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Long-time relaxation of interacting electrons in the regime of hopping conduction
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Using numerical simulations we study the long-time relaxation of the hopping conductivity. Even though no
modern computation is able to simulate the behavior of a large size system over minutes or hours so as to
observe the relaxation, we have been able to show that the long-time relaxation and aging effect observed in
experiments can be explained in terms of slow transitions between different pseudo ground states. This was
achieved by showing that different pseudoground states may have different conductivities and that the disper-
sion of conductivities is in agreement with the experimental data. We considered two different two-dimensional
models with electron-electron interaction: the lattice model and the random site model, corresponding to
“strong” and “weak” effective disorder. For the lattice model, effectively strong disorder, we have shown that
the universality of the Coulomb gap, which is responsible for the universal Efros-Shklovskii law for the
conductivity, suppresses the long-time relaxation of conductivity since the universality strongly decreases the
dispersion of conductivities of the pseudoground states.
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I. INTRODUCTION Recently] using the so-called lattice model, the ES law
has been checked in detail by computer simulation. The
The study of electron-electron interactions in the localizedHamiltonian of this model is formulated on a square lattice
regime was initiated by Polldland Srinivasaf.Later, Efros  and has a form
and Shklovskii(ES)® showed that the single particle density
of statedDOY) tends to zero as the energy tends to the Fermi 1 (ni—v)(n;—v)
energy. This phenomenon, called the Coulomb gap, is due to H= Z dini+ 2 2 i '
the long-range part of the Coulomb interaction which, in .
some sense, remains nonscreened. In fact, the Coulomb gameren;=0,1 are occupation numbers. The quenched ran-
results from the Coulomb law and from the discrete nature otjiom site energiesp; are distributed uniformly within the
the electron charge. In their first works ES claimed that thénterval[ — A,A], whereA=1 is the value employed and the
DOS in the Coulomb gap has a universal form, dependingwerage occupation numberis taken to be 1/2. The magni-
only on electron charge and dielectric constank. Then  tude of the quenched disorder is enough so as to provide the
DOS ~|&|°~*«P/e?P, whereD is the spatial dimension and universal Coulomb gap at all energies which are important
e, Is the single-electron energy whose reference point is thaithin the temperature range under stddy what follows
chemical potential. This expression for the DOS is the onlythe lattice constant is taken to be the unit of length. The
combination of the energy and the electron charge which hasearest-neighbor Coulomb energy which is in this case equal
a proper dimensionality. It was shown Idténat in the two-  to the amplitude of the disorder is considered both as the
dimensional(2D) case the above universality is exact only energy and the temperature unit.
for strong disorder. In the 3D case the question was never Simulations of the conductivity in the lattice mofebn-
studied in detail, however, deviations from the quadratic lawfirm the ES law in all details, i.e., the pre-exponential factor,
have been reported. T dependence, araldependence. It has also been shown that
Simple quantitative arguments which assume that thgimultaneous transitions of two electrons do not play any
single-particle excitations are responsible for the variableole. Arguments have also been given that any many-electron
range hoppingVRH) lead to the so-called Efros-Shklovskii excitations are not important. Therefore simultaneous transi-
(ES law,® which has been observed experimentally in manytions of electrons were not included in the simulation below.
materials Glassy properties, due to both randomness and the long-
range Coulomb interaction, are another interesting manifes-
tation of electron-electron interactions in such a system.
Davies, Lee, and Riéé were the first to raise this issue.
They coined the phrase “electron glass” which is still used,
whereT is the temperature anfl,= 8,e%/ka, a is a local-  sometimes also referred to as “Coulomb glass.” Both these
ization length of electrons, and is an effective dielectric terms stress the relation of the above electron system to a
constant of the media above and below 2D gas. A selfspin glass system.
consistent type of percolation approatdee references in We believe that, in the same way as in real glasses, the
Ref. 6 gives By=6.5. The hopping length is given by glassy properties in this electron system are due to those
~(ald)(To/T)Y2. states which have very close total energies but substantially
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different sets of the occupation numbers Such states were site energies one at a time. A few additional processors can-
first observed by Baranovskét al® during the first com-  not help much. Therefore, even using the most sophisticated
puter simulation of this system and have been calledProgram, we may simulate no more than 46 of the real
“pseudo ground statestPGS'9. These authors found that time in a system of the size of 16AL00 lattice sites.

the PGS's have the same universal Coulomb gap and have We have shown that during such available times we can
concluded that the existence of PGS's is not important fof €aCh an apparent saturation of conductivity and energy and

o o that saturation of the DOS occurs much earlier. We interpret
the VRH conductivity because transitions between them are.is “saturation” as a saturation within one PGS. Thus. it is
very slow. They attributed these slow transitions between thﬁ':‘ather the transition from the fast relaxation within one PGS

PGS's as well as their difference from the ground state to by, 5 very slow relaxation to PGS’s with lower energy, that we
a result of a certain amount of many-electron transitions. :annot observe.

