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Crossed Andreev reflection at ferromagnetic domain walls
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We investigate several factors controlling the physics of hybrid structures involving ferromagnetic domain
walls (DW’s) and superconductingS metals. We discuss the role of noncollinear magnetizatiors/ W
junctions in a spimNambu Keldysh formalism. We discuss transport $DW/normal metal (N) and
S/DW/S junctions in the presence of inelastic scattering in the domain wall. In this case transport properties
are similar for theS/DW/S and S/IDW/N junctions and are controlled by sequential tunneling of spatially
separated Cooper pairs across the domain wall. In the absence of inelastic scattering we find that a Josephson
current circulates only if the size of the ferromagnetic region is smaller than the elastic mean free path meaning
that the Josephson effect associated with the crossed Andreev reflection cannot be observed under usual
experimental conditions. Nevertheless, a finite dc current can circulate acroSSDW¥ S junction due to
crossed Andreev reflection associated with sequential tunneling.
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[. INTRODUCTION could be strongly modified by the presence of Cooper-pair-
like states propagating along domain waldW’s).>! These
A simple way of obtaining correlated pairs of electrons in Cooper-pair-like states correspond to pair states in which the
solid-state devices is to extract Cooper pairs from a BCSpin-up and spin-down electrons propagate in a neighboring
superconductor. Devices based on this principle have fospin-up and spin-down magnetic domain. This proximity ef-
cused on an important interest recently. For instance, erfect is not strictly speaking equivalent to the proximity effect
tangled pairs of electrons can be manipulated in double-dat normal metal Kl)/S interfaces. The reason is that the pair
experiments. Other devices involving a larger number of correlations induced in thdl side of aN/S interface have
quantum dots have been proposed recently as a quantuemtangled orbital and spin degrees of freedoBy. contrast
teleportation experimeftDevices involving several ferro- for half-metal ferromagnets the wave function associated
magnetic electrodes connected to a superconductor haweth the propagation of superconducting correlations along
been investigated recenfly? Noise correlations can also domain walls is given by the product state, a, 1)
provide useful information about quantum entanglement. ®|e,3,|), wherea and 3 represent two points in neighbor-
Many phenomena are involved in the proximity effect ating magnetic domains. Another difference betweehl/&
ferromagnet/superconductoF(S) interfaces. For instance, interface and a multiterminal hybrid structure is that the in-
it is well established that the pair amplitude induced in acoming electron and the Andreev reflected hole propagate in
ferromagnetic metal oscillates in space. An interesting condifferent electrodes in multiterminal structures. As a conse-
sequence is the possibility of fabricatii®jF/S = junctions  quence the Andreev reflected hole cannot follow the same
in which the Josephson relation Is=1.sin(e+m).8% In  trajectory as the incoming electron. This has important con-
F/S/F trilayers the superconducting transition temperature issequences regarding disorder averaging.
larger that in the antiferromagnetic alignment of the ferro- The purpose of our article is to investigate theoretically
magnetic electrodé%!’ because a finite exchange field is the mechanisms by which the Cooper-pair-like state
induced in the superconductor in the ferromagnetic alignie,«,7)®|e,8,]) can propagate along a ferromagnetic do-
ment. On the other hand there exist “nonlocal” supercon-main wall and to investigate several new situations that may
ducting correlations coupling the two ferromagnetic elec-be the object of experiments in the future. In Sec. Il we
trodes that favorAg>A,c (the zero-temperature super- discuss the perturbative transport formula o®/®W junc-
conducting order parameter is larger in the ferromagnetit¢ion in which the domain wall consists of many independent
alignmen}.*®*° It is also well known that the superconduct- channels in parallel having a rotating magnetization. To dis-
ing transition temperature &%/ S multilayers oscillates as the cuss this model we use the spifNambu Keldysh formal-
thickness of the ferromagnetic layers is increa®e® Sev-  ism described in Sec. Il. For the sake of obtaining analytical
eral recent works have investigated new phenomena takingesults we restrict the discussion to the transport formula
place in diffusive F/S heterostructure® 3! Other recent obtained within lowest-order perturbation theory.
works were devoted to understand the interplay between the If propagation in the ferromagnet is phase coherent, then
Andreev reflection and spin polarization at a singléS  the pair statge,«,])®|e,3,]) injected at one end of the
interface32~34 domain wall can propagate to the other end. On the other
In a recent article Girouet al. have proposed on the basis hand, if the phase coherence lengghis small compared to
of experiments that the proximity effect &/S interfaces the size of the ferromagnetic region, then inelastic scattering
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processes are strong and there are just a spin-up and a spihthe size of the ferromagnetic region is smaller than the
down electron propagating independently in the spin-up anélastic mean free path. This condition is not realized with
spin-down magnetic domains. There is no Josephson curreasual ferromagnets and we come to the conclusion that there
but there exists a crossed Andreev reflection taking placé no Josephson current under usual experimental conditions.
locally at eachF/S interface, so that the conductance is Final remarks are given in Sec. VI.
larger in the presence of the domain wall. To conclude the introductory section we note that the
In Sec. IV we discuss th&/DW/N and S/'DW/S junc-  theory of inhomogeneous ferromagnets with noncollinear
tions in a regime where transport properties are dominatethagnetizations in contact with a superconductor was already
by inelastic scattering in the domain wall. The domain wallelaborated in Refs. 35 and 36 in connection with the long-
is represented by two channels in parallel, with an oppositeange proximity effect associated with the triplet component
magnetization. This schematic model of the domain wall isof the superconducting condensate. In our article the empha-
expected to capture the essential physics and can be a usefi$ is put on other aspects of this problétie transport of
comparison for more realistic studies involving numericalspatially separated Cooper pair8oth effects may play a
simulations that we plan to carry out in the future. We showrelevant role in experiments. Finally a recent wirlap-
that within the lowest-order perturbation the transport proppeared in which the conductance ofSADW junction was
erties are governed by processes taking place locally at eadalculated independently of our work.
interface once the summation over the different conduction
channels has been carried out. The chemical potentials in the Il. PRELIMINARIES
domain wall are determined by evaluating the current circu-
lating through each interface and imposing current conserva-
tion. The direction of the magnetization is rotating in a ferro-
In Sec. V we consider the other situation where inelastianagnetic domain wall. To describe superconducting correla-
scattering within the domain wall can be neglected. In thigtions in the presence of noncollinear magnetizations we use a
situation a finite average Josephson current can circulate bepin® Nambug Keldysh ~ formalisnt®=° The advanced
tween the two superconductors of tBEDW/S junction only ~ Green'’s function is a A 4 matrix:

