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Anomalous diffusion near the Fermi surface

G. L. Warner and A. J. Leggett
Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

~Received 8 June 2003; published 11 November 2003!

We consider the three-dimensional dynamical evolution of localized hot spots in ultralow temperature Fermi
liquids. Within a model calculation, it is found that such perturbations do not relax into a hydrodynamic profile
at long times, as might be expected of thermal hot spots under less exotic conditions. Instead, the hot spot
expands outward into a shell moving away from its center at a velocity comparable to the Fermi velocityvF ,
which is consistent with the ‘‘baked Alaska’’ hypothesis proposed earlier by Leggett as a possible solution to
the riddle ofB-phase nucleation in3He.
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I. INTRODUCTION

In a Fermi liquid at temperatures sufficiently low com
pared to the energies of excited quasiparticles, the deca
these quasiparticles occurs principally through the scatte
of additional particle-hole pairs out of the ground state.1 To
leading order each collision produces only one extra pair
a rate proportional toek

2 , whereek is the energy of the inci-
dent quasiparticle relative to the Fermi energyEF . A cascade
of pair creation events is thus initiated whereby one exc
tion multiplies itself over time into a large number (3N) of
lower energy ones. Assuming that, on average, the energ
these excitations divides evenly down the cascade, the m
free path increases by a factor;9 at each level. On thes
intuitive grounds it was postulated2,3 that the evolution of
localized ‘‘hot spots,’’ associated with the action of ionizin
radiation on the supercooledA phase of3He, should exhibit
strongly nonhydrodynamic behavior. In particular, it was
gued that the distribution function in real space should
velop a shell structure moving at or somewhat belowvF
away from the center of the hot spot. Some investigator4,5

have questioned the plausibility of this ‘‘baked Alaska h
pothesis,’’ favoring instead a more convention
interpretation6 founded on local hydrodynamic concepts.

It is therefore of some interest whether hydrodynam
principles may be applied when the particle diffusion is go
erned by this kind of scattering. After all, in the variou
approaches to ordinary diffusion one usually makes the
sumption that the diffusing particles lose all memory of th
past trajectory after a finite number of collisions, resulting
the characteristically Gaussian distribution at long tim
Here this is not the case, since after each collision the ph
space available for all subsequent scattering has irrevers
contracted. There is thus a ‘‘piling up’’ and not an ‘‘avera
ing out’’ of this effect, and the distribution that emerges, ev
after a large number of collisions, must reflect this.

The above considerations apply when the quasiparticle
question are sufficiently dilute that collisions between th
may be neglected. Within the baked Alaska picture, this c
dition almost certainly fails during the early-time regime im
mediately subsequent to the energy deposition in the liq
The hot spot effective temperature is initially so high that
mean-free path of the interior quasiparticles is on the orde
the dimension of the hot spot itself.3,10 We are led therefore
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to divide the problem into two stages. The main body of t
paper will be concerned with the later dilute stage which
dominated by the cascade effect. The remainder will be
voted to a study of the early-time dynamics of the hot sp
focussing in particular on an estimation of the crossover ti
to a nonmonotonic distribution.

Our approach to the long-time cascade problem cons
of building up a single-particle Green’s function designed
mimic the essential scattering physics in a tractable w
This is then reduced to an effective kernel valid in the lo
wavelength, low frequency limit appropriate to a consid
ation of local hydrodynamics. The basic parameter of o
theory is the average multiplication factorz of the mean free
path at each level of the cascade. In addition we shall fi
another parametern emerging in the long time limit which
controls a scaling lawur2r 8u;(t2t8)n relating the root-
mean-squared displacement of the particle with time. O
principal results are the following: for thez.1 case of in-
terest,n51, and there is no transition to diffusive long-tim
behavior, this being inhibited by the phase-space mem
Further, the effective Green’s function possesses a s
structure moving away from the origin at a renormaliz
Fermi velocity ṽF . These properties are, of course, exac
those required by the baked Alaska hypothesis. Finally
will be seen that despite the creation of additional partic
hole pairs by the cascade, the quasiparticle density is alw
decreasing. This ensures the self-consistency of the assu
tion that pair creation indeed dominates the evolution of
hot spot at long times.

