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Vortex states in a two-dimensional superconductor at high magnetic field in a periodic
pinning potential
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The effect of a periodic pinning array on the vortex state in a two-dimensional superconductor at low
temperatures is studied within the framework of the Ginzburg-Landau approach. It is shown that an attractive
interaction of vortex cores to a commensurate pin lattice stabilizes vortex solid phases with long-range posi-
tional order against violent shear fluctuations. Exploiting a simple analytical method, based on the Landau
orbital description, we derive a rather detailed picture of the low-temperature vortex-state phase diagram for
the first matching magnetic field. It is predicted that for sufficiently clean samples application of an artificial
periodic pinning array would enable one to directly detect the intrinsic shear stiffness anisotropy characterizing
the ideal vortex lattice.
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. INTRODUCTION theoretical’ =% investigations. Developments of nanoengi-
neering techniques, such edeam lithography, make it pos-

The nature of the vortex lattice melting transition in two- sible to fabricate well-defined periodic arrays of submicron

dimensional(2D) superconductors has been debated in thé@ntidotes, or magnetic dots, in SC films with low intrinsic

literature for many years.Early proposalé;® based on the Pinning, enabling to study the effect of well-controlled arti-
similarity to the Kosterlitz-Thouless-Halperin-Nelson-Young ficial pinning centers. These experiments have shown that
theory of melting in 2D solid4,have led to the conclusion Under certain conditions the underlying artificial pinning cen-
that the melting transition is continuous. A weak first-ordert€rs can attract vortices very strongly, thus stabilizing vortex

melting transition was predicted more recently, however, byPattems with global translational symmetry against the ran-
several Monte Carlo simulation® using the Ginzburg- dom influence of the natural pinning centers.

Landau (GL) theory. It has been shown recertlf that From a theoretical point of view utilization of an external

shear motions of Bragg chains along the principal crystallo-.periOdiC pinning potential provides a convenient tool for test-

raphic axis of the vortex lattice cost a very small fraction of 9 different models of the vortex state by simplifying con-
?h P ductingsC) d i y d siderably the model calculations. At the same time, however,

€ superconduc ingSC) condensation Energy and are re- y,q interplay between the vortex-vortex interactions, which
sponsible for the low-temperature vortex lattice melting.

C ; ) ) favor hexagonal vortex lattice symmetry, and the underlying
This intrinsic anisotropy of the vortex lattice with respect periodic potential can lead to a variety of vortex configura-

to shear stress cannot be easily detected experimentally singgns, depending on the pinning strength, in which vortices
the orientation of the principal axis with respect to the labo-getach from pinning centers to form more closely packed
ratory frame depends on the local pinning potential, which inyortex patterns.
real superconductors is usually produced by a random distri- As the interaction with a periodic substrate stabilizes the
bution of pinning centers. Indirect experimental detection ofvortex system versus thermal fluctuations, it generally in-
this hidden anisotropy may be achieved by means of thereases the melting temperature. However, as we shall see in
small-angle neutron scatteritf§ANS) technique, due to the this paper, deviation from the ideal hexagonal symmetry due
1D nature of the effective thermal fluctuations in the vortexto pinning reduces the phase-dependent interaction between
liquid state just above the melting poifsee Ref. 8 Adirect  vortex chaind making them less enduring under thermal
detection of this anisotropge.g., by means of SANSould fluctuations. In the weak-pinning limit, where a depinned
be possible if vortex solid phases with long-range positionafloating state can occur, the corresponding phase diagram
order were stabilized against the random influence of pinnindpecomes rather complicated, due to the possibility of transi-
impurities. This can be achieved by exposing the SC samplgons between floating solid and pin solid pha$es.
to an artificial periodic pinning array and tuning the magnetic In the present paper we study the influence of a periodic
flux density to an integer multiple of the pinning center den-pinning substrate on the vortex state in 2D, extreme type-Il
sity. As will be shown in this paper, under certain conditionssuperconductors, at perpendicular high magnetic fields. Our
the artificial periodic pinning potential can stabilize weakly approach is based on the previously developed theory of vor-
pinned vortex solid phases with long-range positional ordertex lattice melting in pure superconductdrs® carried out in
which may exhibit the shear stiffness anisotropy characterizthe high-magnetic-field limit within the framework of the GL
ing an ideal vortex lattice. theory in the lowest Landau levélLL ) approximation. Spe-
\Vortex matter interacting with periodic pinning arrays cializing the calculation for a vortex system interacting with
is currently a subject of intense experimefiitd] and a square pinning array under the first matching magnetic
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field, we study in detail some key limiting regions of the & - vortex
vortex phase diagram, which enables us to determine its _ a,
main qualitative features. X —pin - -

