ih!. ~5!

Since CPT is based on a perturbation expansion in
intercluster hopping, the method can be expected to w
especially well in the strong-coupling regime. This is al
illustrated by the fact that it becomes exact in the atom
limit, as mentioned above. On the other hand, for weak
intermediate coupling, the electronic kinetic energy is n
small compared to the local interactions. Consequently,
size of the cluster has to be large enough in order to ob
accurate results. In fact, from previous applications of C
e.g., to the one- and two-dimensional Hubbard model,4,5,8 the
cluster sizeN emerged as the main control parameter of
method. In the case of the one-dimensional Hubbard mo
for example, N51 is identical to the Hubbard
approximation,21 while N52 already gives a spectral func
tion that contains most of the relevant features such as sh
range antiferromagnetic ordering.5 With increasingN, the
CPT Green function approaches systematically the exac
sult for the infinite system. For identical cluster size, the C
spectrum contains many more poles with significant resid
than the corresponding results of ED. In fact, also in
one-dimensional Hubbard model, the spectrum obtained w
CPT on a four-site cluster is already comparable in quality
the ED spectrum forN512 ~Refs. 4 and 5!. An additional
advantage of CPT is the possibility to evaluateA(k,e) at
continuous wave vectorsk, in contrast to ED which restricts
k to theN vectors of the first Brillouin zone of the cluster, o
which only N/211 are physically distinct. Finally, finite-
temperature Lanczos methods can also be combined
CPT to calculate thermodynamic properties.9

Concerning the application of the Lanczos method to c
culate the cluster Green functionGab , it is important to
stress the need for open boundary conditions~BC’s!. At-
tempts have been made to use periodic BC’s and subtrac
corresponding terms afterward in the perturbative treatm
of the intercluster hopping, but it has been found that
accuracy of the results is much better for the case of o
BC’s. Although the latter are physically more intuitive i
connection with CPT, the calculation of the cluster Gre
function with the Lanczos method becomes more difficult
one cannot exploit translational symmetry. Other symmet
such as the inversion group can be used in principle, but
usually not as effective in saving computer memory by
ducing the size of the corresponding Hamiltonian matrix a
Lanczos vectors.

We want to point out that CPT does not, in principle, re
on the ED method. In fact, the cluster Green function may
calculated using any method available.5 Indeed we will see
in Sec. IV that it is possible to combine the exact analy
solution for the atomic-limit Green function with CPT t
obtain results which agree surprisingly well with the man
body coherent potential approximation.19

In addition to the spectral function considered here, ot
physical properties of the system can also be calculated
4-2
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CPT. This includes, e.g., the ground-state energy of the
nite system, the electronic kinetic energy, or the Fe
surface.5 The strength of CPT lies in the calculation of th
one-particle Green function and related quantities such as
density of states. The numerical effort is relatively sm
compared to more sophisticated methods like DMRG
QMC. An additional advantage of CPT is the fact that it c
easily be applied also to two-dimensional systems, in c
trast to, e.g., DMRG. Finally, an important disadvantage
CPT should be mentioned: Within the current formulatio
two-particle Green functions cannot be calculated. Con
quently, it is not possible to compute, e.g., the dc conduc
ity or other interesting two-particle correlation functions.

III. HOLSTEIN POLARON

The Hamiltonian of the Holstein model15 reads

H52t (
^ i j &s

~cis
† cj s1h.c.!1v(

i
bi

†bi2g(
i

ni~bi
†1bi !,

~6!

wherecis
† (cis) and bi

† (bi) are creation~annihilation! op-
erators for an electron with spins and a phonon of fre-
quencyv at lattice sitei, respectively. The electron occup
tion number is defined asni5(snis with nis5cis

† cis , and
the parameters of the model are the hopping integral
nearest-neighbor hoppingt and the electron-phonon couplin
strength, denoted asg. It is common to define a dimension
less coupling parameterl5g2/(2vW), where 2W is the
bandwidth of the bare electron band, and a dimension
phonon frequencyv̄5v/t. The Holstein model can then b
described using only these two parameters. Moreover,
shall express all energies in units oft. As mentioned above
here we only consider the one-electron limit of Hamiltoni
~6! which is also called the Holstein polaron problem. A
though there is only a single electron in the system, the c
pling to the phonons makes it a complex many-body pr
lem, which has been the focus of much theoretical work. T
restriction to one electron greatly simplifies calculations w
the Lanczos method since both, the number of required p
non states22 and the number of electron configurations gro
noticeably with the number of particles. However, in Sec.
we will use the exact result for the atomic-limit Green fun
tion and CPT for a single-site cluster to calculate the spec
function of the Holstein model of spinless fermions at qu
ter filling.