A. Spin®@ Nambu®Keldysh formalism

(el ey e, ()b (el (e (D)) e t).ci(H})
(e el by e ).el b (el (.l () e t).el (oh
el e )y (o (. (Y def () ) {e(t).ci (D))
(el el mhy o el b def el ey t).elimh

Ghi(tt)=—io(t—t") )

The Dyson equation relates the Green’s functions of the conconvolution over time variables becomes a simple product
nected system to the Green’s functions of the disconnectedfter a Fourier transform is carried out. The Dyson equation
system. In compact notation the Dyson equation takes thgyr the Keldysh Green’s functio®* ™ is given by®~>!

form G=g+§®3 G, where the symbaincludes a sum-

mation over the sites of the net\_/vork ano_l a convolution over é+,f:[T+GR®2]®Q+,7®[T+E®GA], 2)
time variables. Since we consider stationary transport the

where the self—energﬁ contains all the couplings present in
the tunnel Hamiltonian. The tunnel Hamiltonian correspond-

a Ferro- 6,

- ing to Fig. 1 takes the form

g 0 &— ¢ g

3

g WZE [ta,aC;,o-Ca,a'_'—ta,acl,a'cayﬂ'_l—tbyBCE,O'C.BvU

O (o

) b Ferro- 06, :

§* PO &—— +tp6Cs,6Ch,ol- ©)

The current through the link-« is given by

FIG. 1. The device involving crossed Andreev reflection and

elastic cotunneling with noncollinear magnetizations. Electrode & [f G-t étf]}dw (4)
ZL*a,a~ a,a a,a~a,a !

law=77
ending at site “a” is a ferromagnet with a magnetization pointing in &« 2h
the directiond, . Electrode ending at site “b” is a ferromagnet with
a magnetization pointing in the directidf . where the matrixr, is given by
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_ mTaO ao . 7 w
044 R w)= 77 2.R exp i| kg— i R

F
R
xXexp —| —
Ly

] , (10

and the Nambu representation of the hopping matrix ele-

ments is given byly ,=ta »07, taa=ta a0z, ths=tn 07,
tﬁ,b:tﬁ,ba-Z'

B. Green’s function of a ferromagnetic metal

where we have introduced a Fermi wave-vector mismatch as
well as a mismatch between the spin-up and spin-down
Fermi velocities. The parametey, is equal to the distance

between neighboring sites on the cubic lattice. For generality
we introduced a different mass for the spin-up and spin-

Now we give the expressions of the Green's functions ofjown electrons, meaning that the spin-up density of states is

a ferromagnetic metal. We first suppose that the spin quantyjfferent from the spin-down density of states. The local
zation axis is parallel to the direction of the magnetization.propagators are defined by

The Green’s function takes the form

9(R,w)
RGED) 0 0 0
0 92AR ) 0 0
N 0 0 934 R w) 0
0 0 0 944 R,0)

(6)

The four diagonal elements are given by

g11(Rw)= 7 2,REP T F+E

B

2
__Ma; ag .
93,3(R1w)_ ﬁZ 27mR ex% |

.

aokf myag 1+P
Ori=0R=i 5, 4z =imee| 5 @D
. aokll: mlag . 1-pP
055= 08515 7 ~impe| 12

We also introduced phenomenologically in E§5~(10) an
exponential decay of the correlations due to the presence of a
finite coherence length, in the ferromagnetl, is usually
smaller than the dimension of the ferromagnetic metal. In
this case ferromagnetism can be treated semiclassically as in
the theoretical description of the giant magneto-
resistancé!~* However, Aharonov-Bohm oscillations in a
ferromagnetic nanoring have been reported recéhtlhe
inner diameter of the Fe-Ni nanoring in Ref. 44 is 420 A and
the outer diameter is 500 A.

We will use in Sec. Il the expression of the local Green’s
functions of a ferromagnetic metal with the quantization axis
not parallel to the magnetization. We suppose that the direc-
tion of the exchange field is rotated by an angleround the
x axis. We do not incorporate a rotation of anglaround the
Z axis since this rotation just introduces simple phase factors.
The local Green’s function of the rotated ferromagnet takes
the form

1+ Pcosd —iPsiné 0
0 1-Pcosé 0 —iPsiné
90=17P| ip sing 1- P cosé 0 ’ (13
0 iPsing 0 1+ P cosé

wherep=(p;+p )/2 is the average density of states at the
Fermi level andP=(p;—p)/(p;+p,) is the spin polariza-

tion at the Fermi level.

We will also use in Sec. VB the expression of the full
propagatorg(R,w) of a rotated ferromagnet. The Green’s
function takes the form
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911 O Tz O ‘R mad F{ R ) KR A

= — W)= —5 —=exp — ———|Si —_—,
0 Too 0 004 14 (R,w) %% 27R é(w) ke )\/Az—w2
Gsx O T3 O | (24)
0 @4,2 0 @4,4
where the diagonal elements are given by where we supposed that<<A. The coherence length is

given by &(w)=fvg/JAZ— w?.

I(R,w)=

& =1 1 _
9117 2(911+ 939 2 COSO(911~ 39, (19 D. 4X4 Green'’s functions of a superconductor in a uniform
~ ic fiel
U22= 3(U227 044 + 2 COSO(G2 o~ Usa), (16) magnetic field
Tas=2(gsat gy 1)+ 3 cOSO(Gss— Ty 1) (17) A uniform magnetic fielchg can penetrate in a supercon-
’ ‘ ductor if the superconductor is in a thin-film geométrgind
Gas=5(9a4+00,) + 2 €0SO(Gas— s ), (18)  the magnetic field is parallel to the direction of the supercon-

ducting film. The effect of the magnetic field is a Zeeman
splitting of the spin-up and spin-down quasiparticle bands.
Let us suppose that the quantization axis is parallel to the
orientation of the magnetic field. The<#4 Green’s function

whereg 1, 922, 933, andg, 4 are given by Eqs(7)—(10).
The extradiagonal elements are given by

O15= _53,1:%5“'1 0(933— 91,1, (190  takes the form
G2,4= _§4,2:|§Sin 6(922—094.4)- 20  g*R(Rw)
9:(Rw) fi(Rw) 0 0
C. 4X4 Green's functions of a superconductor f (Rw) g, (Rwo) 0 0
The Green'’s function of a superconductor takes the form  — 0 0 g (Rw) —f (Rw)|’
*R(Rw) 0 0 —f (Rw) g-(Rw)
J(Rw) f(Rw) 0 0 (25
f(Rw) g (R w) 0 0
| o 0 oRw) -fRw | P with g.(Rw)=g(Rw+hg, g4H(Rw)=g (Rw+hy,
0 0 -f(Rw) ¢ (Rw) f(Rw)=f(Rw+hg), g-(Rw)=9(R,0—hg), g_(R,»)

