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Magnetic-field and current-density distributions in thin-film superconducting rings and disks
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We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting
annular ring~inner radiusa, outer radiusb, and thicknessd!a) when either the penetration depth obeysl
,d/2 or, if l.d/2, the two-dimensional screening length obeysL52l2/d!a for the following cases:~a!
magnetic fluxFz(a) trapped in the hole in the absence of an applied magnetic field,~b! zero magnetic flux in
the hole when the ring is subjected to an applied magnetic fieldHa , and~c! focusing of magnetic flux into the
hole when a magnetic fieldHa is applied but no net current flows around the ring. We use a similar method to
calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-
free superconducting disk~radius b) containing a dome of magnetic flux of radiusa when flux entry is
impeded by a geometrical barrier.
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l
si
m
In

t
n
u
e
o
t

co
an

ra
n
is

em

ci
-

d
f

ith

ti
i
h

by
in-

en-
nt-
s,
for

al
ace
that
has
here
unt
is a
p-

er-
se

as
ting
ng
ap-
ag-
d
eet

cir-
cal-
xi-
x-

e
se
I. INTRODUCTION

Recently Babaei Brojenyet al.1 reported exact analytica
solutions for the magnetic-field and sheet-current-den
profiles for two current-carrying parallel coplanar thin-fil
superconducting strips in a perpendicular magnetic field.
cluded were calculations for~a! the inductance per uni
length when the two strips carry equal and opposite curre
~b! the zero-flux-quantum state when no net magnetic fl
threads between the strips in a perpendicular applied fi
Ha , and ~c! the focusing of magnetic flux between the tw
strips in a fieldHa when each strip carries no net curren
These problems are of relevance to the design of super
ducting thin-film devices, especially superconducting qu
tum interference devices~SQUIDs!.

Of interest is the focusing of magnetic flux into the cent
hole in washer-type2 SQUIDs and, in particular, the questio
of how much fluxFh goes into the hole when the SQUID
in a perpendicular magnetic fieldHa5Ba /m0 and no net
current circulates around the hole. The flux-focusing probl
was examined by Ketchenet al.3 who expressedFh in terms
of an effective pickup area of the hole,Ae f f5Fh /Ba , which
in general is larger than the actual area of the hole,Ah , but
less than the area occupied by the washer,Aw . Accounting
only for azimuthal currents, they considered a washer of
cular geometry~an annular ring! and derived a simple theo
retical expression for the effective area,Ae f f
'(8/p2)Ah(Aw /Ah)1/2, the theoretical approximations use
being valid only forAh!Aw . Experiments on a series o
square washers withAw /Ah up to 104 yielded results in ex-
cellent qualitative agreement with the prediction, but w
Ae f f'1.1Ah(Aw /Ah)1/2.

Experiments by Dantskeret al.4 on SQUIDs made with
narrow superconducting lines separated by slots or holes~for
trapping flux quanta during cooldown in the earth’s magne
field! have revealed that the presence of slots or holes
creases the effective area over the value for a solid was
0163-1829/2003/68~17!/174514~9!/$20.00 68 1745
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This effect was confirmed experimentally by Jansmanet al.5

who were able to account for the increased effective area
treating the slotted washers as parallel circuits of pickup
ductances.

In this paper we introduce an approach suitable for ext
sion to calculations of the magnetic-field and sheet-curre
density distributions in superconducting thin-film strip
rings, and narrow lines. We consider the idealized case
which the penetration depthl obeysl,d/2 or, if l.d/2,
the two-dimensional screening lengthL52l2/d obeys L
!a, such that the key boundary condition is that the norm
component of the magnetic induction is zero on the surf
of the superconductor. A complicating consequence is
the sheet-current distribution in the superconductor
inverse-square-root singularities at the edges. We show
that for thin rings and disks, an approach taking into acco
the inverse-square-root singularities from the beginning
simple and efficient alternative to mutual-inductance a
proaches such as those used in Refs. 5–8.