Il. MODEL

We consider a 2D superconductor at high perpendicular I
magnetic field, interacting with a periodic substrate of pin- M
ning centers, located atxj,y;). A phenomenological L
Ginzburg-Landau functional, with an order parameter
¥(X,y) in the LLL approximation, is used to describe the SC [ Rt EE EEEEREEE A )
part of the free energy, Y X

1
Hsc:f dxd>{—al¢(x,y)lz+ §Bl¢(x,y)|4 (D
FIG. 1. Schematic arrangement of a vortex latlicecles rela-

wherea and 8 are phenomenological parameters. tive to the pin lattice(crosse}

A local periodic pinning potentiat son with variations of the phase variables, provided the

orbital direction is selected to be along the principal crystal-

_ lographic axis®
Voin= LYDl? 2 - .
pin voiE,j [906.v;)] @ We select the pinning centers to form a rectangular lattice

describes the interaction of the vortices with pinning centers. (Xi,Yj)=(Ii+Xo,lyj +Yo), (4)
We assume,>0, so that the pinning energy is minimal if \yherej j=0,+1, ... . Theparameters, andy, determine
the vortex core positions, determined #{x;,y;)=0, coin-  {he relative position of the pin and vortex lattices. The nature
cide with pinning centers. _ . of the vortex state in the presence of the pinning potential
Our_ main interest here is in the _mfluence of the PINNiNg4epends crucially on the ratio of the number of vortidgs,

potential on the vortex lattice melting process, so that the_ UNX N, to the number of pinning centersy,=N

. . . . ’ ;X
pinning energyVy;, is restricted to the range of the vortex  \ since the density of vortices depends on the external

. . . . p’y
lattice melting energy, which is much smaller than the SCmagnetic field strengthl, one can tune this ratio by varying

condensation energy. Since the latter is of the same magniy ¢ special interest are the matching fields=H,, »
tude as the cyclotron energy, it is justified to restrict the_'1 > when the ration ,=N/N,= » is an integerw
1y vy - p_ .

analysis to the LLL of the corresponding SC order parameter, In matching fields one may distinguish between two dif-

which can be therefore written as a linear combination Otferent situations, when vortices are bound or unbound to pin-

ground Landau orbitals: ning centers. If the pin lattice and vortex lattice unit cells are
commensurate along botlkk and y directions—i.e., I
- =c,ay, |l ,=c,m/a,, with c, andc, being integers—the pin-
X5 - C Xl [l . X=X Ty y X X y . . .
wxy) ; nPa( y) ning energy is equal to zero, since all the vortices coincide
(3) with pinning centers. In all other cases of matching fields,
co=|c e, & (X1y):e2iqx—(y+q)2, CyCy= X integer, none _of the numbemgzl_andcyzl can
4 be integer, and the lattice constants are incommensurate in
whereq,=qn, q=/a,, and the amplitudes, in the mean- both directions. It will be shown below that such a vortex

field approximation are related to tifepatia) mean-square configuration is in a floating state with respect to the pin

SC order parameteX?2 through|c,|2=c2= (2q7/m)AZ. In lattice, similar to vortex states in mismatching magnetic
n . :
our notation all space variables are measured in units of ma |_elds.' .
netic length P Using the LO representation, E¢3), of the SC order
i parameter in Eq(2) for the pinning energy, one may take

In this model, due to the Gaussian attenuation along/the dvant f the localized nat t the LO d q
axis over a characteristic distance of the order of the mag"Zl vantage ot the localized nature or the S and expan

netic length, the vortex corélocated at the zeros af(x,y)]  Vpin IN the small parametex=e~ ', which reflects the
form a network of linear chains along theaxis, each of small overlap integral between adjacent orbitals contributing
which is determined main|y by a Superposition of two neigh_to the local Superfluid denSity at the pinning centers. Retain-
boring Landau orbital& The parametea, is therefore equal ing only dominant terms im, Eq.(2) is reduced to the form

to the intervortex distance within a chain, whit¢a, is the 502

interchain spacing in thg direction(see Fig. 1 It should be Vo =V, /iE
noted that deviations of Landau orbitdlO) amplitudes pin™ "0 T K
from their mean-field valueg, resulting in strong local dis-