Experiments on the glassy properties of such systems, sjmultaneously with the conductivity we studied the re-
conducted around 25 years later, have confirmed this conclyaxation of energy. We devised an analytical theory for the
sion, but they have also shown that Baranovekial. missed  energy relaxation which fits the simulation data fairly well
an important feature. Since transitions between PGS'’s take @&nd serves as a reference point for our understanding of the
long time and conductivity of these states is not exactly theshort-time relaxation.
same, they can serve as a basis for memory effects. To study the long-time relaxation due to transitions be-

Experiments, started by the group of Ovady&Hain  tween the different PGS’s we came up with a different idea.
1993, definitely show the relation of this system to the ordi-We create different PGS’s by relaxation from states with dif-
nary glasses. In these experiments the difference in the coiferent initial distributions of electrons. Then we study the
ductivities of the PGS’s is not larger than 10—12 %. Similardifference between the saturated values of the conductivities
phenomena was observed by the group of G0|d1?nan ul- of the different PGS'S. If the.SG ar(? diﬁerent, one should ex-
trathin films of metals near the superconductor-insulatoP€ct that a long-time relaxation exists and the total change of

transition. Slow relaxation has been demonstrated by Monthe conductivity should be of the order of this difference. For
roeet al*in compensated GaAs. the lattice model we obtain no such effects. The conductivi-

The properties of the PGS's have been studied recentl);ies of different PGS'’s are the same in the limits of our ac-

- - - Curacy(about 1-29%
mostly by computational methods:'’ Perez-Garridet al1® : S .
argued that transitions between PGS take a very long timef\?l Since PGS's with different energies were observed by

substantially larger than the time available in any experi- enasheet al. as well as in other papers, we arrive at the
y larg 17 . Y €XPeTlconclusion that the effect of long-time relaxation of the con-
ment. Menashet al.*" proposed a different method in order

. . ductivity is absent due to the universality of the Coulomb
to study the Coulomb glass. By completely ignoring the tun-y, o the Jattice model, in the temperature range which we
neling term in the transition probability, still keeping the ac- consider. We also performed simulations for the random site
tivation probability for the electrons, they performed a ther-mgde. In this model all disorder comes from the random
modynamic Monte Carlo simulation which transforms apgsition of sites. Our results for these simulations exhibit a
nonergodic system into an ergodic one. Thereby they wergifference in the conductivities of the PGS’s whose value is
able to obtain all the thermodynamic properties of the ersufficiently large so as to explain the experimental results of
godic system since the electrons were able to move acrogdvadyahu’s group.
the system in a single transition, leading to effective mixing The difference between these two models in the three-
of all PGS’s. dimensional case has been discussed in Ref. 18. Note that in
The above method only permits the calculation of thethis case a glassy transition at nonzero temperature has been
thermodynamic values, since the number of Monte Carleclaimed’® Xue and Le& performed Monte Carlo simula-
steps cannot be related to a physical time. Still, these authot®ns employing the two-dimensional random site model in
claimed that the metal-insulator transition in the Coulombwhich the disorder comes about only through the random
glass may coincide with the glassy transition that occurs du@osition of sites. These authors found evidence for glassy
to the increase of the localization length. Their mefigd ~ behavior at low temperature but they claimed the absence of
partially employed in this paper. the glassy transition at nonzero temperature. The same result
The goal of this paper is to understand the origin of the!V@S obtained for the Ising mod. .
long-time relaxation of conductivity, observed in the experi- "€ Paper is organized as follows. In the next section we
mental papers cited above. To do so we performed Montstudy the relaxation of the energy and the conductivity after
Carlo simulations employing the lattice mod@) and the an extra amount of el_ectrons was added to the system in the
random site model described later on for two-dimensiona faf."eWOfk of the lattice mogjel. In Sgc. i, employ_m_g_ the
systems. In our simulation we perturb the system by addin tice m9de|, we study the dn‘fgrence in the cpnductmhes of
some extra electrons and then trace the relaxation of enerdg€ PGS’S, obtained through d'ffefe”F relaxation methods. In
and conductivity with time. One should clearly understand ec. I_V the results for the random site model are presented
that it is impossible to observe the long-time relaxation by gand discussed.
direct simulation. The general reason for this is due to the
long range of the Coulomb interaction and to the fact that in
a real sample many transitions take place simultaneously
while a computer processor is limited to performing them In this section we study the relaxation of the energy and
one at a time as well as updating the resulting changes in theonductivity of the system after it has been initially per-

Il. RELAXATION AFTER ADDITION OF EXTRA
ELECTRONS
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turbed by the addition of a few percents of extra electrons. In d2¢ Ame
principle, this is the same procedure employed in the experi- 2q —q2¢q= ———nyd(2). (6)
ments of Ovadyahu’s group but the time in which we are dz K

able to observe the system is very short. We use the lattic
model with Hamiltonian given by Eq2) and initial filling condition of continuity of, atz=0 and zero az— + = the
factor v=1/2. The extra electrons are added randomly ONyq|ution is 9

empty sites and the background is adjusted such that the

system remains neutral. ¢q=Aqe*q‘z‘. (7)

ff can be solved in the regiors>0 andz<0. Under the

The integration of Eq(6) over an infinitesimally small inter-

val aroundz=0 leads to the boundary condition
To describe the physics of the short-time energy relax-

