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Long-time relaxation of interacting electrons in the regime of hopping conduction
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Using numerical simulations we study the long-time relaxation of the hopping conductivity. Even though no
modern computation is able to simulate the behavior of a large size system over minutes or hours so as to
observe the relaxation, we have been able to show that the long-time relaxation and aging effect observed in
experiments can be explained in terms of slow transitions between different pseudo ground states. This was
achieved by showing that different pseudoground states may have different conductivities and that the disper-
sion of conductivities is in agreement with the experimental data. We considered two different two-dimensional
models with electron-electron interaction: the lattice model and the random site model, corresponding to
‘‘strong’’ and ‘‘weak’’ effective disorder. For the lattice model, effectively strong disorder, we have shown that
the universality of the Coulomb gap, which is responsible for the universal Efros-Shklovskii law for the
conductivity, suppresses the long-time relaxation of conductivity since the universality strongly decreases the
dispersion of conductivities of the pseudoground states.

DOI: 10.1103/PhysRevB.68.184205 PACS number~s!: 71.23.Cq, 72.20.Ee, 72.80.Ng
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I. INTRODUCTION

The study of electron-electron interactions in the localiz
regime was initiated by Pollak1 and Srinivasan.2 Later, Efros
and Shklovskii~ES!3 showed that the single particle densi
of states~DOS! tends to zero as the energy tends to the Fe
energy. This phenomenon, called the Coulomb gap, is du
the long-range part of the Coulomb interaction which,
some sense, remains nonscreened. In fact, the Coulomb
results from the Coulomb law and from the discrete nature
the electron charge. In their first works ES claimed that
DOS in the Coulomb gap has a universal form, depend
only on electron chargee and dielectric constantk. Then
DOS;u«uD21kD/e2D, whereD is the spatial dimension an
«, is the single-electron energy whose reference point is
chemical potential. This expression for the DOS is the o
combination of the energy and the electron charge which
a proper dimensionality. It was shown later4 that in the two-
dimensional~2D! case the above universality is exact on
for strong disorder. In the 3D case the question was ne
studied in detail, however, deviations from the quadratic l
have been reported.5

Simple quantitative arguments which assume that
single-particle excitations are responsible for the varia
range hopping~VRH! lead to the so-called Efros-Shklovsk
~ES! law,3 which has been observed experimentally in ma
materials

sc;~ge2/T!exp@2~T0 /T!1/2#, ~1!

whereT is the temperature andT05b0e2/ka, a is a local-
ization length of electrons, andk is an effective dielectric
constant of the media above and below 2D gas. A s
consistent type of percolation approach~see references in
Ref. 6! gives b056.5. The hopping length is given byRC
'(a/4)(T0 /T)1/2.
0163-1829/2003/68~18!/184205~10!/$20.00 68 1842
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Recently,7 using the so-called lattice model, the ES la
has been checked in detail by computer simulation. T
Hamiltonian of this model is formulated on a square latt
and has a form

H5(
i

f ini1
1

2 (
iÞ j

~ni2n!~nj2n!

r i j
, ~2!

whereni50,1 are occupation numbers. The quenched r
dom site energiesf i are distributed uniformly within the
interval @2A,A#, whereA51 is the value employed and th
average occupation numbern is taken to be 1/2. The magni
tude of the quenched disorder is enough so as to provide
universal Coulomb gap at all energies which are import
within the temperature range under study.4 In what follows
the lattice constant is taken to be the unit of length. T
nearest-neighbor Coulomb energy which is in this case eq
to the amplitude of the disorder is considered both as
energy and the temperature unit.

Simulations of the conductivity in the lattice model7 con-
firm the ES law in all details, i.e., the pre-exponential fact
T dependence, anda dependence. It has also been shown t
simultaneous transitions of two electrons do not play a
role. Arguments have also been given that any many-elec
excitations are not important. Therefore simultaneous tra
tions of electrons were not included in the simulation belo

Glassy properties, due to both randomness and the lo
range Coulomb interaction, are another interesting mani
tation of electron-electron interactions in such a syste
Davies, Lee, and Rice8,9 were the first to raise this issue
They coined the phrase ‘‘electron glass’’ which is still use
sometimes also referred to as ‘‘Coulomb glass.’’ Both the
terms stress the relation of the above electron system
spin glass system.

We believe that, in the same way as in real glasses,
glassy properties in this electron system are due to th
states which have very close total energies but substant
©2003 The American Physical Society05-1
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different sets of the occupation numbersni . Such states were
first observed by Baranovskiiet al.10 during the first com-
puter simulation of this system and have been ca
‘‘pseudo ground states’’~PGS’s!. These authors found tha
the PGS’s have the same universal Coulomb gap and h
concluded that the existence of PGS’s is not important
the VRH conductivity because transitions between them
very slow. They attributed these slow transitions between
PGS’s as well as their difference from the ground state to
a result of a certain amount of many-electron transitions

Experiments on the glassy properties of such syste
conducted around 25 years later, have confirmed this con
sion, but they have also shown that Baranovskiiet al.missed
an important feature. Since transitions between PGS’s ta
long time and conductivity of these states is not exactly
same, they can serve as a basis for memory effects.

