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Vortex states in a two-dimensional superconductor at high magnetic field in a periodic
pinning potential
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The effect of a periodic pinning array on the vortex state in a two-dimensional superconductor at low
temperatures is studied within the framework of the Ginzburg-Landau approach. It is shown that an attractive
interaction of vortex cores to a commensurate pin lattice stabilizes vortex solid phases with long-range posi-
tional order against violent shear fluctuations. Exploiting a simple analytical method, based on the Landau
orbital description, we derive a rather detailed picture of the low-temperature vortex-state phase diagram for
the first matching magnetic field. It is predicted that for sufficiently clean samples application of an artificial
periodic pinning array would enable one to directly detect the intrinsic shear stiffness anisotropy characterizing
the ideal vortex lattice.
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I. INTRODUCTION

The nature of the vortex lattice melting transition in tw
dimensional~2D! superconductors has been debated in
literature for many years.1 Early proposals,2,3 based on the
similarity to the Kosterlitz-Thouless-Halperin-Nelson-Youn
theory of melting in 2D solids,4 have led to the conclusion
that the melting transition is continuous. A weak first-ord
melting transition was predicted more recently, however,
several Monte Carlo simulations5,6 using the Ginzburg-
Landau ~GL! theory. It has been shown recently1,7,8 that
shear motions of Bragg chains along the principal crysta
graphic axis of the vortex lattice cost a very small fraction
the superconducting~SC! condensation energy and are r
sponsible for the low-temperature vortex lattice melting.

This intrinsic anisotropy of the vortex lattice with respe
to shear stress cannot be easily detected experimentally
the orientation of the principal axis with respect to the lab
ratory frame depends on the local pinning potential, which
real superconductors is usually produced by a random di
bution of pinning centers. Indirect experimental detection
this hidden anisotropy may be achieved by means of
small-angle neutron scattering~SANS! technique, due to the
1D nature of the effective thermal fluctuations in the vort
liquid state just above the melting point~see Ref. 8!. A direct
detection of this anisotropy~e.g., by means of SANS! could
be possible if vortex solid phases with long-range positio
order were stabilized against the random influence of pinn
impurities. This can be achieved by exposing the SC sam
to an artificial periodic pinning array and tuning the magne
flux density to an integer multiple of the pinning center de
sity. As will be shown in this paper, under certain conditio
the artificial periodic pinning potential can stabilize weak
pinned vortex solid phases with long-range positional ord
which may exhibit the shear stiffness anisotropy characte
ing an ideal vortex lattice.

Vortex matter interacting with periodic pinning array
is currently a subject of intense experimental9–16 and
0163-1829/2003/68~17!/174507~8!/$20.00 68 1745
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theoretical17–23 investigations. Developments of nanoeng
neering techniques, such ase-beam lithography, make it pos
sible to fabricate well-defined periodic arrays of submicr
antidotes, or magnetic dots, in SC films with low intrins
pinning, enabling to study the effect of well-controlled ar
ficial pinning centers. These experiments have shown
under certain conditions the underlying artificial pinning ce
ters can attract vortices very strongly, thus stabilizing vor
patterns with global translational symmetry against the r
dom influence of the natural pinning centers.

From a theoretical point of view utilization of an extern
periodic pinning potential provides a convenient tool for te
ing different models of the vortex state by simplifying co
siderably the model calculations. At the same time, howe
the interplay between the vortex-vortex interactions, wh
favor hexagonal vortex lattice symmetry, and the underly
periodic potential can lead to a variety of vortex configu
tions, depending on the pinning strength, in which vortic
detach from pinning centers to form more closely pack
vortex patterns.

As the interaction with a periodic substrate stabilizes
vortex system versus thermal fluctuations, it generally
creases the melting temperature. However, as we shall s
this paper, deviation from the ideal hexagonal symmetry d
to pinning reduces the phase-dependent interaction betw
vortex chains,8 making them less enduring under therm
fluctuations. In the weak-pinning limit, where a depinn
floating state can occur, the corresponding phase diag
becomes rather complicated, due to the possibility of tran
tions between floating solid and pin solid phases.22

In the present paper we study the influence of a perio
pinning substrate on the vortex state in 2D, extreme typ
superconductors, at perpendicular high magnetic fields.
approach is based on the previously developed theory of
tex lattice melting in pure superconductors,1,7,8 carried out in
the high-magnetic-field limit within the framework of the G
theory in the lowest Landau level~LLL ! approximation. Spe-
cializing the calculation for a vortex system interacting w
a square pinning array under the first matching magn
©2003 The American Physical Society07-1
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field, we study in detail some key limiting regions of th
vortex phase diagram, which enables us to determine
main qualitative features.