2
tortions of tlhe superfluid density and a large incre_ase of thg ~Vo1 /ZiE [Uk+2€_q2/2Uk+1/z<Dkﬂ,
corresponding free energy density, are neglected in compari- T X '

2.2
—q°m</2,
Uk+2m21 e T Uy 2P m
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1 2 ;
— —2[y; +q(k+m/2

Ui 2= — 2 e 2lyjratk+m2))*

py |

1
O =y 2 CO@im— ¢kt2max),  (5)
p,X

wherevozvoASNp,pr,y. It should be stressed that this ap-
proximation is valid only for LO’s along the principal axes
since the minimal distance between theqs; 7/a,, is suf-
ficiently large to ensure a small and rapidly decreasing value
of the overlap integrals between more distant orbitals.

If c, is not an integer—namely the rectangular pin lattice
and vortex lattice are incommensurate in théirection—
then Eq.(5) shows that®, ,=0. In this case the pinning

energy does not depend on the phases, the relative hori- g and dotted lines, respectivelgf the square pin lattice used

zontal positions of the Landau orbitals. for a description of the shear distortion along the principal axes of
Expressing the functions, andu. 1, with the help of & the vortex Ilattice. Similar to Fig. 1) and X denote vortex and
Poisson summation formula as pinning center positions, respectively. Vectorsind x’ show the
directions of the principal axes.

FIG. 2. Primitive and nonprimitive unit cell representations

1

i 2
Uk+m2= 2 e—Z[Iy]+y0+q(k+O.5)] Vpin 1
Np,y 7 =v— >, [a;—a,c08 ¢, — ¢y _1)]
py v 1~ d2 P Pk-1
N JN X
1 T 2:2/002
~ [ 1+2> e "Iy 1
Noy V21] ] =0 = 2 [1=cos &) 8)

cos( 277][q(k+m/2)+y0])+”.}, () Where v=Vy/N, a;=1-2e "™=0584, and a,
ly =2e" "(1+2e ™% =0.589. Note that in the above ex-
pressions we seto=Yy,=0/2 so that the minimal pinning

we note that when the lattices are incommensurate also alorfgj'€r9y iS obtained fog,=0. Note also that for the undis-
the y axis (i.e., when bothc, and ¢, are not integerthe torted square lattice in whiclp,= ¢\, the expression in
oscillating terms iru, are averaged to zero after summation the first line of Eq.(8) is not strictly zero since, #a,. The

overk. Thus, the pinning energy for incommensurate lattice€"™0r» Which is of order higher than the secondein™, can
is a constant: be neglected in the approximation leading to E8). The

numbersa, ,a, can be thus considered equal within this ap-
proximation, allowing us to introduce a single coefficient

JN Kky=a,;=2a,=0.59. The expression in the second line of Eq.

a i ; )

Vpin=Vo; -~ Vo (7)  (8) yields the correcti.e., zerg value for the undistorted
Ry lattice. It is written in terms of the variableg= ¢— ¢x_1

describing the lateral positions of the vortex chains, which
which does not depend on the mutual orientation of the vorare generated mainly by interference between two neighbor-
tex and pin lattices. Note that the system size inythiirec-  ing LO’s. This is consistent with the well-known definition

tion isL,=qN=I,N,,, arelation connectingN toN,,.  u,=de/dy of vortex displacement along the axis in the
The obtained result is valid only for a large systéa;> o, long-wavelength limit®
where the boundary effect can be neglected. To evaluate the excess pinning energy associated with

For the sake of simplicity, we will consider in what fol- shear distortion along the diagonal of the square unit cell the
lows a square pin lattice with,=1. In the commensurate pin lattice may be conveniently described by two interpen-
situation the pinning energy is miniméle., equal to zero  etrating simple square sublattices with=1, ¢,=2, and
when all vortices coincide with pinning centers. Deviationsq?=27 (see Fig. 2. The corresponding interchain pinning
of vortices from this configuration in the form of shear dis- energy for each of the sublattices can again be obtained from
tortions along the principal crystallographic axes are of speEg. (8), with «,,=0.84 and a phase shift of/2, which
cial interest due to the relatively low SC energy involved.arises due to different shape of the unit cell.