=g'(R,o—hg), andf_(R,w)=f(R,w—hg).
The matrix elements of the Green’s function are given by

_ IIl. CROSSED ANDREEV REFLECTION AND ELASTIC
g(le)_ 2 eXF( - )
he 27R é(w) COTUNNELING WITH NONCOLLINEAR
MAGNETIZATIONS
—w
X | sin(kgR) \/%— cog kFR)] , (22 A. Transport formula

In this section we evaluate the transport formula corre-

9’ (R,w)= [{ ) sponding to the device on Fig. 1 in which the magneti_zation
2 R é(o of electrodea (b) makes an angl®, (6,) with the z axis.

Using the formalism described in Sec. Il we obtain the cur-

% { sin(keR —+co keR) b, (23 rent per conduction channel through electr@éo lowest
[ ke )\/ —w?® e )} @3 order int, , andty, 5:

e
la o= hfdewztapa(l P2)f2 (w)[Ne(w—eVy) —Ne(o+eV,)]+ = fdw4w2t§t§7)a7ob[1+Pancoqaa—0b)]

X{(9a,59p,a)) [NE(w—€V,) —Ne(w+eVy) —Ne(w—eVy) +Ne(w+eVy,) ]+ ; f do 4772t121t27)'a7)'b
X[1—=PaPpcog 05— 0) [{(Fo sf g, [NE(@—€Va) —Np(w+€Va) + Ne(w—eVp) —Ne(w+eVy)]. (26)

174515-4



CROSSED ANDREEV REFLECTION AT FERROMAGNETI. . . PHYSICAL REVIEW B 68, 174515 (2003

We have assumed that electrodesndb are made of a large dimension of the junction in thg direction and we used the
number of independent conduction channels in parallel saotationAy=y,—y,. To obtain Eq.(29) we have supposed
that we make an averaging over the microscopic phases ithat the width of the domain wall is much larger than the
the propagators. Now if we consider that the same voltage iBermi wavelength so that we can average over the micro-
applied on both electrodes the conductance is given by thecopic phase variables in the propagdtpy, [see Eq(24)].

local Andreev reflection and crossed Andreev reflection: The crossed Andreev reflection cannot take place between

5 the channels separated by a distance much smaller than the

e 4?2 PN € 5o o width D of the domain wall because such channels have an
G=32772Ft“pa(1_Pa)f'°°+ 32#2Ft“tﬁpapb almost parallel magnetization. The crossed Andreev reflec-
tion cannot take place either between channels separated by a
X[1—=P4Ppcog 05— 0p) I{(Fu sf 5.0))- (27 distance much larger than the superconducting coherence
length because of the exponential decay of the propagator
B. Conductance associated to a domain wall f.z. As a consequence the value 6P - GO s the

Iafgest if the width of the domain wall is small compared to

S/[I)‘\% g;’nrzgg EZ?V\S/SI:; ;hSU?:aljrigggdgtggénzd r;%zzer:g;g d%e BCS coherence length. This .is illustrated in Fig. 3 where

. ) . Sve have represented the variation of the conductance as a
main wall. We suppose that the ferromagnetic metal is mad?unction of £, for different values oD and for the domain
of a collection of independent channels. The magnetization i%vall profile goiven by
rotating inside the domain wall, meaning that the argjie a
function of z 0= 6(z). We want to evaluate the difference
GOW — GO petween the conductanc€&®" in the pres- 6(z)=arctaniz/D). (30
ence of the domain wall an@(?) in the absence of the do-
main wall. To obtain the conductance we sum the contribu-

. . . . C. Exch field in th ductor due to th imit
tions of the different channelsee Fig. 2 and we obtain xehange field i the stiperconductor duie to the proximity

effect

maé Now we come back to a system in which two ferromag-

2
y
G(Dw)_(3<0>:4F a—ot“ﬁsz( 72 ) F(£.D), (28  netic electrodes are connected to a superconductor. An ex-
change field can be generated in the superconductor because

with of the proximity effect. This was first observed in Ref. 16 in
) the case of insulating ferromagnets. An exchange field in a
F(e D):f d(Ay) f dz, (1 dz ag superconductor is a pair-breaking perturbation. As a conse-
0 a ag ) ap (Ay)’+(za—12zp)° quence in theF/S/F trilayer with insulating ferromagnets

the order parameter is larger in the antiferromagnetic align-

< Sir? 0(za) — 0(2y) ment of the ferromagnetic electrod®sThis was well veri-
2 fied in experiments with insulating ferromagn&t$’ The
, , same effect is present with metallic ferromaghet8but in
exdl — 2(AY)*+ (24— 2) 29 this case there exists also pair correlations induced in the
&o ' ferromagnetic electrod&s°that can modify the value of the

. self-consistent order parameter.
whereéy="7%uvg/A is the BCS coherence length at zero en- P

ergy andD is the width of the domain wall., is equal to the 500

400

300

FE,)

200

100

Ferromagnet

300

Superconductor

FIG. 3. Variation ofF(&,D) as a function of¢, for different
0 X values ofD. We used the domain wall profile given by E§O) in
a three-dimensional geometry. The distance between neighboring

FIG. 2. The device involving &DW junction between a su- channels isa,=1. We introduced a cutoff-L,/2<Ay<L,,
perconductor and a ferromagnetic domain wall. In the ferromagnet-L,/2<z,, z,<L,/2 in the expression df(£y,D) [see Eq(29)].

the local magnetization makes an anglg) with the z axis. Thex The solid lines correspond thy,=L,=500 and the dashed line
andz axes are in the plane of the figure. Thaxis is perpendicular  (almost superimposed with the solid lineorresponds td.,=L,

to the plane of the figure. =600.
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We suppose that the magnetizations in electredasdb
make an anglgd, and 6, and that an exchange fielt; is
induced in the superconductor. Without loss of generality we
suppose that the direction of the exchange field in the super-
conductor is parallel to the quantization axis. In terms of the
0., f., g_, andf_ introduced in Sec. 11D the transport
formula is found to be

Superconductor
Superconductor
Superconductor
Superconductor

(a) (b)