The flux-focusing result of Ref. 3 was obtained by sup
position. First, the induced current flowing in the clockwi
direction in an applied magnetic inductionBa was calculated
assuming zero magnetic flux in the hole. This current w
approximated using the known result for a superconduc
disk with no central hole. Next, the induced current flowi
in the counterclockwise direction in the absence of an
plied field was calculated assuming a given amount of m
netic flux Fh in the hole. This current was approximate
using the known result for an infinite superconducting sh
with a round hole in it. Finally, the relation betweenBa and
Fh was obtained by equating the magnitudes of the two
culating currents. In the present paper, we show how to
culate all properties without making the small-hole appro
mations used in Ref. 3. We show how to solve the flu
focusing problem directly, as well as by superposition.

Another problem of interest is the calculation of th
magnetic-field and current-density distributions for the ca
©2003 The American Physical Society14-1
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of a bulk-pinning-free type-II superconducting disk of radi
b and thicknessd!b in which the entry of magnetic flux is
impeded by a geometrical barrier.9,10 Analytic solutions for
the field and current distributions and the magnetization
strips subject to a geometrical barrier have been studied
the bulk-pinning-free case in Refs. 11 and 12 and for the c
of Bean-model bulk pinning (Jc 5 const! in Ref. 13. Nu-
merical results for the field and current distributions and
magnetization in disks subject to both a geometrical bar
and bulk pinning with aB-dependentJc have been presente
in Refs. 14–18. In the following, we present an efficie
method for calculating the field and current distributions a
the magnetization in bulk-pinning-free disks subject to
geometrical barrier.

Our paper is organized as follows. In Sec. II, we outli
our approach and set down the basic equations. In Sec
we apply this approach to calculate the inductance of
annular ring of arbitrary inner radius. In Sec. IV, we calcula
the current circulating around a ring remaining in the ze
flux-quantum state while subjected to a perpendicular m
netic field. In Sec. V, we consider the flux-focusing proble
and calculate the magnetic flux contained in the center
ring in an applied magnetic field when there is no net curr
around the ring. In Sec. VI, we calculate the magnetizat
loop for a bulk-pinning-free thin-film type-II superconduc
ing disk subject to a geometrical barrier. We briefly discu
our results in Sec. VII.

II. BASIC EQUATIONS

We consider a thin-film superconducting annular ring
the planez50, centered on thez axis, with inner and outer
radii a and b and thicknessd!a. We assume that eitherl
,d/2 or L!a if l.d/2, as discussed in the Introductio
By the Biot-Savart law, thez component of the magneti
field in the planez50 is19,20

Hz~r!5Ha1
1

2pEa

b

G~r,r8!Kf~r8!dr8, ~1!

where Ha is the applied field,Kf(r) is the sheet-curren
density in the counterclockwise direction,

G~r,r8!5K~k!/~r1r8!2E~k!/~r2r8!, ~2!

k52~rr8!1/2/~r1r8!, ~3!

and K and E are complete elliptic integrals of the first an
second kind with modulusk. An important boundary condi
tion we will use in this paper is thatHz(r)50 for a,r
,b. The total current in the counterclockwise direction is

I 5E
a

b

Kf~r!dr, ~4!

and the magnetic moment along thez direction is

mz5pE
a

b

r2Kf~r!dr. ~5!
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Another quantity of interest is the magnetic flux up through
circle of radiusr in the planez50,19,20

Fz~r!5m0Hapr21
m0

2 E
a

b

GA~r,r8!Kf~r8!dr8, ~6!

where

GA~r,r8!5~r1r8!@~22k2!K~k!22E~k!# ~7!

andk is given in Eq.~3!.
In the following sections we present solutions of t

above equations and determine the corresponding sh
current densityKf(r) for four cases:~a! self-inductanceL
5Fz(a)/I when Ha50, ~b! the zero-flux-quantum stat
@Fz(a)50# in an applied fieldHa , ~c! flux focusing in an
applied field @calculation of Fz(a) when I 50], and ~d!
geometrical-barrier effects in a thin disk of radiusb contain-
ing a Lorentz-force-free magnetic-flux dome of radiusa. In
each case, we assume a spatial dependence of the red
sheet-current density of the form

K̃f~u!5
4g~u!

puA~u22ã2!~12u2!
, ~8!

whereu5r/b andã5a/b andg(u) is a polynomial contain-
ing N terms,

g~u!5 (
m51

N

gmS u2ã

12ã
D m21

. ~9!

