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We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting
annular ring(inner radiusa, outer radiush, and thicknessl<a) when either the penetration depth obays
<d/2 or, if \>d/2, the two-dimensional screening length obeys 2\?/d<a for the following cases(a)
magnetic flux®,(a) trapped in the hole in the absence of an applied magnetic {@ldero magnetic flux in
the hole when the ring is subjected to an applied magnetic ffigldand(c) focusing of magnetic flux into the
hole when a magnetic field , is applied but no net current flows around the ring. We use a similar method to
calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-
free superconducting diskkadius b) containing a dome of magnetic flux of radiaswhen flux entry is
impeded by a geometrical barrier.
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I. INTRODUCTION This effect was confirmed experimentally by Jansreaal®
who were able to account for the increased effective area by
Recently Babaei Brojengt al® reported exact analytical treating the slotted washers as parallel circuits of pickup in-
solutions for the magnetic-field and sheet-current-densityjuctances.
profiles for two current-carrying parallel coplanar thin-film  |n this paper we introduce an approach suitable for exten-
superconducting strips in a perpendicular magnetic field. Insion to calculations of the magnetic-field and sheet-current-
cluded were calculations fofa) the inductance per unit density distributions in superconducting thin-film strips,
length when the two strips carry equal and opposite currentsings, and narrow lines. We consider the idealized case for
(b) the zero-flux-quantum state when no net magnetic fluxvhich the penetration depth obeys\ <d/2 or, if A>d/2,
threads between the strips in a perpendicular applied fielehe two-dimensional screening length=2)2/d obeys A
Ha, and(c) the focusing of magnetic flux between the two <a, such that the key boundary condition is that the normal
strips in a fieldH, when each strip carries no net current. component of the magnetic induction is zero on the surface
These problems are of relevance to the design of superconf the superconductor. A complicating consequence is that
ducting thin-film devices, especially superconducting quanthe sheet-current distribution in the superconductor has
tum interference deviceSQUIDS. inverse-square-root singularities at the edges. We show here
Of interest is the focusing of magnetic flux into the centralthat for thin rings and disks, an approach taking into account
hole in washer-typeSQUIDs and, in particular, the question the inverse-square-root singularities from the beginning is a
of how much fluxd®y, goes into the hole when the SQUID is simple and efficient alternative to mutual-inductance ap-
in a perpendicular magnetic field,=B,/uo and no net proaches such as those used in Refs. 5-8.
current circulates around the hole. The flux-focusing problem The flux-focusing result of Ref. 3 was obtained by super-
was examined by Ketchest al2 who expressed, in terms position. First, the induced current flowing in the clockwise
of an effective pickup area of the hol&g¢i=®,,/B,, which  direction in an applied magnetic inducti@® was calculated
in general is larger than the actual area of the hAjg, but  assuming zero magnetic flux in the hole. This current was
less than the area occupied by the washgr, Accounting  approximated using the known result for a superconducting
only for azimuthal currents, they considered a washer of cirdisk with no central hole. Next, the induced current flowing
cular geometryan annular ringand derived a simple theo- in the counterclockwise direction in the absence of an ap-
retical expression for the effective areaA¢;s  plied field was calculated assuming a given amount of mag-
~ (87 An(A, /AL Y2, the theoretical approximations used netic flux ®,, in the hole. This current was approximated
being valid only forA,<A,,. Experiments on a series of using the known result for an infinite superconducting sheet
square washers with,, /A, up to 1¢ yielded results in ex- with a round hole in it. Finally, the relation betwedy and
cellent qualitative agreement with the prediction, but withd, was obtained by equating the magnitudes of the two cir-
Act=L1IAL (A, /AL) Y2 culating currents. In the present paper, we show how to cal-
Experiments by Dantskeet al* on SQUIDs made with culate all properties without making the small-hole approxi-
narrow superconducting lines separated by slots or Hides mations used in Ref. 3. We show how to solve the flux-
trapping flux quanta during cooldown in the earth’s magnetidocusing problem directly, as well as by superposition.
field) have revealed that the presence of slots or holes in- Another problem of interest is the calculation of the
creases the effective area over the value for a solid washemagnetic-field and current-density distributions for the case
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of a bulk-pinning-free type-IlI superconducting disk of radius Another quantity of interest is the magnetic flux up through a

