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Anomalous diffusion near the Fermi surface
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We consider the three-dimensional dynamical evolution of localized hot spots in ultralow temperature Fermi
liquids. Within a model calculation, it is found that such perturbations do not relax into a hydrodynamic profile
at long times, as might be expected of thermal hot spots under less exotic conditions. Instead, the hot spot
expands outward into a shell moving away from its center at a velocity comparable to the Fermi uglqcity
which is consistent with the “baked Alaska” hypothesis proposed earlier by Leggett as a possible solution to
the riddle ofB-phase nucleation ifHe.
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I. INTRODUCTION to divide the problem into two stages. The main body of this
paper will be concerned with the later dilute stage which is
In a Fermi liquid at temperatures sufficiently low com- dominated by the cascade effect. The remainder will be de-
pared to the energies of excited quasipatrticles, the decay obted to a study of the early-time dynamics of the hot spot,
these quasiparticles occurs principally through the scatterintpcussing in particular on an estimation of the crossover time
of additional particle-hole pairs out of the ground stala  to a nonmonotonic distribution.
leading order each collision produces only one extra pair, at Our approach to the long-time cascade problem consists
a rate proportional tqﬁ, wheree, is the energy of the inci- of building up a single-particle Green’s function designed to
dent quasiparticle relative to the Fermi enefgy. A cascade mimic the essential scattering physics in a tractable way.
of pair creation events is thus initiated whereby one excitaThis is then reduced to an effective kernel valid in the long
tion multiplies itself over time into a large numberNBof ~ wavelength, low frequency limit appropriate to a consider-
lower energy ones. Assuming that, on average, the energy @fion of local hydrodynamics. The basic parameter of our
these excitations divides evenly down the cascade, the medheory is the average multiplication factoof the mean free
free path increases by a facter9 at each level. On these Ppath at each level of the cascade. In addition we shall find
intuitive grounds it was postulatéd that the evolution of —another parameter emerging in the long time limit which
localized “hot spots,” associated with the action of ionizing controls a scaling lawr—r'|~(t—t")” relating the root-
radiation on the supercoolgdiphase of*He, should exhibit mean-squared displacement of the particle with time. Our
strongly nonhydrodynamic behavior. In particular, it was ar-principal results are the following: for th&>1 case of in-
gued that the distribution function in real space should deterest,y=1, and there is no transition to diffusive long-time
velop a shell structure moving at or somewhat below  behavior, this being inhibited by the phase-space memory.
away from the center of the hot spot. Some investigifors Further, the effective Green’s function possesses a shell
have questioned the plausibility of this “baked Alaska hy-structure moving away from the origin at a renormalized
pothesis,” favoring instead a more conventional Fermi velocityvr. These properties are, of course, exactly
interpretatiofi founded on local hydrodynamic concepts.  those required by the baked Alaska hypothesis. Finally, it
It is therefore of some interest whether hydrodynamicwill be seen that despite the creation of additional particle-
principles may be applied when the particle diffusion is gov-hole pairs by the cascade, the quasiparticle density is always
erned by this kind of scattering. After all, in the various decreasing. This ensures the self-consistency of the assump-
approaches to ordinary diffusion one usually makes the asion that pair creation indeed dominates the evolution of the
sumption that the diffusing particles lose all memory of theirhot spot at long times.
past trajectory after a finite number of collisions, resulting in ~ We model the early-time regime as much as possible
the characteristically Gaussian distribution at long timeswithin the constraints of local hydrodynamics, in which the
Here this is not the case, since after each collision the phassffects of collisions are systematically overrepresented. The
space available for all subsequent scattering has irreversibiyjadequacy of this description is demonstrated by the diver-
contracted. There is thus a “piling up” and not an “averag- gence of a particular hydrodynamic parameter. This enables
ing out” of this effect, and the distribution that emerges, evenus to find an upper limit on the crossover time to nonmono-
after a large number of collisions, must reflect this. tonic behavior which is somewhat less thRp/vg, where
The above considerations apply when the quasiparticles iR, is the critical radiu$® above which aB-phase bubble
question are sufficiently dilute that collisions between themexpands spontaneously in the presence of the Auykase.
may be neglected. Within the baked Alaska picture, this con-
dition almost certainly fails during the early-_ti_me .regime_im.— Il. MODEL AND FORMALISM
mediately subsequent to the energy deposition in the liquid.
The hot spot effective temperature is initially so high that the In the above description of the problem it is clear that a
mean-free path of the interior quasiparticles is on the order ofarge number of quasiparticles are produced by the cascade
the dimension of the hot spot itsélf® We are led therefore effect. It would only obscure the essential physics if we tried
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from the beginning to keep track of all of them. Instead, weability density we average over all possible velocities subject