Although we are not certain that such a choice gives an e
solution in general, it reduces to known exact solutions
various limits @a→0, b→`, or (b2a)!b], all of which
have inverse-square-root singularities at the sample ed
To determine theN coefficients,N21 equations are obtaine
by setting Hz(rn)50, where rn5a1n(b2a)/N and n
51,2, . . . ,N21. TheNth equation depends on the case u
der consideration; for case~a! we use Eq.~4! for given I, for
case~b! we use Eq.~6! and setFz(a)50, for case~c! we
use Eq.~4! and setI 50, and for case~d! we use Eq.~9! and
setg(ã)50.

For numerical evaluation of the integrals in Eqs.~1!, ~4!–
~6!, it is convenient to change variables using the substitut
v5r8/b5Aã21(12ã2)sin2f and to define the functions

hm~u!5
2

p2E0

p/2

G~u,v !S v2ã

12ã
D m21

v22df, ~10!

i m5
4

pE0

p/2S v2ã

12ã
D m21

v22df, ~11!

f m5
4

pE0

p/2S v2ã

12ã
D m21

df, ~12!

fm~u!5
2

pE0

p/2

GA~u,v !S v2ã

12ã
D m21

v22df, ~13!
4-2
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and

anm5hm~un!, ~14!

where un5rn /b5ã1n(12ã)/N, and n51,2, . . . ,N21.
For a,r,b (ã,u,1), Eqs.~10! and ~13! are principal-
value integrals, evaluated by splitting thef integral into two
parts, one from 0 toF(u2e) and the other fromF(u1e) to
p/2, where

F~u!5sin21Au22ã2

12ã2
~15!

and e is an infinitesimal. For the results presented here
have usede51027.

III. INDUCTANCE OF AN ANNULAR RING

To calculate the inductance, we setHa50 in Eq. ~1! and
defineKIf5(I I /b)K̃ If , where the subscriptI henceforth la-
bels all quantities that are specific to calculations of the
ductance. To evaluate the coefficientsgIm in

gI~u!5 (
m51

N

gImS u2ã

12ã
D m21

, ~16!

we use theN equations

(
m51

N

a InmgIm5b In , ~17!

n51,2, . . . ,N, wherea Inm5anm andb In50 for n,N, and
a INm5 i m and b IN51 for n5N. These equations are ob
tained from Eqs.~1!, ~8!–~10!, and ~14! andHz(rn)50 for
n,N, and from Eqs.~4!, ~8!, ~9!, and~11! for n5N.

Numerical results forH̃Iz5bHIz /I I , K̃ If , and gI vs u
5r/b for a5b/2 (ã50.5) are shown in Fig. 1. In this cal
culation, as well as in all others in Secs. III–VI, the mag
tude of the reduced magnetic field fora,r,b was less than
1025 except forr very close toa or b, where the numerica
results for the principal-value integrals in Eq.~10! became
less accurate. Results forgIm vs ã are shown in Fig. 2. The
inductance is calculated from

L5F Iz /I I5m0bF̃ Iz~ ã!, ~18!

where

F̃ Iz~u!5 (
m51

N

fm~u!gIm , ~19!

and is shown in Fig. 3 as a function ofã5a/b. Dashed lines
in Fig. 3 show expressions valid in the limits of small a
largeã: For ã!1, the inductance approachesL052m0a @or
F̃ Iz(ã)52ã], as obtained by Ketchenet al.,3 and for ã
→1, the inductance approaches

L15m0R@ ln~8R/w!2~22 ln 4!#, ~20!

as obtained by Brandt8 for a superconducting annulus o
mean radiusR and widthw!R. @Here R5(a1b)/25b(1
17451
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1ã)/2 andw5(b2a)5b(12ã).# Equation~20! can be ob-
tained from21 L5m0R@ ln(8R/r)22#, the inductance of a su
perconducting ring of radiusR and wire radiusr !R, by
replacingr by w/4.22 The empirical formula

L25m0b@ ã20.197ã220.031ã61~11ã!tanh21ã#,
~21!

whereã5a/b, fits our numerical results forL within 0.06%,
and a plot of it is indistinguishable from the solid curve
Fig. 3.