II. MODEL

We consider a 2D superconductor at high perpendic
magnetic field, interacting with a periodic substrate of p
ning centers, located at (xi ,yj ). A phenomenological
Ginzburg-Landau functional, with an order parame
c(x,y) in the LLL approximation, is used to describe the S
part of the free energy,

Hsc5E dxdyF2auc~x,y!u21
1

2
buc~x,y!u4G , ~1!

wherea andb are phenomenological parameters.
A local periodic pinning potential24

Vpin5v0(
i , j

uc~xi ,yj !u2 ~2!

describes the interaction of the vortices with pinning cente
We assumev0.0, so that the pinning energy is minimal
the vortex core positions, determined byc(xi ,yj )50, coin-
cide with pinning centers.

Our main interest here is in the influence of the pinni
potential on the vortex lattice melting process, so that
pinning energyVpin is restricted to the range of the vorte
lattice melting energy, which is much smaller than the
condensation energy. Since the latter is of the same ma
tude as the cyclotron energy, it is justified to restrict t
analysis to the LLL of the corresponding SC order parame
which can be therefore written as a linear combination
ground Landau orbitals:

c~x,y!5(
n

cnfqn
~x,y!,

~3!

cn5ucnueiwn, fq~x,y!5e2iqx2(y1q)2
,

whereqn5qn, q5p/ax , and the amplitudescn in the mean-
field approximation are related to the~spatial! mean-square
SC order parameterD0

2 throughucnu25c0
25A(2q2/p)D0

2. In
our notation all space variables are measured in units of m
netic length.

In this model, due to the Gaussian attenuation along thy
axis over a characteristic distance of the order of the m
netic length, the vortex cores@located at the zeros ofc(x,y)]
form a network of linear chains along thex axis, each of
which is determined mainly by a superposition of two neig
boring Landau orbitals.8 The parameterax is therefore equa
to the intervortex distance within a chain, whilep/ax is the
interchain spacing in they direction~see Fig. 1!. It should be
noted that deviations of Landau orbital~LO! amplitudes
from their mean-field valuec0, resulting in strong local dis-
tortions of the superfluid density and a large increase of
corresponding free energy density, are neglected in comp
17450
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son with variations of the phase variableswn , provided the
orbital direction is selected to be along the principal cryst
lographic axis.7,8

We select the pinning centers to form a rectangular lat

~xi ,yj !5~ l xi 1x0 ,l y j 1y0!, ~4!

wherei , j 50,61, . . . . Theparametersx0 andy0 determine
the relative position of the pin and vortex lattices. The nat
of the vortex state in the presence of the pinning poten
depends crucially on the ratio of the number of vortices,N
5AN3AN, to the number of pinning centers,Np5Np,x
3Np,y . Since the density of vortices depends on the exter
magnetic field strengthH, one can tune this ratio by varyin
H. Of special interest are the matching fieldsH5Hn , n
51,2, . . . ,when the rationf[N/Np5n is an integer.

In matching fields one may distinguish between two d
ferent situations, when vortices are bound or unbound to p
ning centers. If the pin lattice and vortex lattice unit cells a
commensurate along bothx and y directions—i.e., l x
5cxax , l y5cyp/ax , with cx andcy being integers—the pin-
ning energy is equal to zero, since all the vortices coinc
with pinning centers. In all other cases of matching fiel
cxcy5p3 integer, none of the numberscx>1 andcy>1 can
be integer, and the lattice constants are incommensura
both directions. It will be shown below that such a vort
configuration is in a floating state with respect to the p
lattice, similar to vortex states in mismatching magne
fields.