For the principal axis parallel to a side of the square unit cell, The SC part of the free energy functional, for the com-
cy=cy=1 andqg®=r, and so, according to E@5), the pin-  mensurate lattices described above, is then calculated by sub-
ning energy per single vortex is, up to small terms of thestituting the order parameter, E), in Eq. (1), with the
order~e 27, given by inter-Landau-orbital distance set equal to the lattice constant
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of the square pin latticea,= \/77) and with the orbital am- '\ ', v K
plitudes|c,| assuming the value given by the mean-field ap- QR R R D
proximation. Expanding the resulting expression in the small | | S /
parameteris,=exp(—m), which characterizes interorbital | P v
coupling/ and truncating the resulting expansion at the lead- ) oy o’

ing phase-dependent term~é\§q) yields the following . il TN
(éc-dependentexpression: \ PN N

H 1 ‘

N =T To g 2 [ cotbeam &) O

whereh is the SC condensation ener@yer unit fluy of / s .

the square vortex lattice an'ﬂD=[4)\§q/(1+4)\sq)]hD is XD X G- XQ X Q-

the shear distortion energy parameter. Here; ‘ o N

=e£0BalBsq, WhereBa=1.159 andBs,~1.18, are the val- (a)

ues of the Abrikosov structure parameter for regular hexago-

nal and square lattices, respectively, ang= ma?/28,8 is . . . ;

the SC condensation energy of the former. Lo TR TN SRV SRV, PV
For the specific choicé,= yk, wherey is a constant, the S

Bragg family of vortex chains along the principal axis, de- \ oSN

notedx, is characterized by a lateral displacemépt, — &, s / L/

= v between neighboring chains. Evidently, the SC energy *& """" @ """" @ """" ®--

H. for the undistorted square vortex lattiég=0 (y=0) | SN LN

[see Eq(9)] is equal toNh. However, the minimum of the N N |

SC energy with respect to the collective tilt angle parameter O*@*@xex

v is reached for a triangular vortex lattice, determined by PN PN |

&=k (y= ), whose unit cell is an isosceles triangle with SN SN .

a base(along thex axis) and a height equal tq'w (see Fig. ’ \ \ \

3). The corresponding SC energy is equaHg./N= —hg @ """" @ """" @ """" @

—2T5. This value is lower than the SC energy of the square ‘ SN K K

vortex lattice and only slightly highér.e., by ~0.45%) than (b)

the SC energy of the equilateral triangul@brikosov) lat-

tice, H . IN= — g, FIG. 3. (a) The vortex lattice state with the lowest energy, which

is commensurate with a square pinning lattice in the limit of zero

pinning strength(b) An alternative vortex lattice state, which may

lll. VORTEX STATES FOR THE LOWEST MATCHING be favorable under square framework boundary conditises
FIELD text). In the figure®) and X are vortices and pins, respectively.

A. Commensurate and incommensurate ground states . . . .

along the commomx axis of the underlying latticesee Fig.

The competition between the pinning energy, &8\,  1). The corresponding displacemeris may be separated
which favors vortices approaching the pinning points on gnto two groups, corresponding to even and odd vortex
square lattice, and the SC energy, E3), preferring triangu-  chains, as follows:
lar lattice configuration, leads to “frustrated” vortex struc-
tures, which depend on the relative pinning strength. 6, for k=2,

At zero temperature they can be obtained by minimizing &= f k=2l —1
the total energy, consisting of the SC and pinning parts. & for k= '
Since in the LO representation each orbital\is-fold de-  so that
generate, the effective Hamiltonian is written as

(11

.
Hoot Vo T o= 2 (~2Ns/To+4p[2—cog ) —cos{i)]
fD=T=TEK {—ho/To+4p[1—cog &)] N
N —[2-cos 6~ £,)—cos 61— )]} (12)
—[1-cogék+1— €W}, (10

The calculation may be greatly simplified if we assume
where the parametgr= «,v/4T determines the strength of that the stationary point values within each group are all
the pinning potential relative to the inter-vortex-chain cou-equal: that is,§,= 6. and {,=¢{.. This restriction may be
pling. Under the constraints imposed by the requirement ojustified in the weak-pinning regime<Op<<1, where the
commensurability between the vortex configuration and pirdominant SC energy part favors periodic triangular vortex
lattice, the vortex chains are restricted to move laterallystructures, as shown in Fig(3.
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Substituting these values into E§2) and minimizing the can be thus identified as a transition point from a pinned
resulting functional one finds that the total energy has a minifcommensuratesolid to a floating(incommensuratesolid
mum state.