Following other authors,23–28 we calculate the Green
function

G~k,e!5^0uck

1

e2H
ck

†u0&, ~7!

whereu0& represents the ground state of the phonons and
vacuum state for the electrons. The spin index can be s
pressed due to the symmetry of the problem. The co
sponding one-electron spectral function is given by Eq.~5!.

Compared to the class of Hubbard models for which C
has been originally developed, we are facing an additio
difficulty arising from the a` priori infinite number of allowed
18430
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phonon states. We employ a widely used truncation schem24

of the phonon Hilbert space which is spanned by the ba
states

ur &ph5)
i 51

N
1

An i
(r )!

~bi
†!n i

(r )
u0&ph, ~8!

wheren i
(r ) denotes the number of phonons at lattice sitei.

Now the truncation consists of restricting the basis state
the subset with

(
i 51

N

n i
(r )<Nph ~9!

leading to (Nph1N21)!/(Nph!(N21)!) allowed phonon
configurations. The convergence of the results withNph can
be monitored using the ground-state energyE of the cluster
with open BC’s. In all results of this paper,Nph was chosen
such that the relative error for the ground state with o
electron,uE(Nph11)2E(Nph)u/uE(Nph)u, was smaller than
1025. We find that convergence ofE also ensures a well
converged spectral function. Moreover, the influence of
number of phonons kept in the calculation is much larger
the incoherent part of the spectrum than for the coher
low-energy quasiparticle peak which determinesE ~see Sec.
III A !. Finally, a refined truncation scheme which allows f
extremely accurate results~relative error,1027) has been
proposed by Welleinet al.29

Before we come to a discussion of the results obtain
with CPT, we want to comment on some of the existing wo
on spectral properties of the Holstein polaron. As indica
before, the most reliable method to calculate dynamic qu
tities, such asA(k,e), is ED which has been used exte
sively in the past.23–31Most of this work has focused on th
polaron band structureE(k) instead of the spectral function
since it is often easier to interpret, especially in the stro
coupling regime where the structure ofA(k,e) is rather com-
plicated. However, as pointed out by Welleinet al.,29 the two
quantities are closely related. In fact the position of t
lowest-energy peak inA(k,e), obtained from the Green
function ~7!, follows exactly the polaron band structure
we varyk. Moreover, as discussed by Wellein and Fehske30

the integral over this first peak is equivalent to the quasip
ticle ~QP! weight z(k)5u^c0,k

(1)uck
†u0&u2, wherec0,k

(1) denotes
the lowest-energy single-polaron state in the sector with t
momentumk. Other numerical methods which have be
used to calculate the spectrum of the Holstein polaron
clude DMRG ~Refs. 32 and 33! ~in one dimension!, finite-
cluster strong-coupling perturbation theory34 ~1D, 2D!, QMC
~Refs. 35 and 36! ~1D–3D!, and variational methods37–39

~1D–4D!.

A. Comparison with exact diagonalization

As mentioned above, the critical parameter of CPT is
number of sites in the cluster. To demonstrate the advan
of CPT over the standard ED method~see, e.g., Ref. 24! we
present in Fig. 1 the spectral functionA(0,e) in one dimen-
sion for different cluster sizesN. We chosev̄52 and l
4-3
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FIG. 1. Comparison of the spectral functio
A(0,e) of the one-dimensional Holstein polaro
obtained with ED~left column! and CPT~right
column! for various numbers of lattice sitesN in
the cluster. The plot is forv̄52.0, l50.5, and
Nph56. An artificial imaginary parth50.02t has
been used to broaden thed peaks.
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50.5, which is the regime where an extended polaron ex
~see, e.g., Ref. 29!. Consequently, significant finite-size e
fects can be expected for small clusters, which is exa
what we see in the ED results. For the latter periodic B
have been used. Figure 1 clearly shows that the shape o
large QP peak ate'22.4 changes very little with increasin
N for both ED and CPT but a noticeable shift can be o
served in the case of the ED spectra as we go fromN52 to
N54. The influence ofN is much larger for the incoheren
part of the spectrum, which lies about a distancev̄ above the
QP peak. The ED spectra display sharp, well-separa
peaks, whereas the corresponding CPT data—contai
many more poles—resemble much closer the expected
sults for an infinite system. The latter has been investiga
by Marsiglio24 using Migdal-Eliashberg theory. For the sam
parameters, he found that the QP peak remains almost
changed asN→`, while the incoherent part evolves into
continuous band that fits well to the CPT results even
rather small clustersN*6. We have also comparedA(k,e)
for kÞ0, and the observed influence of finite-size effe
agrees perfectly with previous work of Wellein and Fehske30