FIG. 4. The device considered in Sec. IV. (8 there is no
domain wall in the junction. Infb) a domain wall is pinned in the

e
|M=HJ dow 472 F2 (12 +12)(1— P2 cog 0,)

21,1 PZsi? ][N (0—eVo) ~ne(w+eVy)]  junction.
31
e > +2W2tit,%7’a7’b(mh—2{2) % ’ _ ZRa,B)
5 J do 2725 po{[((9a p9p.0)) . TR é(w)
(9 g9.0) 11+ PaPy cos6a cosf ] ok wA+2 2|[1- PPy COS 62— ) [[Ne(w—eV,)
+2((90,695.0)) PaPy Sin 0 sin G} [N (0 —eVa) —np(wt+eVy) +ne(w—eVy) —ne(w+eV,)], (36)

—Ne(w+eVy) —Ne(w—eVy) +neg(o+eVy)] (32)  wherekgRy= /2 is the ultraviolet cutoff used to define the
local propagator involved in the local Andreev reflection. We
e — - L see that the crossed Andreev reflection term given by term
_ 24242 + £+ A .
*h f dow 2t tspapuil (o, 6f p.a)) +{(Ta st 5.0))] (35) is not identical to the elastic cotunneling term given by
term (36). This shows that the symmetry between elastic
X[1—P,Pycosb, cosby] cotunneling and the crossed Andreev reflection is broken by
- b oe . . B the exchange field in the superconductor. This can be illus-
2((Ta 51 p.a))PaPp SN B2 SN B} [NE(0— €Vy) trated by considering that electrobés a normal metalP,,
—ne(w+eV,)+ne(w—eVy) —ne(w+eVy)]. (33 =0. The crossed conductance at zero voltage is finite if the

. exchange fieldhg in the superconductor takes a finite value:
The term(31) corresponds to the local Andreev reflection.

The term (32) corresponds to elastic cotunneling and the 9l 2\2 a, |2

term (33) corresponds to the crossed Andreev reflection. The Gap= Va =4w2titéﬁaﬁb(?) SR

term ({9, 39z.)) Corresponds to a process in which a No TRa.p
spin-up electron travels from electrodeo electrodeb and 2R, ;5\ (hs 2

comes back to electrode as a spin-up electron. The term ><exp( - & )(K) 37

((g;"ﬁgg’a» corresponds to a process in which a spin-up
electron travels from electrodeto electrodeb, undergoes a By comparison we haveé, ,=0 if hs=0 because of a can-
spin precession in electrode and comes back as a spin- cellation between the crossed Andreev reflection and elastic
down electron traveling from electrodeto electrodea. cotunneling conductances. We thus see that a crossed An-
Replacing the propagators involved in E¢31)—(33) by  dreev reflection experiment with a ferromagnetic and a
their expressions given in Sec. IIC leads to the transporhormal-metal electrode can give information about the exis-
formula to lowest order ithg and w: tence of an induced exchange field in the superconductor. We
see also from Eq931)—(33) that there is no precession of

o 2.4 mag\*[ ap |2 w’+hg 2 the electron spin around the direction of the exchange field in
la,« =87, 77 27R, 1+ —3z—|[1-Pal the superconductor. The absence of spin precession in the
superconducting case can be contrasted with the metallic
X[ne(w—eVa) —ne(o+eVy)] (34 case(see Appendix A
ma3\% a, |2 2R
+2772t2t273a73b(—2> exd — “ﬂ) IV. SEQUENTIAL TUNNELING OF COOPER PAIRS
«p 27R, g é(o) THROUGH A MAGNETIC DOMAIN WALL

2

2 h
S
P.Ppcog6,— 6;) + Az P.Py

1+ 12

S

Now we consider the junction on Fig. 4 in which a ferro-
magnetic wire is inserted between two superconductors. In
the absence of a domain wall in the ferromagnetic \Mee
Fig. 4(@] the junction is just &/F/S junction. In the pres-
ence of a domain wallsee Fig. 4b)] Cooper-pair-like states
arising from a crossed Andreev reflection can be transmitted
—Ne(w—eVy) +ne(w+eVy)] (39  through the junction. As a consequence the conductance is

Xy 1+

Xcog b+ 6p) ([Ne(w—eV,) —Np(wteVy)
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channel electrodes and we average the current over the mi-
a Sl croscopic phases. Once this averaging is done, only the “lo-

g 3 cal” terms survive in the transport formula given by
3 [P
< = ~
5 = I(aT,L:_4W2tip§fﬁ)c[l_Pezl][nF(w_/-La,T)_nF(w+/~La,1)]
= g (38)
5 ._.b b . Z 2,2 2
2 Bt 18 — 4t Epapu((9h g1+ Pal[ 1+ Py]
X[Ne(0—pa ) —Ne(0—pp 1) ] (39
FIG. 5. The device considered in Sec. IV C in which two single- 522 ~ 5
channel electrodes representing two magnetic domains are inserted ~ — 47Tt t5ppp((f5 s))[1+ Pa][1—Py]
in between a superconductor and a normal metal. The two elec-
trodes ending at sitesanda’ and sites andb’ are ferromagnetic. X[Ne(w=pa ) —Ne(0+ pp, )] (40)
In Secs. IVD and V we suppose that the electrode containing thehe term(38) corresponds to the local Andreev reflection at
sitesa’ and B’ is superconducting. the interfacea-«. The term(39) corresponds to elastic co-

tunneling through the superconductor and the tét0) cor-
larger in the presence of a magnetic domain wall. We conresponds to the crossed Andreev reflection.
sider two limiting cases: A similar calculation can be carried out at interface
(i) Transport is dominated by inelastic scattering in the(a’,«'). Once the average over the microscopic phase vari-
ferromagnetic domains. Because of inelastic scattering thgples is carried out we find
distribution functions in the ferromagnetic domains relax to
the Fermi distribution. This case is discussed in Secs. IV Blg,)’a,z —4w2ti,7)ap’[1+ PallNe(w—pa ) —Ne(w—p')]

IVC, and IVD. (42)
(i) Transport through the domain wall is phase coherent
and there is a Josephson current circulating between the two + 8w4ti,(7)a)2(p’)2[1+ P.1?
ferromagnetic electrodes. This case is discussed in Sec. V. ,
X[Ne(w—pa ) —Ne(w—pu')] (42
A. The diff t ti I 2.2——,, 2
o e dirteren .|me Sscales . +87T4ta,t rpapb<<pa',/g'>>[l+ Pa][1+ Pb]
Similarly to Ref. 48 we notice that three time scales are ,
involved in out-of-equilibrium transport through a ferromag- X[Ne(w—=pp,1) —Ne(@—p")], (43)
netic domain wall: where termg41) and(42) describe electron tunneling from

(i) The transport dwell timery, being the time taken by the electrode 4,a’) into the normal metal and terr43)

an electron to travel through one of the magnetic domains. gescribes elastic cotunneling from electrodel() to elec-
(i) The energy relaxation timeg. Because of inelastic {rode @@,a’).

scattering the distribution function in the out-of-equilibrium
conductor relaxes to the Fermi distribution. This relaxation
takes place on a time scatg .