We model the early-time regime as much as poss
within the constraints of local hydrodynamics, in which th
effects of collisions are systematically overrepresented.
inadequacy of this description is demonstrated by the div
gence of a particular hydrodynamic parameter. This ena
us to find an upper limit on the crossover time to nonmon
tonic behavior which is somewhat less thanRc /vF , where
Rc is the critical radius2,3 above which aB-phase bubble
expands spontaneously in the presence of the bulkA phase.

II. MODEL AND FORMALISM

In the above description of the problem it is clear tha
large number of quasiparticles are produced by the casc
effect. It would only obscure the essential physics if we tri
©2003 The American Physical Society16-1
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from the beginning to keep track of all of them. Instead,
study the motion of a fictitious particle corresponding to
single line traced down through the cascade. The proble
thereby reduced to that of a single particle propagating
continuous field of scatterers according to an infinite
quence of scattering rates$Gk%. The phase-space memory
incorporated by the parametrizationGk5zkG[z2kG, where
G is the starting rate at the ‘‘top’’ of the cascade. Naturallyz
itself is subject to fluctuation, since the energy cannot re
be expected to distribute itself evenly down the cascade;
defer consideration of such fluctuations to the Appendix.

A mathematical description of this process may be writ
formally as a weighted sum over the various trajector
available to the particle

K~r2r 8,t2t8!5 (
N

KN~r2r 8,t2t8!

5 (
N

E ••• E )
k

N

d4r kWN

3dS r2r 82 (
k

N

r kD dS t2t82 (
k

N

tkD ,

~1!

whereWN5WN@$r k%,$tk%# is the ‘‘weight’’ associated with a
given configuration of collision coordinates$r k%,$tk%. Physi-
cally this represents the space-time probability density th
particle starting fromr 8 propagates tor in a time t2t8,
having undergone an indeterminate number of collisions
between. The~classical! trajectories intermediate to colli
sions are broken up into intervalstk5tk2tk21 which fluc-
tuate according to the scattering statistics. For convenie
we assume that the particle starts at the origin att50.

The structure of theN-point weight functionWN follows
from simple physical arguments. First, collisions random
the initial velocity at each step; for the sake of argument
assume isotropic scattering, affording us the greatest pos
randomization at each collision and thereby isolating
physical effects of phase-space memory from those du
any anisotropies in the true scattering cross section. An
ditional important virtue of this assumption is a decoupli
of the averages over ‘‘in’’ and ‘‘out’’ momenta at each coll
sion.

In general, the classical kernel describing propagat
from r k21 to r k in a timetk for a given initial velocity and a
fixed collision rateGk is a simple Green’s functionG(r k
2r k21 ,tk) of the form

G~r k2r k21 ,tk!5dS r k2r k212 E tk
dtk8v~tk8! D

3exp@2Gktk#

wherev(tk8) is given by the particle’s equations of motion.
the absence of external potentials,G is translationally invari-
ant, so thatr k2r k21→r k , and the quasiparticle trajectorie
reduce to straight-line paths. To obtain the appropriate pr
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ability density we average over all possible velocities subj
to the constraintuvku;vF coming from degenerate Fermi sta
tistics

K0~r k ,tk!5
1

4pr kvFtk
d~r k2vFtk!exp@2Gktk#. ~2!

It should be noted that this propagator corresponds to
lowest order in perturbation theory, and is therefore the g
eral solution at very early times. Thus the true propaga
exhibits shell-like behavior in this limit regardless of th
precise value ofz.

The weight function is a probability densityvis a visthe
measure)kd

4r k[)kd
3r kdtk , which, in addition to the sta-

tistical independence of individual scattering events impl
that WN is just a product of propagatorsK0 connectingN
collision coordinates, multiplied by the probability per un
time for a collision at each point, i.e.,

WN5K0~r0 ,t0!G0K0~r1 ,t1!•••GN21K0~rN ,tN!. ~3!