As k increases fromk50 to k5p, the size of the polaron
increases, and the deviations of the ED data from the C
results become larger. In the strong-coupling or sm
polaron regime, not shown here, finite-size effects are kno
to be small. Consequently, even for very small clusters,
and CPT both give well-converged results for the QP p
which determines, e.g., the ground-state energy. Howeve
the case of ED, the incoherent part of the spectrum for w
vector k, corresponding to excitations of an electron w
momentumq and a phonon with momentumk2q, still ex-
hibits the typical multipeak structure of a finite syste
whereas the CPT results again reproduce much better
incoherent band found in the thermodynamic limit. Mor
over, as mentioned in Sec. II, CPT allows us to calcul
A(k,e) for continuousk, while ED on aN-site cluster is
restricted toN/211 physically nonequivalent wave vector
18430
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A closer look at the CPT results in Fig. 1 reveals sm
additional peaks—not present in the ED spectra—wh
move from the incoherent part ofA(k,e) toward the QP peak
with increasingN. Additional calculations for larger cluster
have shown that these peaks vanish systematically with
creasingN, so that the CPT spectrum approaches the ex
result in the thermodynamic limitN5`, as expected. Con
sequently, these peaks are not a defect of CPT, but repre
finite-size effects which arise from the approximate tre
ment of intercluster hopping. The latter, in combination w
the open BC’s used to calculate the cluster Green funct
leads to a system which does not have perfect translati
symmetry. The situation is equivalent to ED with open BC
For N→` the spectrum approaches the results of an infin
cluster. However, in contrast to CPT, the effects for finiteN
are much more significant. Moreover, these finite-size effe
manifest themselves in a slightly different way than in t
case of periodic BC’s, where no additional peaks—show
the aforementioned behavior—are found. In the case of C
already for the small cluster sizes shown in Fig. 1, the sp
tral weight of these additional peaks is extremely small co
pared to the rest of the spectrum. For other values ofv̄ and
l, a similar behavior has been found. Although not discus
by the authors, similar effects can also be expected for
case of the Hubbard model,4,5,8 although they may be large
for the Holstein polaron due to the higher sensitivity of ph
non excitations to the BC’s.

B. Results: One dimension

In one dimension, the general picture emerging from p
vious work on the Holstein polaron problem is as follow
~see, e.g., Ref. 29 and references therein!: In the nonadiabatic
regime (v̄.1), a so-called Lang-Firsov polaron is forme
which, due to the instant response of the phonons to
electronic motion, represents a very localized object. As
electron-phonon coupling increases, its mobility or effect
hopping amplitude exhibits a gradual decrease, and
4-4
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strong coupling a nearly-localized small polaron moving
an exponentially narrow band exists. In contrast, in the a
batic (v̄,1), weak-coupling regime the electron drags w
it an extended cloud of phonons. This object is usually ca
a ‘‘large polaron.’’ At l'1, a sharp but continuous40 transi-
tion to a less mobile small Holstein polaron takes place. T
two conditions for small-polaron formation, independent
the value of v̄, are l.1 and l/v̄.0.5.29 Moreover, as
pointed out by Caponeet al.,41 the formation of small po-
larons is determined byl.1 for v̄,1 and byl/v̄.0.5 for
v̄.1. Here we restrict ourselves to the most interesting
gime of phonon energies comparable to the electronic h
ping, i.e.,v̄;1. For intermediatev̄ andl, no reliable ana-
lytical methods exist, so that numerical approaches repre
the most important source of information.