Experiments, started by the group of Ovadyahu11,12 in
1993, definitely show the relation of this system to the or
nary glasses. In these experiments the difference in the
ductivities of the PGS’s is not larger than 10–12 %. Simi
phenomena was observed by the group of Goldman13 on ul-
trathin films of metals near the superconductor-insula
transition. Slow relaxation has been demonstrated by M
roe et al.14 in compensated GaAs.

The properties of the PGS’s have been studied rece
mostly by computational methods.15–17Perez-Garridoet al.16

argued that transitions between PGS take a very long ti
substantially larger than the time available in any expe
ment. Menasheet al.17 proposed a different method in orde
to study the Coulomb glass. By completely ignoring the tu
neling term in the transition probability, still keeping the a
tivation probability for the electrons, they performed a th
modynamic Monte Carlo simulation which transforms
nonergodic system into an ergodic one. Thereby they w
able to obtain all the thermodynamic properties of the
godic system since the electrons were able to move ac
the system in a single transition, leading to effective mixi
of all PGS’s.

The above method only permits the calculation of t
thermodynamic values, since the number of Monte Ca
steps cannot be related to a physical time. Still, these aut
claimed that the metal-insulator transition in the Coulom
glass may coincide with the glassy transition that occurs
to the increase of the localization length. Their method17 is
partially employed in this paper.

The goal of this paper is to understand the origin of
long-time relaxation of conductivity, observed in the expe
mental papers cited above. To do so we performed Mo
Carlo simulations employing the lattice model~2! and the
random site model described later on for two-dimensio
systems. In our simulation we perturb the system by add
some extra electrons and then trace the relaxation of en
and conductivity with time. One should clearly understa
that it is impossible to observe the long-time relaxation b
direct simulation. The general reason for this is due to
long range of the Coulomb interaction and to the fact tha
a real sample many transitions take place simultaneo
while a computer processor is limited to performing the
one at a time as well as updating the resulting changes in
18420
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site energies one at a time. A few additional processors c
not help much. Therefore, even using the most sophistica
program, we may simulate no more than 40ms of the real
time in a system of the size of 1003100 lattice sites.

We have shown that during such available times we
reach an apparent saturation of conductivity and energy
that saturation of the DOS occurs much earlier. We interp
this ‘‘saturation’’ as a saturation within one PGS. Thus, it
rather the transition from the fast relaxation within one PG
to a very slow relaxation to PGS’s with lower energy, that w
cannot observe.

Simultaneously with the conductivity we studied the r
laxation of energy. We devised an analytical theory for t
energy relaxation which fits the simulation data fairly we
and serves as a reference point for our understanding o
short-time relaxation.

To study the long-time relaxation due to transitions b
tween the different PGS’s we came up with a different id
We create different PGS’s by relaxation from states with d
ferent initial distributions of electrons. Then we study t
difference between the saturated values of the conductiv
of the different PGS’s. If these are different, one should
pect that a long-time relaxation exists and the total chang
the conductivity should be of the order of this difference. F
the lattice model we obtain no such effects. The conduct
ties of different PGS’s are the same in the limits of our a
curacy~about 1–2 %!.

Since PGS’s with different energies were observed
Menasheet al. as well as in other papers, we arrive at t
conclusion that the effect of long-time relaxation of the co
ductivity is absent due to the universality of the Coulom
gap for the lattice model, in the temperature range which
consider. We also performed simulations for the random
model. In this model all disorder comes from the rando
position of sites. Our results for these simulations exhib
difference in the conductivities of the PGS’s whose value
sufficiently large so as to explain the experimental results
Ovadyahu’s group.

The difference between these two models in the thr
dimensional case has been discussed in Ref. 18. Note th
this case a glassy transition at nonzero temperature has
claimed.19 Xue and Lee20 performed Monte Carlo simula
tions employing the two-dimensional random site model
which the disorder comes about only through the rand
position of sites. These authors found evidence for gla
behavior at low temperature but they claimed the absenc
the glassy transition at nonzero temperature. The same r
was obtained for the Ising model.21

The paper is organized as follows. In the next section
study the relaxation of the energy and the conductivity a
an extra amount of electrons was added to the system in
framework of the lattice model. In Sec. III, employing th
lattice model, we study the difference in the conductivities
the PGS’s, obtained through different relaxation methods
Sec. IV the results for the random site model are presen
and discussed.

II. RELAXATION AFTER ADDITION OF EXTRA
ELECTRONS

In this section we study the relaxation of the energy a
conductivity of the system after it has been initially pe
5-2
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turbed by the addition of a few percents of extra electrons
principle, this is the same procedure employed in the exp
ments of Ovadyahu’s group but the time in which we a
able to observe the system is very short. We use the la
model with Hamiltonian given by Eq.~2! and initial filling
factor n51/2. The extra electrons are added randomly
empty sites and the background is adjusted such that
system remains neutral.