A. Analytical theory of energy relaxation

ation we devise the following analytical theory. We start by dog doq d7e
considering a division of a plain containing 2D electrons into dz T dz =7 Na ®
regions with a linear siz& If én is an average density of 2=+0 2=-0
additional electrons, the chard@@ of each region is of the This condition gives
order of Q~e\/snR?, because the average charge is com-
pensated by the background. The extra energy due to A _27Ten ©)
electron-electron interaction per a region containing excess a kq O
chargeQ is Q%/R. The number of regions per areali¥ R?, _ _
whereL is the length of the total system which is squareEduations(7) and(9) give
shaped. Thus the extra energy per area due to all regions of >
. L ; . : . 2me ) 2meq
sizeRis £=e“dn/kR. The regions with the smalle& give Eq=—ig——n,, (VE)q=iq-Eq= ng. (10
the largest contribution. However, due to relaxation they be- Kq
come neutral faster. .SO, the main contrlbgtlon at a time Now the Fourier transformation of EQ) is
comes from the regions in which relaxation has not yet
ended. In the 2D case the relaxation goes with the velocity dn, ng
ool k, Whereo, is the conductivity of the systeff.Thus, at a9t T .70 (11
a timet only the regions withR> o gt/ xk have an excessive a
charge. Finally, the energy per area decreases with time aghere
E~e?8nlagt. Analyzing results for the autocorrelation func-
tions and density-density correlation functions it is not diffi- 1 2mq
! ) NN ; —=—0y. (12
cult to find the numerical coefficient in this expression. Let Tq K
n’(r) stand for the density of additional electrons with their _
homogeneous background so that the average Vaileis 'S leads to
zero. The linearized equations have the form nq(t)=nq(0)e‘”7q. (13)
j'’=0aoE (3)  The energy of the fluctuations is
and 1
E= Ef o(r,z)en(r)8(z)d?rdz
an’
e— +o,VE=0. 4
gt TooVE=0 @ 7€ [ ng(0)2 . d’q
=— e ' . (14
K q (2m)?

One can see that the diffusion current, omitted here, is more
important on the earlier stages of relaxation than the Ohmic ¢ the initial state corresponds to randomly distributed

current.
. . electrons
In the 3D case the field can be eliminated from these

equations resulting in an equation for only. In the 2D case (n'(r,on’(r’ 0)>=R§(r—r’) (15)
the situation is different and the problem can be solved using ' ' '
the Fourier transformation then

1 . 1 ) 1 (-1 —iqr At ’
nl:f% nge'd", d,:E% by(2)€9T. (5) <|nq(0)|2):P<feq n (r,O)drf e '"4"'n'(r’,0)dr >

Herer andq are two-dimensional vectors in the plane of the _An iqr—r") , ,
electronsz is the coordinate in the perpendicular direction, E S(r—r’)drdr’=An. (16
and ¢ is the scalar potential. The equation for the potential

has the form The substitution of Eq(16) in Eq. (14) gives
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FIG. 1. (a) The time dependence of the total energy of the system is shown at two different temperatures as a funatigin dhé/
localization radiusa= 1, the system size is 1860100. The inset shows the range of time where two curves coincide. The slope, that follows
from Eq.(17) is shown by the straight line. All values are given in computer uflilsThe energy relaxation in the VRHaE 1) and in the
nearest-neighbor hopping€ 0.2) regimes af =0.1.

T€2AN (1 d2q e?An domly. The time dependencies were averaged ovérdifo
&= —e 2 = . (17)  ferent sets of randomly distributed extra electrghsles.
K q 272 8mogt S

(2) 0 Due to electron-hole symmetry of the Hamiltonié) at v

=1/2 the relaxation of extra electrons and extra holes is the
the above estimate. One should understand that( Ey.is same. The data below describes the addition of electrons. It
valid att<L/op. At such times the energy relaxation has should be noted that the insertion of electrons into the system

finished due to the finite system size. It is easy to take th&2n Pe simulated in many ways, e.g., adding electrons in a
size effect into account qualitatively. The result is that energyronfined spatial region simulating the way electrons might
as a function of ! saturates at~L/o. It is also important enter the sample experimentally, or adding electrons to the

that the system is assumed to be ergodic, i.e., it does népost probable states. It is clear, however, that since the un-
contain different PGS’s with slow relaxation between them.Perturbed system is saturated within one PGS the difference
between different electron insertion scenarios should only be