A second critical point exists in the strong-pinning
. ) regime—i.e., ajpp=1—as indicated by Eq4), which has
min(fp)=— N Ek [2To(1=p)"+ha]l (13 g real solution at anp>1. At this critical point the vortex
lattice coincides with the square pin lattiges., 6,=0 in Eq.
at .= — (.= 6y where (14)] and the pinning energy reaches its absolute minimum
value (i.e., zerg. Since any further increase of the pinning
cog o) =p. (14 strength above the critical valup=1, cannot be compen-

Thus, at zero pinning strengfi=0, the ground-state energy Sated by the SC energy terms in E&2), the vortex configu-
per unit flux, fo=—2T5—hg, corresponds to a triangular ration remains flx_ed at the square lattice structure for @gny
vortex lattice configuratiord.= — {.= /2, whereas in the =1. Thus, with increasing values of the paramegerthe
opposite extreme, whep=1, the ground-state energy,  9round-state vortex configuration changes continuously from
=hy corresponds to a square vortex lattifg= —¢.=0, a triangular lattice ap= Pc toa square lattice gg=1, Whlgh _
which coincides with the underlying pin lattice. It should be does not changes with further increase of the pinning
stressed, however, that due to the constraints imposed by ti§é'ength. This continuous transformation from a triangular
requirement of commensurability with the pin square lattice Jattice to a square lattice can be classified as a second-order
the triangular vortex structure obtained in the zero-pinningfPhase transition gh=1.
strength limit is not the equilateréaAbrikosov) lattice [see
Fig.3(@)]. This discontinuity indicates that the transition to
the depinnedfloating vortex lattice should be of the first
order (see below In the ideal vortex state at finite temperature thermal fluc-
An illustration of the weak-pinning ground-state configu- tuations associated with the low-lying shear excitations along
ration is shown in Fig. @). It is seen that odd and even the principal crystallographic axis destroy the long-range
vortex chains are shifted in opposite directions symmetrifhase coherence of the vortex state and lead to melting of the
cally with respect to the underlying substrate. The relativddeal vortex lattice at a temperatufe, well below the mean
positions of the two lattices are determined by the strength ofield T.. This feature indicates an intrinsic anisotropy of the
the pinning potentialV,. In the zero-pinning limitv,—0,  ideal vortex crystdl The characteristic excitation energy for
the vortices in odd(even chains approach lattice points sliding vortex chains along the principal axgenoted byx)
which are shifted laterally by a quarter of a lattice constantparallel to a side of the unit celbee Fig. 2is two orders of
2 (= \/E), in the positive(negative sense with respect to magnitude smaller than the SC condensation energy and one
the square pin lattice, forming isosceles triangular latticeorder of magnitude smaller for fluctuations along the diago-
Note that the asymmetric configuration, shown in Figp)3  nal axis(denoted byx"). For all other crystallographic ori-
in which half of the vortex chains remain pinned to the un-entations the shear energy is of the order of the SC conden-
derlying substrate, has energy2T(1—2p)—hg, which ~ sation energy.
is only slightly (i.e., by a small, second-order correction in ~ The nucleation of a SC crystallite can be established in
p) higher than the energy given by E@.3). Such an asym- such an ideal model by selecting boundary conditions which
metric configuration may become energetically favorablefiX the position of a single-vortex chain with respect to the
(see Refs. 22 and 28ue to, e.g., boundary conditions which laboratory frame. As shear fluctuations of parallel vortex
are incompatible with the even-odd chain symmetry dechains diverge with the distance from the fixed chainSC
scribed above. domain is restricted to nucleate only around a pinned chain,
At sufficiently weak pinning, when the pinning energy its transverse size shrinking to that of a single magnetic
becomes comparable to the difference between the SC end@ngth as the temperature rises towdig. For the sake of
gies of the commensurate isosceles triangular vortex lattic8implicity, we avoid here the complication associated with
with a?= 7 and the incommensurate equilateral triangularthe discontinuous nature of the vortex lattice melting pro-
lattice witha?= /3/2 (Abrikosov lattice, the latter is pref- €SS, which involves two principal families of easily sliding
erable. To show this note that the energy, of the equi- Bragg chaing,and restrict the analysis to a single family of