b and thicknessl<b in which the entry of magnetic flux is circle of radiusp in the planez=0,%2°

impeded by a geometrical barriet? Analytic solutions for i

the field and current distributions and the magnetization in Mo , Ny

strips subject to a geometrical barrier have been studied for O (p)= poHamp®+ 7L Galp.p")Ky(p")dp",  (6)

the bulk-pinning-free case in Refs. 11 and 12 and for the case

of Bean-model bulk pinningJ; = cons} in Ref. 13. Nu- Where

merical results for the field and current distributions and the , , )

magnetization in disks subject to both a geometrical barrier Galp,p")=(p+p")[(2=kI)K(k) = 2E(k)] @)

and bulk pinning with &8-dependeng have been presented gnqk is given in Eq.(3).

in Refs. 14-18. In the following, we present an efficient |n the following sections we present solutions of the

method for calculating the field and current distributions andapove equations and determine the corresponding sheet-

the magnetization in bulk-pinning-free disks subject to acyrrent densityK ,(p) for four casesia) self-inductance.

geometrical barrier. . =®d,(a)/l when H,=0, (b) the zero-flux-quantum state
Our paper is organized as follows. In Sec. Il, we outline ®,(a)=0] in an applied fieldH,, (c) flux focusing in an

our approach and set down the basic equations. In Sec. Il pplied field [calculation of ®,(a) when I=0], and (d)

we apply this approach to calculate the inductance of aReometrical-barrier effects in a thin disk of radiusontain-
annular ring of arbitrary inner radius. In Sec. IV, we calculateing a Lorentz-force-free magnetic-flux dome of radasn

the current circulating _around_ a ring remaining ir_1 the zerog4ch case, we assume a spatial dependence of the reduced
flux-quantum state while subjected to a perpendicular magspeet-current density of the form

netic field. In Sec. V, we consider the flux-focusing problem

and calculate the magnetic flux contained in the center of a _ 4g(u)
ring in an applied magnetic field when there is no net current Ky(u)= P = (8)
around the ring. In Sec. VI, we calculate the magnetization muy(u“—a)(1-u)

loop for a bulk-pinning-free thin-film type-Il superconduct- whereu= p/b anda=a/b andg(u) is a polynomial contain-

ing disk subject to a geometrical barrier. We briefly discusqng| N terms
our results in Sec. VII. '
N ~\m-1
u—a
IIl. BASIC EQUATIONS g(u)=mE1 gm(ﬁ) . 9

We consider a thin-film superconducting annular ring in ithough in th h a choi .
the planez=0, centered on the axis, with inner and outer Although we are not certain that such a choice gives an exact

radii a andb and thicknessi<a. We assume that either solution in general, it reduces to known exact solutions in

<d/2 or A<a if \>d/2, as discussed in the Introduction. variou.s limits[a—0, bﬂw'.or (b—“a)<b], all of which
By the Biot-Savart law, the component of the magnetic have inverse-square-root singularities at the sample edges.

field in the planez=0 is!®2° To determine th& coefficientsN— 1 equations are obtained
by setting H,(p,))=0, where p,=a+n(b—a)/N and n
1 (b =1,2,... N—1. TheNth equation depends on the case un-
H,(p)=H,+ ﬁf G(p,p")Ky(p")dp’, (1)  der consideration; for cage) we use Eq(4) for givenl, for
a case(b) we use Eq.(6) and setd,(a)=0, for case(c) we
where H, s the applied fieldK ,(p) is the sheet-current 15> =04 and sef =0, andor cased) we use Eq(9) and
density in the counterclockwise direction, For numerical evaluation of the integrals in E¢B, (4)—
G(p,p ) =K(K)/(p+p ) —E(K)(p—p'), 2 (6), it is convenient ti) change variables using the substitution
(pop?) =Kk (p+p") = E((p=p") @ v=p'lb=a%+(1-2a%sir’¢ and to define the functions
k=2(pp" )Y (p+p), 3) T L
_ = -2
and K and E are complete elliptic integrals of the first and him(W)= szo G(u,v)< 1_5) vid¢, (10