notable within very short time scales, i.e., of the order of our
simulation times. Thus the choice of how to simulate the
perturbation of the system by adding charge does not in any
All the time-dependent simulation results in this paper arevay effect the long time relaxation of the system which is
obtained by our modification of the kinetic Monte Carlo due to transitions between different PGS’s.
method that is presented in the Appendix. For the lattice The energy relaxation is shown in Fig. 1. The reference
model our computer uniteCU’s) are as follows: the length point for the total energy,, is the saturated value for the
unit is taken to be the lattice constamy, the units of energy longest time measured. At tinte=0 the filling factorv has
and temperature are given by the Coulomb interaction at thbeen increased from 0.5 to 0.52, such that the total number
lattice constane?/a,, the time unit is chosen as the recipro- of extra electrons equalN,=0.02.%/2. Figure 1a) shows
cal transition rate due to phonons !, see Eq(1), and the the regime of the VRH witta=1 at two different tempera-
unit of the two-dimensional conductivity is given tagy. tures. In Figure (b) we compare relaxations of energy in the
The numerical values for the time given below, are calcuVRH regime ata=1 with the relaxation in the nearest-
lated using the assumption that 102 s~ 1, neighbor hopping @ =0.2. The values of the VRH conduc-
The simulation temperatures were chosen to De tivity at a=1 areoy=0.0048,0.021 in CU foiT=0.1,0.2,
=0.1,0.2 which corresponds to the region of hopping confespectively. These values of conductivity are also obtained
duction in the case were the localization radauss of the  as the saturated value at the longest time measured. Since
order of 1 CU’ Decreasing the value af we may switch  Eq. (17) shows that at largg the energyE is a function of
from the VRH to the nearest-neighbor hopping regime. Thergt, we use this product as a reciprocal argument in Figs.
size of the system was taken to be ¥QIDO lattice sites. 1,2. The straight line in the inset of Fig(al shows the slope
The simulation was performed using the following steps:as given by Eq(17). The inset shows the final stage of the
In the first stage the system was brought to “thermal equifelaxation where the curves at different temperatures coin-
librium,” inside a single PGS, using the thermodynamic cide and obey the time dependence given by @d). The
method employed in the work of Menasletall’ In the  saturation at even largeis due to a size effect. Note that the
second stage, which is the reference point for the time fronvalues of the conductivityy differ by almost five times for
which the relaxation of the DOS starts, energy and conducthe two curves presented. The observed saturation of energy
tivity were studied and the electron concentration wagelaxation is connected to the finite size effect as has been
slightly changed by addingor removing electrons ran- discussed in a previous section.

This result gives the value of the numerical coefficient for

B. Simulation results for short time relaxation of energy and
conductivity
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0.0020 T T T T an infinite system and extrapolate the law oo~ (opt) 1
1 1. to much larger times, we find that in the microsecond range
2 i_%_ all relaxation which can be observed will be over.

i The saturation of the conductivity averaged over different
initial distributions of extra electrons, which we have pre-
5 0.00104 ++« ] sented in this section, happens at very short times. It is a
o J%q Maxwell-type relaxation of the extra charge. We have

] % 1 checked that the relaxation of the Coulomb gap inside the
0.0005 - . energy interval that is responsible for the VRH occurs even
%&' faster than the relaxations of the energy and conductivity.

» o
— =
1

0.0015 4

1 These results do not support the idea that long-time relax-
0.0000+ ﬁi% 1 ation is due to the slow formation of the Coulomb ¢ap.
0 0.5 1 15 2 2.5 However in the experimental datd?the long-time relax-

/(o ) ation happens on time scales of the order of seconds and

hours. These time scales are 9-11 orders of magnitude

FIG. 2. The time dependence of the conductivity of the systemonger than those which we are able to simulate. Thus, if a

is shown at different temperatures as a function of,l/ The value  |ong-time relaxation exists in this system, the change of the
of oot is taken to be the saturated value of the conductivity at th%veraged value of the conductivity is negligible during the
longest time measured. The concentration changés @tand the physical time scales we have simulated. This explains the
parameters of the simulation correspond to those of Fig. 1. apparent saturation of the conductivity, we observe. If the
long-time relaxation results from the transitions between dif-

The relaxation of the charge fluctuations given by Egq.ferent PGS’s, the conductivity we have observed should be