The magnetic moment associated with the circulating c
rent can be calculated from

FIG. 1. Reduced magnetic fieldH̃Iz5bHIz /I I , reduced sheet-
current densityK̃ If , and polynomialgI ~multiplied by 3! vs u
5r/b obtained while calculating the inductance for a supercondu
ing ring with ã5a/b50.5.

FIG. 2. CoefficientsgIm in the polynomial of Eq.~16! vs ã
5a/b obtained while calculating the inductance of a supercondu
ing ring.
4-3
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mIz5I Ipb2 (
m51

N

f mgIm . ~22!

IV. ZERO-FLUX-QUANTUM STATE

Consider an annular ring that has been cooled into
superconducting state in the absence of a magnetic fi
such that no magnetic flux is trapped anywhere in the ri
When a perpendicular magnetic fieldHa is applied, a circu-
lating current is induced, but the ring remains in the Mei
ner state, and the magnetic flux up through the hole rem
zero ~there are no flux quanta in the hole!. The induced
sheet-current density isKZf5HaK̃Zf , where the subscriptZ
henceforth labels all quantities that are specific to calcu
tions for the zero-flux-quantum state. To evaluate the coe
cientsgZm in

gZ~u!5 (
m51

N

gZmS u2ã

12ã
D m21

, ~23!

we use theN equations

(
m51

N

aZnmgZm5bZn , ~24!

n51,2, . . . ,N, whereaZnm5anm and bZn521 for n,N,
andaZNm5fm(ã) andbZN52pã2 for n5N. These equa-
tions are obtained from Eqs.~1!, ~8!–~10!, and ~14! and
Hz(rn)50 for n,N, and from Eqs.~6!, ~8!, ~9!, and~13! for
n5N.

Numerical results forH̃Zz5HZz /Ha ,K̃Zf , and gZ vs u
5r/b for a5b/2 (ã50.5) are shown in Fig. 4. Results fo
gZm vs ã are shown in Fig. 5. The magnitudeuI Zu of the
induced current is obtained fromI Z5HabĨZ , where

FIG. 3. Reduced inductance of a superconducting ring,L/m0b
vs ã5a/b, calculated from Eqs.~18! and~19!. Dashed curves show
approximations valid in the limitsã→0 andã→1.
17451
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and is shown in Fig. 6 as a function ofã5a/b. Dashed lines
in Fig. 6 show expressions valid in the limits of small an
large ã: For ã!1, the induced current approachesI Z

524Hab/p ~or Ĩ Z524/p), as obtained by Ketchenet al.,3

and for ã→1, the induced current approachesI Z
52pR2Ba /L1.

V. FLUX FOCUSING

We now solve for the current and field distribution when
superconducting annular ring is placed in a perpendicu

FIG. 4. Reduced magnetic fieldH̃Zz5HZz /Ha , reduced sheet-
current densityK̃Zf , and polynomialgZ ~multiplied by 3! vs u
5r/b for the zero-flux-quantum state withã5a/b50.5.

FIG. 5. CoefficientsgZm in the polynomial of Eq.~23! vs ã
5a/b for the zero-flux-quantum state.
4-4
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magnetic fieldHa subject to the condition that there is no n
current circulating around the ring. We wish to determi
how much magnetic flux is focused into the hole in t
middle of the ring. The sheet-current density in this case
KFf5HaK̃Ff , where the subscriptF henceforth labels al
quantities that are specific to calculations of flux focusing.
evaluate the coefficientsgFm in

gF~u!5 (
m51

N

gFmS u2ã

12ã
D m21

, ~26!

we use theN equations

(
m51

N

aFnmgFm5bFn , ~27!

n51,2, . . . ,N, whereaFnm5anm andbFn521 for n,N,
and aFNm5 i m and bFN50 for n5N. These equations ar
obtained from Eqs.~1!, ~8!–~10!, and ~14! and Hz(rn)50
for n,N, and from Eqs.~4!, ~8!, ~9!, ~11!, and I 50 for n
5N.

