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Crossed Andreev reflection in structures consisting of a superconductor with ferromagnetic leads
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A theory of crossed Andreev reflection in structures consisting of a superconductor with two ferromagnetic
leads is presented. The electric current due to the crossed Andreev reflection strongly depends on the relative
orientation of the magnetization of two ferromagnetic leads. It is shown that the dependence of the electric
current and magnetoresistance on the distance between two ferromagnetic leads is understood by considering
the interference between the wave functions in ferromagnets. The current and magnetoresistance are calculated
as functions of the exchange field and height of the interfacial barriers.
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I. INTRODUCTION FM1 and FM2, for arbitrary transparency of the interface
from the metallic limit to the tunneling limit.

Much attention has been focused on the spin-dependent In the present paper, we present a theory of crossed An-
transport through magnetic nanostructur@ainnel magne- dreev reflection in structures consisting of SC's with two
toresistance (TMR) was observed in ferromagnet/ ferromagnetic leads. By extending the BTK theory to this
ferromagnet(FM/FM) tunnel junctiong~® In ferromagnet/  System, we derive an expression of the electric current and
superconductor (FM/SC) tunnel junctions, the current calculate the current and MR originating from crossed An-
flowing thorough the tunnel junctions is spin polariZed. dreev reflection. The dependence of the current and MR on
When spin-polarized quasiparticlé@P’s) are injected into the distance(L) between FM1 and FM2 is examined. It is
the SC from the FM, the superconducting gap is suppressedown that the dependence of the crossed Andreev reflection
due to the spin accumulation in FM/SC and FM/SC/Fmon the distancé. comes from the interference between the
junctions’** Detailed studies of the spin transport and re-wave functions in FM1 and FM2, and the probability de-
laxation in the SC have been dohel’ creases rapidly akgL) 2 with increasingkgL, but not the

In recent years, many theoretical and experimental studiegoherence length of the S€ wherek is the Fermi wave
in relation to Andreev reflectidfi in EM/SC metallic con- number. The current and MR are calculated as functions of
tacts have been done because the spin polarization of cot’e exchange field and height of the interfacial barriers in
duction electrons is estimated by measuring the conductané¥der to clarify crossed Andreev reflection in the spin trans-
in this system®=2°In FM/SC/FM double-junction systems, Port of the present system.
the coherence length in the SC is extracted by measuring the
magnetoresistand®R).2>3! In a system consisting of SC’s Il. MODEL AND FORMULATION
with two ferromagnetic leads FM1 and FM2ee Fig. 1,
there is a novel quantum phenomenon called crossed Aq—
dreev reflectio>~*3When an electron with energy below

We consider a system consisting of a superconductor with
o ferromagnetic leadé~-M1 and FM32 as shown in Fig. 1.
FM1 and FM2 with widthWg are connected to a SC with

the superconducting gap in FM1 is injected into a SC, the
electron captures an electron in FM2 to form a Cooper pai
in the SC. As a result, a hole is created in FM2. Deutsche
and Feinberi} have discussed crossed Andreev reflection
and MR by using the theory of Blonder, Tinkham, and Klap- (Ho—tfhex A )( ffr(f)) ( f(r)

A* —(Hp+ ahgy

he system we consider is described by the following

i/idth Wg atx=0. The distance between FM1 and FM2L.is
ogoliubov—de GenneddG) equation*®

wijk (BTK).* They argued that crossed Andreev reflection
should occur when the distance between FM1 and FM2 is of
the order of or less than the size of the Cooper péhis
coherence lengjhand calculated the probability of crossed
Andreev reflection in the case that both ferromagnetic leads
are half metals and the spatial separation of FM1 and FM2 is
neglectedone-dimensional modgli.e., the effect of the dis-
tance between two ferromagnetic leads on the crossed An-
dreev reflection is not incorporated. Subsequently, Falci
et al*® have discussed crossed Andreev reflection and elastic y
cotunneling in the tunneling limit by using a lowest-order Lx
perturbation of the tunneling Hamiltonian. However, to elu-