second kind with moduluk. An important boundary condi-

tion we will use in this paper is that,(p)=0 for a<p 4 (a2l p—3\ ™
<b. The total current in the counterclockwise direction is im:—f (U ) v-2dé (11)
mlo \1-2a ’
b
IIL Ky(p)dp, (4) 4 (il p—7) ™t
o= f 2l de (12
and the magnetic moment along théirection is 0 \1-a
b 2 (w2 v_a m-1 5
m,=m J p?K 4(p)dp. (5 $r(U)=— f Galuv)|—=| v %o, (13
a 0 l1-a
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and

@nm=hm(Up), (14

where u,=p,/b=a+n(1-a)/N, and n=1,2,... N—1.
For a<p<b (a<u<1), Egs.(10) and (13) are principal-
value integrals, evaluated by splitting theintegral into two
parts, one from 0 t@ (u— €) and the other fron®(u+ €) to

/2, where
U2—32
d(u)=sin"l\/——
1-2a2

(19

and e is an infinitesimal. For the results presented here we

have used=10"".

IIl. INDUCTANCE OF AN ANNULAR RING

To calculate the inductance, we $¢{=0 in Eq. (1) and
defineK, ,=(l,/b)K,,, where the subscrigthenceforth la-

bels all quantities that are specific to calculations of the in-

ductance. To evaluate the coefficiegts, in

N U—2a m—1
g(w=2 g.m<—~) , (16)
m=1 1-a
we use theN equations
N
2 Ainm3im= Bin s (17)
m=1

n=12,... N, wheree|,,,= @, andB;,=0 for n<N, and
anm=1m and By=1 for n=N. These equations are ob-
tained from Eqs(1), (8)—(10), and(14) andH,(p,)=0 for
n<N, and from Eqs(4), (8), (9), and(11) for n=N.

Numerical results foH,,=bH,,/l,, K4, andg, vs u
=pl/b for a=b/2 (a=0.5) are shown in Fig. 1. In this cal-
culation, as well as in all others in Secs. IlI-VI, the magni-
tude of the reduced magnetic field fa p<b was less than
10" ° except forp very close toa or b, where the numerical
results for the principal-value integrals in EG.0) became
less accurate. Results fgy,, vsa are shown in Fig. 2. The
inductance is calculated from

L=®,,/1,=ueh®,(3), (18)

where

N
<~I>.z(u>=mE:1 Gm(U)Tim. (19

and is shown in Fig. 3 as a functionaf=a/b. Dashed lines
in Fig. 3 show expressions valid in the limits of small and
largea: Fora<l1, the inductance approachles=2uoa [or
®,(a)=23], as obtained by Ketchert al.® and for a
—1, the inductance approaches

L, = uoR[IN(8R/W) —(2—In4)], (20)

as obtained by Branfitfor a superconducting annulus of
mean radiusR and widthw<R. [Here R=(a+b)/2=b(1
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FIG. 1. Reduced magnetic fieIEhZ:bH,Z/I,, reduced sheet-
current densityK,,, and polynomialg, (multiplied by 3 vs u

= p/b obtained while calculating the inductance for a superconduct-
ing ring witha=a/b=0.5.

+1a)/2 andw=(b—a)=b(1—-2a).] Equation(20) can be ob-
tained fronf! L= u,R[In(8R/r)—2], the inductance of a su-
perconducting ring of radiuRk and wire radiusr <R, by
replacingr by w/4.?2 The empirical formula

Lo=pobl &~ 0.19%2~ 0,035+ (1+3)tanh ],
2y

wherea=al/b, fits our numerical results fdr within 0.06%,
and a plot of it is indistinguishable from the solid curve in
Fig. 3.