Numerical results forH̃Fz5HFz /Ha ,K̃Ff , and gF vs u
5r/b for a5b/2 (ã50.5) are shown in Fig. 7. Results fo
gFm vs ã are shown in Fig. 8. The magnetic flux focused in
the hole isFFz(a)5moHab2F̃Fz(ã), where

F̃Fz~ ã!5pã21 (
m51

N

fm~ ã!gFm . ~28!

The effective area of the hole~which corresponds to the
effective pickup area of a SQUID made of a circul
washer!, defined viaFFz(a)5m0HaAe f f , is always larger
than the actual area of the hole,Ah5pa2. We find

FIG. 6. Magnitude of the reduced current,2I Z /bHa , vs ã
5a/b for the zero-flux-quantum state calculated from Eq.~25!.
Dashed curves show approximations valid in the limitsã→0 and
ã→1.
17451
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N

fm~ ã!gFm , ~29!

which is shown in Fig. 9 as a function of 1/ã5b/a. Dashed
lines in Fig. 9 show expressions valid in the limits of sm
and largeã: For ã!1, Ae f f /Ah approaches (8/p2)(b/a) ~or
8/p2ã), as obtained by Ketchenet al.,3 and for ã→1,
Ae f f /Ah approaches (R/a)2

„or @(11ã)/2ã#2
…, where R

5(a1b)/2 is the mean radius of the ring.
The flux-focusing problem also can be solved from a l

ear superposition of the fields calculated in Secs. III and
From KFf5KIf1KZf and the conditionI F5I I1I Z50 we
obtaingF(u)52 Ĩ ZgI(u)1gZ(u), gFm52 Ĩ ZgIm1gZm , and
the result

FIG. 7. Reduced magnetic fieldH̃Fz5HFz /Ha , reduced sheet-
current densityK̃Ff , and polynomialgF ~multiplied by 3! vs u
5r/b for flux focusing withã5a/b50.5.

FIG. 8. CoefficientsgFm in the polynomial of Eq.~26! vs ã
5a/b for flux focusing.
4-5
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Ae f f

Ah
52

Ĩ ZF̃ Iz~ ã!

pã2
, ~30!

which gives numerically the same values as Eq.~29!.

VI. GEOMETRICAL BARRIER

We next present an efficient method for calculating
magnetic-field and current-density distributions and the m
netization of a bulk-pinning-free type-II superconducti
disk subject to a geometrical barrier, which impedes the
try of vortices into the disk. We consider a disk~radiusb and
thicknessd!b) in the planez50, centered on thez axis,
initially in the Meissner state. We assume that the Lond
penetration depth obeysl,d/2 or, if l.d/2, that the two-
dimensional screening lengthL52l2/d obeysL!b. When
a perpendicular magnetic fieldHa is applied, a sheet-curren
density19

Kf~r!52
4Ha

p

r

Ab22r2
~31!

is induced. The resulting magnetic field in the planez50,
determined from Eq.~1!, is Hz(r)50 for r,b and23

Hz~r!5HaH 11
2

p F 1

A~r/b!221
2sin21S b

r D G J ~32!

for r.b.
A geometrical barrier prevents vortices from entering

film until the magnetic field at the edge~accounting for de-
magnetizing effects! reaches the valueHs . We expect that
Hs5Hc1, the lower critical field, if there is no Bean
Livingston barrier, orHs'Hc , the bulk thermodynamic
critical field, if the edge is without defects and thermal ac

FIG. 9. Reduced effective areaAe f f /Ah vs 1/ã5b/a for flux
focusing calculated from Eq.~29! or ~30!. Dashed curves show
approximations valid in the limitsã→0 andã→1.
17451
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vation is negligible. An equivalent criterion is that the ma
netic flux begins to penetrate when the magnitude of
sheet-current density at the edge reaches the valueKs