(17) not only has the universal form for the different valuesconsidered as the conductivity within a single PGS. The en-
of conductivities, but it is also independent on the conduc<£ouraging result obtained_ in this section is that t_he saturation
tion mechanism. In Fig.(b) we present the relaxation curves Of the conductivity of a single PGS can be achieved during
for the system for VRH conductivity and for nearest- the time scale available for our computation. Ba;ed on this
neighbor hopping where the localization radius of the elecresult another approach to the problem of long-time relax-
trons is much smaller than the distance between neighboringtion, is proposed in the next sections.
sites. The time region where the two curves coincide within
8?iﬁgcggﬁgﬁ;veitveg'#mad;r defp'te thef ?g(t)(t)haTththe ValUeR, - NDUCTIVITY OF DIFFERENT PSEUDO GROUND
y differs by a factor o - 'he main STATES IN THE LATTICE MODEL
source of the errorésee the Appendixarises from calculat-
ing the values of the conductivityy rather than measuring The idea behind our approach is rather simple. We want to
the total excessive energy of the system. compare the conductivity of the system in the different
Next we present the results for relaxation of the conducPGS’s. If the values of the obtained conductivities are differ-
tivity after adding extra electrons to the system. The proceent for different PGS'’s then the long-time relaxation of the
dure for adding the electrons is the same as stated above. Thenductivity can be attributed to the slow transition between
time dependence of the conductivity of the system is showthose PGS’s. We are unable to measure time scales of the
in Fig. 2 for two different temperatures. These were obtainedrder of such transitions still we can explain its effect and
in the same simulation as the data for the relaxation of thenagnitude which are reflected through the difference in the
energy in Fig. 1a). One can see that for both temperaturesconductivities of different PGS’s. In the experiments of the
the conductivity decreases with time finally reaching a kindgroup of Ovadyahtf such differences are of the order of
of saturation, which may also be interpreted as a transition t@0%.
a substantially slower rate of relaxation. We consider this To observe the conductivity of different PGS’s, we mea-
“saturation” as the end of the short time relaxation in our sured the conductivity of the same sample with different ini-
finite system. The value of the conductivity at the largesttial distributions of electrons during the longest time we are
time we considered is denoted by. One can see that as a able to simulate. The sample is characterized by the total set
function of Lot the results for both temperatures coincide of random energieg; . Starting with different initial distri-
in an even wider time region than for the total energy of thebutions of electrons the system relaxes to the different
system. The reason that the conductivity decreases is th&GS's. If the saturated values of conductivities, measured as
due to the nonequilibrium of the system the extra electrongn previous section, is different, one should expect that the
occupy states above the Fermi level therefore providingystem will have a long-time relaxation due to transitions
higher current than in thermal equilibrium. Note that thebetween different PGS's.
saturation of conductivity occurs at the same valuergf, The results for the lattice model simulations performed at
that is =4 as the saturation of energy. It is reasonable tahe lowest available temperature are presented in Fig. 3. The
think that the two processes are connected and the saturatitime evolution of the conductivity averaged over the time of
of the conductivity is also a size effect. measurement is shown for different initial distributions of
The time corresponding to the saturatioh4/o is very  electrons for the same sample. As one can see there is no
short. ForT=0.1 anda=1 itis ~0.8 ns. Even if we assume appreciable difference in the values of the conductivities
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FIG. 3. The time evolution of the conductivity averaged over the  FIG. 4. The temperature dependence of the VRH conductivity in
time of measurement is shown for different initial distributions of the random site modétriangles and in the lattice moddkquares
electrons in the lattice model for the same setppf The values of  is shown. The disorder strength is given By=1 for the lattice
parameters aré=1, T=0.04, the localization radiua=1, the  model, while A=0 for the random site model. The localization
system size. =70, and the filling factow=1/2. radiusa=1 and the filling factorr=1/2. The straight line repre-

sents ES law.
within our accuracy which is about 1-2 %. We obtained the ) )
same result for all higher temperatures with even greater ac- We consider the case=1/2 for which each state of the
curacy. system has an exact twofold degeneracy: the total energy is

We therefore conclude that there is no apparent differencivariant with respect to changing all of the occupation num-
in the conductivities of different PGS's for this model down bersni—1—n;. It is this symmetry for half filling which
to the lowest temperatures we are able to simulate. We thinRllows this model to be mapped on to a spin glass mbtlel.
that the reason for this is the following: It has been shbwn This fact is probably also important for formation of PGS's
that the VRH conductivity of the system is provided by the that consist of fragments of both states.
single-electron excitations. The properties of these excita- This model is unusual for electronic systems. For ex-
tions is defined by the structure of the Coulomb gap. In the2Mple, partially occupied donors located in a plane with a
lattice model at largé the DOS in the Coulomb gap has a 9até electro_de above the plane are not described by this
universal fornt It is independent of the properties of the model. In this case the above symmetry is absent. However,
system and is the same for all PGS’s. For our temperaturhe neutral system of random donors with a large “negative
range, the casA=1 can be considered as a large disorderU” can be described by the Hamiltonid8), if 1/2 of them
Thus all PGS's have the same conductivities and no longaré doubly occupied with chargel and the other half are
time relaxation can be observed. We realize that the lattic80t occupied with the charge 1. _
model with large disorder cannot account for the effect of the FOr the simulation of the random site model we use a
long-time relaxation of the conductivity which is observed Similar computational algorithm which is described in the
experimentally. Thus, to observe the difference in the conAPpendix. Unfortunately, it is more time and memory con-
ductivities of different PGS one should take a system withSuming than the algorithm for the lattice model. In this
smaller disorder, where the Coulomb gap is not universalmodel the unit of length igg=n~*? wheren is the concen-
Unfortunately, it is difficult to find such a regime in the lat- tration of sites.