The magnetic moment associated with the circulating cur-
rent can be calculated from

0.5

04 r

03 r

02 r

glm

0.1 r

FIG. 2. Coefficientsy,,, in the polynomial of Eq.(16) vs a
=al/b obtained while calculating the inductance of a superconduct-
ing ring.
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FIG. 3. Reduced inductance of a superconducting ririg,b
vsa=al/b, calculated from Eqg18) and(19). Dashed curves show

approximations valid in the limiti—0 and— 1. FIG. 4. Reduced magnetic field,,=H,,/H,, reduced sheet-

current densitsz¢, and polynomialg, (multiplied by 3 vs u

N = p/b for the zero-flux-quantum state with=a/b=0.5.

mIZZIIWmeEZ1 fmglm- (22) ~ N
|z:mE:l imOzm. (25)

IV. ZERO-FLUX-QUANTUM STATE and is shown in Fig. 6 as a function@f a/b. Dashed lines

Consider an annular ring that has been cooled into thd Fig: 6 show expressions valid in the limits of small and
superconducting state in the absence of a magnetic field@9€ & For a<1, the induced current approachés
such that no magnetic flux is trapped anywhere in the ring= —4Hab/m (or I;=—4/), as obtained by Ketchest al.’
When a perpendicular magnetic fiett}, is applied, a circu- and for a—1, the induced current approachek,
lating current is induced, but the ring remains in the Meiss-= — TRBa /L.
ner state, and the magnetic flux up through the hole remains
zero (there are no flux quanta in the hpléThe induced V. FLUX FOCUSING

sheet-current density sz'ﬁ:.'_.' aKzy, where the_;ubscruﬂ We now solve for the current and field distribution when a
henceforth labels all quantities that are specific to calcula:

. “superconducting annular ring is placed in a perpendicular
tions for the zero-flux-quantum state. To evaluate the coeffi- P 9 gisp Perp

cientsgy, in 0.2 : . :
N U—El m—1
gz(u)= 2 me( —N) , (23) 00
m=1 1-a
we use theN equations 02
N g 04
2:1 aznndzm= Bzn > (24)
—0.6
n=12,... N, whereaz,n=a,m and Bz,= —1 for n<N,
and azym= ¢m(a) and Bzy=— ma? for n=N. These equa-
tions are obtained from Eqgl), (8)—(10), and (14) and -0.8
H,(p,) =0 forn<N, and from Eqgs(6), (8), (9), and(13) for
n=N. ~1.0 L N L
Numerical results foH,,=Hz,/H,,Kz4, andgz vs u 0.00 0.23 0.50 0.75 1.00
=pl/b for a=b/2 (a=0.5) are shown in Fig. 4. Results for afb
Ozm VS @ are shown in Fig. 5. The magnitudg,| of the FIG. 5. Coefficientsg,, in the polynomial of Eq.(23) vs a
induced current is obtained frolg=H_,bl,, where =a/b for the zero-flux-quantum state.
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FIG. 6. Magnitude of the reduced currentl,/bH,, vs a
=a/b for the zero-flux-quantum state calculated from E25).
Dashed curves show approximations valid in the liraits 0 and
a—1.

FIG. 7. Reduced magnetic fieﬁFZ:HFZ/Ha, reduced sheet-

current densityIN(,:(,,, and polynomialge (multiplied by 3 vs u
= p/b for flux focusing witha=a/b=0.5.

N
s . . . Acts <I>,:Z(a) 1 -
magnetic fieldH, subject to the condition that there is no net =——=1l+— > (@) Grm, (29
current circulating around the ring. We wish to determine An  poHama ma® m=1

how much magnetic flux is focused into the hole in the\,nich is shown in Fig. 9 as a function ofdl# b/a. Dashed

middle of the ring. The sheet-current density in this case igines in Fig. 9 show expressions valid in the limits of small

Kry=HaKpg, where the subscripf henceforth labels all and largéa: Fora<1, A.¢;/A,, approaches (&?)(b/a) (or
quantities that are specific to calculations of flux focusing. Tog/723)," as obtained by Ketcheet al,® and for a—1,

evaluate the coefficientgg, in Aqs¢/A, approaches R/a)? (or [(1+3)/2a]? ), whereR
=(a+b)/2 is the mean radius of the ring.