Using the LO representation, Eq.~3!, of the SC order
parameter in Eq.~2! for the pinning energy, one may tak
advantage of the localized nature of the LO’s and expa
Vpin in the small parameterl5e2q2

, which reflects the
small overlap integral between adjacent orbitals contribut
to the local superfluid density at the pinning centers. Reta
ing only dominant terms inl, Eq. ~2! is reduced to the form

Vpin5V0A2q2

p (
k

Fuk12 (
m51

e2q2m2/2uk1m/2Fk,mG
.V0A2q2

p (
k

@uk12e2q2/2uk11/2Fk,1#,

FIG. 1. Schematic arrangement of a vortex lattice~circles! rela-
tive to the pin lattice~crosses!.
7-2
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uk1m/25
1

Np,y
(

j
e22[yj 1q(k1m/2)]2,

Fk,m5
1

Np,x
(

i
cos~wk1m2wk12mqxi !, ~5!

whereV05v0D0
2Np,xNp,y . It should be stressed that this a

proximation is valid only for LO’s along the principal axe
since the minimal distance between them,q5p/ax , is suf-
ficiently large to ensure a small and rapidly decreasing va
of the overlap integrals between more distant orbitals.

If cx is not an integer—namely the rectangular pin latt
and vortex lattice are incommensurate in thex direction—
then Eq.~5! shows thatFk,m50. In this case the pinning
energy does not depend on the phases~i.e., the relative hori-
zontal positions! of the Landau orbitals.

Expressing the functionsuk anduk11/2 with the help of a
Poisson summation formula as

uk1m/25
1

Np,y
(

j
e22[ l y j 1y01q(k10.5)]2

'
1

Np,y
A p

2l y
2F112(

j
e2p2 j 2/2l y

2

3cosS 2p j @q~k1m/2!1y0#

l y
D1•••G , ~6!

we note that when the lattices are incommensurate also a
the y axis ~i.e., when bothcx and cy are not integer! the
oscillating terms inuk are averaged to zero after summati
overk. Thus, the pinning energy for incommensurate lattic
is a constant:

Vpin5V0

qAN

l yNp,y
5V0 , ~7!

which does not depend on the mutual orientation of the v
tex and pin lattices. Note that the system size in they direc-
tion is Ly5qAN5 l yNp,y , a relation connectingAN to Np,y .
The obtained result is valid only for a large system,N→`,
where the boundary effect can be neglected.

For the sake of simplicity, we will consider in what fo
lows a square pin lattice withnf51. In the commensurate
situation the pinning energy is minimal~i.e., equal to zero!
when all vortices coincide with pinning centers. Deviatio
of vortices from this configuration in the form of shear d
tortions along the principal crystallographic axes are of s
cial interest due to the relatively low SC energy involve
For the principal axis parallel to a side of the square unit c
cx5cy51 andq25p, and so, according to Eq.~5!, the pin-
ning energy per single vortex is, up to small terms of t
order;e22p, given by
17450
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Vpin

N
5v

1

AN
(

k
@a12a2cos~wk2wk21!#

.kxv
1

AN
(

k
@12cos~jk!#, ~8!

where v5V0 /N, a15122e2p/2.0.584, and a2
52e2p/2(112e2p/2).0.589. Note that in the above ex
pressions we setx05y05q/2 so that the minimal pinning
energy is obtained forjk50. Note also that for the undis
torted square lattice in whichwk5wk21, the expression in
the first line of Eq.~8! is not strictly zero sincea1Þa2. The
error, which is of order higher than the second ine2p, can
be neglected in the approximation leading to Eq.~8!. The
numbersa1 ,a2 can be thus considered equal within this a
proximation, allowing us to introduce a single coefficie
kx[a1.a2.0.59. The expression in the second line of E
~8! yields the correct~i.e., zero! value for the undistorted
lattice. It is written in terms of the variablesjk[wk2wk21
describing the lateral positions of the vortex chains, wh
are generated mainly by interference between two neigh
ing LO’s. This is consistent with the well-known definitio
ux5]w/]y of vortex displacement along thex axis in the
long-wavelength limit.25

To evaluate the excess pinning energy associated
shear distortion along the diagonal of the square unit cell
pin lattice may be conveniently described by two interpe
etrating simple square sublattices withcx51, cy52, and
q252p ~see Fig. 2!. The corresponding interchain pinnin
energy for each of the sublattices can again be obtained f
Eq. ~8!, with kx8.0.84 and a phase shift ofp/2, which
arises due to different shape of the unit cell.