cidate the effect of crossed Andreev reflection on the spin FIG. 1. Schematic diagram of a superconduc¢®€) with two
transport more precisely, it is important to explore how theferromagnetic leadé*M1 and FM3. FM1 and FM2 with widthwg
crossed Andreev reflection depends on the distance betweare connected to the SC with widiNs at x=0. The distance be-
two ferromagnetic leads as well as on the exchange field afveen FM1 and FM2 i4.
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whereHy=— (£2/2m)V2— . is the single-particle Hamil- In the FM1(FM2) region, the solutions are given by
tonian measured from the Fermi energy, E is the QP

excitation energy, and= + (—) is for the up(down) spin 1\

band. The exchange fielt, is given by Wops (r)= ( 0) e o D ey vz (Y),

ho  (Xx<0|y—L/2|<W/2),

_ oy
hex(r)=1 0 (x>0), 2 ‘I’+p0|(r):<1)e_'p""xq)FM1(FM2),|(Y), (10
iho (X<O,|y+ L/2|<W|:/2), '

where +h, and —h, represent the exchange fields in FM2 where® gy gmz)(Y) is the wave function in thg direction,
for parallel and antiparallel alignments of the magnetization,

respectively. The superconducting gap is expressed as 2 | 7 L We
Depaemz) (V) = \/ o7 Sing— y—(+)—+—},
A= A (x>0]y|<Wg/2), . We— We 2 2 w
|0 (x<0).

and p+{™) is the x component of the wave number of an

We assume that the temperature dependence of the superc | hol th -
ducting gap is given byA=Agtanh(L.74T./T—1)% € ectron(hole) with o spin:
whereA, is the superconducting gap &t=0 andT. is the

superconducting critical temperature. In order to capture the * _@\/ TE+oh.—E (12)
effect of the interfacial scattering, we employ the following Poi= p VHF=E= e Bl

potential at the interfaceg=0:

We consider the scattering of an electron withspin in
He(r) =H8(X){61(y) + 02(Y)}, ) channeln injected into the SC from FM1. There are the
where §(x) is the delta function and; ,)(y) = 6(Wg/2— ly following si_x processes: ordinary Andreev reflection and nor-
—(+)L/2]), 6(x) being the step function. Throughout this Mal rgﬂectlon at the interface of .FM1/SC, cros_sed Andreev
paper, we neglect the impurity scattering in SC's and thd€flection, crossed normal reflection, transmission to the SC

proximity effect near the interfacda#7->51 as an electronlike QP, and the one as a holelike QP. There-
The solution of the BdG equation in the SC region isfore, the wave function in each region is expressed as fol-
given by lows: in the FM1 region,
Upg Lt 1\ . - 0y -
‘P*kﬁ(”:( )e_lkl “Psci(y), Wemu(r)= )elp;’nxq)FMl,n(y)_l'z Ag,in| o |€P1
Vo 0 =1 1
Vo) ik x 1 Zipt x
Voo ()= u € Dscy(y), ) +bsin 0/¢ DY), (13
0
wherer =(x,y), andug andv, are the coherence factors, iy the FM2 region,
2 , 1 JEZ—AZ "
ug=1l—-vi=5|1+ ——|. (6) o) .~
2 E ‘I’sz(r):; Coln| 1 e'dol

For E<A, ug andv, are complex conjugatesc(y) is
the wave function in theg direction,

2 =
Ggey(y)= W SInGT
S S

wherel is the quantum number which defines the channel. "
The eigenvalue of thg mode for channel is Uo| i+ Vo| k-
genvall ¥ ! ‘I’sc(r)zlzl a’o,m(vo)e'k' X+3a,|n<u0)e iy X}q)SCJ(Y)-

| 772 (15
W) - ®

Here, p;,, q;,, andk~ are the wave numbers in FML1,
FM2, and SC, respectively.
The boundary conditions at the interfaces=0) are as

follows:
V2m
= ue JEZ-AZ-E,. (9)

h Wem1 01(Y) + W enmz02(Y) =V schs(Y), (16)