A. Analytical theory of energy relaxation

To describe the physics of the short-time energy rel
ation we devise the following analytical theory. We start
considering a division of a plain containing 2D electrons in
regions with a linear sizeR. If dn is an average density o
additional electrons, the chargeQ of each region is of the
order of Q;eAdnR2, because the average charge is co
pensated by the background. The extra energy due
electron-electron interaction per a region containing exc
chargeQ is Q2/R. The number of regions per area isL2/R2,
where L is the length of the total system which is squa
shaped. Thus the extra energy per area due to all region
sizeR is E5e2dn/kR. The regions with the smallestR give
the largest contribution. However, due to relaxation they
come neutral faster. So, the main contribution at a timt
comes from the regions in which relaxation has not
ended. In the 2D case the relaxation goes with the velo
s0/k, wheres0 is the conductivity of the system.22 Thus, at
a time t only the regions withR.s0t/k have an excessive
charge. Finally, the energy per area decreases with tim
E;e2dn/s0t. Analyzing results for the autocorrelation fun
tions and density-density correlation functions it is not dif
cult to find the numerical coefficient in this expression. L
n8(r ) stand for the density of additional electrons with th
homogeneous background so that the average value^n8& is
zero. The linearized equations have the form

j 85s0E ~3!

and

e
]n8

]t
1s0¹E50. ~4!

One can see that the diffusion current, omitted here, is m
important on the earlier stages of relaxation than the Oh
current.

In the 3D case the field can be eliminated from the
equations resulting in an equation forn8 only. In the 2D case
the situation is different and the problem can be solved us
the Fourier transformation

n85
1

L (
q

nqe
iq•r, f5

1

L (
q

fq~z!eiq•r. ~5!

Herer andq are two-dimensional vectors in the plane of t
electrons,z is the coordinate in the perpendicular directio
andf is the scalar potential. The equation for the poten
has the form
18420
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d2fq

dz2
2q2fq52

4pe

k
nqd~z!. ~6!

It can be solved in the regionsz.0 and z,0. Under the
condition of continuity offq at z50 and zero atz→6` the
solution is

fq5Aqe
2quzu. ~7!

The integration of Eq.~6! over an infinitesimally small inter-
val aroundz50 leads to the boundary condition

dfq

dz U
z510

2
dfq

dz U
z520

52
4pe

k
nq . ~8!

This condition gives

Aq5
2pe

kq
nq . ~9!

Equations~7! and ~9! give

Eq52 iq
2pe

kq
nq , ~¹E!q5 iq•Eq5

2peq

k
nq . ~10!

Now the Fourier transformation of Eq.~4! is

dnq

dt
1

nq

tq
50, ~11!

where

1

tq
5

2pq

k
s0 . ~12!

This leads to

nq~ t !5nq~0!e2t/tq. ~13!

The energy of the fluctuations is

E5
1

2E f~r ,z!en~r !d~z!d2rdz

5
pe2

k E unq~0!u2

q
e22t/tq

d2q

~2p!2
. ~14!

If the initial state corresponds to randomly distribut
electrons

^n8~r ,0!n8~r 8,0!&5Dnd~r2r 8!, ~15!

then

^unq~0!u2&5
1

L2 K E eiq•rn8~r ,0!drE e2 iq•r8n8~r 8,0!dr 8L
5

Dn̄

L2 E eiq(r2r8)d~r2r 8!drdr 85Dn. ~16!

The substitution of Eq.~16! in Eq. ~14! gives
5-3
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FIG. 1. ~a! The time dependence of the total energy of the system is shown at two different temperatures as a function of 1/s0t. The
localization radiusa51, the system size is 1003100. The inset shows the range of time where two curves coincide. The slope, that fo
from Eq.~17! is shown by the straight line. All values are given in computer units.~b! The energy relaxation in the VRH (a51) and in the
nearest-neighbor hopping (a50.2) regimes atT50.1.
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5

e2Dn

8ps0t
. ~17!

This result gives the value of the numerical coefficient
the above estimate. One should understand that Eq.~17! is
valid at t,L/s0. At such times the energy relaxation h
finished due to the finite system size. It is easy to take
size effect into account qualitatively. The result is that ene
as a function oft21 saturates att'L/s0. It is also important
that the system is assumed to be ergodic, i.e., it does
contain different PGS’s with slow relaxation between the

B. Simulation results for short time relaxation of energy and
conductivity

All the time-dependent simulation results in this paper
obtained by our modification of the kinetic Monte Car
method that is presented in the Appendix. For the latt
model our computer units~CU’s! are as follows: the length
unit is taken to be the lattice constanta0, the units of energy
and temperature are given by the Coulomb interaction at
lattice constante2/a0, the time unit is chosen as the recipr
cal transition rate due to phononsg21, see Eq.~1!, and the
unit of the two-dimensional conductivity is given bya0g.
The numerical values for the time given below, are cal
lated using the assumption thatg51012 s21.

The simulation temperatures were chosen to beT
50.1,0.2 which corresponds to the region of hopping c
duction in the case were the localization radiusa is of the
order of 1 CU.7 Decreasing the value ofa we may switch
from the VRH to the nearest-neighbor hopping regime. T
size of the system was taken to be 1003100 lattice sites.