Upon transformation to (q,v), our formal solution~1!
factorizes term by term into products of basic kernels of
form K̃0(q,v)[(1/qvF) tan21 @qvF /(G2 iv)#, allowing us
to reorganize our expression for the true kernelK̃ as an ex-
pansion in powers ofzG:

K̃~q,v!5K̃0~q,v!1K̃0~q,v!zGK̃0~zq,zv!

1K̃0~q,v!zGK̃0~zq,zv!zGK̃0~z2q,z2v!1•••.

~4!

We have used a scaling property ofK̃0, namely,

z2k

qvF
tan21 S qvF

Gk2 iv D5K̃0~zkq,zkv!.

Inspection of the series~4! reveals thatK̃(q,v) inherits
similar scaling properties:

K̃G~zNq,zNv!5z2NK̃GN
~q,v!, ~5!

where the subscripts~usually suppressed! indicate scattering
rates at the top of the associated cascade. This equatio
flects a self-similarity property implicit to our model.

The series~4! may be written more compactly as
Dyson-like scattering equation

K̃~q,v!5
1

qvF
tan21 S qvF

G2 iv D @11zGK̃~zq,zv!# ~6!

from which the series itself follows by iteration.
A final mathematical consideration essential to the con

tency of this approach is the overall normalization of Eq.~1!.
This may be demonstrated by takingq→0 ~i.e., integrating
over all space! in Eq. ~6! and noting that, in order for the
series to be normalized,K̃(0,v) cannot depend on the pa
rameterz, which must therefore drop out of the equation f
6-2



on

t
ob
th
-
te
do
el
k

s
ion
r
a

te
rie

i-

. I
d
e
m
or

ts

d.
e
t s
o

.
iv
e

el

e
rm
lli
w

ie

de-

is

of a

n-

e
ical
of

me

g’s

a-

ar-
-

an

the

of
ati-
cat-
na-

ANOMALOUS DIFFUSION NEAR THE FERMI SURFACE PHYSICAL REVIEW B68, 174516 ~2003!
K̃(0,v). This can only occur ifK̃(0,zv)5z21K̃(0,v); sub-
stitution of this condition yields the self-consistent soluti
K̃(0,v)5 i /v.

III. ORDINARY DIFFUSION

In order to develop the physical principles necessary
the problem at hand, we consider first a more familiar pr
lem but from a new perspective. In particular we explore
behavior of the kernelK in thez51 case describing continu
ous diffusion at constant velocity and with constant scat
ing rate ~the discrete case corresponds to the usual ran
walk problem!. This has of course been studied extensiv
in various contexts by a number of investigators; we ma
specific reference only to the work of Palmeri7,8 who consid-
ered the baked Alaska problem in the simpler ‘‘Lorentz ga
system consisting of an aggregate of noninteracting ferm
propagating in a background of fixed, isotropic scattere
The simplification arises from the fixed character of the sc
terers, rendering all collisions elastic~hence thez51 condi-
tion within the present formalism!. He arrived at his solution
by methods rather different from ours, preferring direct in
gration of a Boltzmann equation to the sum-over-trajecto
approach developed here.

Setting z51, the Dyson-like equation reduces immed
ately to an algebraic equation inK̃ with the solution

K̃~q,v!5

1

qvF
tan21 S qvF

G2 iv D
12

G

qvF
tan21 S qvF

G2 iv D
which is in exact correspondence with Palmeri’s kernel
should be noted that Palmeri was apparently the first to
rive this analytic solution. An effective kernel valid in th
limit of long wavelengths and low frequencies follows fro
this exact solution; as shown by Palmeri this is nothing m
than the familiar Gaussian@4p/(2pDt)3/2#exp@2r2/6Dt#,
indicating the applicability of local hydrodynamic concep
on long length scales for scattering of this type. HereD
5 1