The SC part of the free energy functional, for the co
mensurate lattices described above, is then calculated by
stituting the order parameter, Eq.~3!, in Eq. ~1!, with the
inter-Landau-orbital distance set equal to the lattice cons

FIG. 2. Primitive and nonprimitive unit cell representatio
~solid and dotted lines, respectively! of the square pin lattice use
for a description of the shear distortion along the principal axes
the vortex lattice. Similar to Fig. 1,� and 3 denote vortex and
pinning center positions, respectively. Vectorsx and x8 show the
directions of the principal axes.
7-3
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of the square pin lattice (ax5Ap) and with the orbital am-
plitudesucnu assuming the value given by the mean-field a
proximation. Expanding the resulting expression in the sm
parameterlsq5exp(2p), which characterizes interorbita
coupling,7 and truncating the resulting expansion at the le
ing phase-dependent term (;lsq

2 ) yields the following
(jk-dependent! expression:

Hsc

N
52hh2Th

1

AN
(

k
@12cos~jk112jk!#, ~9!

wherehh is the SC condensation energy~per unit flux! of
the square vortex lattice andTh5@4lsq

2 /(114lsq)#hh is
the shear distortion energy parameter. Herehh

5«0bA /bsq , wherebA.1.159 andbsq.1.18, are the val-
ues of the Abrikosov structure parameter for regular hexa
nal and square lattices, respectively, and«0[pa2/2bAb is
the SC condensation energy of the former.

For the specific choicejk5gk, whereg is a constant, the
Bragg family of vortex chains along the principal axis, d
notedx, is characterized by a lateral displacementjk112jk
5g between neighboring chains. Evidently, the SC ene
Hsc for the undistorted square vortex latticejk50 (g50)
@see Eq.~9!# is equal toNhh . However, the minimum of the
SC energy with respect to the collective tilt angle parame
g is reached for a triangular vortex lattice, determined
jk5pk (g5p), whose unit cell is an isosceles triangle wi
a base~along thex axis! and a height equal toAp ~see Fig.
3!. The corresponding SC energy is equal toHsc /N52hh

22Th . This value is lower than the SC energy of the squ
vortex lattice and only slightly higher~i.e., by;0.45%) than
the SC energy of the equilateral triangular~Abrikosov! lat-
tice, Hn /N52«0.

III. VORTEX STATES FOR THE LOWEST MATCHING
FIELD

A. Commensurate and incommensurate ground states

The competition between the pinning energy, Eq.~8!,
which favors vortices approaching the pinning points on
square lattice, and the SC energy, Eq.~9!, preferring triangu-
lar lattice configuration, leads to ‘‘frustrated’’ vortex stru
tures, which depend on the relative pinning strength.

At zero temperature they can be obtained by minimiz
the total energy, consisting of the SC and pinning pa
Since in the LO representation each orbital isAN-fold de-
generate, the effective Hamiltonian is written as

f h5
Hsc1Vpin

N
5

Th

AN
(

k
$2hh /Th14p@12cos~jk!#

2@12cos~jk112jk!#%, ~10!

where the parameterp[kxv/4Th determines the strength o
the pinning potential relative to the inter-vortex-chain co
pling. Under the constraints imposed by the requiremen
commensurability between the vortex configuration and
lattice, the vortex chains are restricted to move latera
17450
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along the commonx axis of the underlying lattices~see Fig.
1!. The corresponding displacementsjk may be separated
into two groups, corresponding to even and odd vor
chains, as follows:

jk5H u l for k52l ,

z l for k52l 21,
~11!

so that

f h5
Th

AN
(

l
$22hh /Th14p@22cos~u l !2cos~z l !#

2@22cos~u l2z l !2cos~u l 212z l !#%. ~12!

The calculation may be greatly simplified if we assum
that the stationary point values within each group are
equal: that is,u l5uc and z l5zc . This restriction may be
justified in the weak-pinning regime 0,p,1, where the
dominant SC energy part favors periodic triangular vor
structures, as shown in Fig. 3~a!.