The simulation was performed using the following ste
In the first stage the system was brought to ‘‘thermal eq
librium,’’ inside a single PGS, using the thermodynam
method employed in the work of Menasheet al.17 In the
second stage, which is the reference point for the time fr
which the relaxation of the DOS starts, energy and cond
tivity were studied and the electron concentration w
slightly changed by adding~or removing! electrons ran-
18420
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domly. The time dependencies were averaged over 103 dif-
ferent sets of randomly distributed extra electrons~holes!.
Due to electron-hole symmetry of the Hamiltonian~2! at n
51/2 the relaxation of extra electrons and extra holes is
same. The data below describes the addition of electron
should be noted that the insertion of electrons into the sys
can be simulated in many ways, e.g., adding electrons
confined spatial region simulating the way electrons mi
enter the sample experimentally, or adding electrons to
most probable states. It is clear, however, that since the
perturbed system is saturated within one PGS the differe
between different electron insertion scenarios should only
notable within very short time scales, i.e., of the order of o
simulation times. Thus the choice of how to simulate t
perturbation of the system by adding charge does not in
way effect the long time relaxation of the system which
due to transitions between different PGS’s.

The energy relaxation is shown in Fig. 1. The referen
point for the total energyEex is the saturated value for th
longest time measured. At timet50 the filling factorn has
been increased from 0.5 to 0.52, such that the total num
of extra electrons equalsNex50.02L2/2. Figure 1~a! shows
the regime of the VRH witha51 at two different tempera-
tures. In Figure 1~b! we compare relaxations of energy in th
VRH regime ata51 with the relaxation in the neares
neighbor hopping ata50.2. The values of the VRH conduc
tivity at a51 ares050.0048,0.021 in CU forT50.1,0.2,
respectively. These values of conductivity are also obtai
as the saturated value at the longest time measured. S
Eq. ~17! shows that at larget, the energyE is a function of
s0t, we use this product as a reciprocal argument in F
1,2. The straight line in the inset of Fig. 1~a! shows the slope
as given by Eq.~17!. The inset shows the final stage of th
relaxation where the curves at different temperatures c
cide and obey the time dependence given by Eq.~17!. The
saturation at even largert is due to a size effect. Note that th
values of the conductivitys0 differ by almost five times for
the two curves presented. The observed saturation of en
relaxation is connected to the finite size effect as has b
discussed in a previous section.
5-4
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LONG-TIME RELAXATION OF INTERACTING . . . PHYSICAL REVIEW B68, 184205 ~2003!
The relaxation of the charge fluctuations given by E
~17! not only has the universal form for the different valu
of conductivities, but it is also independent on the cond
tion mechanism. In Fig. 1~b! we present the relaxation curve
for the system for VRH conductivity and for neares
neighbor hopping where the localization radius of the el
trons is much smaller than the distance between neighbo
sites. The time region where the two curves coincide wit
our accuracy is even broader despite the fact that the va
of the conductivity differs by a factor of 3000. The ma
source of the errors~see the Appendix! arises from calculat-
ing the values of the conductivitys0 rather than measuring
the total excessive energy of the system.

Next we present the results for relaxation of the cond
tivity after adding extra electrons to the system. The pro
dure for adding the electrons is the same as stated above
time dependence of the conductivity of the system is sho
in Fig. 2 for two different temperatures. These were obtain
in the same simulation as the data for the relaxation of
energy in Fig. 1~a!. One can see that for both temperatur
the conductivity decreases with time finally reaching a k
of saturation, which may also be interpreted as a transitio
a substantially slower rate of relaxation. We consider t
‘‘saturation’’ as the end of the short time relaxation in o
finite system. The value of the conductivity at the larg
time we considered is denoted bys0. One can see that as
function of 1/s0t the results for both temperatures coinci
in an even wider time region than for the total energy of
system. The reason that the conductivity decreases is
due to the nonequilibrium of the system the extra electr
occupy states above the Fermi level therefore provid
higher current than in thermal equilibrium. Note that t
saturation of conductivity occurs at the same value ofs0t,
that is '4 as the saturation of energy. It is reasonable
think that the two processes are connected and the satur
of the conductivity is also a size effect.

The time corresponding to the saturationt54/s0 is very
short. ForT50.1 anda51 it is '0.8 ns. Even if we assum

FIG. 2. The time dependence of the conductivity of the syst
is shown at different temperatures as a function of 1/s0t. The value
of s0t is taken to be the saturated value of the conductivity at
longest time measured. The concentration changes att50 and the
parameters of the simulation correspond to those of Fig. 1.
18420
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an infinite system and extrapolate the laws2s0;(s0t)21

to much larger times, we find that in the microsecond ran
all relaxation which can be observed will be over.