In Fig. 2 we present results forA(k,e) for v̄50.8, l
50.25, andN514 as well as a density plot of the same da
As mentioned before, the spectrum consists of a low-ly
QP peak and an incoherent part at higher energies. The p
ics behind the observed behavior ofA(k,e) has been dis-
cussed, e.g., by Stephan,34 and is typical for electronic sys
tems weakly interacting with dispersionless optical phono
For smallk, most of the spectral weight resides in the Q
peak which corresponds to a weakly-dressed electron.
the case considered here, in which the phonon energy
inside the bare electron band, electron and phonon hybri

FIG. 2. Top: Spectral functionA(k,e) of the one-dimensiona
Holstein polaron calculated with CPT forN514, Nph56, andh
50.02t. Bottom: Density plot of the same data for 100 points ink
space. Symbols represent results of Boncˇa et al.38
18430
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and repel each other near the point where they would
degenerate, i.e., foruE(k)2E(0)u;v̄. This coincides with
the region where the flattening of the polaron band occ
and, in fact, for largerk the phonon becomes the lowes
energy excitation. However, most of the spectral weight
contained in the broad, incoherent band which follows
free-electron dispersion. The density plot in Fig. 2 also c
tains data for the polaron band structureE(k) which have
been obtained by Boncˇa et al.38 using their variational ED
method. The latter has been shown to give very accu
results for the infinite system, although it becomes somew
less accurate in the strong-coupling regime and for large
ues ofk ~Ref. 38!. As mentioned before,E(k) corresponds to
the lowest-energy band inA(k,e) and we find very good
agreement with our data throughout the Brillouin zone.

Figure 3 shows results for a similar phonon frequencyv̄
51.0 but for stronger electron-phonon couplingl50.5 and
N512. Compared to the weak-coupling case discus
above, the polaron band is separated more clearly from
incoherent part of the spectrum and, as expected, the b
width is further reduced. Additionally, even more spect
weight has been transfered to the high-energy, incohe
band. On top of that, a gap shows up in the upper ban
aboutk5p/2. Again the polaron band fits very well the re
sults forE(k) of Bonča et al.38

FIG. 3. Top: Spectral functionA(k,e) of the one-dimensiona
Holstein polaron calculated with CPT forN512, Nph56, andh
50.02t. Bottom: Density plot of the same data for 100 points ink
space. Symbols represent results of Boncˇa et al.38
4-5
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We next consider the case of intermediate couplingl
51.0, with v̄51 andN58 ~Fig. 4!. For these parameters
an extended polaron exists which still has a relatively la
band width, compared to the small-polaron case discus
below. Moreover, the incoherent part of the spectrum
split up into several subbands separated in energy byv̄,
which correspond to excitations of an electron and one
more phonons. As before, we find very good agreement
tween the low-energy band inA(k,e) and the polaron band
energyE(k) calculated by Boncˇa.42

Finally, in Fig. 5, we report the spectral function forv̄
51 andl52.0. The results have been obtained using on
four-site cluster, which is sufficient to get very good agre
ment with Boncˇa’s data forE(k), with only minor deviations
at large values ofk where finite-size effects are most pr
nounced, as discussed in Sec. III A. This is a consequenc
the predominantly local effects in the strong-coupling
gime, which also manifest themselves in terms of a v
narrow polaron band.

C. Results: Two dimensions

To illustrate the applicability of CPT, we also calculate
the spectral function of the Holstein polaron on a tw
dimensional cluster withN58, which has the shape of
tilted square. In contrast to CPT in one dimension, the cho

FIG. 4. Top: Spectral functionA(k,e) of the one-dimensiona
Holstein polaron calculated with CPT forN58, Nph59, and h
50.02t. Bottom: Density plot of the same data for 100 points ink
space. Symbols represent results of Boncˇa.42
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for the shape of the cluster is not unique, and different cl
ters may lead to slightly different results. This possibility h
been investigated for the Hubbard model, and the effec
the cluster shape onA(k,e) was found to be rather small.5

For the case of the Holstein polaron, where the physic
dominated by local correlations, the influence of the geo
etry of the cluster is expected to be even smaller.

As discussed, e.g., by Welleinet al.,29 similar to 1D, a
small polaron is formed in two dimensions provided thatl
.1 andl/v̄.0.5. While the behavior in the nonadiabat
regime (v̄.1) is only weakly affected by dimen
sionality,29,43 important differences exist in the adiabatic r
gime v̄,1: In contrast to the one-dimensional case, wher
large polaron is formed for anyl.0, the electron remains
quasifree forl,1, as indicated by an almost unaffected e
fective hopping amplitude. Moreover, for the same value
v̄, the cross over to a small polaron atl'1 is much sharper
in 2D than in 1D.