Depzi(y), (14

A
ol

W,
y+ o,

5 @

and in the SC region,

ﬁ2
“2m

E,

The x component of the wave number of an electfbole)
like QP,k;" (7, is expressed as
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d
sc
ax_ Os(y)— d_)([q’FMlel(y) +Wem202(Y) ]

H
= — [Vem101(Y) + Wem262(y) ], 17

wherefg(y) = 6(Wg/2—|y|). From the boundary conditions,
the coefficientsa, ;n, byin, Coiny dgin, @ in, @aNd B, 4
are determinedsee the Appendi?®®2—>* The probabilities

lhe lee
of Andreev reflectionR, ;,, normal reflection R 7,

crossed Andreev reflectidR™"¢_, crossed normal reflection

o,mn?
. ’
RZLee | transmission to the SC as an electronlike QF,¢,

and the one as a holelike mn, are written as

Por P
lhe _Fom 2 lee _Fom 2
Ro’ mn~— | amn| Ra’ mn— 4+ |ba,mn| '
a, n o,n
+
Slhe _qu 2 lee_qU'm 2
Ro’ mn |CO' mn| Ra’ mn— 4 |do,mn 1
(rn o,n
+
o,m 2
Tle e_ (uO vO)larr mnl E>A’
o,mn— an
0! E<A!
E>A
1h'e_ !
To’ mn— o,.n (18)
0! E<A!

where the superscripts (h’) and 1 in Eq(18) indicate the
electron(hole) like QP in the SC and injection from FM1,
respectively.

Let us evaluate the current in FM1. When the bias voltage

V is applied to the systerfsee Fig. 1, the current carried by
electrons witho spin in channem is given by

SRt

whereh is Planck’s constant, anﬁ}fmﬁ(E) is the distribu-
tion function of an electron with positive group velocity in
the x direction and is expressed as

le

Ile _ mH(E)

=T fle (E)dE, (19

fo(E—eV), (20

wherefy(E) is the Fermi distribution function. The distribu-
tion function of electrons with negative group velocity in the
x direction, f(r m.—(E), is given by

PHYSICAL REVIEW B 68, 174504 (2003

fle H(E):; [RE2€fo(E—eV)+ RN fo(E+eV)]

+2[R§$§. (E—eV)+R25fo(E+eV)]
+2 [Thee+ TN 1fo(E),  (20)
=1 Vg Fm

wherevg, andv{ | are the group velocity of an electron in
channell in the SC and the one withr spin in channel in
FM1, respectivelyNs; andNg | are the density of states in
channel in the SC and the one of the spin band in channel
| in FM1, respectively. Using the relations

Rien?(leh) R(lreﬁhe), ER'IZr,’en?(Ieh):’l"q}‘,ﬁghe)’
vsNs Toim M =vE (NETHSMD (22
and the conservation law of the probability,
2 LRSS+ R+ RYR RO +(Tof+ Tolm) 1= 1,
(23
we obtain
et S, [ HRY A RUDIE) - To(E +ew]
+(1-RyS R fo(E—eV) —fo(E)]1dE.

(24)

The current carried by holes withr spin in channelm in
FM1, 13" and the currents carried by electrons and holes in

g,m?
FM2, I2e andI2"  respectively, are calculated in a similar

o,m?
way as

o= hE f (RS + RS fo(E—eV) —fo(E)]

+(1—RIMN _

o,Im

R fo(E)— fo(E+eV)]]dE,
(25)

2 3 | R AR E) - o+ ev]

+(1-R3SH—RES fo(E—eV) —fo(E)]1dE,

(26)
5= hE f [(RATm+RETIfo(E—eV) —fo(E)]
+ (1= R R fo(E) — fo(E+eV)]IdE.