study the motion of a fictitious particle corresponding to ato the constrainfv,| ~v coming from degenerate Fermi sta-

single line traced down through the cascade. The problem istics

thereby reduced to that of a single particle propagating in a

continuous field of scatterers according to an infinite se-

quence of scattering raté¥,}. The phase-space memory is Ko(re, 7o) = m5(rk_UFTk)exq_Fka]' 2

incorporated by the parametrizatibh=¢,I'=¢"¥T", where

I is the starting rate at the “top” of the cascade. Naturglly It should be noted that this propagator corresponds to the

itself is subject to fluctuation, since the energy cannot realljowest order in perturbation theory, and is therefore the gen-

be expected to distribute itself evenly down the cascade; weral solution at very early times. Thus the true propagator

defer consideration of such fluctuations to the Appendix. exhibits shell-like behavior in this limit regardless of the
A mathematical description of this process may be writterprecise value of.

formally as a weighted sum over the various trajectories The weight function is a probability densitys a visthe
available to the particle measurdl, d*r, =11,d3rd 7., which, in addition to the sta-

tistical independence of individual scattering events implies
that Wy is just a product of propagatois, connectingN

K(r—r',t—t")= 2 Kn(r=r’,t—t") collision coordinates, multiplied by the probability per unit
N time for a collision at each point, i.e.,
N
=> J J IT d*rwy Wy=Ko(ro, 70)ToKo(ry, 1)« - - Tn—1Ko(rn, 7). (3)
N k
N N Upon transformation tod,w), our formal solution(1)
xolr—r— 2 fk) 5<t—t’— 2 Tk). factor~|zes term by term into products of basic kerr.1els of the
form Ko(q, @)= (1/qug) tan *[que /(T —iw)], allowing us

(1) to reorganize our expression for the true keriies an ex-
pansion in powers ofI":

whereWy=Wy[{r},{7}] is the “weight” associated with a
given cpnfiguration of collision cpordinat@sk}:,'{rk}. Physi— K(g,0)=Ko(q, ) +Ko(q,0) {TKo(£, Lw)
cally this represents the space-time probability density that a
particle starting fromr’ propagates ta in a timet—t’, +Ko(q,0){TK (20, L) (T K o( 220, Pw) + - - -
having undergone an indeterminate number of collisions in )
between. The(classical trajectories intermediate to colli-
sions are bquen up into interya&ith—;k_l which fluc-. We have used a scaling property§, namely,
tuate according to the scattering statistics. For convenience
we assume that the particle starts at the origih=a0. ;K

The structure of thé\-point weight functionWy follows -—tan !
from simple physical arguments. First, collisions randomize qve
the initial velocity at each step; for the sake of argument we ) _ ~ ) _
assume isotropic scattering, affording us the greatest possible Inspection of the serieg}) reveals that(q, ) inherits
randomization at each collision and thereby isolating theSimilar scaling properties:
physical effects of phase-space memory from those due to ~ _
any anisotropies in the true scattering cross section. An ad- Kr(Ng,Nw)=¢ K (0, 0), 5
ditional important virtue of this assumption is a decoupling
of the averages over “in” and “out” momenta at each colli- Where the subscriptasually suppressgdndicate scattering

que iy K K
Fk—iw) _KO(g q,f w)-

sion. rates at the top of the associated cascade. This equation re-
In general, the classical kernel describing propagatiorflects a self-similarity property implicit to our model.
fromr,_, tor, in a time 7, for a given initial velocity and a The series(4) may be written more compactly as a

fixed collision ratel', is a simple Green’s functioG(r,  Dyson-like scattering equation

—ry_1,7) of the form
Ur

I'-iw

1 -
K(g,w)=—tan™* [1+{T'K({9,{w)] (6)