lateral triangular vortex lattice in the presence of incommenyortex chains: i.e., that with the lowest crossover temperature

surate pin lattice is influenced only by the average pinninq-l;;?é“ éﬁi’e&éggﬁgﬁ%ﬁcﬁrition offcm(@x) may invoke

potentialv, so that

B. Commensurate equilibrium states at finite temperature

4 _ni(oni
~ha=—sotv="s0+ —pTa. (19 Cor o= (&™) (16
X

Comparing this value with that obtained in EG3) for the  between Landau orbitala’ and n located near the fixed
commensurate, isosceles triangular lattiece2T5(1—p)?>  chainn=0. Thus, melting of the entire vortex lattice occurs
—hg, we find that forp<p.=0.25 the floating equilateral essentially when phase correlation between the nearest-
triangular lattice is the lowest-energy state. This critical pointneighboring chaingi.e., n=1, n’=2) closest to the fixed
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N 11(4p7) | 2"

- Cun Cnryn—<|0(4p7) =exp(—|An|/8p7) for 4p7r>1,

0.8 — ] (18)

07 whereAn=n’—n. This result contrasts with the correlation

function obtained in the pure statewhich has the
asymptotic form

0.6 7

05 7]

n
cn,,nocexp(—2—7|An|2) for 1, (19

04 7
03 7

02 wheren=n’/3+2n/3—1/2, with then=0 chain being fixed.
] As discussed abovisee also Refs. 1, 7 and, §ixing chain
T positions through boundary conditions is physically equiva-
R L A B lent to introducing a pinning potential into the GL functional,
i which is a crucial step for stabilizing the vortex lattice. The

FIG. 4. Pair correlation function between nearest Landau orbitglobal stability of the vortex lattice in the presence of the
als: (1) at strong pinning, as a function of the dimensionless inversgeriodic pinning potential is reflected in E(L8), as com-
temperaturer=4p T /T, and(2) in the triangular Abrikosov vor-  pared with Eq.(19), by the translational invariance of the
tex lattice with a single pinned chaim=0, as a function ofr  former correlation function, as well as by its relatively weak
=T, IT. (simple exponentialdecay.

To determine the crossover temperature from the square

chain is significantly suppresséel.g., by a factor of 1/2 In  pin solid (SP$ to the vortex liquid we may follow the pro-
the p—0 limit we use the expression derived in Ref. 7 to cedure described above and find the temperalysg€a, ,p)

01 7

find at whichC,, , in Eq.(17) for |[An|=1 is reduced by a factor
of 1/2 with respect to its zero-temperature-{ ) limit. This
~ ~ yields in the strong-pinning limip>1 (see Fig. 4 the linear
Crieonoq(7)= Il(j) Il/Z(f) , dependence
n"=2n=1
lo(7)/\ To(T)
Tem(8y,p)~0.86X4pTH. (20

with 7=T,/T. Here the characteristic temperatufie,

~[4\%(1+4\) e With \ =exp(— \37/2), corresponds to . Beside its influence on the vortex lattice melting transi-
an interaction between the principal LO’s in the equilateralt'on’ the pinning potentlal can cha_nge the vortex lattice struc-
triangular lattice state. Note that the crossover between th%"e’ both cc_Jnt_lnuoust' and dlspontlnuously. The zero-
_ ~ temperature limit was discussed in Sec. Il A. Above the
vortex solid state at zero temperature, where> and  cjtical valuep=1 the lateral vortex positions coincide with
Chr—2n=1(7)—1, and the vortex liquid state at high tem- the pin square lattice positiong;=0. For decreasing pin-
perature, where— 0 anan,=2,n=1(7-)—>0, occurs at about ning strength belowp=1, the configuration of the vortex