tice model, due to the Wigner crystallization at low tempera- ~ Figure 4 shows the temperature dependences of the VRH
tures. conductivities both in the random site model and in the lat-

tice model. Unfortunately for the random site model we were

unable to check the importance of simultaneous many-

IV. CONDUCTIVITY OF DIFFERENT PSEUDO GROUND electron transitions on the VRH conductivity. One can see a
STATES IN THE RANDOM SITE MODEL deviation from the ES law in the case of the random site

In this section we present the results for the random sit&10d€! that might be a result of deviation of the DOS from

model. The Hamiltonian of the model has the form the universal DOS in the Coulomb gap.
Figure 5 confirms this point of view. It shows the DOS of

different PGS'’s for both lattice and random site models. As
H= E 2 (ni—1/2)(nj—1/2). (18) in the previous section the different PGS’'s have been ob-
2 7 Fij tained by simulations starting from different initial distribu-
tion of electrons but with the same disorder. The latter con-
It differs from Eq.(2) in two important respects. The first, it dition means the same set @f or the same set of random
is formulated on sites,j, which have random positions on sites depending on the model. In each case the DOS is cal-
the plane. The second, any random energigsthat are not culated by two methods. The first is the kinetic Monte Carlo
correlated with the interaction, are absent. Thus, the randommethod, which gives the DOS in one PGS due to the time
positions of the sites is the only source of disorder. constraint and the second is the thermodynamic Monte Carlo
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8 FIG. 6. The time evolution of the conductivities of different

PGS'’s for the model with the random site distribution are shown by
filled symbols. Open symbols show the same evolution for a “com-
pound” system withA=1. The values of parametels=0.04, lo-
calization radiusa= 1, the system size=70, and the filling factor
v=1/2.

FIG. 5. The DOS in the vicinity of the Fermi level &= 0.04 as
a function of the single-particle energywith a reference point at
the Fermi level is shown for the lattice mod@éhe upper set of
curves and random site modélower curve$ is presented for five
different initial distributions of electrons for each model. The DOS

is averaged over a time equal tods. The inset shows the DOS, ¢nditions are also necessary but there should be some other
near the Fermi level, for the random site model in an enlarged Scal(f’estrictions that make the DOS smaller. Those restrictions
The thermodynamic DOS is emphasized in the inset by a thick line hould be connected with the average distance between the
::rigjlsjevjeg;:fpl%?/gqﬁtiriz U:Ed o obtain these curves are téﬁes and therefore they are related to the total energy. There-
" fore it is interesting to study the conductivity of different
PGS'’s in this model.
method which gives the DOS averaged over all PGS’s. To The simulation results for the time evolution of the con-
get to the thermodynamic regime one should ignore the tunductivities of different PGS's for the model with the random
neling exponent in the transition rate so that transition at angpatial site distribution are shown in Fig. 6 by filled symbols
distance becomes possible. However, the energy dependeraiethe same temperature as for the lattice model. In this case
of the rate should be strictly preserved to get the correcthe conductivity value of each individual PGS saturates
ergodic thermodynamic result. Menaséteal !’ have shown  within 1% during the time of the simulation. However, the
that this method provides an effective thermalization includsaturated values of the conductivities differ by 12% for the
ing fast transitions between the PGS's. different initial distributions of electrons in the same sample.
Figure 5 contains two important result§) The DOS of  This is by an order of magnitude greater than the simulation
the random site model strongly differs from the DOS of theaccuracy. The study of the conductivities in the random site
lattice model and does not have the standard energy depemodel shows that the slow transitions between PGS’s may
dence typical for the two-dimensional Coulomb gap, whichresult in the long-time relaxation of the conductivity ob-
is known to be very robust in the lattice model fo=1. For  served in the experiment. An important question now is
the random site model the DOS is quadratic rather than linwhether the obtained result is due to the randomness in the
ear. We have checked that its curvatureTisndependent. site distribution or to the absence of the disorder which is not
From dimensionality considerations this DOS can only be ofcorrelated with the interaction.
the order ofz%/e®n'?2, which also explains the deviation In order to answer this question we consider a “com-
from the ES law for the VRH conductivity shown in Fig. 4. pound” model. Namely, we have added to the Hamiltonian
(ii) The relative difference between the DOS for differentof the random site mod€(L8) the first term in Eq(2) with
PGS'’s is much larger for the random site model than for theA=1. One can see from Fig. 6 that the difference in the
lattice model. For the random site model the time fluctuaconductivities of different PGS’s disappearsfat 1 within
tions of DOS near the Fermi level are 10 times smaller tharthe simulation accuracy. Thus, the randomness of the sites is
the difference between the DOS'’s of different PGS'’s. In thenot important, but the value df is very important.
lattice model those fluctuations are so close to the difference Another important question is whether the values of the
itself that the difference is not a reliable measure. The thereonductivity of the different PGS’s are correlated with the
modynamic DOS is between the DOS’s obtained for differ-energies of these PGS’s. The total energy of the system in a
ent PGS’s as it should be for an average function. given PGS is averaged over time and plotted versus the value
In fact results(i) and (ii) are connected to each other. At of the conductivity for the same PGS's in Fig. 7. The data
large A the universal behavior of the Coulomb gap can beshows that the energy dependence of the conductivity is
obtained from conditiong;—e;—1/r;;>0 for every empty close to a linear behavior. PGS’s with higher average total
sitej and occupied site These conditions are important near energy also have a larger value for the conductivity which is
the Fermi energy only, for which the total energy becomeseasonable, since in the states with lower energy the elec-
irrelevant. That is the reason why all PGS’s have a similatrons are in positions where they are more tightly bound and
DOS near the Fermi level. For the random site model theséherefore their conductivity is lower. The same behavior is
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-1984.0 T T . T two different models: the lattice model and the random site
model, with random sites and no external disorder. We have
shown that these two different models which correspond to
1984.2 ] different realizations of disorder lead to different physical
effects. For the lattice model no difference in the conductivi-
ties of the different PGS’s was found. We understand this