3 vF
2G21 is the diffusion constant as it is ordinarily define

The extraction of this effective kernel by Palmeri is rath
laborious and of course requires that one have an exac
lution to begin with. We now discuss an alternative meth
based on direct consideration of the series~4!, which is in
general much easier to implement, and perhaps of some
terest even beyond the context of the present discussion

From a physical standpoint, the derivation of the effect
kernel ought not to require the summation of each and ev
term in perturbation theory. The basic idea of our method
to delay summation of perturbation theory until one is w
into the asymptotic regimeGt@1, at which point the struc-
ture of the series simplifies enormously. In fact, at long tim
only a very few terms in the series should be relevant: te
that deviate significantly from the expected number of co
sions at a given time will be exponentially small. To sho
this, let us consider first only theNth term KN(r ,t) (N
@1) of the series for long wavelengths and low frequenc
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In this limit KN factorizes into separate space and time
pendent partsKN→VN(t)QN(r ) with

VN~ t !5GN21 E dv
e2 ivt

~G2 iv!N

and

QN~r !5 E d3qe2 iq•rS 12
1

3
vF

2G22q2D N

→ E d3qe2 iq•r2~N/3!G22(qvF)2
.

It should be noted thatVN(t)5 * dve2 ivtlimq→0K̃N(q,v),
so that the integrand is actually valid for allv and the limits
of integration may be taken to be (2`,`). The same does
not hold true for the integrand in the second factor, which
strictly valid only forqvF ,v!G. However the swift conver-
gence of the Gaussian integral renders the introduction
cutoff superfluous.

The first factor may be evaluated by the method of co
tours in the standard way by enclosing theNth order pole at
v52 iG; this gives usVN(t)5@(Gt)N21/(N21)!#e2Gt,
which will be recognized as the Poisson distribution. W
note that this could have been anticipated on purely phys
grounds by considering first the distribution in the number
collisions with respect to time.

This makes evident an important feature of the long-ti
limit which essentially fixes a relation betweenN and t and
gives us a means of performing the required sum overN. For
N large enough, the Poisson formula reduces via Stirlin
approximation to VN(t);exp@(N21)(11 ln Gt)2(N
21) ln (N21)2Gt#. The argument is stationary under vari
tions in the number of collisions forN5Gt, which is the
mean of the Poisson distribution. FluctuationsdN5N2Gt
!N are therefore distributed according to exp@2(dN)2/Gt#;
hence in the sum overN only relatively few terms make a
contribution. The fractional width falls off as (Gt)21/2, and
K(r ,t) may be treated as a weighted sum over the very n
row distributionVN . We may therefore, to a very good ap
proximation, replace this sum by thatQN(r ) corresponding
to its mean value. This yields for the effective kernel
expression of the form

K~r ,t !; E d3qe2 iq•r2~1/3!vF
2G21tq2

5
4p

~2pDt !3/2
expF2

r 2

6DtG ~7!

which is of course the same result as that obtained from
exact solution.

IV. ANOMALOUS DIFFUSION

We proceed conceptually along lines parallel to those
the preceding section. We will deviate in certain mathem
cal particulars, however, in order to accommodate the s
tering statistics peculiar to this case. For example, the a
6-3
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logue of VN(t) is here somewhat complicated and le
obviously useful for finding that term in the series which
most probable at long times. Instead we locate theN closest
to the point where the ratioR5VN11(t)/VN(t) crosses
unity for a given intervalt.

Keeping only the slowest decaying terms,R becomes

R;exp@2~z2N212z2N!Gt2N ln z#. ~8!

Setting this equal to 1 is the same as finding the station
point of an argument of the form2z2NGt2 1

2 N2 ln z, which
is precisely what we should have expected on the grou
that, roughly speaking, the most probableN results from a
competition between factors such as)k

Nz2k;z2(1/2)N2
and

the ever-slower decay of the diffusing particle. This yields,
leading order inN, the scaling relationN;( ln Gt/ ln z). This
is very close to the mean value given byGt;(1
2zN11)/(12z), the difference arising from the skewness
the distribution of small fluctuationsPN(dN), which goes as

PN~dN!;H z2udNu for dN.0,

exp@2z udNu# for dN,0.