The saturation of the conductivity averaged over differe
initial distributions of extra electrons, which we have pr
sented in this section, happens at very short times. It
Maxwell-type relaxation of the extra charge. We ha
checked that the relaxation of the Coulomb gap inside
energy interval that is responsible for the VRH occurs ev
faster than the relaxations of the energy and conductiv
These results do not support the idea that long-time re
ation is due to the slow formation of the Coulomb gap.23

However in the experimental data11,12the long-time relax-
ation happens on time scales of the order of seconds
hours. These time scales are 9–11 orders of magnit
longer than those which we are able to simulate. Thus,
long-time relaxation exists in this system, the change of
averaged value of the conductivity is negligible during t
physical time scales we have simulated. This explains
apparent saturation of the conductivity, we observe. If
long-time relaxation results from the transitions between d
ferent PGS’s, the conductivity we have observed should
considered as the conductivity within a single PGS. The
couraging result obtained in this section is that the satura
of the conductivity of a single PGS can be achieved dur
the time scale available for our computation. Based on
result another approach to the problem of long-time rel
ation, is proposed in the next sections.

III. CONDUCTIVITY OF DIFFERENT PSEUDO GROUND
STATES IN THE LATTICE MODEL

The idea behind our approach is rather simple. We wan
compare the conductivity of the system in the differe
PGS’s. If the values of the obtained conductivities are diff
ent for different PGS’s then the long-time relaxation of t
conductivity can be attributed to the slow transition betwe
those PGS’s. We are unable to measure time scales o
order of such transitions still we can explain its effect a
magnitude which are reflected through the difference in
conductivities of different PGS’s. In the experiments of t
group of Ovadyahu12 such differences are of the order o
10%.

To observe the conductivity of different PGS’s, we me
sured the conductivity of the same sample with different i
tial distributions of electrons during the longest time we a
able to simulate. The sample is characterized by the tota
of random energiesf i . Starting with different initial distri-
butions of electrons the system relaxes to the differ
PGS’s. If the saturated values of conductivities, measure
in previous section, is different, one should expect that
system will have a long-time relaxation due to transitio
between different PGS’s.

The results for the lattice model simulations performed
the lowest available temperature are presented in Fig. 3.
time evolution of the conductivity averaged over the time
measurement is shown for different initial distributions
electrons for the same sample. As one can see there i
appreciable difference in the values of the conductivit

e
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TSIGANKOV, PAZY, LAIKHTMAN, AND EFROS PHYSICAL REVIEW B 68, 184205 ~2003!
within our accuracy which is about 1–2 %. We obtained
same result for all higher temperatures with even greater
curacy.

We therefore conclude that there is no apparent differe
in the conductivities of different PGS’s for this model dow
to the lowest temperatures we are able to simulate. We th
that the reason for this is the following: It has been show7

that the VRH conductivity of the system is provided by t
single-electron excitations. The properties of these exc
tions is defined by the structure of the Coulomb gap. In
lattice model at largeA the DOS in the Coulomb gap has
universal form.4 It is independent of the properties of th
system and is the same for all PGS’s. For our tempera
range, the caseA51 can be considered as a large disord
Thus all PGS’s have the same conductivities and no lo
time relaxation can be observed. We realize that the lat
model with large disorder cannot account for the effect of
long-time relaxation of the conductivity which is observ
experimentally. Thus, to observe the difference in the c
ductivities of different PGS one should take a system w
smaller disorder, where the Coulomb gap is not univer
Unfortunately, it is difficult to find such a regime in the la
tice model, due to the Wigner crystallization at low tempe
tures.

IV. CONDUCTIVITY OF DIFFERENT PSEUDO GROUND
STATES IN THE RANDOM SITE MODEL

In this section we present the results for the random
model. The Hamiltonian of the model has the form

H5
1

2 (
iÞ j

~ni21/2!~nj21/2!

r i j
. ~18!

It differs from Eq.~2! in two important respects. The first,
is formulated on sitesi , j , which have random positions o
the plane. The second, any random energiesf i , that are not
correlated with the interaction, are absent. Thus, the rand
positions of the sites is the only source of disorder.

FIG. 3. The time evolution of the conductivity averaged over
time of measurement is shown for different initial distributions
electrons in the lattice model for the same set off i . The values of
parameters areA51, T50.04, the localization radiusa51, the
system sizeL570, and the filling factorn51/2.
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We consider the casen51/2 for which each state of the
system has an exact twofold degeneracy: the total energ
invariant with respect to changing all of the occupation nu
bers ni→12ni . It is this symmetry for half filling which
allows this model to be mapped on to a spin glass mode19

This fact is probably also important for formation of PGS
that consist of fragments of both states.

This model is unusual for electronic systems. For e
ample, partially occupied donors located in a plane with
gate electrode above the plane are not described by
model. In this case the above symmetry is absent. Howe
the neutral system of random donors with a large ‘‘negat
U’’ can be described by the Hamiltonian~18!, if 1/2 of them
are doubly occupied with charge21 and the other half are
not occupied with the charge 1.

For the simulation of the random site model we use
similar computational algorithm which is described in t
Appendix. Unfortunately, it is more time and memory co
suming than the algorithm for the lattice model. In th
model the unit of length isa05n21/2, wheren is the concen-
tration of sites.