Tk qug
G(re—rg-1,7) = 5( M Tk-1— f dT{N(ﬂi))
from which the series itself follows by iteration.
X exd — T 7] A final mathematical consideration essential to the consis-
tency of this approach is the overall normalization of Eq.
wherev( ;) is given by the particle’s equations of motion. In This may be demonstrated by taking-0 (i.e., integrating
the absence of external potentiaBsis translationally invari-  over all spacgin Eq. (6) and noting that, in order for the
ant, so thatr,—r,_;—r,, and the quasiparticle trajectories series to be normalized (0,0) cannot depend on the pa-
reduce to straight-line paths. To obtain the appropriate probrameter{, which must therefore drop out of the equation for
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K(0,0). This can only occur iK(0,{w)=¢ *K(0,w); sub-  In this limit Ky factorizes into separate space and time de-
stitution of this condition yields the self-consistent solutionpPendent part&y— Q(t) Qn(r) with
K(00)=ilw. o-iot
QN(t)ZFNilf dw—N
IIl. ORDINARY DIFFUSION (I'—iw)

In order to develop the physical principles necessary t&md
the problem at hand, we consider first a more familiar prob- 1 N
lem but from a new perspective. In particular we explore the Qn(r)= f d3qei0rf( 1— —Ugrzqz)
behavior of the kerne in the /=1 case describing continu- 3
ous diffusion at constant velocity and with constant scatter-
ing rate (the discrete case corresponds to the usual random — J d3ge 19T (NBI*(aue)?,
walk problen). This has of course been studied extensively
in various contexts by a number of investigators; we maket should be noted tha®y(t)= | dwe*i‘”‘limqﬁoRN(q,w),
specific reference only to the work of Palnférivho consid- s that the integrand is actually valid for alland the limits
ered the baked Alaska problem in the simpler “Lorentz gas”of integration may be taken to be-¢o,). The same does
system consisting of an aggregate of noninteracting fermiongot hold true for the integrand in the second factor, which is
propagating in a background of fixed, isotropic scatterersstrictly valid only forqu,w<I". However the swift conver-
The simplification arises from the fixed character of the scatyence of the Gaussian integral renders the introduction of a
terers, rendering all collisions elasticence the/=1 condi-  cytoff superfluous.
tion within the present formalismHe arrived at his solution The first factor may be evaluated by the method of con-

by methods rather different from ours, preferring direct inte-toyrs in the standard way by enclosing thén order pole at
gration of a Boltzmann equation to the sum-over-trajectorieg, — —iT'; this gives usQy(t)=[(Tt)N /(N—1)!]e Tt

approach developed here. _ _ ~ which will be recognized as the Poisson distribution. We
Setting{=1, the Dyson-like equation reduces immedi- note that this could have been anticipated on purely physical
ately to an algebraic equation i with the solution grounds by considering first the distribution in the number of
collisions with respect to time.
[ Qur This makes evident an important feature of the long-time
Eta T'Sio limit which essentially fixes a relation betweéhandt and
K(g,w)= T gives us a means of performing the required sum dirdfor
1— —tan? & N large enough, the Poisson formula reduces via Stirling’s
Que I'—iw approximation to Q) ~exd(N—-1)(A+ InTt)—(N

S . Y —1)In(N—21)-TIt]. The argument is stationary under varia-
which is in exact correspondence with Palmeri’s kernel. It,. : . i S
. : tions in the number of collisions foN=I"t, which is the
should be noted that Palmeri was apparently the first to de- ) o . .
. . . . . o mean of the Poisson distribution. Fluctuatiofid=N-—T't
rive this analytic solution. An effective kernel valid in the <N are therefore distributed according to ExgoN)JT]
limit of long wavelengths and low frequencies follows from g to px I

: . S . in the sum oveX only relatively few terms make a
this exact solution; as shown by Palmeri this is nothing mor@enc_e n : . ey
than the familiar Gaussiapda/(27Dt)32]exd —r6Dt], contribution. The fractional width falls off ad’t) ~'<, and

L ot - K(r,t) may be treated as a weighted sum over the very nar-
indicating the applicability of local hydrodynamic concepts A

on long gIength ps%ales foyr scattering of tzis type. HaeIO row ghstr!butlonQN. We_ may therefore, to a very gooq ap-
= %vﬁl“l is the diffusion constant as it is ordinarily defined. proximation, replace this sum by th@i(r) corresponding