(27)
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FIG. 2. The current as a function &f FM1 and FM2 are half . .
metals fp/ug=1). The solid and dashed lines are for the currents h Flf' 3. T:e abs]?h:ttie/value OfOM4R §s5a(;‘u6nc(;|(;nLglfr§ the(;:%sg
in the antiparallel and parallel alignment of the magnetizations,t at the exchange fieldo /¢ are 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

respectively. _— S .
P Y ment decreases, oscillating with increasingThe behavior

By using Eqs.(24)—(27), we obtain the total current in the of the current is understood as follows. From E@g)—(28),

system: the current in antiparallel alignment at low temperatures and
low applied bias voltage is expressed as
= [1Xe 4 1th 128 42hq (28) e?V _ - - -
om o oMo Sems temetem | ap~ e [R%‘H?ﬁ Ri’ﬁ?‘F Rfﬂ?r R%ﬂ] (30)

We define the magnetoresistance as
9 It is shown from Eq(A1)—(A16) in the Appendix that thé&

dependence of the probability of crossed Andreev reflection

' (29 ~R%’H§ originates from the interference term between the wave
functions of FM1 and FM2, and

_Rap=Rp_Tp—lpp

MR
Rp I ap

whereRpap)=V/Ip(ap) is the resistance in paralléntipar-

allel) alignment. RS [1-sin(2keL + ) J(KeL) “Sexp(—L/¢), (3D
. RESULTS where §=§GL(7TA/2\/A —E ), fGL:ﬁUF/’ITA being the

Ginzburg-LandauGL) coherence lengthy is the Fermi

In_ the following calculatipn, we take the temperature, theyelocity, and¢ is a phase defined as EGA16). The prob-
appl!ed bias voltage, the width of the SC, and the SuPerconébiIitiesfif‘fl‘, ”F‘{f,rﬁ’ andﬁ%‘ﬂ show the samé dependence
ducting order parameter to b&/T.=0.01, eV/A;=0.01, ~ihe: ’ : . .
W= 1000k, and ur/Aq=200, respectively, wherkg is as_RT’11 in Eq. (31), and therefore the _curren; in antiparallel
the Fermi wave number. First, we consider the case that FM§!ignment, Eq. (30), decreases rapidly with a rate of
and FM2 are half metalsh /e =1) and the strength of the (KFL) °, oscillating with period ofm with increasingkeL.
interfacial barrierZ=mH/%2k-=0. The width of FM1 and Note that thekgL dependgnce of the probablllmes is domi-
FM2 is taken to bé&Vg =4/ . In this case, there is only one nated 2%’ the termKFL5)5 56’ not the exponential term exp
propagating mod¢l=1 in Eq. (10)]. We obtain the maxi- (=L/8),™ sincekg£>1.>
mum possible value of MR, i.e., MR— 1, independently of
L. In order to understand this behavior, we consider lthe
dependence of the currents in parallel and antiparallel align-
ment as shown in Fig. 2. When an electron with up spin in
FML1 is injected into the SC, ordinary Andreev reflection
does not occur because electrons with down spin are absent
in FM1. In parallel alignment, crossed Andreev reflection
does not occur either because there are no electrons with
down spin in FM2. Therefore, no current flows in the system
as shown in Fig. 2. On the other hand, in antiparallel align-
ment, while ordinary Andreev reflection is absent, crossed
Andreev reflection occurs because there are electrons with
down spin in FM2, which is a member of a Cooper pair, for
an incident electron with up spin from FM1, and therefore
finite current flows in the system as shown in Fig. 2. As @ FIG. 4. The current as a function &f in the case ohg/us
result, we find MR= —1 irrespective oL in the case of half =0.6. The solid and dashed lines are for the currents in the anti-
metallic FM1 and FM2. The current in the antiparallel align- parallel and parallel alignment, respectively.

Current [erlh]
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FIG. 5. MR as a function oh, for L=10kg . FIG. 7. The difference between the currents in the parallel and

antiparallel alignment as a function b§.
We next consider thé. dependence of MR for several