(iii) The spin-flip timerg;, being the time above which In this section we discuss out-of-equilibrium transport in a
spin-flip scattering is relevant. S/DW/N junction on the basis of the two-channel model

We suppose in this section that<ry<rtg. The distri- shown on Fig. 5. We suppose that a voltage 0 is applied
bution function in the intermediate magnetic domains is thu®n the superconductor and a voltagé is applied on the
well approximated by a Fermi distribution. The chemical po-normal metal. The spin-up and spin-down chemical poten-
tential of spin-up electrons is different from the chemicaltials in the two magnetic domainsa’) and (,b") are
potential of spin-down electrof$->! determined in such a way that current is conserved. In gen-
eral, there are four unknown chemical potentiajs, (,
Ma s Mp,, and up ) that can be determined from four
equations for current conservation. There exist two cases in

In this section we discuss the perturbative transport forwhich the 4<4 system of equations can be reduced to a 2
mula of theS/DW/N junction on Fig. 5. The full transport X2 system of equations:
formula to ordert* is evaluated in Appendix B. The expres- (i) Half-metal ferromagnets where there is only one spin
sion ofIgL contains two kinds of terms: the teri®1)—(B3) population in each of the ferromagnetic electrodasa()
describe processes taking place locally at the interfaces bend (b,b’). This case is treated in the main body of the
tween the superconductor and the ferromagnetic electrodesticle.
without propagation in the ferromagnetic electrodes. The (ii) The symmetric case where the two electrodes()
terms (B4)—(B7) involve propagation in the ferromagnetic and (b,b’) have identical density of states and whee
electrodes. The two kinds of terms would contribute if elec-=t; andt, =tz . This case is treated in Appendix C.
trodes @,a’) and (b,b’) were single-channel electrodes. We Let us consider half-metal ferromagne®,=1 and P,
consider here that electrodes,&’) and (b,b’) are multi- =—1. The transport formula is found to be

C. Sequential tunneling through the S/DW/N junction

B. Perturbative transport formula

174515-7
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lot_ 167° , 5 5 5 ) | 2620765, ((F2 0 ((F2, )

S = 222,82, pa b, (P R(FR ) O ey alalib AN AN Y LA

V D B ﬁ a,l | ,8 V/_V T pa,pr,ltit%<<fi]B>>+t2’t2’<<firlﬁl>>
(4

a

><[1—2772ti,pa,1p’][1—ZWZIZ,pb,LP'], (44) 9

If we note g=1672t2t3((f2,) and g’
with 2,2 .2 /2 @B @ . .
=167, t5((f,/ 4)), the conductances associated with
Det22¢2 e 1— 222 , the crossed Andreev reflection at the contacts with each of
=tatite panp (o g1 =27, pasp’] the two superconductors, we see that the total conductance is
2 , 2 ' such that
+tit§t3rpb,ip <<fi,ﬂ>>[1_2772t,3fpb,lp ]
2.2, 2 , 2 , 1 1 1
ot (p) [ 1=27%t, pap 11— 27 pp, '] — =y, (49)
Got 9 9

45
49 which is the expected result since electron pairs travel in

We notepy,, a typical value of the density of states, either S€ries through the two superconductors.
in the superconductor or in the ferromagnetic and normal-
metal electrodes. We first suppose thZpy andtsz are V. JOSEPHSON EFFECT IN THE S/DW/S JOSEPHSON
small compared ta, andtg . The transport formula takes JUNCTION
the same form as in the case where the ferromagnetic elec- A. A two-channel model

trodes @,a’) and (,b’) are in equilibrium: ) . N . .
Now we consider th& DW/S junction in Fig. 5 in which

| ot - X the right electrode is superconducting. We suppose tpat
721677 tot50a,100, ((Fop))- (46)  ~7y<7s; OF TE<Tq<T74; SO that the two superconductors
can be coupled coherently through the two ferromagnetic
channels. We look for the condition under which a Josephson
current can circulate across the junction. We suppose in this
section that the two electrodesa,f&’) and (b,b’) are half-

In the other limiting case wher€py and t5py are large
compared td, andtg we find

| {2 12 metal ferromagnets with antiparallel spin orientations. The
o g2y B’pa';pb-l _ (47)  case of a partial spin polarization and noncollinear spin ori-
A o patTtspp entations will be discussed in Sec. VB.

) ) The Nambu representation of the hopping matrix ele-
We note g,=16m%t%,pap’ and g,=167%t",pp p', the  ments is given by
conductances associated with the interfaca$,«’) and

o M+ a—ile—x)/4
(b’,B"). The total conductance is given byGL§=1/g, . toe ! ¢7Y 0 (50)
+1/g,. The two interfaces are thus in series which is be- @a 0 —t elle P
cause transport is mediated by the crossed Andreev reflec- )
tion: a spin-up electron from the normal metal is transferred R 'tﬁe‘“‘P*X)"‘ 0
at sitea’, travels to sitea, and is reflected as a spin-down tgp= 0 _t gl(etx)a| (52)
hole at siteb. The spin-down hole travels to sité and is B
transferred in the normal metal at sjé. As a consequence 't e-ile—x) 0
of this transport process the two interfaces’,@’) and (T “« _ /4}1 (52)
(b’,B') are coupled in series. ol 0 —t,ele™y
i . - [tg e iletX/4 0
D. Sequential tunneling through the S/DW/S junction i _|B (53)
b’",B’ 0 _tBrei(‘PJrX)M ’

We consider the same model as in the preceding section
but now the electrode on the right is superconductisge  where ¢ is the difference between the superconducting
Fig. 5. We show that the properties of tDW/S junction  phases in the right and left electrode gpds the magnetic
are similar to the properties of th&DW/N junction. We  fjux through the loop. We have the relatiohs,= (1, .)*,
suppose that a voltagé is applied on the left electrode and ; 2 - 2 2 o '

pp gé pp tb,B:(t,B,b)*! ta’,a':(ta',a’)*! andt‘g/'br:(tbr”g/)*. The

A ) . :
a V(_)Itag(_aV |s_app_lled on the right _elec_trode. We consider .aequilibrium current flowing from sitev to sitea is given by
regime in which inelastic scattering in the ferromagnetic

electrodes is strong enough so that the transport dwell time is e L R

much larger than the energy relaxation tifsee Sec. IV A I“va:ﬁj do nF(w)Tr{&Z[tava(GQYa—G;a
Moreover, we suppose that inelastic scattering is strong

enough so that there is no Josephson effect. _Ea,a(éé a_éi DT (54)

We consider that the ferromagnetic electrodes() and
(b,b") are half-metal ferromagnet$,=1, P,=—1. The The Green’s functions are>2 matrices since we do not
total current is given by discuss noncollinear magnetizations for the moment.