Here we simply aim to demonstrate the possibility of c
culating the 2D spectral function with CPT. Therefore, w
restrict ourselves to one set of parameters, namelyv̄52.0
and l50.945, which has also been treated usingfinite-
cluster strong-coupling perturbation theory.34 In contrast to
standard SCPT based on the Lang-Firsov transformation
latter has been shown to give reliable results also for in
mediatel andv̄, which is a consequence of the inclusion

FIG. 5. Top: Spectral functionA(k,e) of the one-dimensiona
Holstein polaron calculated with CPT forN54, Nph525, andh
50.02t. Bottom: Density plot of the same data for 100 points ink
space. Symbols represent results of Boncˇa.42
4-6
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longer-ranged effects.30,34While in the one-dimensional cas
the density plot ofA(k,e) contains all 100 values ofk used
in CPT, in two dimensions we have used 400 points ink
space. However only 60, lying alongGMXG, are shown in
Fig. 6.

From the above discussion, and for the parameters c
sidered here, we expect a rather broad polaron band. Th
clearly confirmed by the spectral function shown in Fig.
and the lowest-energy band in our data resembles close
the findings of Stephan~Fig. 2 of Ref. 34!. In particular,
similar to the one-dimensional case considered in Sec. II
a flattening of the polaron band near (p/2,p) is found which
has also been noted by Welleinet al.29 Above the polaron
band, also similar to 1D, there lie several other incoher
bands which correspond to multiphonon excitations and
therefore separated in energy byv̄.

In summary, the results of this section clearly demonstr
that CPT is applicable not only in the strong-coupling
gime, but also for weak and intermediate electron-phon
interaction. The quality of the resulting spectra is superio
ED data for the same cluster size, and a very good agreem
has been found with the variational method of Boncˇa et al.38

in one dimension. Moreover, we have shown that CPT a
allows accurate calculations ofA(k,e) in two dimensions.

IV. MANY-ELECTRON CASE

In the last section, we have restricted ourselves to
Holstein model with one electron. Although CPT has be

FIG. 6. Top: Spectral functionA(k,e) of the two-dimensional
Holstein polaron calculated with CPT forN58, Nph59 and h
50.02t. Bottom: Density plot of the same data~see text!.
18430
n-
is

,
to

,

t
re

te
-
n
o
ent

o

e
n

successfully applied, e.g., to the many-electron Hubb
model,4,5,8,9 the electron-phonon coupling in the Holste
model greatly complicates calculations using Lanczos E
For finite electron density, we combine CPT with the exa
analytic result for the Green function in the atomic limit. F
the atomic limit, the Green function has been obtained
many models using the equation-of-motion method,44 and
here it will allow us to obtain results for the many-electro
case which will be compared with the many-body coher
potential approximation discussed below.

A. Many-body coherent potential approximation

Extending previous work of Edwardset al.17,18 for the
pure double-exchange~DE! model ~see, e.g., Ref. 14!,
Green16 studied the Holstein DE model using a many-bo
coherent potential approximation~CPA! which, owing to the
more complicated form of the Holstein DE Hamiltonia
constitutes a considerable extension of the Hubbard
approximation.45 The many-body CPA successfully describ
many aspects of the manganites, and we refer the reader
recent review of this work by Edwards.14 Here we only con-
sider the special case of a completely saturated ferromagn
state at temperatureT50, with all itinerant spins having↑
spin, say. Consequently, the DE term which couples lo
and itinerant spins14 becomes merely a constant shift in e
ergy, and the Holstein DE model is equivalent to the pu
Holstein model of spinless fermions, i.e., with no doub
occupied sites.19 An important feature of the many-body CP
is that the one-electron Green function reduces to the e
atomic limit for t50, which takes the form19

G↑
AL~e!5e2aH 1

e
1(

r 51

`
a r

r ! S n

e1vr
1

12n

e2vr D J , ~10!

where a5g2/v2, and the polaron binding energ
2(g2/v)n (n50,1! has been absorbed into the chemic
potential. The general result forGAL of the Holstein model
with electrons of both spins has been given by Green,16 and
we drop the spin index in the sequel. As discussed
Edwards,14 for an elliptic density of states, the local Gree
function G(z) for complex energyz satisfies the CPA equa
tion

G~z!5GAL~z2W2G/4! ~11!

and the self-energy can be obtained from14

S~z!5z2G 212W2G/4. ~12!