Figure 4 shows the temperature dependences of the V
conductivities both in the random site model and in the l
tice model. Unfortunately for the random site model we we
unable to check the importance of simultaneous ma
electron transitions on the VRH conductivity. One can se
deviation from the ES law in the case of the random s
model that might be a result of deviation of the DOS fro
the universal DOS in the Coulomb gap.

Figure 5 confirms this point of view. It shows the DOS
different PGS’s for both lattice and random site models.
in the previous section the different PGS’s have been
tained by simulations starting from different initial distribu
tion of electrons but with the same disorder. The latter c
dition means the same set off i or the same set of random
sites depending on the model. In each case the DOS is
culated by two methods. The first is the kinetic Monte Ca
method, which gives the DOS in one PGS due to the ti
constraint and the second is the thermodynamic Monte C

FIG. 4. The temperature dependence of the VRH conductivity
the random site model~triangles! and in the lattice model~squares!
is shown. The disorder strength is given byA51 for the lattice
model, while A50 for the random site model. The localizatio
radiusa51 and the filling factorn51/2. The straight line repre-
sents ES law.
5-6
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method which gives the DOS averaged over all PGS’s.
get to the thermodynamic regime one should ignore the
neling exponent in the transition rate so that transition at
distance becomes possible. However, the energy depend
of the rate should be strictly preserved to get the corr
ergodic thermodynamic result. Menasheet al.17 have shown
that this method provides an effective thermalization inclu
ing fast transitions between the PGS’s.

Figure 5 contains two important results.~i! The DOS of
the random site model strongly differs from the DOS of t
lattice model and does not have the standard energy de
dence typical for the two-dimensional Coulomb gap, wh
is known to be very robust in the lattice model forA51. For
the random site model the DOS is quadratic rather than
ear. We have checked that its curvature isT independent.
From dimensionality considerations this DOS can only be
the order of«2/e6n1/2, which also explains the deviatio
from the ES law for the VRH conductivity shown in Fig. 4
~ii ! The relative difference between the DOS for differe
PGS’s is much larger for the random site model than for
lattice model. For the random site model the time fluctu
tions of DOS near the Fermi level are 10 times smaller th
the difference between the DOS’s of different PGS’s. In
lattice model those fluctuations are so close to the differe
itself that the difference is not a reliable measure. The th
modynamic DOS is between the DOS’s obtained for diff
ent PGS’s as it should be for an average function.

In fact results~i! and ~ii ! are connected to each other. A
large A the universal behavior of the Coulomb gap can
obtained from conditions« j2« i21/r i j .0 for every empty
site j and occupied sitei. These conditions are important ne
the Fermi energy only, for which the total energy becom
irrelevant. That is the reason why all PGS’s have a sim
DOS near the Fermi level. For the random site model th

FIG. 5. The DOS in the vicinity of the Fermi level atT50.04 as
a function of the single-particle energy« with a reference point a
the Fermi level is shown for the lattice model~the upper set of
curves! and random site model~lower curves! is presented for five
different initial distributions of electrons for each model. The DO
is averaged over a time equal to 1ms. The inset shows the DOS
near the Fermi level, for the random site model in an enlarged sc
The thermodynamic DOS is emphasized in the inset by a thick l
The values for the parameters used to obtain these curves ar
same as were employed in Fig. 4.
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conditions are also necessary but there should be some
restrictions that make the DOS smaller. Those restricti
should be connected with the average distance between
sites and therefore they are related to the total energy. Th
fore it is interesting to study the conductivity of differen
PGS’s in this model.

The simulation results for the time evolution of the co
ductivities of different PGS’s for the model with the rando
spatial site distribution are shown in Fig. 6 by filled symbo
at the same temperature as for the lattice model. In this c
the conductivity value of each individual PGS satura
within 1% during the time of the simulation. However, th
saturated values of the conductivities differ by 12% for t
different initial distributions of electrons in the same samp
This is by an order of magnitude greater than the simulat
accuracy. The study of the conductivities in the random s
model shows that the slow transitions between PGS’s m
result in the long-time relaxation of the conductivity o
served in the experiment. An important question now
whether the obtained result is due to the randomness in
site distribution or to the absence of the disorder which is
correlated with the interaction.

In order to answer this question we consider a ‘‘co
pound’’ model. Namely, we have added to the Hamiltoni
of the random site model~18! the first term in Eq.~2! with
A51. One can see from Fig. 6 that the difference in t
conductivities of different PGS’s disappears atA51 within
the simulation accuracy. Thus, the randomness of the site
not important, but the value ofA is very important.

Another important question is whether the values of
conductivity of the different PGS’s are correlated with t
energies of these PGS’s. The total energy of the system
given PGS is averaged over time and plotted versus the v
of the conductivity for the same PGS’s in Fig. 7. The da
shows that the energy dependence of the conductivity
close to a linear behavior. PGS’s with higher average to
energy also have a larger value for the conductivity which
reasonable, since in the states with lower energy the e
trons are in positions where they are more tightly bound a
therefore their conductivity is lower. The same behavior

le.
e.
the

FIG. 6. The time evolution of the conductivities of differen
PGS’s for the model with the random site distribution are shown
filled symbols. Open symbols show the same evolution for a ‘‘co
pound’’ system withA51. The values of parametersT50.04, lo-
calization radiusa51, the system sizeL570, and the filling factor
n51/2.
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apparent in the experimental results of Ovadyahu.12 The lin-
ear dependence is also reasonable because the energy
ence between PGS’s is small and conductivity as a func
of energy may be expanded into a Taylor series, taking
first term. Similar to Andersonet al.24 one can show that the
possibility of the Taylor expansion leads to the relaxat
laws dE;2 ln t andds;2 ln t.