174515-8
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We deduce from Eq(54) that to ordert* the spin-up R
current through electrodea(a’) is given by -
LI T L
(1) — . € i +wd f f § — lm | §
la,a__ZIHtatﬁta’tﬁ’ Sing 0 w Q,B(a)) ar"Br(w) F(g) / é
S - ¢
A1l _A,22 R,11_R,22 z 9] — @
g /g ! g /g ! = =
> a,zi b‘,’b a,a; b‘,’b , (55) § || \ I §
Def{l—KA] Defl—KR] ZoI ¢ MRz
X

whereK”R is the 4x 4 matrix involved in the Dyson equa- 0

tion [ —KAR]GAR=gAR: _ _ _—
FIG. 6. Schematic representation of the Josephson junction con-

taining a domain wall with a rotating magnetization. Thand z

1—K211:1a —K%:}i —K;‘,la —Ki',la Gt axes are shown in the figure. Tlyeaxis is perpendicular to the
' ' a.a figure.
1,2 2,2 1.2 2,2 X g
—Kab 1-Kpp  —Kap —Ky'b G;%
11 2,1 1,1 2,1 11
“Kaw  ~Kow 17Kga —Kyly || Cam -2 SCtsing [ do 3 1,
’ = - w o @
_K:I:IZJ’ _Ktzﬁtzy _K;’rz,b’ 1—K§',2’b, Gab S her> kimn e Pof
11 22A 11 22R 11 44A 3.3
Jaa 054 0ah 922 gith | | 9ath, 93,
0 X — — + —
= g+, |- (56) Defl—KA] Defl—KR] Def | —KA]
a,a’
44R 33R 24A (13A  (24R (13R
0 gam,bkgan,b| 5 gam,bkgan,b| gam,bkgan,b|
J— + — ,
where we used the notatiok}i=ti%g, Jtilort, KEL Def 1 -KF] Def—K”] Defi—KF]
=155 5 ot a02. €tc. The role of disorder can be included (58)

in a straightforward fashion. Since the spin-up and spin-

down electrons of the Cooper pair propagate in differentNheregi;Lb is ith Nambu component of the propagator con-
1,1 A2,2 . . ;M . .
electrodes we should replagg’;;” andg, ') by their aver-  pecting the two ends of the ferromagnetic metal at sites

ages over disorder, which decay exponentially with distanc@ndb,,. The first two terms in the right-hand sideh.s) of

over a length scale equal to the elastic mean free ate  Eq. (58) correspond to a propagation without spin flip in the

conclude that a Josephson current cannot be observed undefromagnetic region, whereas the last term corresponds to a

usual experimental conditions since the size of the ferromagpropagation with spin flip. We deduce from E@8) the

netic region is usually much larger than the elastic mean freeame conclusions as in the two-channel model. Namely an

path. The opposite limit of small disorder is considered inaverage Josephson current can circulate only if the size of the

Appendix D. ferromagnetic region is smaller than the elastic mean free
path in the ferromagnetic metal, a condition that is not usu-

B. Multichannel effects ally realized in experiments.
1. Transport formula 2. Limit of small disorder

We consider in this section the multichanr®DW/S To obtain the supercurrent in the ballistic limit we replace
junction on Fig. 6 in which the ferromagnetic metal is mul- the propagators by their expressions and sum over all chan-
tiply connected to the superconductors. The local magnetizazels. The propagators of a ferromagnetic metal with a rotat-
tion makes an anglé(z) with the z axis. The situation with ing magnetization are not known in general. This is why we
a uniform 6 corresponds to the multichanneljunction. discuss here only the situation where the width of the domain

The supercurrent is given by wall is vanishingly small and the ferromagnets are half-metal

ferromagnets. In this case there is no spin precession in the
1 e ferromagnetic region but there exist trajectories parallel to
e - . . ; : . ,
|S=__J dwE {69 t, a (GQ N —Gf; W) the interface that we can take into account in our calculation.
2hJo n neneone nen The supercurrent is given by
- tan ,an(GA - Gsn ,an)]}v (57)

2
an,an

m 4
"ok e

e 2:2 o
|S:87TH Lytetgsing
where the Green’s functions are<4l matrices. The super-

current to ordet’t5 can be written as with
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junctions involving ferromagnetic domain wallsS/OW,
S/IDWI/N, and S/DW/S junctions. The role of noncollinear
magnetization was studied for ti8DW junctions. Using a
spin® Nambuw Keldysh formalism we have derived the form
of lowest-order transport formula valid for an arbitrary pro-
file of magnetization. We find that the conductance is a scal-
ing function of¢,/D, whereé, is the zero-energy BCS cor-
relation length andD is the width of the domain wall.
Because of the proximity effect an exchange field can be
induced in the superconductor. Neglecting the spatial varia-
tion of the exchange field, we have derived the transport
FIG. 7. Variation of logdG(ke)] as a function ofke . ke is formula and shown that there was no spin precession around
measured in units of 4. We restrict the integration in E¢60) to  the axis of the exchange field. We discussed the transport
—-L,J2<z,, <0, 0<z,, z<L,2, —L,/2<y,, Y|, Ym, Y« formula of the S'DW/N junction. We have shown that to
<L,/2 and we us¢ =L,=L,. The open symbols correspond to all lowest order only the processes taking place locally at each
trajectories in Eq(60). The filled symbols correspond only to the interface played a role. These processes are elastic cotunnel-

Log[G(kg)]

trajectories perpendicular to the interface. ing through the superconductor, crossed Andreev reflection,
electron tunneling from the ferromagnet to the normal metal,
G(k ):iJO dz, [+=dy, JO EJ*"’% and elastic cotunneling through the normal metal. We de-