52Hs .24 To estimateHz or Kf at the edge of the film, we
note that the approximations that led to Eqs.~31! and ~32!
break down and that the inverse-square-root divergence
these equations are cut off whenr is within d of the edge,
whered is the larger ofd/2 or L. Accordingly, we approxi-
mateHz at the edge of the film by replacingr in the square-
root denominator of Eq.~32! by b1d and usingd!b, such
that Hz(edge! '(Ha /p)A2b/d. Similarly, we approximate
Kf at the edge of the film by replacingr in the square-root
denominator of Eq.~31! by b2d and usingd!b, such that
Kf(edge)'2(2Ha /p)A2b/d. Whichever criterion is used
@Hz~edge! 5Hs or uKf(edge)u5Ks52Hs], we estimate that
the geometrical barrier is overcome when the applied fiel
equal toH05pHsAd/2b. ~In this paper we have chosend̃
5d/b50.01, such thatH050.222Hs . See Fig. 13.!

When Ha.H0 such thatHz(edge).Hs , vortices nucle-
ate at the edge of the disk and move rapidly towards
center of the disk under the influence of the Lorentz force
unit length,f5JH3f0, whereJH5“3Hrev , f0 is a vector
of magnitudef05h/2e along the vortex axis, andHrev is the
thermodynamic magnetic field in equilibrium with th
magnetic-flux densityB inside the superconductor. As mor
vortices enter, the return field outside the disk generated
the vortices inside the disk gradually reduces the value of
field at the edge toHs , thereby halting further vortex nucle
ation. If bulk pinning is negligible, the case considered
this paper, the vortices adjust their positions such that
magnetic-flux density~averaged over the intervortex dis
tance! in the plane of the diskBz(r) has its maximum value
at the center, decreases monotonically to zero atr5a, and
remains zero fora,r,b. The corresponding sheet-curre
densityKHf5JHfd is zero forr<a, such that the Lorentz
force on any vortex vanishes and no further motion occu
Screening supercurrents still flow, however, in the vorte
free regiona,r,b.

To good approximation whend!b, the resulting
magnetic-field and supercurrent distributions are the sam
those generated by a thin superconducting annular ringa
,r,b) in a perpendicular applied fieldHa , when the solu-
tions are subject to the constraint that the sheet-current
sity Kf is zero atr5a. The Biot-Savart law@Eq. ~1! and its
extension touzu.0] guarantees that the current densityJB
5“3B/m0 is zero everywhere except within the ringa
,r,b; thusKBf5JBfd is zero forr<a. BecauseJH and
JB in thin films are dominated by the curvature ofHrev and
B/m0, rather than by the gradients“Hrev and“B/m0,11,25 it
can be shown that the difference betweenKHf andKBf is of
the order of (d/b)Ha , decreases forB.2Bc1 as Hrev ap-
proachesB/m0, and is negligible for the thin films consid
ered in this paper (d/b50.01). Nevertheless, our simplifie
approach would be incapable of calculating details in
structure that has been observed in the magnetic flux-den
distribution at the vortex-lattice melting transition.26 To treat
such a problem would require a more refined approach s
as that in Refs. 14 and 15, which calculates the localJB
4-6
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currents flowing at the vortex solid-liquid interface and d
tinguishes betweenHrev andB/m0.

The magnetic-field and supercurrent distributions for
case of a thin pin-free disk subject to a geometrical bar
therefore can be calculated efficiently by using an appro
similar to that used in Secs. II–V. When a Lorentz-force-fr
dome of magnetic flux occupies the regionr,a, the sheet-
current density in the regiona,r,b is KGf5HaK̃Gf ,
where the subscriptG henceforth labels all quantities that a
specific to the geometrical-barrier problem. To evaluate
coefficientsgGm in

gG~u!5 (
m51

N

gGmS u2ã

12ã
D m21

, ~33!

we use theN equations

(
m51

N

aFnmgGm5bGn , ~34!

n51,2, . . . ,N, where aGnm5anm and bGn521 for n
,N, and aGNm5d1m and bGN50 for n5N. These equa-
tions are obtained from Eqs.~1!, ~8!–~10!, and ~14! and
Hz(rn)50 for n,N, and from Eqs.~8!, ~9!, and K̃Gf(ã)
50 for n5N.