Finally, the one-electron spectral function is given by

A~k,e!52p21Im@z2ek2S~z!#, ~13!

where

ek522t (
m51

3

coskm ~14!

is the band energy for wave vectork.
In order to compare with angle-resolved photoemiss

data on the bilayer manganite La1.2Sr1.8Mn2O7, nominally
4-7
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with n50.6, Hohenadler and Edwards chose a stro
electron-phonon couplingg/W50.2, as deduced from th
low Curie temperature of this material.19 To simplify calcu-
lations, they also usedn50.5 for which the chemical poten
tial m50 by symmetry. We want to point out that the man
body CPA assumes a homogeneous system, so tha
tendencies toward charge-density-wave order occur asn is
varied.16 As in previous work,16 Hohenadler and Edward
used W51 eV and v/W50.05 ~see also Ref. 14!. The
results19 for A(k,e), shown in Fig. 7, support the theory o
Alexandrov and Bratkovsky46 that in these manganites, sma
polarons exist in the ferromagnetic state. A similar interp
tation of the experimental data—based on standard sm
polaron theory—had also been given by Dessauet al.47 Well
away from the Fermi surface, a well-defined peak ex
which broadens ask approaches the Fermi levelEF at y
50.5. If y is increased further, most of the spectral weigh
transfered aboveEF . Moreover, the peaks never approa
the Fermi level closely, in agreement with the experimen
data. This indicates the existence of a pseudogap in the
electron density of states. However, in the gap, there e
small polaron subbands~see Fig. 4 of Ref. 16! and one of
them, at the Fermi level, presumably gives rise to the low
finite conductivity of the system. As discussed by Edward14

FIG. 7. Comparison of the spectral function of the Holste
model of spinless fermions atT50, calculated with SCPT~top! and
with the many-body CPA~bottom, taken from Ref. 19!. Here the
wave vectork is given byk5p(1,y,0) with y as indicated in the
figure. The plot is forv/W50.05 andg/W50.2. The SCPT results
have been broadened using a smearing parameterh/W50.05.
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the many-body CPA does not give coherent states with i
nite lifetime at the Fermi level, even forT50. This is typical
for any CPA, and here it leads to an incoherent polaron s
band around the Fermi level. Nevertheless, outside the
tral band aroundEF , the imaginary part of the self-energ
displays the correct behavior, i.e., it vanishes in the g
between the polaron bands.

B. SCPT

In this section we use the exact result for the atomic-lim
Green function of the Holstein model of spinless fermion
GAL @Eq. ~10!#, and combine it with CPT to compare th
resulting spectrum with the many-body CPA. For this case
a single-site cluster (a[b), Eqs. ~2! and ~3! reduce to a
single equation for the one-electron Green function5

G~k,z!5
GAL~z!

12ekG
AL~z!

5
1

z2ek2SAL~z!
~15!

with z5e1 ih andek as defined by Eq.~14!. Hence, as men-
tioned before, CPT forN51 is equivalent to the Hubbard
approximation,21 but here with the more complicated atomi
limit Green function of the Holstein model given by Eq
~10!. In the sequel, we shall refer to this approximation
SCPT. This is justified by the fact that the approach becom
exact fort50. Historically, a similar strong-coupling expan
sion for the Hubbard model6,7—including higher order
corrections—has been the starting point for the developm
of CPT.

Before we discuss the results, we would like to comm
on the quality of the SCPT used here: While the many-bo
CPA requires a self-consistent, iterative solution of Eq.~11!,
the SCPT Green function is obtained from the Lehmann r
resentation of the atomic-limit Green function~10!, and the
subsequent use of the resulting self-energySAL in Eq. ~15!.
Similar to the original Hubbard I approximation,21 the result-
ing Green function consists ofd peaks corresponding to
states with infinite lifetime. However, due to the poles in t
self-energy, there are no states at the Fermi level and
system is not a Fermi liquid. As in the many-body CPA,G
depends onk only through the band energyek , whereas the
self-energy is local. This reliance on the atomic limit is re
sonable in the strong-coupling regime considered he
where small polarons move in an extremely narrow ba
Consequently, the simple perturbative treatment of the h
ping term can be expected to give sensible results. Never
less, in SCPT, we have to use an artificial imaginary p
h—which does not depend on energy—to obtain peaks
finite width. Although for large enoughh there will be states
at the Fermi level, the latter have only finite lifetime even f
T50. Hence, both the SCPT and the many-body CPA ne
give a Fermi liquid, but the self-consistent CPA Green fun
tion yields an imaginary part of the self-energy that sho
the correct, strong energy dependence except for the re
inside the very small, incoherent polaron band aroundEF , as
discussed in Sec. IV A. Thus, as could be expected from
4-8
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Hubbard I-like approximation in Eq.~15!, the many-body
CPA is superior to SCPT, although both approaches bec
exact in the atomic limit.