Hence the fractional width of the distribution at lon
times is quite narrow, and we may restrict our attention to
single termK̃N ; however, becausez.1 the structure of such
a term is somewhat different from what we encountered
Sec. III in that a large number of length and time sca
appear in the various factors. Most of these may be sa
expanded for small (q,v) without affecting the long-
wavelength, long-time properties of the resulting integr
but the factor representing variations on the largest s
scales will be kept intact. This is to ensure that we do
‘wash away’ details on the these scales by looking
coarsely at the distribution. This gives the expression

KN~r ,t !;
G

~2p!4 E0

` E
2`

` E
21

1

d3qdv
du

2

3
ie2 iq•r2 iv(t2G21b1)21/3(qvF)2G22b2

v1qvFu1 i z2NG
, ~9!

where the parametersbk5G21(12zkN)/(12zk) have been
introduced for compactness, and the last arctangent fa
has been rewritten as an integral over the parameteru. Be-
cause we have kept the last factor there is no need to im
cutoffs, and the integrations are therefore relatively benig

K~r ,t !;
he2GN(t2b1)

rvF~ t2b1!b2
1/2 S expF2

@r 2vF~ t2b1!#2

4
3 vF

2G21b2
G

2expF2
@r 1vF~ t2b1!#2

4
3 vF

2G21b2
G D . ~10!

Hereh is a dimensionless numerical constant fixed by n
malization. The decay factor may be ignored, being in f
irrelevant since the sharpness of the distribution inN leads us
to identify N with its mean value as given by the relationt
17451
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;G21(12zN11)/(12z). This further implies that the param
etersb1→(12z21)t and b2→(G/z2)(z21)/(z11)t2 for
N,t large. These substitutions produce finally the effect
kernelK(r ,t):

h

r ~ ṽFt !2 S expF 2
~r 2 ṽFt !2

4

3

1

z221
~ ṽFt !2G

2expF 2
~r 1 ṽFt !2

4

3

1

z221
~ ṽFt !2G D . ~11!

Here ṽF5(12z21)vF is a renormalized Fermi velocity.
We note at this point that the propagator~11! is indepen-

dent of G, the starting rate for our quasiparticle. At lon
times, therefore, the initial distribution of quasiparticle en
gies becomes irrelevant to the spatial profile. To estimate
effects of the growing number of particles in the shell, w
multiply this kernel by 3N(t), whereN(t) is the mean numbe
of collisions that have occurred up until timet. BecauseN
scales only logarithmically with time, however, 3N;t11a

wherea,1, so the density is everywhere strictly decreas
as a function of time. Thus we do not return to the dens
dominated regime following the crossover to cascade sca
ing.

V. DISCUSSION

By the nature of the scaling laws emerging in the lon
time limit we see that the most natural definition of the e
ponentn characterizing these laws is of the form

n5 lim
N→`

ln S ( k
N z2kD 1/2

ln ( k
N zk

~12!

which is a nonanalytic function ofz with the following val-
ues:

n5H 0 for 0,z,1,

1

2
for z51,

1 for z.1.

~13!

These values correspond to the three possible effective
nels emerging from Eq.~1! under coarse graining. We now
describe the properties of each in turn.

First, then50 propagator, which is not derived in thi
paper, is basically ad function situated atr ; the geometric
growth of the scattering rate in this case prevents the diff
ing particle from traveling very far from its starting poin
leading in the limit to a time-independent, highly localize
distribution. The kernel forn5 1

2 is the usual type of propa
gation one expects when collisions are uncorrelated.
though we know from Secs. II and III that at early times th
6-4
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ANOMALOUS DIFFUSION NEAR THE FERMI SURFACE PHYSICAL REVIEW B68, 174516 ~2003!
kernel exhibits a shell-like structure, this is apparently co
pletely washed out by collisions; no artifact of this ear
‘‘organized’’ behavior remains at long times.