F LyJ-xay J-= a9 J-=ap J-= @9 scribed the transport of Cooper pairs acrossSHaW/N and

S/IDWI/S junctions in a regime where transport is dominated

y J’” dzy (+=dyn (*=dz [+ dyg (60) by inelastic scattering but spin is conserved. With these as-
o a J-= a9 Jo ag J-= ag sumptions the local distribution function within the domain
wall is a Fermi distribution with a different spin-up and spin-
ap g g ag down chemical potential. This model provides a detailed de-
szRa ’a ZWRﬁk'ﬁl 27R, by 27R, b scription of the sequential tunneling of Cooper pairs across
men " " the S'DW/N and S/DW/S junctions. We described the Jo-
><sir[k,:Ram,an]sir[kFRBkﬁl] sephson effect in & DWI/S junction. Diffusion is usually
strong in a ferromagnet and disorder is thus expected to play
XCOQKF(Ram,bk_Ran,m)]’ (61) a relevant role. In particular the Josephson current decays
: exponentially with the longitudinal dimension of the junc-
and with . - .
tion. The characteristic length is equal to the mean free path
Ry o =V(Zn—Zm)?+ (Ym—Yn)% (62)  inthe ferromagnetic metal. This means that a Josephson cur-
men rent cannot be observed in usual conditions. Nevertheless
_ ——7 —— there can exist a finite current due to a crossed Andreev
Rocs= V(2 2)"+ (= y)*% 63 leflection associated with elastic cotunneling in the ferro-
magnetic region.
Ram,bkz \/R2+(Zm_zk)2+(ym_yk)2 (64)

Ra, b= VR?+ (2= 2)%+ (Ya— Y1), (65) ACKNOWLEDGMENTS

whereR is the longitudinal dimension of the junctidisee
Fig. 6). We have shown on Fig. 7 the variation @{kg) as

a function ofkg. We see that strong finite size effects are
present but still we can make a comparison betwégera
calculation in which all trajectories are taken into account
and (ii) a calculation in which only the trajectories perpen-
dicular to the interface are taken into account. We see that for
small values ok (typically kg smaller than H,, wherea,

is the lattice parametethe summatior(i) is larger tharii), In this appendix we consider the junction on Fig. 8 in
whereas the opposite is true for larger valueskpf This which two ferromagnetic electrodes with noncollinear mag-
shows that trajectories parallel to the interface play a relevarftetizations are connected to a normal métaf.Our goal is

role in the determination of the supercurrent. to provide a comparison with the superconducting case pre-
sented in Sec. IllC. We suppose that a magnetic field

applied on the normal metal and that the only effect of the
magnetic field is to generate Zeeman splitting. The crossed

To conclude we have presented a detailed investigation afonductanceG, ,=dl ,/dV,, associated with elastic cotun-
several mechanisms involved in transport across severaleling takes the form

The authors acknowledge fruitful discussions with H.
Courtois, D. Feinberg, M. Giroud, and B. Pannetier.

APPENDIX A: SPIN PRECESSION IN THE METALLIC
CASE

VI. CONCLUSIONS
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1) = —4m2tdp2fe {1- PAlINp(w— pa ) —Ne(0+ pa )]
Ferro— 6, (EB1)

— 47?2t 5p pu9’ fl 1+ Pall 1+ Pyl Ne(0— ;)

Ferro— 0, —Ne(0— pp,1)] (B2

Normal metal

— 4?2 5p Pyl fl 14 Pall1— Ppllne(@—pa ;)

FIG. 8. The device considered in Appendix A. The electrode —Ne(w+up )] (B3)
ending at sitea is a ferromagnet with a magnetization pointing in
the directiond,. The electrode ending at siteis a ferromagnet
with a magnetization pointing in the directiai .

2
—4772tita,p;a,pé’a,f,%c[np(w— Ma,1)

o5 ) —Ne(w+pa )] (B4)
Gap=8m222%p.p (mao> %
b o bl 22
¢ PRl |\ 2mR, ~ 4Tttt pep) P oD p8ar
X1+ P4P,cosf, cosby+ PPy sin,sin 6, X[Ne(@— g ) —Ne(@—pp )] (B5)
1
_ - 2 T !
XCO%[kF,I ke, IRa gt €V vrr Up, Ruz,,B]' =4ttt oty Py 2Py Fasf e
(A1) X[Ne(0—par) —Ne(0+ pp )] (B6)
Spin precession can have two origir$} the term[kg ; R 1A ,
—kg, IR, g describes oscillations of the conductance due to —A4mtalgtarts MGy 0 9p 190,690 g NE(0 = 1),

a mismatch in the Fermi wave vectof§) the term[ 1/vg ; (B7)

—1llvg | IR, g describes oscillations in the conductance due . . :
to a mismatch in the Fermi velocities. whereu, ; andu, | are the spin-up and spin-down chemical

potentials in electrodea(a’), u,; anduy, | are the spin-up
and spin-down chemical potentials in electrodeb(), and

APPENDIX B: PERTURBATIVE TRANSPORT FORMULA ' is the chemical potential in the normal metal. After phase
OF THE TWO-CHANNEL /DW/N JUNCTION averaging we obtain three contributions to the transport for-
In this appendix we provide a derivation of the transportmula: local Andreev reflection given by ter(8), elastic
formula of theS/DW/N model represented in Fig. 5. cotunneling through the superconductor given by t¢89)

and crossed Andreev reflection given by te@0).
1. Transport at interface (a, @)

The current through each link of the network on Fig. 5 is
given by the transport formuld4). The spin-up current The same calculation can be carried out at interface
through the linka-a is found to be (a’,a"). The transport formula is found to be

2. Transport at interface (a’,a’)

2 2 ~~ _A R 2 ,2 ~ ~ 2 ’
1) o =47 8 Dabrlar 5O o[ 1+ Pl 1+ Pplne(w—pp ) =872 15, papops, 5[ 1+ Pal[1+Pplng(w—pu')
2 ~ ’ ’ 4 ~ ’ ’
=47t Pap [1+ Pal[np(0— o) —Ne(@—p')]1+87%,, (52)2(p )1+ Pl Ne(@— pa ) —Ne(0— )]
2 2 ’ R ' . 2 A
—872t22,p g RA Q] o/ 1p) o Ne(@— pa ) + 27228 (p1)2(9)5 ) e(0—p') = 2imtit2,p' 9(g); )2
XNe(w—p')— 472ttt Loom[g? .0l Ine(@— g 1)+ 2i wt st it !
F M Ty Bta’ ﬁ’ga,ﬁpa,a' ga’,ﬁ’gb,b' Flw lu’a,T Ty Bta’ ,B’ga,ﬁpb’b'
A R H 1§ TA H R R s~ A
X[9h pol +imp 9l Ine(@—pp ) +2i Tt tta e Qu ppar g (005 90 — 1 TP6(1+ PR)AL5 ]