Numerical results forH̃Gz5HGz /Ha ,K̃Gf , andgG vs u
5r/b for a5b/2 (ã50.5) are shown in Fig. 10. In thes
calculations, we have made no distinction betweenHrev and
B/m0, which corresponds to assuming thatB'm0H. How-
ever, in cases for whichB differs significantly fromm0H,
our plots ofHGz /Ha ~such as in Fig. 10! would correspond
most closely to plots of the reduced flux densityBGz /Ba .
Results forgGm vs ã are shown in Fig. 11. The magnetic flu
contained withinr,a can be obtained from

FIG. 10. Reduced magnetic fieldH̃Gz5HGz /Ha , reduced sheet-
current densityK̃Gf , and polynomialgG vs u5r/b for a pin-free
disk of radiusb with a geometrical barrier and a flux dome
reduced radiusã5a/b50.5.
17451
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e

FGz~a!5moHab2F̃Gz~ ã!, ~35!

where

F̃Gz~ ã!5pã21 (
m51

N

fm~ ã!gGm , ~36!

and the average magnetic-flux density in the disk isBav
5FGz(a)/pb2. Figure 12 shows how Bav /Ba and
HGz(0)/Ha , whereHGz(0) is the magnetic field at the cen
ter of the disk, depend uponã.

FIG. 11. CoefficientsgGm in the polynomial of Eq.~33! vs ã for
a pin-free disk of radiusb with a geometrical barrier and a flu
dome of reduced radiusã5a/b. We requiregG150.

FIG. 12. Reduced average flux densityBav /Ba ~solid! and re-
duced flux density at the centerHGz(0)/Ha ~dashed! of a pin-free
disk of radiusb with a geometrical barrier and a flux dome o
reduced radiusã5a/b.
4-7
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We next calculate the average magnetization, i.e.,
magnetic moment divided by the volume of the disk,MGz
5mGz /pb2d, where mGz is calculated from Eq.~5!. The
initial magnetization of the disk in the Meissner state
<Ha<H0, see Fig. 13!, calculated from Eq.~31!, is27 MGz
52x0Ha , where x058b/3pd; i.e., the external magneti
susceptibility28 in this case isx52x0. Whenever there is a
dome of magnetic flux within the regionr,a, the average
magnetization, obtained from Eqs.~5!, ~8!, ~12!, and ~33!,
may be calculated from

MGz5
3p

8
x0Ha (

m51

N

f mgGm , ~37!

where f m andgGm depend implicitly uponã.
For H0,Ha,Hirr along the field-increasing magnetiz

tion curve at the critical entry condition~see Fig. 13!, Ha and
ã are related via

Ha52H0A12ã2Y (
m51

N

gGm . ~38!

This equation follows from the condition thatuKGf(edge)u
52Hs , whereKGf~edge! is obtained by evaluating Eq.~8!
at u51 but replacingA12u2 in the denominator byA2d/b,
as in the evaluation ofH0. When ã50, we see by compar
ing Eqs. ~8! and ~31! that gG(u)52u3, such thatgGm
52dm4 ~see also Fig. 11!, f 458/3p, andMGz↑52x0H0 at
Ha5H0. In the limit as ã→1, K̃Gf'22Au2a/A12u,
such that gG(u)'2p(u2ã), gGm'2p(12ã)dm2 ,

FIG. 13. Calculated hysteresis in the reduced magnetiza
MGz /x0Hs vs reduced applied fieldHa /Hs for a pin-free disk with
a geometrical barrier~solid!. The dashed curve shows a reversib
minor hysteresis ‘‘loop’’ occurring when the applied field is reduc
after the applied fieldHa has reachedH1 along the field-increasing
magnetization curve. AsHa decreases, the flux dome expands, b
the flux contained within the dome remains constant.
17451
e

f 2'1, Ha'H0A2/pA12ã, and MGz↑ /x0Hs

'2(3p2/8)d̃Hs /Ha , whered̃5d/b!1.
For H0,Ha,Hirr along the field-decreasing magnetiz

tion curve at the critical exit condition, we assume th
the radiusa of the vortex-filled region has reached with
d of the radiusb of the disk; i.e.,ã512 d̃. Using Eq.~37!
with gGm'2pd̃dm2 and f 2'1, we obtain MGz↓ /x0Hs