The last, and most important, propagator, at least from
point of view of the present paper, is the one correspond
to n51. First, we note that the overall shape and scaling
this kernel are completely consistent with the baked Ala
idea. Second, this kernel possesses a rather striking pro
in that we are able, merely by varying parameters appea
in the kernel itself, to recover the kernel valid at very ea
times 0,t!G21. In particular, taking the parameterz→`
in Eq. ~11! reproduces this early time behavior, essentially
pushing the intervals between collisions to an arbitra
large value. The same can be achieved by treatingN as a
continuous parameter in Eq.~10! and taking the limitN
→0. This reversibility is not evident in either of the oth
two propagators, from which nothing of the correspond
early-time behavior may be inferred.

This effect is a consequence of the fact that the numbe
collisions rises only logarithmically with time, which is sim
ply too slow to drive a transition to the hydrodynamic

Gaussian profile. Further, in contrast to then50,1
2 cases

where thez parameter drops out completely, here it remai
like a fossil buried in the long-time distribution; even at lon
times the propagator retains a memory of the init
d-function pulse moving out from the origin~which is pre-
cisely the lowest order in perturbation theory!. Thus we can
see that the propagator is distinctly nonmonotonic atall
times.

VI. CONNECTION WITH THE REAL PROBLEM IN 3He

If particle-hole creation were in fact the only scatteri
mode relevant to the real problem ofB-phase nucleation in
3He, then the whole baked Alaska scenario would follo
quite naturally from the discussion in Sec. IV. However, f
some period of time immediately following the energy dep
sition process which produces the hot spot, its dynamics
be characterized instead by strong interquasiparticle sca
ing.

This stage is clearly unstable to the physics of Sec. IV
that ultimately the density of the hot spot must decrease
the point where collisions among the constituent quasipa
cles may be neglected at all later times. This is because
scattering mode in question conserves both the total num
and energy of the associated quasiparticles, and must sp
out as a function of time.

However, it is conceivable that the presence of this in
quasiparticle scattering can delay the crossover to nonm
tonic behavior for a timetcrosswhich is long on the scale o
Rc /vF . This would mean that, although baked Alask
might themselves correspond to real phenomena, they w
not be relevant to theB-phase nucleation problem referred
in Sec. I.

In what follows we work as much as possible within t
framework of local hydrodynamics, in order to demonstr
that even within this picture~1! diffusive propagation is sim-
ply an inadequate description,~2! if we violate this picture in
a particular physically reasonable way we immediately
17451
-
,

e
g
f
a
rty
g

y

g

of

,

l

r
-
ill
er-

n
to
i-
he
er
ad

r-
o-

ld

e

-

tain baked Alaska-type distributions, and~3! the time scale
for the appearance of these distributions is set, as it sho
be, byRc /vF .

A. Breakdown of the diffusion picture

If we are to take the concept of local hydrodynamics
riously, it ought to be possible to define an effective tempe
tureT(r ,t) and energy densityE(r ,t) which are governed by
reasonable differential equations. In the case of a highly
generate Fermi liquid these two quantities are not indep
dent: the energy densityE; ~number of excited quasiparti
cles!3~mean energy of excited quasiparticles!}T2. We
begin by defining9 the energy currentj e(r ,t)52kT¹T(r ,t)
where kT[kT21 is the thermal conductivity and the con
stant k5 1

3 CN(T)TvFl (T), with CN(T)(}T) the normal
state heat capacity per unit volume andl (T)(}T22) the
mean free path. We have explicitly neglected any convec
currents in the liquid; i.e., we have assumed the dynamic
purely diffusive. Because of the relationship betweenE andT
we may rewrite the energy current entirely in terms ofE
itself, so thatj e(r ,t)5(k/2)E(r ,t)21¹E(r ,t).

In the next step we impose the constraint of local ene
conservation, or

] tE~r ,t !1¹• j e~r ,t !50.

This gives us the equation

] tE~r ,t !5
k

2
¹2 ln E~r ,t !. ~14!