FIG. 3. ~a! The vortex lattice state with the lowest energy, whi
is commensurate with a square pinning lattice in the limit of ze
pinning strength.~b! An alternative vortex lattice state, which ma
be favorable under square framework boundary conditions~see
text!. In the figure� and3 are vortices and pins, respectively.
7-4
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Substituting these values into Eq.~12! and minimizing the
resulting functional one finds that the total energy has a m
mum

min~ f h!52
1

AN
(

k
@2Th~12p!21hh# ~13!

at uc52zc5u0 where

cos~u0!5p. ~14!

Thus, at zero pinning strengthp50, the ground-state energ
per unit flux, f h522Th2hh , corresponds to a triangula
vortex lattice configurationuc52zc5p/2, whereas in the
opposite extreme, whenp51, the ground-state energyf h

5hh corresponds to a square vortex latticeuc52zc50,
which coincides with the underlying pin lattice. It should b
stressed, however, that due to the constraints imposed b
requirement of commensurability with the pin square latti
the triangular vortex structure obtained in the zero-pinni
strength limit is not the equilateral~Abrikosov! lattice @see
Fig.3~a!#. This discontinuity indicates that the transition
the depinned~floating! vortex lattice should be of the firs
order ~see below!.

An illustration of the weak-pinning ground-state config
ration is shown in Fig. 3~a!. It is seen that odd and eve
vortex chains are shifted in opposite directions symme
cally with respect to the underlying substrate. The relat
positions of the two lattices are determined by the strengt
the pinning potential,V0. In the zero-pinning limitV0→0,
the vortices in odd~even! chains approach lattice point
which are shifted laterally by a quarter of a lattice consta
1
4 l x ( l x5Ap), in the positive~negative! sense with respect to
the square pin lattice, forming isosceles triangular latti
Note that the asymmetric configuration, shown in Fig. 3~b!,
in which half of the vortex chains remain pinned to the u
derlying substrate, has energy22Th(122p)2hh , which
is only slightly ~i.e., by a small, second-order correction
p) higher than the energy given by Eq.~13!. Such an asym-
metric configuration may become energetically favora
~see Refs. 22 and 23! due to, e.g., boundary conditions whic
are incompatible with the even-odd chain symmetry
scribed above.

At sufficiently weak pinning, when the pinning energ
becomes comparable to the difference between the SC e
gies of the commensurate isosceles triangular vortex la
with ax

25p and the incommensurate equilateral triangu
lattice withax

25A3p/2 ~Abrikosov lattice!, the latter is pref-
erable. To show this note that the energy2hn of the equi-
lateral triangular vortex lattice in the presence of incomm
surate pin lattice is influenced only by the average pinn
potentialv, so that

2hn52«01v52«01
4

kx
pTh . ~15!

Comparing this value with that obtained in Eq.~13! for the
commensurate, isosceles triangular lattice,22Th(12p)2

2hh , we find that forp<pc.0.25 the floating equilatera
triangular lattice is the lowest-energy state. This critical po
17450
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can be thus identified as a transition point from a pinn
~commensurate! solid to a floating~incommensurate! solid
state.

A second critical point exists in the strong-pinnin
regime—i.e., atp51—as indicated by Eq.~14!, which has
no real solution at anyp.1. At this critical point the vortex
lattice coincides with the square pin lattice@i.e.,u050 in Eq.
~14!# and the pinning energy reaches its absolute minim
value ~i.e., zero!. Since any further increase of the pinnin
strength above the critical value,p51, cannot be compen
sated by the SC energy terms in Eq.~12!, the vortex configu-
ration remains fixed at the square lattice structure for anp
>1. Thus, with increasing values of the parameterp, the
ground-state vortex configuration changes continuously fr
a triangular lattice atp5pc to a square lattice atp51, which
does not changes with further increase of the pinn
strength. This continuous transformation from a triangu
lattice to a square lattice can be classified as a second-o
phase transition atp51.