'2(3p2/8)d̃Ha /Hs . See Fig. 13.
The field-increasing and field-decreasing magnetizat

curves in Fig. 13 meet atHa5Hirr , the irreversibility field.
The criteria we used for the critical entry and exit conditio
lead to the result thatHirr 'Hs , where the magnetization i
given by MGzirr /x0Hs'2(3p2/8)d̃. However, the above
expressions forHirr , MGzirr , andMGz↓ are the least reliable
results of our paper, because all these quantities are
sensitive to the precise conditions for entry and exit at
edge of the disk, including such details as the shape of
edge.9–12,14,15 The magnetic moment responsible for th
magnetizationMGzirr andMGz↓ is produced by currents tha
flow only within a very narrow band around the disk’s edg
where a theory more accurate than ours is needed.

The minor hysteresis loop, shown as the dashed curv
Fig. 13, can be calculated as follows. We start at a point
the field-increasing magnetization curve where the flux do
has radiusa1. The magnetic flux contained within the dom
FGz(a1), the magnetizationMGz1, and the corresponding
applied fieldH1 are obtained from Eqs.~35!, ~37!, and~38!,
whereã, f m , andgGm are all evaluated atã5ã15a1 /b. As
the applied fieldHa is reduced from its starting valueH1, the
radius a of the flux dome expands, but the magnetic fl
within the dome remains constant. For each value oã
.ã1, we recalculatef m , gGm , andF̃Gz(ã). We then use Eq.
~35! to obtain the corresponding value of the applied field

Ha5H1F̃Gz~ ã1!/F̃Gz~ ã!, ~39!

and Eq.~37! to obtain the corresponding value of the ma
netization.

VII. DISCUSSION

In this paper, we have presented an efficient method
the calculation of magnetic-field and current-density profi
for thin-film rings in the Meissner state and for bulk-pinnin
free disks subject to a geometrical barrier. In each case,
sheet-current density was expressed in the form of Eq.~8!,
where the quantityg(u) in the numerator is a polynomial o
degreeN21.

For all the calculations presented in the figures, for wh
we assumedN55, we found that the magnitude ofg5 was
less than 0.0012 in each case~see Figs. 2, 5, 8, and 11! and
that its contribution tog(u) was less than 1.1%. UsingN
56 yields values ofg6 whose magnitudes are much small
than those ofg5, and the values of the calculated physic
quantities are altered only in the sixth decimal place.

Moreover, we offer the conjecture that the problems
solved numerically in Secs. III–VI might be solved analy
cally with functionsgI ,gZ ,gF , andgG that are third-order
polynomials inu; i.e., the sums in Eqs.~9!, ~16!, ~23!, ~26!,

n

t
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and ~33! might simply terminate withN54. As evidence in
support of this conjecture, we note that our calculations
ã5a/b50.1 and 0.5 withN54, 5, 6, and 7 yielded value
of L/m0b @Eqs.~18! and ~19!# that differed only in the fifth
decimal place. Similarly, values ofI Z /Hab @Eq. ~25!#,
Ae f f /Ah @Eq. ~29!#, and MGz↑ /x0Hs @Eqs. ~37! and ~38!#
calculated forã5a/b50.1 and 0.5 withN54, 5, 6, and 7
differed at most only in the fourth significant figure. It
possible that the values we obtained forg5 ,g6 , and g7 in
Secs. III–VI were nonzero only because of small numeri
errors introduced because we performed the integrals in
~10!–~13! numerically rather than analytically.

Although in this paper we have considered only bu
pinning-free thin-film rings and disks, it should be possib
R.

n
r-

H

M.

.
s.

s

17451
r

l
s.

-

to extend the present approach to develop an effic
method, complementary to that of Ref. 7, for numerica
calculating quasistatic magnetic-field and current-den
distributions in rings and disks subject to both a geometr
barrier and bulk pinning. Such distributions recently ha
been calculated analytically for infinitely long strips in Ref
13 and 29–32.
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