L result in terms of universality of the Coulomb gap and ES
“18844- hopping conduction.
For the model with random distances between sites and
+ no external disorder we have found the difference of the
-1984.6 - conductivities to be within 10—12 % which is large enough to

explain the experimental data. We have also shown that the
density of states in this model is not universal and that hop-
ping conductivity does not obey the ES law. We think that
FIG. 7. The correlation between the total energy of the systen$imilar effects might be observed in the lattice model as well
and the conductivity is shown for eight different initial distributions With A=1 but at lower temperatures than those which we are
of electrons in the random site model. Both the total energy and th@ble to simulate. With increasing this temperature range
conductivity are averaged over the time 48. The straight line is  should become lower. Thus we think that the universality of
given as a guide for the eye. The values of the parameters used atee Coulomb gap that manifests itself in the ES law for the
the same as were used in Fig. 6. VRH suppresses the long-time relaxation because in this
case, the conductivities of PGS’s are very close to each other.

33 34 35 36 37 38
o [10°cU]

apparent in the experimental results of Ovady#tthe lin-
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V. CONCLUSIONS

A computational algorithm is presented which permits APPENDIX: COMPUTATIONAL ALGORITHM
one to simulate the energy, density of states, and conductiv-
ity of a system with localized interacting electrons during
times of the order of 4Qus. We argue that during this time
the relaxation of the system to some PGS'’s is completed. A
analytical theory of the energy relaxation which is in good
agreement with the computational data is presented. O
computational results for the conductivity exhibit two very
distinct time scales: the first is a very short time scale corre-
sponding to the average value of the conductivity, the second
a very long time scale defined by the long-time relaxation of =min(ly;—y;l,L—|yi—y;D). (A1)
the conductivity. We attribute these two scales to the follow- ) ) )
ing physical picture, in which the relatively short time scale Herex; andy; are the sets of the site coordinates, which form
is a consequence of the relaxation of the system within on@ lattice in one model and are random in the other.

PGS, well described by our analytical theory, as well as by 10 Simulate the conductivity one should add a t&i&

our simulations, whereas the long-time relaxation of the cont© the Hamiltonian2) whereE is a weak electric field. Due
ductivity, is related to transitions between different PGS's 0 the field the current flows around the torus in sheirec-
The microscopic origin of this huge time scale separation cafon: Itis convenient to calculate the total dipole moment due
be attributed to the fact that whereas many-electron transio ek_ectron transitions in the direction Qf the electric field and
tions are not important for the VRH conductivity within one Obtain the conductivity from the equation
PGS they play an important role in slowing down transitions

between PGS's. 1 dP

Current computational resources are not able to confirm 7= ﬁ dat -
this theory by directly observing the long relaxation pro-
cesses, rather they are limited to the range of the short relaXon average the dipole momef increases linearly with
ation time scales, which can be simulated. In order to checkme.
our theory we have studied the conductivities of the different To find dP/dt one needs a kinetic Monte Carl®C)
PGS'’s to see whether or not they are different. We employedlgorithm that connects the number of MC steps with a real

To perform the simulation of the transport and thermody-
namic properties on the finite arrayx L for both the lattice
model and the model with random spatial site distribution we
Use the periodic boundary conditions on a torus. In fact, this
means that for the pair of sitesandj the distance between
Yhem is given byr;=[(Ax;)2+(Ay;;)2]"2 where

Axij=min(|x;—xj|,L = [x—x;|) Ay;;

(A2)
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time t. Note that for any thermodynamic calculation the time = The advantage of the first algorithm is that any MC step is

is irrelevant. The starting equation is a transition rate for asuccessful: as a result of each step one electron moves from

single electron hop from siteto sitej, that has the form one site to another. The disadvantage is that for the interact-

ing systems at each MC step the computer recalculdies

values ofl';; . Therefore, each MC step is very time consum-

ing as compared to the MC step of the second algorithm.