N ~\m—1 . .
u—a The flux-focusing problem also can be solved from a lin-
QF(U)=mE:1 9rm| T3 , (26)  ear superposition of the fields calculated in Secs. Ill and IV.

From Kg =K, ,+Kz, and the conditiodg=1,+1,=0 we
we use theN equations obtaingg(u) = —129,(u) +9z(u), 9em= —129im+9zm, and

the result

N
E aenmIrm= BEn 27 04
m=1
02 f
n=12,... N, whereag,n= a,m and Bg,=—1 for n<N,
and agpym=1y and Bey=0 for n=N. These equations are
obtained from Eqgs(1), (8)—(10), and (14) and H,(p,)=0 0.0
for n<N, and from Egs(4), (8), (9), (11), andl=0 for n
= N' —0.2 B
Numerical results foHg,=Hg,/H,,Kg,, andge vs u £
=plb for a=b/2 (a=0.5) are shown in Fig. 7. Results for 041
Jrm VS @ are shown in Fig. 8. The magnetic flux focused into
the hole is®¢,(a) = u,Hb?Pr,(a), where -0.6 |
. 08 | /
-~ _ _ 5 08 | I
¢Fz(a>=wa2+m§1 bm(3)Yem- (28) / o
%0 0z 04 o6 08 1.0
The effective area of the holgvhich corresponds to the ' ’ ' afb ’ ' ’

effective pickup area of a SQUID made of a circular
washey, defined viadg,(a)=uoHzActs, iS always larger FIG. 8. Coefficientsge, in the polynomial of Eq.(26) vs a
than the actual area of the hols,= 7a?. We find =al/b for flux focusing.
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3

10

b/a

FIG. 9. Reduced effective are® /A, vs 1a=Db/a for flux
focusing calculated from Eq29) or (30). Dashed curves show
approximations valid in the limita—0 anda—1.

Aeff= B 1,P,(2)
An

= 50

which gives numerically the same values as £9).

VI. GEOMETRICAL BARRIER

PHYSICAL REVIEW B68, 174514 (2003

vation is negligible. An equivalent criterion is that the mag-
netic flux begins to penetrate when the magnitude of the
sheet-current density at the edge reaches the vélye
=2H;.* To estimateH, or K4 at the edge of the film, we
note that the approximations that led to E¢&1) and (32)
break down and that the inverse-square-root divergences in
these equations are cut off whenis within & of the edge,
whered is the larger ofd/2 or A. Accordingly, we approxi-
mateH, at the edge of the film by replacingin the square-
root denominator of Eq.32) by b+ § and usingé<b, such
that H,(edge ~(H,/m)+2b/é. Similarly, we approximate
K, at the edge of the film by replacingin the square-root
denominator of Eq(31) by b— 6§ and usingé<b, such that
Ky(edgey —(2H,/m) y2b/ 5. Whichever criterion is used
[H,(edge =H; or|K ,(edge)=Ks=2H], we estimate that
the geometrical barrier is overcome when the applied field is
equal toHy=mH¢\/8/2b. (In this paper we have choseh
=6/b=0.01, such thaH,=0.22H,. See Fig. 13.
WhenH_>H, such thatH,(edge)>Hg, vortices nucle-
ate at the edge of the disk and move rapidly towards the
center of the disk under the influence of the Lorentz force per
unit length,f=Jy X ¢pg, wheredy=V XH,q,, ¢ is a vector
of magnitudeg,= h/2e along the vortex axis, and,, is the
thermodynamic magnetic field in equilibrium with the
magnetic-flux density inside the superconductor. As more
vortices enter, the return field outside the disk generated by
the vortices inside the disk gradually reduces the value of the
field at the edge tél, thereby halting further vortex nucle-
ation. If bulk pinning is negligible, the case considered in
this paper, the vortices adjust their positions such that the