The highly singular nature of this equation makes it ve
difficult to characterize its solutions; in order to give th
local hydrodynamics picture the benefit of the doubt
‘‘soften’’ the singularity by removing the explicit position
dependence of the diffusion coefficient, replacing it inste
with a self-consistent value corresponding to the maxim
energy density at that time. In this way we systematica
overestimatethe influence of collisions on the energy dens
by assuming a diffusion coefficient which is spatially un
form at all times. We rewrite the above diffusion equation
the somewhat more conventional form

@] t2D~ t !¹2#E~r ,t !50, ~15!

where D(t)[k/2E@r max(t),t#. In three dimensions we ca
write down the spherically symmetric solutions formally
E(r ,t)5E/@p1/2R(t)#3exp$2@r/R(t)#2% for a Gaussian source
at r 50 of dimensionR0 and total energyE. Here R(t)2

[ * t dt8D(t8), and the form of the solution indicates th
the radius of maximum densityr max50 at all times. This
implies the self-consistency relation

] tR
2~ t !5

p3/2k

2E
R~ t !3, ~16!

which in turn yields a width function R(t)5R0@1
2(p3/2kR0/4E)t#21. This diverges after a timetdiv
54p23/2(E/kR0), which we can rewrite in somewhat mor
familiar terms by noting that, according to the hydrodynam
6-5
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definitions we have adopted12 CN(T0)T0R0
3;E, whereT0 is

the effective temperature of the initial hot spot. Taki
l (T0)[ l 0, this gives an estimatetdiv;(R0 / l 0)R0 /vF .

B. Estimation of tcross

We can interpret the breakdown of local hydrodynam
in this instance by looking again at the results of Sec.
There the effective propagator~11! consists of a hybrid of
quasi-diffusive behavior in the relative coordinater 2 ṽFt
and a rapid ‘‘drift’’ of the peak of the distribution away from
the origin at a velocityṽF . Physically, the diverging mean
free path, combined with expansion from a localized sou
leads to strong radial correlations in the quasiparticle velo
ties, which manifests in the propagator as a drift effect. T
is absent in the usual local hydrodynamics picture, in wh
the average velocity for a diffusing particle is zero for a
sufficiently coarse-grained subvolume in the system.

It is likely that in the present case the divergence ofR(t),
which expresses a clear tendency for the distribution
spread very rapidly away from the origin, results from o
neglect of a corresponding drift effect in Eq.~15!. We have,
after all, the same basic ingredients: a diverging mean-
path combined with radial expansion. Under this interpre
tion, the neglect of such a drift term so constrains the p
sible solutions~by forcing them into a monotonic ‘‘strait
jacket’’!, that the rapid spreading tendency can manif
itself only in the unphysical divergence of a parameter in
solution, in this caseR(t).

Consider now the fuller version of Eq.~15! with a drift
term added:

@] t1vd~ t !•¹2D~ t !¹2#E~r ,t !50. ~17!

Although we have not provided any physical constraints
the detailed time dependence ofvd(t), we may nevertheles
write down formally the spherically symmetric solutions
the above equation. These are

hE

rr d~ t !R~ t ! S expF2
@r 2r d~ t !#2

R~ t !2 G2expF2
@r 1r d~ t !#2

R~ t !2 G D ,

~18!

where r d(t)5 * t dt8vd(t8), and h is a dimensionless nu
merical constant. This bears a striking resemblance to
effective kernel~11!, though in this case the form of th
solution is supposed to be valid for all timest>0. Expand-
ing this solution for smallr

E~r ,t !5
4hE

R~ t !3
expF2S r d~ t !