The extraction of this effective kernel by Palmeri is rathert0 Its mean value. This yields for the effective kernel an
. . expression of the form
laborious and of course requires that one have an exact so-

lution to begin with. We now discuss an alternative method . 21 o
based on direct consideration of the serids which is in K(r,t)~ J d3qe a7~ (M3vEl g
general much easier to implement, and perhaps of some in-
terest even beyond the context of the present discussion. 47 r2
From a physical standpoint, the derivation of the effective = 35€ [{— 5Dt (7)
kernel ought not to require the summation of each and every (2mDt)

term in perturbation theory. The basic idea of our method isyhich is of course the same result as that obtained from the
to delay summation of perturbation theory until one is well gyact solution.

into the asymptotic regim&t>1, at which point the struc-

ture of the series simplifies enormously. In fact, at long times
only a very few terms in the series should be relevant: terms
that deviate significantly from the expected number of colli- We proceed conceptually along lines parallel to those of
sions at a given time will be exponentially small. To showthe preceding section. We will deviate in certain mathemati-
this, let us consider first only th&lth term Ky(r,t) (N cal particulars, however, in order to accommodate the scat-
>1) of the series for long wavelengths and low frequenciestering statistics peculiar to this case. For example, the ana-

IV. ANOMALOUS DIFFUSION

174516-3



G. L. WARNER AND A. J. LEGGETT PHYSICAL REVIEW B58, 174516 (2003

logue of Q\(t) is here somewhat complicated and less~I""1{(1—/N*1Y)/(1—¢). This further implies that the param-
obviously useful for finding that term in the series which iseters 8;—(1—¢ Nt and B,— (I'/£?) (¢ —1)/(£+ 1)t? for
most probable at long times. Instead we locateNhdosest  N,t large. These substitutions produce finally the effective
to the point where the ratidR=Qy, 1(t)/Q\(t) crosses kernelK(r,t):
unity for a given interval.

Keeping only the slowest decaying ternispbecomes 7 (r—vgt)?

R~exg —({ N 1= MTt—NIn{]. 8 r(vet)? 41 s
3p2-17 F
Setting this equal to 1 is the same as finding the stationary -1

point of an argument of the form {~NI't—$N?In ¢, which

+~ 2
is precisely what we should have expected on the grounds —exp — u (11)
that, roughly speaking, the most probableresults from a f 1 Get)?
competition between factors such B§ ¢~ ¢~ (¥2N* ang 321 F

the ever-slower decay of the diffusing particle. This yields, to _
leading order irN, the scaling relatioN~(InTt/In ). This  Hereve=(1—¢ ')ve is a renormalized Fermi velocity.
is very close to the mean value given bjt~(1 We note at this point that the propagatad) is indepen-
—NTh1(1-7), the difference arising from the skewness indent of I', the starting rate for our quasiparticle. At long
the distribution of small fluctuationBy(SN), which goes as times, therefore, the initial distribution of quasiparticle ener-
gies becomes irrelevant to the spatial profile. To estimate the
1N for SN>0, effects of the growing number of particles in the shell, we
Pn(ON)~ exd — N7 for SN<0 multiply this kernel by 3(®, whereN(t) is the mean number
' of collisions that have occurred up until timeBecauseN
Hence the fractional width of the distribution at long Scales only logarithmically with time, however]3t**«
times is quite narrow, and we may restrict our attention to thevherea<'1, so the density is everywhere strictly decreasing
single termRN; however, becausg>1 the structure of such 85 @ function (_)f time. Thus we do not return to the density
a term is somewhat different from what we encountered indomlnated regime following the crossover to cascade scatter-
Sec. Il in that a large number of length and time scales"9:
appear in the various factors. Most of these may be safely
expanded for small d,w) without affecting the long- V. DISCUSSION
paveengih lon e properles of he resulng EgTal. By the nature o the scaling aus emerging in the long
scales will be kegt ntact grhis is to ensure that V\?e do noHme limit we see t_hgt the most nat_ural definition of the ex-
) ) . ) . (_})onentv characterizing these laws is of the form
wash away’ details on the these scales by looking to
coarsely at the distribution. This gives the expression 2 N o 12
k{ )

r w (o (1 du v=lim —7—m™m8M—— (12
Kn(r,t)~ d3qdw — .
n(r.t) (217)4fo f-oc f—l ade N= SN gk

je-ia-r—iw(t-T"181)~13@ve)’T %8,
X , (9
w+queu+iZ NI

In

which is a nonanalytic function af with the following val-
ues:

where the parameteg,=T"~(1— V) /(1 ¢¥) have been for0<¢<1,

0
introduced for compactness, and the last arctangent factor 1
has been rewritten as an integral over the paramet&e- v=4{ = fori=1, (13
cause we have kept the last factor there is no need to impose 2
cutoffs, and the integrations are therefore relatively benign: 1

B N B L T2 (o)
roe(t— By BY2 3vEl 16

F{ [r+ve(t—B)]°
—exd — — - UL

4 2p-1
3l 7 Bs

for>1.