We next present an efficient method for calculating themagnetic-flux density(averaged over the intervortex dis-
magnetic-field and current-density distributions and the magrancg in the plane of the disB,(p) has its maximum value

netization of a bulk-pinning-free type-Il superconducting gt the center, decreases monotonically to zerp-at, and
disk subject to a geometrical barrier, which impedes the enfemains zero fom<p<b. The corresponding sheet-current

try of vortices into the disk. We consider a digldiusb and
thicknessd<b) in the planez=0, centered on the axis,

densityKy ,=Jy4d is zero forp=<a, such that the Lorentz
force on any vortex vanishes and no further motion occurs.

initially in the Meissner state. We assume that the LO”dO”Screening supercurrents still flow, however, in the vortex-

penetration depth obeys<d/2 or, if A\>d/2, that the two-
dimensional screening length=2\?/d obeysA <b. When

a perpendicular magnetic field, is applied, a sheet-current
density!®

4H
Kyp)=——2—2 (31)
N

is induced. The resulting magnetic field in the plare0,
determined from Eq(1), is H,(p) =0 for p<b and®

)

S —sin‘l( -
\/(p/b)z—l p

2
HZ(P):Ha[ 1+ ;

for p>b.

free regiona<p<b.

To good approximation whend<b, the resulting
magnetic-field and supercurrent distributions are the same as
those generated by a thin superconducting annular ring (
<p<Db) in a perpendicular applied field,, when the solu-
tions are subject to the constraint that the sheet-current den-
sity K, is zero atp=a. The Biot-Savart laEq. (1) and its
extension to|z|>0] guarantees that the current density
=V XB/uy is zero everywhere except within the rirgy
<p<b; thusKg,=Jgud is zero forp<a. Becausel, and
Jg in thin films are dominated by the curvatureldf,, and
B/ uo, rather than by the gradien®H,., andV B/ uq, % it
can be shown that the difference betwégn, andKg is of
the order of @/b)H,, decreases foB>2B., asH,, ap-
proachesB/uq, and is negligible for the thin films consid-

A geometrical barrier prevents vortices from entering theered in this paperd/b=0.01). Nevertheless, our simplified

film until the magnetic field at the edgaccounting for de-
magnetizing effecisreaches the valukl,. We expect that
Hs=H., the lower critical field, if there is no Bean-
Livingston barrier, orH,~H_, the bulk thermodynamic

approach would be incapable of calculating details in the
structure that has been observed in the magnetic flux-density
distribution at the vortex-lattice melting transitiéhTo treat
such a problem would require a more refined approach such

critical field, if the edge is without defects and thermal acti-as that in Refs. 14 and 15, which calculates the lakal
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FIG. 10. Reduced magnetic fieITdGZ: Hg,/H,, reduced sheet-
current densityK,, and polynomialgs vs u=p/b for a pin-free
disk of radiusb with a geometrical barrier and a flux dome of
reduced radiusi=a/b=0.5.

FIG. 11. Coefficientgg, in the polynomial of Eq(33) vsa for
a pin-free disk of radiup with a geometrical barrier and a flux
dome of reduced radiig=a/b. We requiregg;=0.

— 2% (&
currents flowing at the vortex solid-liquid interface and dis- Da)= puoHab @ a), (35

tinguishes betweeHl,,, andB/ . where
The magnetic-field and supercurrent distributions for the

case of a thin pin-free disk subject to a geometrical barrier N

therefore can be calculated efficiently by using an approach =~ =5 ~

similar to that used in Secs. I1-V. Whén >r:ll Lore%ltz—forrcj:z-free Pg (a)=ma +m2:1 dm(@)9em, (36)

dome of magnetic flux occupies the regiprra, the sheet-

current density in the regiom<p<b is Kg,=H,Kg,, and the average magnetic-flux density in the diskBig

where the subscri henceforth labels all quantities that are =®g,(a)/7b? Figure 12 shows howB,,/B, and

specific to the geometrical-barrier problem. To evaluate thédg,(0)/H,, whereHg,(0) is the magnetic field at the cen-