V. CONCLUSIONS

A computational algorithm is presented which perm
one to simulate the energy, density of states, and condu
ity of a system with localized interacting electrons duri
times of the order of 40ms. We argue that during this tim
the relaxation of the system to some PGS’s is completed
analytical theory of the energy relaxation which is in go
agreement with the computational data is presented.
computational results for the conductivity exhibit two ve
distinct time scales: the first is a very short time scale co
sponding to the average value of the conductivity, the sec
a very long time scale defined by the long-time relaxation
the conductivity. We attribute these two scales to the follo
ing physical picture, in which the relatively short time sca
is a consequence of the relaxation of the system within
PGS, well described by our analytical theory, as well as
our simulations, whereas the long-time relaxation of the c
ductivity, is related to transitions between different PGS
The microscopic origin of this huge time scale separation
be attributed to the fact that whereas many-electron tra
tions are not important for the VRH conductivity within on
PGS they play an important role in slowing down transitio
between PGS’s.

Current computational resources are not able to con
this theory by directly observing the long relaxation pr
cesses, rather they are limited to the range of the short re
ation time scales, which can be simulated. In order to ch
our theory we have studied the conductivities of the differ
PGS’s to see whether or not they are different. We emplo

FIG. 7. The correlation between the total energy of the sys
and the conductivity is shown for eight different initial distribution
of electrons in the random site model. Both the total energy and
conductivity are averaged over the time 40ms. The straight line is
given as a guide for the eye. The values of the parameters use
the same as were used in Fig. 6.
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two different models: the lattice model and the random s
model, with random sites and no external disorder. We h
shown that these two different models which correspond
different realizations of disorder lead to different physic
effects. For the lattice model no difference in the conducti
ties of the different PGS’s was found. We understand t
result in terms of universality of the Coulomb gap and E
hopping conduction.

For the model with random distances between sites
no external disorder we have found the difference of
conductivities to be within 10–12 % which is large enough
explain the experimental data. We have also shown that
density of states in this model is not universal and that h
ping conductivity does not obey the ES law. We think th
similar effects might be observed in the lattice model as w
with A51 but at lower temperatures than those which we
able to simulate. With increasingA this temperature range
should become lower. Thus we think that the universality
the Coulomb gap that manifests itself in the ES law for t
VRH suppresses the long-time relaxation because in
case, the conductivities of PGS’s are very close to each o
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APPENDIX: COMPUTATIONAL ALGORITHM

To perform the simulation of the transport and thermod
namic properties on the finite arrayL3L for both the lattice
model and the model with random spatial site distribution
use the periodic boundary conditions on a torus. In fact,
means that for the pair of sitesi and j the distance between
them is given byr i j 5@(Dxi j )

21(Dyi j )
2#1/2, where

Dxi j 5min~ uxi2xj u,L2uxi2xj u!Dyi j

5min~ uyi2yj u,L2uyi2yj u!. ~A1!

Herexi andyi are the sets of the site coordinates, which fo
a lattice in one model and are random in the other.

To simulate the conductivity one should add a term( iExi
to the Hamiltonian~2! whereE is a weak electric field. Due
to the field the current flows around the torus in thex direc-
tion. It is convenient to calculate the total dipole moment d
to electron transitions in the direction of the electric field a
obtain the conductivity from the equation

s5
1

EL2

dP

dt
. ~A2!

On average the dipole momentP increases linearly with
time.

To find dP/dt one needs a kinetic Monte Carlo~MC!
algorithm that connects the number of MC steps with a r
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time t. Note that for any thermodynamic calculation the tim
is irrelevant. The starting equation is a transition rate fo
single electron hop from sitei to site j, that has the form

G i j 5gu i j

exp~22r i j /a!

11exp~« i j /T!
, ~A3!

wherer i j is the distance between the sitesi and j, « i j is the
energy difference between the two configurations« i j 5« i
2« j21/r i j 2EDxi j , « i5f i1( j (1/r i j )(nj2n), Dxi j is
given by Eq.~A1!, andu i j is equal to 1 if the sitei is occu-
pied and sitej is empty or 0 otherwise. The transition ra
should have the dimensionality of frequency. It is written
a dimensionless form, assuming that our time unit isg21.
The MC process can be started with any initial set of dis
butions for the occupation numbersni which evolves during
the simulation.

There are two different algorithms developed for this ty
of computer simulation. The first one implies the calculati
of all the transition ratesG i j in the system at each Mont
Carlo ~MC! step. Then the probability that the next transiti
to occuri→ j is given by

G i j

(
i

(
j Þ i

G i j

. ~A4!