These values correspond to the three possible effective ker-
nels emerging from Eq.l) under coarse graining. We now
describe the properties of each in turn.

First, the v=0 propagator, which is not derived in this
paper, is basically & function situated at; the geometric
growth of the scattering rate in this case prevents the diffus-
ing particle from traveling very far from its starting point,
Here 7 is a dimensionless numerical constant fixed by nordeading in the limit to a time-independent, highly localized
malization. The decay factor may be ignored, being in facdistribution. The kernel fow=3 is the usual type of propa-
irrelevant since the sharpness of the distributioN ileads us gation one expects when collisions are uncorrelated. Al-
to identify N with its mean value as given by the relation though we know from Secs. Il and Il that at early times this

K(r,t)~

) . (10
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kernel exhibits a shell-like structure, this is apparently com+ain baked Alaska-type distributions, a8) the time scale
pletely washed out by collisions; no artifact of this early, for the appearance of these distributions is set, as it should

“organized” behavior remains at long times. be, byR;/vg.
The last, and most important, propagator, at least from the
point of view of the present paper, is the one corresponding A. Breakdown of the diffusion picture

to v=1. First, we note that the overall shape and scaling of .
this kernel are completely consistent with the baked Alaska, If we are to take the concept of [ocal hydrod_ynam|cs se-
idea. Second, this kernel possesses a rather striking propefipus!y. it ought to be possible to define an effective tempera-
in that we are able, merely by varying parameters appearinyre-r(r't) an_d energy den3|t§(r,t) which are govern_ed by
in the kernel itself, to recover the kernel valid at very early easonable d|ff<.ar§ant_|al equations. In th(.a.case of a h!ghly de-
times O<t<I'~!. In particular, taking the parametgr o generate Fermi liquid 'these two quantltles. are not |'ndepen—
in Eq. (11) reproduces this early time behavior, essentially byd€nt: the energy density~ (number of excited quasiparti-
pushing the intervals between collisions to an arbitrarilyc/e9 (mean energy of excited quasipartioes”. We
large value. The same can be achieved by treaknas a  P€9in by defmg&_the energy current(r,t) = — xrVT(r,1)
continuous parameter in Eq10) and taking the limitN ~ Where kr=wT s the thermal conductivity and the con-
—.0. This reversibility is not evident in either of the other Stant k=3Cn(T)Tvgl(T), with Cy(T)(=T) the 7r210rmal
two propagators, from which nothing of the correspondingState heat capacity per unit volume ah@)(<T") the
early-time behavior may be inferred. mean fre_e path._ Wg hgve explicitly neglected any conve.ctlv_e
This effect is a consequence of the fact that the number dfurents in the liquid; i.e., we have assumed the dynamics is
collisions rises only logarithmically with time, which is sim- Purely diffusive. Because of the relationship betwéamdT
ply too slow to drive a transition to the hydrodynamic or W& may rewrite the energy current entirely in terms &f

. . . 1 itself, so thatj .(r,t)=(x/2)&(r,t) "1V E(r,t1).
Gaussian profile. Further, in contrast to the 0’2. cases In the next step we impose the constraint of local energy
where thel parameter drops out completely, here it remains :
: > S : e conservation, or
like a fossil buried in the long-time distribution; even at long
times the propagator retains a memory of the initial HEr ) +V-j(r,t)=0.
é-function pulse moving out from the origifwhich is pre- o )
cisely the lowest order in perturbation thepryhus we can  This gives us the equation
see that the propagator is distinctly nonmonotonicakt

times. 0E(r 1) = gVZIn & b). (14)