coefficientsgg, in ter of the disk, depend upcm
N ~\m—1 1.0 i
u—a N /|
go(u)= > gGm( —~) , (33 /
m=1 l-a J/
we use theN equations
N //
=Ben. 34 =
mzzl arnmdem= Ben (34 g sz/
O ®//
T 0.5 S
n=1,2,... N, where aghm=anm and Bgp,=—1 for n 2 2
<N, and agnm=61m and Bgny=0 for n=N. These equa- o
tions are obtained from Eqgl), (8)—(10), and (14) and ;'s 7
H,(pn)=0 for n<N, and from Eqs(8), (9), andKg,(a) N
=0 forn=N. B B
Numerical results foHg,=Hg,/H,,Kg,, andgg vs u
=p/b for a=b/2 (a=0.5) are shown in Fig. 10. In these
calculations, we have made no distinction betweky), and 0.0 £ :
B/ g, which corresponds to assuming thgd uoH. How- 0.0 05 1.0
ever, in cases for whiclB differs significantly fromugH, ab
our plots ofHg,/H, (such as in Fig. 10would correspond FIG. 12. Reduced average flux densiy, /B, (solid) and re-
most closely to plots of the reduced flux densB¥,/B,.  duced flux density at the centef,(0)/H, (dashedl of a pin-free
Results fogg, vs a are shown in Fig. 11. The magnetic flux disk of radiusb with a geometrical barrier and a flux dome of

contained withinp<<a can be obtained from reduced radiug=a’/b.
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HMH HM H /H fo~1, Ha~Hov2/m\1-73, and Mgy /xoHs
0 ~L T T ~—(372%18)6H/H,, wheres=6/b<1.
:\ : X 1 For Hy<H,<H;,, along the field-decreasing magnetiza-
L k : ' ] tion curve at the critical exit condition, we assume that
-0.05 |- Py § the radiusa of the vortex-filled region has reached within
: \\ : o of the radiusb of the disk; i.e.a=1-4. Using Eq.(37)
I A ¥ ] with ggm~— 738, and f,~1, we obtain Mg, /xoHs
»-0.1 | . 1 ~—(3m?/8)6H,/H. See Fig. 13.
i : ] The field-increasing and field-decreasing magnetization
o [ : ] curves in Fig. 13 meet & ,=H,,, , the irreversibility field.
0.15 : The criteria we used for the critical entry and exit conditions
lead to the result thatl;,, ~Hs, where the magnetization is
: given by Mg,irr/xoHs~ — (372%/8)5. However, the above
02 L : ] expressions foH;,, , Mg, andMg,, are the least reliable
- 1 results of our paper, because all these quantities are very
'HO/HS: """" ] sensitive to the precise conditions for entry and exit at the
- edge of the disk, including such details as the shape of the
025 bt 9-12,14,15 : ;
0 02 04 0.6 08 ] 12 edge’ =" The magnetic moment responsible for the
H/H magnetizatiorM i, andMg;, is produced by currents that
s flow only within a very narrow band around the disk’s edge,
FIG. 13. Calculated hysteresis in the reduced magnetizatiowhere a theory more accurate than ours is needed.
Mg,/ xoHs Vs reduced applied fieldl , /H for a pin-free disk with The minor hysteresis loop, shown as the dashed curve in
a geometrical barrietsolid). The dashed curve shows a reversible Fig. 13, can be calculated as follows. We start at a point on
minor hysteresis “loop” occurring when the applied field is reduced the field-increasing magnetization curve where the flux dome
after the applied fieldH, has reachetf; along the field-increasing has radiusa;. The magnetic flux contained within the dome
magnetization curve. Abl, decreases, the flux dome expands, but®; (a;), the magnetizatiorMs,;, and the corresponding
the flux contained within the dome remains constant. applied fieldH, are obtained from Eq$35), (37), and(38),
wherea, f,,, andggy, are all evaluated @=a,=a,/b. As
We next calculate the average magnetization, i.e., thehe applied fielH, is reduced from its starting valu,, the
magnetic moment divided by the volume of the didke,  radiusa of the flux dome expands, but the magnetic flux
=mg,/mb?d, wheremg, is calculated from Eq(5). The  within the dome remains constant. For each valueaof
initial magnetization of the disk in the Meissner state (O >3,, we recalculatd ,,, genm, and®¢,(3). We then use Eq.