Then at each MC step the code chooses the transition
the above probability and performs it. This means chang
the occupation numbersni andnj , calculating the contribu-
tion of this transition into the total dipole momentP, and
recalculating all site energies and transition rates. After t
the code comes to the next MC step.

For the above algorithm the physical timeDt for each MC
step is

Dt5S (
i

(
j Þ i

G i j D 21

, ~A5!

because in the real system all processes run simultaneo
Note, thatDt depends on the configuration of the system a
varies during the simulation.

In the second algorithm at each MC step a pair of s
( i , j ) is chosen with equal probability from all possible se
Then the transition (i→ j ) is accepted with the probability
G i j . If the transition is rejected, the MC step is over and
code proceeds to the next MC step. If it is accepted,
transition is performed. This means that the code chan
occupation numbersni andnj , calculates the contribution o
this transition into the total dipole momentP, and recalcu-
lates all the site energies« i j . This is the end of the MC step
In this case, the physical time per one MC step is cons
and equal to

Dt5
1

Ntr
5

1

L2~L221!
, ~A6!

Dt51/Ntr , whereNtr is the total number of different trans
tions in the system.
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The advantage of the first algorithm is that any MC step
successful: as a result of each step one electron moves
one site to another. The disadvantage is that for the inter
ing systems at each MC step the computer recalculatesNtr
values ofG i j . Therefore, each MC step is very time consu
ing as compared to the MC step of the second algorith
However, the disadvantage of the second algorithm is tha
strong dispersion of the transition rates~small a or T) the
probability of the rejection is very high. In other words, th
physical timeDt per one MC step is much smaller than
the first algorithm. This can be seen from Eqs.~A5!, ~A6!.
Indeed, the double sum in Eq.~A5! containsNtr terms. How-
ever, the majority of these terms are very small.

In this paper, we used a mixed scheme which combi
the best features of both algorithms discussed above.
show that it is very efficient in the VRH regime for th
interacting electrons. The original idea for this algorithm b
longs to Biham.25

The transition rate~A3! for the VRH can be written as a
productG i j

T G i j
A , where the ‘‘tunneling’’ part of the transition

rate G i j
T 5exp(22rij /a), while G i j

A5u i j /@11exp(«ij /T)# re-
flects activation. It is important now thatGT is independent
of the configurations of electrons and should be calcula
only once. Since the probabilities of tunneling and activat
are independent we may apply the first algorithm withGT

and the second one withGA. Practically it means that we
choose pairs (i , j ) with the probabilities

G i j
T

(
i

(
j Þ i

G i j
T

~A7!

and accept the transitioni→ j with the probabilityu i j /@1
1exp(«ij /T)#. If the transition is rejected then the MC step
over and the code proceeds to the next MC step. If it
accepted, the transition is performed. To finish this step
code changes the occupation numbersni andnj , calculates
the contribution of this transition into the total dipole m
mentP, and recalculates all the site energies« i . In this case,
the physical time per one MC step is constant and equa

Dt5S (
i

(
j Þ i

G i j
T D 21

. ~A8!

For the lattice model the sum( j Þ iG i j
T is independent oni

thus Dt5(L2( j Þ iG i j
T )21. Using this result the conductivity

in units of ga0 can be written in the form

s5
1

EL2

dP

dt
5

P(
j Þ i

exp~22r i j /a!

ENMC
, ~A9!

whereP is the total dipole moment due to the electron tra
sitions afterNMC steps.

For the model with random spatial site distribution t
( j Þ iG i j

T is different for each sitei and the conductivity is
given by
5-9
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s5

P(
i

(
j Þ i

exp~22r i j /a!

ENMCL2
. ~A10!

Now we compare the efficiency of all three algorithms. T
efficiency is the number of operations which are necessar
simulate a physical process during a timet. The most impor-
tant is how the efficiency depends on the number of site
the systemN5L2. The results are shown in Table I. In th

TABLE I. The algorithm efficiency comparison.

Algorithm Dt21 Noper/NMC Eff @oper/sec#

I O~N! O(N2) O(N3)
II O(N2) O~N! O(N3)
Mixed O~N! O~N! O(N2)
.

ii,

N.

18420
to

in

tableDt is the physical time correspondent to one MC ste
NOP/NMC is the number of operations per MC step, and t
efficiency is given by Eff5NOP/NMCDt.

The time efficiency of the mixed algorithm is the same f
both lattice and random site models. However, the mem
requirements are much harder for the random site mode
this model one need to calculate allN25L4 tunneling terms
and have access to all of them at each MC step, becaus
transition at each step is chosen with the above weig
While in the lattice model there is onlyN5L2 different tun-
neling terms exp(22rij /a) that have to be stored. In fact, th
constraint does not allow us to simulate a system in wh
the number of sites exceeds 5000 employing the random
model.

One can see from Table I that the efficiency of the mix
algorithm is the best. The use of this algorithm allowed us
simulate the macroscopic conductivity. In fact this algorith
has been used in Ref. 7.
m-
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