B. Commensurate equilibrium states at finite temperature

In the ideal vortex state at finite temperature thermal fl
tuations associated with the low-lying shear excitations alo
the principal crystallographic axis destroy the long-ran
phase coherence of the vortex state and lead to melting o
ideal vortex lattice at a temperatureTm well below the mean
field Tc . This feature indicates an intrinsic anisotropy of t
ideal vortex crystal8: The characteristic excitation energy fo
sliding vortex chains along the principal axis~denoted byx)
parallel to a side of the unit cell~see Fig. 2! is two orders of
magnitude smaller than the SC condensation energy and
order of magnitude smaller for fluctuations along the diag
nal axis~denoted byx8). For all other crystallographic ori-
entations the shear energy is of the order of the SC cond
sation energy.

The nucleation of a SC crystallite can be established
such an ideal model by selecting boundary conditions wh
fix the position of a single-vortex chain with respect to t
laboratory frame. As shear fluctuations of parallel vort
chains diverge with the distance from the fixed chain,7 a SC
domain is restricted to nucleate only around a pinned ch
its transverse size shrinking to that of a single magne
length as the temperature rises towardTm . For the sake of
simplicity, we avoid here the complication associated w
the discontinuous nature of the vortex lattice melting p
cess, which involves two principal families of easily slidin
Bragg chains,1 and restrict the analysis to a single family
vortex chains: i.e., that with the lowest crossover tempera
Tcm ~Ref. 8!. A meaningful definition ofTcm(ax) may invoke
the phase correlation function

Cn8,n[^ei (wn82wn)& ~16!

between Landau orbitalsn8 and n located near the fixed
chainn50. Thus, melting of the entire vortex lattice occu
essentially when phase correlation between the nea
neighboring chains~i.e., n51, n852) closest to the fixed
7-5
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chain is significantly suppressed~e.g., by a factor of 1/2!. In
the p→0 limit we use the expression derived in Ref. 7
find

Cn852,n51~ t̃ !.S I 1~ t̃ !

I 0~ t̃ !
D S I 1/2~ t̃ !

I 0~ t̃ !
D ,

with t̃[Tn /T. Here the characteristic temperatureTn

.@4l2/(114l)#«0 with l5exp(2A3p/2), corresponds to
an interaction between the principal LO’s in the equilate
triangular lattice state. Note that the crossover between
vortex solid state at zero temperature, wheret̃→` and
Cn852,n51( t̃)→1, and the vortex liquid state at high tem
perature, wheret̃→0 andCn852,n51( t̃)→0, occurs at abou
t̃.1.5, so thatTcm(ax)'0.67Tn ~see Fig. 4!. This crossover
temperature is close to, though somewhat lower than,
melting temperatureTm.1.2Tn.2.8Th predicted in Ref. 7.

The presence of the periodic pinning potential stabiliz
the vortex lattice against the violent phase fluctuations
cussed above. This effect is nicely demonstrated by the p
correlation functionCn8,n @Eq. ~16!#, which controls the
mean superfluid density@see Eq.~3!# near the melting point.
Assuming strong pinningp@1 and neglecting the small GL
inter-vortex-chain coupling, the correlation function can
determined from the expression

Cn8,n.
)

k
E

0

p

djke
i (wn82wn)e24pt cos(jk)

)
k
E

0

p

djke
24pt cos(jk)

. ~17!

Using the identitywn5(k5n0

n jk , where the value ofn0

can be found from boundary conditions which influence o
the global phase of the SC order parameter, we find tha

FIG. 4. Pair correlation function between nearest Landau or
als: ~1! at strong pinning, as a function of the dimensionless inve
temperaturet54pTh /T, and ~2! in the triangular Abrikosov vor-

tex lattice with a single pinned chain,n50, as a function oft̃
[Tn /T.
17450
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e
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Cn8,n.S I 1~4pt!

I 0~4pt! D
uDnu

.exp~2uDnu/8pt! for 4pt@1,

~18!

whereDn[n82n. This result contrasts with the correlatio
function obtained in the pure state,7 which has the
asymptotic form

Cn8,n}expS 2
n̄

2t
uDnu2D for t@1, ~19!

wheren̄5n8/312n/321/2, with then50 chain being fixed.
As discussed above~see also Refs. 1, 7 and 8!, fixing chain
positions through boundary conditions is physically equiv
lent to introducing a pinning potential into the GL functiona
which is a crucial step for stabilizing the vortex lattice. Th
global stability of the vortex lattice in the presence of t
periodic pinning potential is reflected in Eq.~18!, as com-
pared with Eq.~19!, by the translational invariance of th
former correlation function, as well as by its relatively we
~simple exponential! decay.