R~ t ! D
2G

3H 11S 2

3
•

r d~ t !2

R~ t !4
2

1

R~ t !2D r 21O~r 4!J
reveals two qualitative regimes for the evolution ofE(r ,t)
depending on the sign of the coefficient ofr 2; i.e., mono-
tonic at early times, then crossing over to nonmonotonic

havior whenr d(t)>A3
2 R(t).
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The self-consistency relation during this monotonic pha
is very simple:] tR

2(t)5(p3/2k/2E)R(t)3exp$@rd(t)/R(t)#2%.
This is quite similar to the corresponding relation with dr
neglected, except for the exponential factor which varies
tween 1 ande3/2. ThusR(t) will diverge also in this case a
a timetdiv8 ,tdiv . The divergence is avoided, however, if th
crossover to the nonmonotonic solution occurs sometime
fore this. Based on the analogy to the situation discusse
Sec. IV, there are strong physical reasons for supposing
to be true. In this sense the precise time dependence ofvd(t)
is irrelevant so long as it compensates the unphysical di
gence that occurs when it is strictly zero. This means
particular thattcross,tdiv8 , or tcross,tdiv . We therefore take
tdiv as an absolute upper limit on the crossover time to
shell-like energy density, for anyphysicaldefinition of the
drift velocity vd(t).

Based on the estimates ofR0 / l 0 appearing in Ref. 10,
together with the fact thatRc;10R0 or greater, we see tha
tcross;Rc /vF at most. Of course, this estimate is based
calculations which strongly overemphasize the influence
collisions at each step, and place no restrictions on the m
nitude ofvd(t) ~which, strictly speaking, should be<vF), so
that we may reasonably expecttcross to be somewhat less
than this, probably significantly less.

VII. CONCLUSIONS

We have argued that the baked Alaska scenario, as
described in Ref. 2 and discussed in somewhat greater d
in Ref. 3, is not only qualitatively plausible but even qua
titatively accurate as a model of energy transport followi
intense local heating in a normal Fermi liquid. First, a h
drodynamic description of the usual sort breaks down wh
considering either interquasiparticle scattering or partic
hole creation processes within their respective regions of
plicability. In the latter case it is even possible to find, with
a simple model calculation, the effective propagator
single quasiparticles which shows explicitly a nonmonoto
shell structure moving out from the origin at a veloci
;vF . The time scale for the onset of baked Alaska behav
which is set by the interquasiparticle scattering that do
nates at early times, is found to be of the right order for
range of values ofR0 / l 0 appropriate to liquid3He at these
~effective! temperatures.
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APPENDIX

In this Appendix we discuss briefly the nature of the flu
tuations inz and their effect on then51 propagator. For
energetic~i.e., e@kT) quasiparticles the energy dependen
of the Fermi functions appearing in the scattering rate
extremely weak, its variations being confined to a wid
;kT about the Fermi surface. Therefore every configurati
6-6
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in energy space, of the final-state quasiparticles subseq
to a collision event are equally probable, and the probab
of one of the final-state particles of energye to scatter with a
fraction f 5e/e i of the energye i of the incident quasiparticle
is determined entirely by the number of configurations av
able to the remaining two~labeled f 8, f 9), subject to the
constraint of energy conservation. This gives

P~ f !52 E
0

1 E
0

1

d f8d f9d~12 f 2 f 82 f 9!52~12 f !,

~A1!

the factor of 2 arising from the possible interchange of
quasiparticles. This is a triangular distribution weighted
ward f 50. The mean̂ f &5 1

3 and the root-mean-squared d
-

17451
ent
y

l-

e
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viation ^( f 2 1
3 )2&1/25 1

6 , indicating that, as far asz is con-
cerned, fluctuations from step to step in the diffusion proc
will tend to favor larger rather than smallerzs.

In terms of the behavior of the kernel derived in Sec.
its qualitative features should be relatively insensitive
these fluctuations, which can be seen in the following m
ner. Imagine that we cut off the distribution inf at a point
f c,1 somewhere close to 1, since the probability of a la
number off s inside this region will be vanishingly small i
the largeN limit. Now choose anf [ f . such thatf c, f .

,1, and hence az851/f .
2 .1. Becausez8.1 the effective

kernel will be of the form shown in Sec. IV. Thus we do n
expect fluctuations inz to change the behavior of the effec
tive kernel in a qualitative way.
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