7=1.5, so thafl.,(a,) ~0.67T , (see Fig. 4 This crossover Iatt?ce dgviates_ contin_uously from thg square structure to a
temperature is close to, though somewhat lower than, thiattice with vortices shifted along chains away from the pin-
melting temperatur& ,=1.2T , =2.8T predicted in Ref. 7. Ning centers. _ _
The presence of the periodic pinning potential stabilizes A Similar second-order SPS to triangular pin safiPS
the vortex lattice against the violent phase fluctuations disPhase transitiorfas a function ofp) is expected at finite
cussed above. This effect is nicely demonstrated by the phag@mperatures. Indeed, as shown in Sec. Il A, the free energy
correlation functionC, , [Eq. (16)], which controls the functional f5 in Eq. (10) is minimized at the stationary
mean superfluid densifisee Eq(3)] near the melting point. ~POINtS &= £c=(—1) 6y, with coséy=p for p<1, and at
Assuming strong pinning>1 and neglecting the small GL éck=0 for p=1. Thus, expandind as a Taylor series in
inter-vortex-chain coupling, the correlation function can be(ék—&ck) about its stationary points it is clear that fpr
determined from the expression =1 (when{.,=0) the expansion includes ongvenpowers
&, (due to the symmetry of 5 with respect toé,— — &,).
Thus, at any finite temperaturg the thermal mean values

™ .
11 f dge'(#n~ en)g=4pP7CosE) (&) are equal to zero fop=1, implying that for pinning
C., =~ Kk 0 (17) strengths above the critical valye=1 the mean vortex po-
o I def R ' sitions coincide with the square pin lattice.
K
k Jo

IV. PHASE DIAGRAM FOR THE LOWEST MATCHING

Using the identitye,==}_, &, where the value ohg FIELD

can be found from boundary conditions which influence only  The results of the previous sections enable us to draw a
the global phase of the SC order parameter, we find that rather clear picture of the-T phase diagram, as shown in
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24 the SPS takes place at the critical pinning stremthl at
1P any temperaturd@. Interestingly, the corresponding horizon-
20 tal transition line intersects the extrapolated SPS-L boundary
line atT~3.44T5, p=1, that is in the close vicinity of the
SPS intersection between the vertical FS melting ling,

=2.8T5, and the SPS-TPS line.

It is not exactly known, however, how the FS-TPS bound-
27 ary is extended beyond the zero-temperature region. It is
e pd conceivable that its high-temperature sector coincides with
08 L the low-temperature sector of the SPS melting line. This is
TPS -~ due to the fact that, at a fixed valuemfthe driving force for

both transitions is thermal fluctuations involving sliding vor-
L FS§ T/T tex chains, which suppress the pinning energy gained in the

= commensurate phasee., the term—4p cosy) in Eq. (10)].

P In the SPS-L transitions, where the vortex-vortex interaction

is relatively small, this suppression leads to uncorrelated vor-
_ FIG. 5. p-T phase diagram. Soliq Iir_les: first-order phase transi-tey chains, resulting in melting. In the TPS-FS transitions,
tions from SPS to L phast large pinning strengihfrom TPS o \yhere the vortex-vortex coupling is relatively large, the sup-
FS (near zero temperatureand between FS and L phases. Dashedyagsjon of the pinning energy results in mutually correlated
line: second-order phase transition between partially piffi®5 oty chains, which lose correlation with the underlying
and fully pinned(SPS vortex crystals. The dash-dotted line con- pinning lattice.
nects smoothly between the asymptotic SPS-L fine and the low™ " 5, intermediate pin solid phase of a triangular form has
temperature TPS-FS lineee text for explanation been also found in the London model calculation reported by

Fig. 5. In the strong-pinning regime)>1, the pinning Pogosov et al?® However, in contrast to the Ginzburg-
strength is so large that the gain in commensurate energy lsandau model, discussed here, they predicted the vortex con-
larger than the vortex-vortex energy gain at any temperaturdigurations shown in Fig.(®) as preferable below some criti-
and so the floating solidFS) phase is not favorable. Thus, cal value of the pinning potential strength. Above this value
the vortex lattice melting in this region should take placethe symmetry of vortex lattice is changed discontinuously to
directly from the SPS to the liquitL) phase, as described by the square symmetry of the pin lattice.