To determine the crossover temperature from the squ
pin solid ~SPS! to the vortex liquid we may follow the pro
cedure described above and find the temperatureTcm(ax ,p)
at whichCn8,n in Eq. ~17! for uDnu51 is reduced by a facto
of 1/2 with respect to its zero-temperature (t→`) limit. This
yields in the strong-pinning limitp@1 ~see Fig. 4! the linear
dependence

Tcm~ax ,p!'0.8634pTh . ~20!

Beside its influence on the vortex lattice melting tran
tion, the pinning potential can change the vortex lattice str
ture, both continuously and discontinuously. The ze
temperature limit was discussed in Sec. III A. Above t
critical valuep51 the lateral vortex positions coincide wit
the pin square lattice positions,j l50. For decreasing pin-
ning strength belowp51, the configuration of the vortex
lattice deviates continuously from the square structure t
lattice with vortices shifted along chains away from the p
ning centers.

A similar second-order SPS to triangular pin solid~TPS!
phase transition~as a function ofp) is expected at finite
temperatures. Indeed, as shown in Sec. III A, the free ene
functional f h in Eq. ~10! is minimized at the stationary
points jk5jck[(21)ku0, with cosu05p for p<1, and at
jck50 for p>1. Thus, expandingf h as a Taylor series in
(jk2jck) about its stationary points it is clear that forp
>1 ~whenjck50) the expansion includes onlyevenpowers
jk ~due to the symmetry off h with respect tojk→2jk).
Thus, at any finite temperatureT, the thermal mean value
^jk& are equal to zero forp>1, implying that for pinning
strengths above the critical valuep51 the mean vortex po-
sitions coincide with the square pin lattice.

IV. PHASE DIAGRAM FOR THE LOWEST MATCHING
FIELD

The results of the previous sections enable us to dra
rather clear picture of thep-T phase diagram, as shown i

t-
e
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Fig. 5. In the strong-pinning regime,p@1, the pinning
strength is so large that the gain in commensurate energ
larger than the vortex-vortex energy gain at any temperat
and so the floating solid~FS! phase is not favorable. Thus
the vortex lattice melting in this region should take pla
directly from the SPS to the liquid~L! phase, as described b
the asymptotic expression, Eq.~20!, which is equivalent to
the straight linep'0.29T/Th in the large-p regime of the
phase diagram.

In the small-p regime the stable phase at low temperatu
is the FS. Here the energy gain associated with creatio
the close-packed equilateral triangular vortex lattice exce
the energy cost of the incommensurate state. This state
mains stable up to a relatively high temperatureT.2.8Th ,
above which it melts into a vortex liquid state. The pha
boundary in this region is vertical~i.e., independent ofp)
since it is determined by the vortex-vortex coupling and
by the pinning energy~which is a constant in the floatin
state!.

In the low-temperature region of the phase diagram
analysis shows the existence of two phase transitions
small pinning, increasingp abovepc'0.25 transforms the
FS discontinuously to a pin solid since the energy gain as
ciated with the commensurate pin vortex solid exceeds
energy cost of distorting the close-packed equilateral tri
gular vortex lattice. The discontinuous nature of this tran
tion is due to the fact that even an infinitesimal deviati
from a commensurate configuration raises the pinning ene
by a finite amount~i.e., at least from 0.6v to v).