The spectral function obtained with SCPT using Eq.~5!,
also shown in Fig. 7, resembles quite closely to the result
Hohenadler and Edwards.19 Although there are some differ
ences concerning the width and the position of the peaks
overall behavior is very similar. In particular, the broadeni
of the QP peak near the Fermi surface aty50.5 is well
reproduced. Clearly, the success of SCPT consists of a
prisingly good agreement with the CPA data for allk. De-
spite this agreement, CPT fails to reproduce the polaron s
bands, and the sharp edge to the pseudogap for large v
of y. Moreover, the gap is larger than in the CPA data. Th
shortcomings are a consequence of the rather crude app
mation. Nevertheless, keeping in mind the simplicity of t
ansatz, the agreement with the many-body CPA is satis
tory. We would like to point out that the SCPT presented h
can also be generalized to the Holstein DE model with qu
tum spins~e.g.,S53/2 appropriate for the manganites14! and
at finite temperature, using the atomic-limit Green functi
given by Edwards.14 Finally, the approximation could be sys
tematically improved by increasing the number of sites in
cluster, which is exactly the idea behind CPT.

However, for N.1 the cluster Green function can n
longer be calculated analytically and one has to resor
numerical methods such as ED as in Sec. III. Such calc
tions are extremely difficult for the case of quarter-filled tw
or three-dimensional clusters, small phonon frequency
strong electron-phonon coupling. Future work along th
lines—employing optimized phonon approaches48 ~see also
Sec. V!—is highly desirable in order to assess the quality
the many-body CPA results.

V. CONCLUSIONS

We have applied cluster perturbation theory to the H
stein polaron problem in one and two dimensions, and co
parison with existing work has revealed a very good agr
ment. In combination with the Lanczos method to calcul
the cluster Green function, the method gives reliable res
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4D. Sénéchal, D. Pe´rez, and M. Pioro-Ladrie`re, Phys. Rev. Lett.

84, 522 ~2000!.
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for the one-electron spectral functionA(k,e), which be-
comes exact in the weak- and strong-coupling limit,l50
andt50, respectively, and for the case of an infinite clust
Calculations for continuous values of the wave vectork are
possible and, more importantly, finite-size effects are sign
cantly reduced compared to standard ED. Our results ex
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showing that the method is also well suited for electro
phonon models with local interactions. In particular, usi
CPT, we have been able to calculate the complete spe
function of the Holstein polaron for continuous values ofk.
This is in contrast to Exact Diagonalization, which is r
stricted to rather small numbers ofk values, and QMC which
gives reliable results only for the polaron band structure~see
Sec. III!. As pointed out before, for more than one electron
the system, it becomes increasingly difficult to inclu
enough phonon states so as to obtain converged results
ture work may therefore combine optimized phon
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including, e.g., a Hubbard term. The major advantage of s
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42J. Bonča ~private communication!.
43M. Capone, S. Ciuchi, and C. Grimaldi, Europhys. Lett.42, 523

~1998!.
44G.D. Mahan,Many-particle Physics, 2nd ed.~Plenum Press, New

York, 1990!.
45J. Hubbard, Proc. R. Soc. London281, 401 ~1964!.
46A.S. Alexandrov and A.M. Bratkovsky, J. Phys.: Condens. Mat

11, L531 ~1999!.
47D.S. Dessau, T. Saitoh, C.-H. Park, Z.-X. Shen, P. Villella,

Hamada, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett.81, 192
~1998!.

48A. Weiße, H. Fehske, G. Wellein, and A.R. Bishop, Phys. Rev
62, R747~2000!.
4-10