] ) ) ) ) However, the disadvantage of the second algorithm is that at

wherer;; is the distance between the siieandj, s; is the  strong dispersion of the transition ratésmall a or T) the

energy difference between the two configurations=e;  probability of the rejection is very high. In other words, the

—&j—1rj—EAX;;, &=¢i+Z(1rj)(nj—=»), AXj IS  physical timeAt per one MC step is much smaller than in

given by Eq.(Al), and ¢; is equal to 1 if the sité is occu-  the first algorithm. This can be seen from E¢&5), (A6).

pied and sitg is empty or O otherwise. The transition rate |ndeed, the double sum in EGA5) containsN,, terms. How-

should have the dimensionality of frequency. It is written in ever, the majority of these terms are very small.

a dimensionless form, assuming that our time unityis". In this paper, we used a mixed scheme which combines

The MC process can be started with any initial set of distri-the pest features of both algorithms discussed above. We

butions for the occupation numbemswhich evolves during  show that it is very efficient in the VRH regime for the

the simulation. interacting electrons. The original idea for this algorithm be-
There are two different algorithms developed for this typejongs to Bihan?®

of computer simulation. The first one implies the calculation  The transition rat¢A3) for the VRH can be written as a

of all the transition rated’; in the system at each Monte proqyctI'[I'/}, where the “tunneling” part of the transition

Carlo(MC) §t§p. '_I'hen the probability that the next transition 510 FE = exp(~2r;/a), while Fﬁz 6, I[1+exp(e; /T)] re-

to occuri—j is given by flects activation. It is important now th&t™ is independent

of the configurations of electrons and should be calculated

exp(—2rj; /a)

b= Y0 T et 1T

(A3)

L (A4)  only once. Since the probabilities of tunneling and activation
D r. are independent we may apply the first algorithm with
T and the second one with”. Practically it means that we

N _choose pairsi(j) with the probabilities
Then at each MC step the code chooses the transition with

the above probability and performs it. This means changing T

the occupation numberg andn;, calculating the contribu- v (A7)
tion of this transition into the total dipole momeR{ and z E rT

recalculating all site energies and transition rates. After that I

the code comes to the next MC step.

For the above algorithm the physical timé for each MC ~ and accept the transition—|j with the probability 6;; /[ 1

. over and the code proceeds to the next MC step. If it is
- accepted, the transition is performed. To finish this step the

m:(z ri,-) , (AS) e p .

[NEY L0 ) T .

' _ the contribution of this transition into the total dipole mo-
because in the real system all processes run simultaneoushientP, and recalculates all the site energigs In this case,
varies during the simulation.

In the second algorithm at each MC step a pair of sites
Then the transitioni(—]) is accepted with the probability Lo
['j; . If the transition is rejected, the MC step is over and theg; the |attice model the Swﬁj¢iri-li is independent or
tranS|t|o_n is performed. This means that the che _changqﬁ units of ya, can be written in the form
occupation numbens; andn;, calculates the contribution of

step is +exp(e; /T)]. If the transition is rejected then the MC step is
code changes the occupation numbgrgindn;, calculates
Note, thatAt depends on the configuration of the system ancthe physical time per one MC step is constant and equal to
-1
(i,j) is chosen with equal probability from all possible sets. At=(2 > FI) : (A8)
code proceeds to the next MC step. If it is accepted, th?husAt:(LzEj#iFE)*l. Using this result the conductivity
this transition into the total dipole momeRt and recalcu-

lates all the site energies; . This is the end of the MC step. P> exp— 2r;/a)
In this case, the physical time per one MC step is constant . id_P_ J#i A9
and equal to T2 dt ENyc ’ (A9)
1 1 whereP is the total dipole moment due to the electron tran-
At= —=———, (AB) i
Ny L2(L2-1) sitions afterNy,c steps.

For the model with random spatial site distribution the
At=1/N,, whereN,, is the total number of different transi- EMFE is different for each site and the conductivity is
tions in the system. given by
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TABLE I. The algorithm efficiency comparison. table At is the physical time correspondent to one MC step,
: - Nop/Npyc is the number of operations per MC step, and the
Algorithm At Noper/Nmc Eff [oper/se¢  efficiency is given by Ef Nop/NycAt.
| O(N) O(N?) o) The time efficiency of th.e mixed algorithm is the same for
I O(N?) O(N) o) both lattice and random site models. However, the memory
Mixed O(N) O(N) O(N?) requirements are much harder for the random site model. In

this model one need to calculate BIf=L* tunneling terms
and have access to all of them at each MC step, because the
transition at each step is chosen with the above weights.
P> > exp—2r;/a) While in the lattice model there is only=L? different tun-
Pz _ (A10) neling terms exp{ 2r;; /a) that have to be stored. In fact, this
ENpclL? constraint does not allow us to simulate a system in which
the number of sites exceeds 5000 employing the random site
Now we compare the efficiency of all three algorithms. Themodel.
efficiency is the number of operations which are necessary to One can see from Table | that the efficiency of the mixed
simulate a physical process during a tim&he most impor-  algorithm is the best. The use of this algorithm allowed us to
tant is how the efficiency depends on the number of sites isimulate the macroscopic conductivity. In fact this algorithm
the systemN=L2. The results are shown in Table I. In the has been used in Ref. 7.
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