It turns out that the pin vortex crystal just above t
commensurate-incommensurate transition is not a square
tice, as found by Reichhardtet al.,22 but a triangular one,
with a unit cell which depends on the pinning strength.
T50 it is a parallelogram with equal base and height, wh
transforms continuously to a square atp51. A similar con-
tinuous transition from a frustrated triangular pin lattice

FIG. 5. p-T phase diagram. Solid lines: first-order phase tran
tions from SPS to L phase~at large pinning strength!, from TPS to
FS ~near zero temperature!, and between FS and L phases. Dash
line: second-order phase transition between partially pinned~TPS!
and fully pinned~SPS! vortex crystals. The dash-dotted line co
nects smoothly between the asymptotic SPS-L line and the l
temperature TPS-FS line~see text for explanation!.
17450
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the SPS takes place at the critical pinning strengthp51 at
any temperatureT. Interestingly, the corresponding horizon
tal transition line intersects the extrapolated SPS-L bound
line at T'3.44Th , p51, that is in the close vicinity of the
intersection between the vertical FS melting line,T
.2.8Th , and the SPS-TPS line.

It is not exactly known, however, how the FS-TPS boun
ary is extended beyond the zero-temperature region. I
conceivable that its high-temperature sector coincides w
the low-temperature sector of the SPS melting line. This
due to the fact that, at a fixed value ofp, the driving force for
both transitions is thermal fluctuations involving sliding vo
tex chains, which suppress the pinning energy gained in
commensurate phase@i.e., the term24p cos(jk) in Eq. ~10!#.
In the SPS-L transitions, where the vortex-vortex interact
is relatively small, this suppression leads to uncorrelated v
tex chains, resulting in melting. In the TPS-FS transitio
where the vortex-vortex coupling is relatively large, the su
pression of the pinning energy results in mutually correla
vortex chains, which lose correlation with the underlyin
pinning lattice.

An intermediate pin solid phase of a triangular form h
been also found in the London model calculation reported
Pogosov et al.23 However, in contrast to the Ginzburg
Landau model, discussed here, they predicted the vortex
figurations shown in Fig. 3~b! as preferable below some crit
cal value of the pinning potential strength. Above this val
the symmetry of vortex lattice is changed discontinuously
the square symmetry of the pin lattice.

Our proposed phase diagram, shown in Fig. 5, thus c
sists of two pin solid phases, a floating solid and a liqu
phase, delimited by four interphase boundary lines, wh
intersect at two nearby triple points. This result is similar
the phase diagram found by Reichhardtet al.22 using mo-
lecular dynamics simulations. However, the intermedi
TPS phase obtained in our calculation is missing in Rei
hardt et al. This seems to be due to the different limitin
situations studied in the two works. The present approac
valid for high magnetic fields~i.e., when the intervortex dis
tance is much smaller than the London penetration de!
while the approach of while Reichhardtet al.was applied for
low and moderate magnetic fields~when the intervortex dis-
tance is of the order of the penetration depth!. Consequently
in the latter model the effective vortex-vortex interactio
strength is much weaker than in the former and so co
influence the PS-FS phase boundary only at extremely
pinning strengths, which were not studied in the numeri
calculation of Ref. 22. This accounts also for the differe
zero-temperature limits of the PS-FS line in the two wor
which is seen to approachp50 in Reichhardtet al.

V. CONCLUSIONS

The influence of a periodic pinning potential on the vort
state of a 2D superconductor at temperatures well below
mean fieldTc has been studied within the framework of th
GL functional integral approach. It is shown that an attra
tive interaction of vortex cores to a commensurate pin latt
stabilizes vortex solid phases with long-range positional
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der against violent shear fluctuations along the princi
crystallographic axis. Exploiting a simple analytical a
proach we draw a rather detailed picture of the relev
vortex-statep-T ~pinning strength and temperature! phase
diagram. In agreement with previous numeric
simulations,22 we have found a pinned, commensurate so
phase in the strong-pinning and low-temperature part of
phase diagram, which melts into a vortex liquid at high te
peratures and transforms into a floating~incommensurate!
solid at low temperatures. We have shown that at low te
perature, similar to Ref. 23, there is an intermediate trian
lar phase, where vortices detaching from pinning centers
main strongly correlated with them. This pinned~frustrated!
triangular solid transforms continuously into the fully pinn
~square! solid phase atp51 and discontinuously to a float
ing solid at small pinning strengths. The zero-temperat
limit of this commensurate-incommensurate transition l
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occurs at a finite pinning strength (p5pc'0.25).
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under these conditions one could therefore directly detect
shear stiffness anisotropy characterizing the ideal vortex
tice.
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