VI. CONNECTION WITH THE REAL PROBLEM IN  °He The highly singular nature of this equation makes it very
difficult to characterize its solutions; in order to give the
local hydrodynamics picture the benefit of the doubt we
“soften” the singularity by removing the explicit position-
dependence of the diffusion coefficient, replacing it instead
some period of time immediately following the energy depo—With a self-cqnsistent va_lue corres_ponding o the maxi_mum
gnergy density at that time. In this way we systematically

sition process which produces the hot spot, its dynamics wil timatehe infl  collisi th densit
be characterized instead by strong interquasiparticle scattef/€reStimaténe influence of collisions on the energy density

ing by assuming a diffusion coefficient which is spatially uni-
This stage is clearly unstable to the physics of Sec. IV inform at all tr|1mtes. we rewrlteche alll;ove diffusion equation in
that ultimately the density of the hot spot must decrease téhe somewhat more conventional form
the point where collisions among the constituent quasiparti- 2 _
: S d—D(t)V ,1)=0, 15
cles may be neglected at all later times. This is because the [a=DMVIETY 9
scattering mode in question conserves both the total numbevhere D (t) = «/2&[ 1 a(t),t]. In three dimensions we can
and energy of the associated quasiparticles, and must spreadite down the spherically symmetric solutions formally as
out as a function of time. E(r,t) =E/[ wYR(t) 1*exp{—[r/R(t)]? for a Gaussian source
However, it is conceivable that the presence of this interat r=0 of dimensionR, and total energyE. Here R(t)?
quasiparticle scattering can delay the crossover to nonmone= [tdt’D(t’), and the form of the solution indicates that

tonic behavior for a timer¢,sswWhich is long on the scale of the radius of maximum density,,,,=0 at all times. This
Rc/ve. This would mean that, although baked Alaskasimplies the self-consistency relation

might themselves correspond to real phenomena, they would
not be relevant to thB-phase nucleation problem referred to 5 ™ 3
in Sec. I. HRY ()=~ RO7, (16)
In what follows we work as much as possible within the
framework of local hydrodynamics, in order to demonstratewhich in turn yields a width function R(t)=Rg[1
that even within this picturél) diffusive propagation is sim- —(72?«Ry/4E)t]~1. This diverges after a timerg,
ply an inadequate descriptiof®) if we violate this picture in =47 *%(E/kR,), which we can rewrite in somewhat more
a particular physically reasonable way we immediately obfamiliar terms by noting that, according to the hydrodynamic

If particle-hole creation were in fact the only scattering
mode relevant to the real problem Bfphase nucleation in
%He, then the whole baked Alaska scenario would follow
quite naturally from the discussion in Sec. IV. However, for
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definitions we have adoptefCy(T,) ToR3~E, whereT, is The self-consistency relation during this monotonic phase
the effective temperature of the initial hot spot. Takingis very simple:dR?(t) = (7*?k/2E)R(t)3exp{[r4(t)/Rt) 1.
[(To)=l,, this gives an estimateg,~ (Ro/lo)Ro/vE . This is quite similar to the corresponding relation with drift
neglected, except for the exponential factor which varies be-
B. Estimation of 7ooq tween 1 ance®2 ThusR(t) will diverge also in this case at

a time 7, <74y . The divergence is avoided, however, if the

. W_e can interpret the .breakdqwn of local hydrOdynamICScrossover to the nonmonotonic solution occurs sometime be-
in this instance by looking again at the results of Sec. IV.

X . X fore this. Based on the analogy to the situation discussed in

There the effective propagat¢il) consists of a hybrid of g v/ there are strong physical reasons for supposing this
quaSi'diﬂ:USive behavior in the relative Coordina’tev,:t to be true. In this sense the precise time dependenc@(b)‘
and a rapid “drift” of the peak of the distribution away from s jrrelevant so long as it compensates the unphysical diver-
the origin at a velocitywg. Physically, the diverging mean- gence that occurs when it is strictly zero. This means in
free path, combined with expansion from a localized sourceparticular thatreoss< iy » OF Teross< Taiv- We therefore take
leads to strong radial correlations in the quasiparticle velociry, as an absolute upper limit on the crossover time to a
ties, which manifests in the propagator as a drift effect. Thisshell-like energy density, for anghysical definition of the
is absent in the usual local hydrodynamics picture, in whichdrift velocity v 4(t).
the average velocity for a diffusing particle is zero for any Based on the estimates &;/l, appearing in Ref. 10,
sufficiently coarse-grained subvolume in the system. together with the fact tha®.~ 10R, or greater, we see that