<H,=<Ho, see Fig. 13 calculated from Eq(31), is"’ Mg,  (35) to obtain the corresponding value of the applied field,
=—xoHa, Where xo=8b/3xd; i.e., the external magnetic

susceptibility® in this case isy=— xo. Whenever there is a Ho=H, 0 (3,)/Pe(3), (39)
dome of magnetic flux within the regign<a, the average . )
magnetization, obtained from EqgS), (8), (12), and (33), and Eq.(37) to obtain the corresponding value of the mag-

may be calculated from netization.

*H

/

M

3 VIl. DISCUSSION

N
Mg,=—= xoH f , 3
Gz~ g Xo amzzl mBGm 39 In this paper, we have presented an efficient method for

L ~ the calculation of magnetic-field and current-density profiles
wheref,, andge, depend lmpI|C|_tIy upora. . for thin-film rings in the Meissner state and for bulk-pinning-
_ ForHp<H,<Hj, along the field-increasing magnetiza- ¢ disks subject to a geometrical barrier. In each case, the
tion curve at the critical entry conditioisee Fig. 18 Hyand  gheet-current density was expressed in the form of(Ex.

a are related via where the quantitg(u) in the numerator is a polynomial of
N degreeN—1.
__ v For all the calculations presented in the figures, for which
Ha=~Hovl—a mE:1 dom- (38) we assumedN=5, we found that the magnitude gt was

less than 0.0012 in each casee Figs. 2, 5, 8, and 1and
This equation follows from the condition thés,(edge)  that its contribution tog(u) was less than 1.1%. Usiny
=2Hs, whereKg,(edge is obtained by evaluating Eq8) =6 yjelds values ofj; whose magnitudes are much smaller
atu=1 but replacingy/1—u? in the denominator by/26/b,  than those ofys, and the values of the calculated physical
as in the evaluation off,. Whena=0, we see by compar- quantities are altered only in the sixth decimal place.
ing Egs. (8) and (31) that gg(u)=—u®, such thatggpy, Moreover, we offer the conjecture that the problems we
= — Om4 (see also Fig. 11 f,=8/3m, andM¢, = —xoHo @t  solved numerically in Secs. llI-VI might be solved analyti-
H,=H,. In the limit asa—1, Kgg~—2yu—alyl—u, cally with functionsg, ,g7,9¢, andgg that are third-order
such that gg(u)~—m(u—2a), dgm~—m(1—2)mn2, polynomials inu; i.e., the sums in Eqg9), (16), (23), (26),
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and(33) might simply terminate witiN=4. As evidence in to extend the present approach to develop an efficient
support of this conjecture, we note that our calculations fomethod, complementary to that of Ref. 7, for numerically
a=a/b=0.1 and 0.5 wittN=4, 5, 6, and 7 yielded values calculating quasistatic magnetic-field and current-density
of L/ uob [Egs.(18) and(19)] that differed only in the fifth  distributions in rings and disks subject to both a geometrical
decimal place. Similarly, values of,/H b [Eg. (25],  barrier and bulk pinning. Such distributions recently have
Actt/An [Eq. (29)], and Mg, /xoHs [Egs. (37) and (38)]  been calculated analytically for infinitely long strips in Refs.
calculated fora=a/b=0.1 and 0.5 withN=4, 5, 6, and 7 13 and 29-32.
differed at most only in the fourth significant figure. It is
possible that the values we obtained fpy,g¢, andgy in
Secs. llI-VI were nonzero only because of small numerical
errors introduced because we performed the integrals in Egs. We thank J. Clarke and V. G. Kogan for stimulating dis-
(10—(13) numerically rather than analytically. cussions. This manuscript has been authored in part by lowa
Although in this paper we have considered only bulk-State University of Science and Technology under Contract
pinning-free thin-film rings and disks, it should be possibleNo. W-7405-ENG-82 with the U.S. Department of Energy.
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