the asymptotic expression, E(R0), which is equivalent to ~ Our proposed phase diagram, shown in Fig. 5, thus con-
the straight linep~0.29T/T in the largep regime of the  Sists of two pin solid phases, a floating solid and a liquid
phase diagram. phase, delimited by four interphase boundary lines, which

In the Sma”p regime the stable phase at low temperatureéntersect at two nearby triple points. This result is similar to
is the FS. Here the energy gain associated with creation dhe phase diagram found by Reichhaedtal* using mo-
the close-packed equilateral triangular vortex lattice exceedcular dynamics simulations. However, the intermediate
the energy cost of the incommensurate state. This state rdPS phase obtained in our calculation is missing in Reich-
mains stable up to a relatively high temperatilire 2.8T, hardt et al. This seems to be due to the different limiting
above which it melts into a vortex liquid state. The phasesituations studied in the two works. The present approach is
boundary in this region is verticdl.e., independent op) valid for high magnetic fieldsi.e., when the intervortex dis-
since it is determined by the vortex-vortex coupling and nottance is much smaller than the London penetration depth
by the pinning energywhich is a constant in the floating While the approach of while Reichharelt al. was applied for
state. low and moderate magnetic fieldghen the intervortex dis-

In the low-temperature region of the phase diagram oufance is of the order of the penetration deptonsequently
analysis shows the existence of two phase transitions: At the latter model the effective vortex-vortex interaction
small pinning, increasing abovep.~0.25 transforms the §trength is much weaker than in the former and so could
FS discontinuously to a pin solid since the energy gain assdifluence the PS-FS phase boundary only at extremely low
ciated with the commensurate pin vortex solid exceeds th@inning strengths, which were not studied in the numerical
energy cost of distorting the Ciose_packed equiiaterai triancalculatlon of Ref22 This accounts alSO for the different
gular vortex lattice. The discontinuous nature of this transiZ€ro-temperature limits of the PS-FS line in the two works,
tion is due to the fact that even an infinitesimal deviationwhich is seen to approagh=0 in Reichhardet al.
from a commensurate configuration raises the pinning energy
by a finite amounti.e., at Igast from 0465 to v)'. V. CONCLUSIONS

It turns out that the pin vortex crystal just above the
commensurate-incommensurate transition is not a square lat- The influence of a periodic pinning potential on the vortex
tice, as found by Reichhardit al,?? but a triangular one, state of a 2D superconductor at temperatures well below the
with a unit cell which depends on the pinning strength. Atmean fieldT. has been studied within the framework of the
T=0 it is a parallelogram with equal base and height, whichGL functional integral approach. It is shown that an attrac-
transforms continuously to a squarepat 1. A similar con-  tive interaction of vortex cores to a commensurate pin lattice
tinuous transition from a frustrated triangular pin lattice tostabilizes vortex solid phases with long-range positional or-
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der against violent shear fluctuations along the principabccurs at a finite pinning strengtip€ p.~0.25).
crystallographic axis. Exploiting a simple analytical ap- It is predicted that for sufficiently clean samples, where
proach we draw a rather detailed picture of the relevantandom pinning is weak enough, application of an artificial
vortex-statep-T (pinning strength and temperaturphase periodic pinning array with an appropriate strength would
diagram. In agreement with previous numericalstabilize a weakly pinned vortex solid phase with long-range
simulations” we have found a pinned, commensurate solidpositional order. Exploiting the SANS method to the sample
phase in the strong-pinning and low-temperature part of thender these conditions one could therefore directly detect the

phase diagram, which melts into a vortex liquid at high tem-shear stiffness anisotropy characterizing the ideal vortex lat-
peratures and transforms into a floatiipcommensurafe tjce.

solid at low temperatures. We have shown that at low tem-
perature, similar to Ref. 23, there is an intermediate triangu-
lar phase, where vortices detaching from pinning centers re-
main strongly correlated with them. This pinnédustrated
triangular solid transforms continuously into the fully pinned  This research was supported in part by a grant from the
(square solid phase ap=1 and discontinuously to a float- Israel Science Foundation founded by the Academy of Sci-
ing solid at small pinning strengths. The zero-temperaturences and Humanities and by the fund from the promotion of
limit of this commensurate-incommensurate transition lineresearch at the Technion.
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