Itis likely that in the present case the divergenc®@f), 7 .~R./ve at most. Of course, this estimate is based on
which expresses a clear tendency for the distribution tqalculations which strongly overemphasize the influence of
spread very rapidly away from the origin, results from ourcollisions at each step, and place no restrictions on the mag-
neglect of a corresponding drift effect in EQ5). We have, nitude ofvy(t) (which, strictly speaking, should bev), so
after all, the same basic ingredients: a diverging mean-freghat we may reasonably expeet,sst0 be somewhat less
path combined with radial expansion. Under this interpretathan this, probably significantly less.

tion, the neglect of such a drift term so constrains the pos-
sible solutions(by forcing them into a monotonic “strait-

jacket”), that the rapid spreading tendency can manifest
itself only in the unphysical divergence of a parameter in the We have argued that the baked Alaska scenario, as first

VII. CONCLUSIONS

solution, in this cas&(t). described in Ref. 2 and discussed in somewhat greater detail
Consider now the fuller version of E415) with a drift  in Ref. 3, is not only qualitatively plausible but even quan-
term added: titatively accurate as a model of energy transport following
) intense local heating in a normal Fermi liquid. First, a hy-
[di+vq(t)-V=D(H)V]Er,1)=0. (17 drodynamic description of the usual sort breaks down when

Although we have not provided any physical constraints Orponsiderin.g either interqu.as_ipartiqle scatte_ring or particle-
the detailed time dependencegt), we may nevertheless hole creation processes within their respective regions of ap-

write down formally the spherically symmetric solutions of plicgbility. In the latter case it is even pos§ible to find, within
the above equation. These are a simple model calculation, the effective propagator for

single quasiparticles which shows explicitly a nonmonotonic

nE [r—ry(t)]? [r+ry(t)]? shell structure moving out from the origin at a velocity
—_— ex;{ — —dz — ;{ - —dzl ) ~v. The time scale for the onset of baked Alaska behavior,
rra(HR) R(t) R(t) which is set by the interquasiparticle scattering that domi-

(18)  nates at early times, is found to be of the right order for the
where r4(t)= f'dt’v4(t’), and 7 is a dimensionless nu- range of values oRy/l, appropriate to liquid®He at these
merical constant. This bears a striking resemblance to theeffective temperatures.
effective kernel(11), though in this case the form of the
solution is supposed to be valid for all times 0. Expand- ACKNOWLEDGMENTS

ing this solution for smalt ) .
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&(r,t)

2 rg()? 1 APPENDIX

R(t)3ex

X{1+| 5 ———— . . . :

{ 3 R()* R(t)? In this Appendix we discuss briefly the nature of the fluc-
o ) ) tuations in¢ and their effect on thee=1 propagator. For

reveals two qualitative regimes for the evolution&,t)  energetidi.e., e>kT) quasiparticles the energy dependence

depending on the sign of the F:oefﬂuentnfﬁ I.8., MONO-  of the Fermi functions appearing in the scattering rate is

tonic at early times, then crossing over to nonmonotonic beéxtremely weak, its variations being confined to a width

havior whenr 4(t)= \/gR(t). ~KkT about the Fermi surface. Therefore every configuration,

r2+(’)(r4)]
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in energy space, of the final-state quasiparticles subsequevitition {(f —3)2)¥2=1, indicating that, as far a is con-

to a collision event are equally probable, and the probabilitycerned, fluctuations from step to step in the diffusion process
of one of the final-state particles of energyo scatter with a  will tend to favor larger rather than smallés.

fractionf= €/ €; of the energye; of the incident quasiparticle  In terms of the behavior of the kernel derived in Sec. IV,

is determined entirely by the number of configurations availits qualitative features should be relatively insensitive to

able to the remaining twdlabeled f’,f"), subject to the these fluctuations, which can be seen in the following man-

constraint of energy conservation. This gives ner. Imagine that we cut off the distribution frat a point
1 r1 f.<1 somewhere close to 1, since the probability of a large
P(f)=2 f f df'df’s(1—f—f'—f")=2(1-f), number offs inside this region will be vanishingly small in
0 JO

the largeN limit. Now choose anf=f. such thatf.<f.

(A1) <1, and hence &' =1/f2>1. Becausg’>1 the effective
the factor of 2 arising from the possible interchange of thekernel will be of the form shown in Sec. IV. Thus we do not
quasiparticles. This is a triangular distribution weighted to-expect fluctuations id to change the behavior of the effec-
wardf=0. The mear{f)= 3 and the root-mean-squared de- tive kernel in a qualitative way.
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