XNe(0—p') =A% 15, Dapn RE (0 5)21[1+ Pl 1+ Pylne(w— pa,y). (B8)

a

After averaging over the phase variables we obtain the transport formula given by4Brg43) that contains only two
processes: tunneling from sigg to sitea’ and elastic cotunneling from sit& to sitea’.
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APPENDIX C: TRANSPORT FORMULA OF THE

SYMMETRIC TWO-CHANNEL S/DW/N AND S/DW/S
JUNCTIONS

In this appendix we consid&/DW/N andS/DW/S junc-

tions with two symmetric channels. With this model we con-
firm the results obtained in the main body of the article for
the asymmetric junction with half-metal ferromagnets. We

PHYSICAL REVIEW B58, 174515(2003

1. The S'DW/N junction

In the limiting caset<t’ we haveu,,=V'. The trans-
port formula is identical to the case where electrodes ()
and (,b’) are in equilibrium:

| tot

V,—327T2t4~2(1 P2) i+ 32m2t*52(1+ PA)((F2 5)).

(CD

suppose that the two channels have an identical density qﬁ the case of half-metal ferromagne®< 1) only the term

states;p,=
in the two channelst=t,=tgz, t'=t,,
two channels have an opposite spin polarizatidp= P and

Py, that the tunnel matrix elements are identical
=tg, and that the

corresponding to the crossed Andreev reflection is nonzero,
and Eq.(C1) is equivalent to Eq(46).
In the limiting casepyt’ <pnt<1 andt’<pyt? the cur-

Pp=—P. Then there exists a simple symmetry relation be-rent is the sum of a contribution due to the local Andreev
tween the chemical potentials in the two ferromagnetic elecreflection (AR) and a contribution due to the crossed An-

trodes,u, 1= mp, | aNd pg | = mp g -

dreev reflectionCAR): |o=lar+ 1 car, With

e 25’ (1 PR ((12,0) (6E.) .
V(- PZ)[roc<<gaB>>+<<fi/3>>2]+(1+P2)<<f B>>[floc+<<gi,,8>>],
ICAR:16772(t p' (2 MLA+PAH(F2 ) +((92 o) +2P%(FRe—((f2 )] ©3
% (1- PZ)[roc<<ga,B>>+<<f ,3>>2]+ (1+P?)((f ﬁ))[floc+<<ga,ﬁ>>]

In the case of half-metal ferromagnets E@32) and(C3) are
equivalent to Eq(47).

2. The S/'DW/S junction

In the case of th&/ DW/S junction the total current is the

D' = 4t%52{(1- P FR((0% o)) + (2 p)) 2]+ (1+P?)
X[l (F2 0+ ({2 0)(02 g T+ 4(t) %P1
— P[R9, g H(F2 52T+ (1+P?)
X2 s N2+ ((F5 s (G2 )T}

sum of the local Andreev reflection and crossed Andreev

reflection terms:

I AR 128772
V' -V

4(t) 4floc(l PZ){[t4<<gaﬁ>>
+ (G2 pNIL(A=P?)f R+ (14 P?)

XUE2 N THIE(ES )+ () H(E2, )]
X[(1+ PR +(1-P)((F2, ;DT (CH

I 12877
Vg = B ) (14 P )

+(t )4<<ga .3'>>][(1 Pz)floc+(1+P2)
X((F2 gD IEEL )+ () X(F2, o)
X[(1+P)I2A(1-PO((F2, ,NIL  (CH

with

+At () (1P R(0% ) + Focl(02r 4))

+2((F2 (T2, s NI+ (LHPALIRL((F2 5))
+E(F2 o)+ (2 % s )+ (T2, 5))

x((g2 N1} (C6)

If the contacts with the two superconductors are identical, we

havet=t', f, z;=f, g, andg, s=g, g from which we
deduce
R 4t (1 PY) ()
V' —V loc '
IC——4 w2tp?((F2 ) (1+P?), (C8
V-V

where we used the notatigi= p/2 for the spin-up or spin-
down density of state in the ferromagnetic electrodes. Equa-
tions (C7) and(C8) in the limit P=1 are in agreement with

Eq. (48) in the limit of a symmetric contact. In the symmetric
case the conductance is thus equal to the conductance asso-
ciated to a single superconductor divided by 2, in agreement
with Eqg. (49).
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APPENDIX D: JOSEPHSON EFFECT IN ATWO-
CHANNEL BALLISTIC S/DW/S JUNCTION

In this appendix we describe the Josephson effect with a

PHYSICAL REVIEW B 68, 174515(2003

=tz and in the tunnel limitmt?pype<1 the solution of Eq.
(D1) takes the form

ballistic propagation in the ferromagnetic electrodes. In the

limit of a long junctionR>a, the matrix| — KAR given by

Eq. (56) is block-diagonal because the Andreev bound states
do not couple the two superconductors. There exist twoj =

bound states associated with the interfacesaj and (8,b)
and two bound states associated with the interfaeésa()

and (B’,b’). The secular equation for the bound states ex-

isting at the interfacesa,a) and (3,b) takes the form

wo

\ Az_ (1)0

2A2 2

_wo

+(m? 22— =
( prN) a B AZ_wS

L+im?pepn(th+15)

0, (D)

where py and pg are the density of states in the supercon-
ductor and in the half-ferromagnetic electrodes, and where

we used the notatioz=sinMk:R]/(keR). In the caset=t,

wh= A1+ (mtPpypp) X1+ 2)2]. (D2)
The supercurrent is easily deduced from Exp):
167° e a a
4 2 2 2 0 0
————— = +
S (agkl)2(agke)? h AUPNPR(LTP) 2R, 5 27R, 4
} =20 % SikeR, zlsinkeR D3
ZWRa,a’ 27TRb,b’ SIr{ F a,,B]Slr[ F a’,ﬁ’] ( )
R /+R ’
Xexp{—(a'al—b'b)]f(Z,Z’)COSaSian,
¢
(D4
where« is defined by
T A
a:kF(Ra’a/_Rb'b/)"‘ U_T(Ra,a'+Rb,b')1 (DS)
F

and wheref(z,z') is a geometrical prefactor of order unity.
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