values of the exchange field in the case Wat=10ke and  rately. As shown in Fig. 6l ,p is mainly given by ordinary
Z=0 (Fig. 3. In this case, there are several propagatingAndreev reflection and decreases with increasig@pecause
modes in FM1 and FM2. The magnitude of MR decreaseshe number of channels for the minority spin decreases by 1
with increasingL for each value of the exchange field. This when passing acro$g~0.12ur, 0.62u¢, and 0.9 . Es-
behavior of MR is understood by considering thelepen-  pecially, in the range ohy/ug=0.92—1, there is no open
dence of the current in parallel and antiparallel alignment. Aghannel for minority spin and ordinary Andreev reflection is
shown in Fig. 4, in the case thap=0.6ug, the finite cur-  completely prohibited. Therefore, we find MR-1 (see
rent in the parallel alignment flows because ordinary An-fig. 5). Figure 7 shows thk, dependence df>— | 5p, Which
dreev reflection occurs and is almost independerit.ddn s mainly due to the crossed Andreev reflection. The magni-
the other hand, the current in antiparallel alignment detyde oflp— 1 ,p is much smaller than that ¢f,p, and there-

creases with ianeaSing_ since the contribution of the fore MR shows the p|ateau structure as shown in F|g 5, and
crossed Andreev reflection process to the current decreasgfR for h,=0.8u(0.5u¢) are almost equal to MR foh,

with increasingL, and therefore the magnitude of MR de- =0.7,.(0.4u;).

creases with increasing In this case, the oscillation of the  Finally, we investigate the effect of the interfacial barriers
current in antiparallel alignment is suppressed because elegn the transport in this system. Figure 8 showslthepen-
trons and holes in the several propagating mades EQ.  dence of MR forhy=0.6u¢ and several values of interfacial
(10) contribute to the current and wash out the oscillation.payrier parameteZ. As seen in Fig. 8, MR approaches zero
The reason why MR foho=0.8u¢(0.54¢) are almost equal jith increasingL and shows a strong dependence on the
to MR for hy=0.7ur(0.4ur) is as follows. In Fig. 5, thélg  height of the interfacial barriez. The decrease of MR with
dependence of MR is plotted. We find three drops in MR afincreasingL is explained by the same way as in the case of
ho~0.12ur, 0.62u¢, and 0.92Ze. MR for ho  no interfacial barriergFig. 3). To investigate theZ depen-
=0.8ur(0.5uF) andhy=0.7ur(0.4ur) are in the same pla- dence of MR in detail, we calculate tiedependence of MR
teau. This plateau structure is understood by considering thgr k-L =10, 15, and 20 as shown in Fig. 9. The magnitude
denominatof p and the numeratdi— I ap In Eq. (29) sepa-  of MR decreases with increasingjin the range ofZ<0.5

0.20 kFL =10 1 0.00 ) o
- kW _ =10 -
= 015} Z=0 :
S
oy -0.01 hig =06
= 010} o] o 1= 0.
E [ = s kW, =10
= 005}
&) -0.02 i

0'00 C 1 1 1 1

00 02 04 06 08 1.0 \ .
10 15 20 25 30
h o e

FIG. 6. The current as a function bf for L=10kg . The solid
and dashed lines are for the current in the antiparallel and parallel FIG. 8. MR as a function of for various values of the interfa-

alignment, respectively.

cial barrier parameteZ andhg/ur=0.6.
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0.00F .- o ioooliorstorioieeed netic leads. By extending the BTK theory to this system, we
- calculate the current and magnetoresistance due to crossed
Andreev reflection. It is shown that the dependence of the
crossed Andreev reflection on the distance between two fer-

-0.01 7 romagnetic leadd,, is given by the interference between the
& h/u.=0.6 wave functions in ferromagnetic leads. The probability of
E EW =10 crossed Andreev reflection follow&dL) ~3, wherekg is the

Fr Fermi wave number, and therefore the magnetoresistance

-0.02 due to crossed Andreev reflection strongly decreases with

increasingkgL except for the case of half metallic ferromag-
nets. It is also presented that the dependences of the magne-
0 1 2 3 toresistance on the exchange field show a plateau structure

VA and the magnitude of the magnetoresistance rapidly de-
creases with increasing the height of the interfacial barriers.
These dependences are explained by considering the relation
Hetween the probabilities of ordinary Andreev reflection and
crossed Andreev reflection.

FIG. 9. MR as a function of the height of the interfacial barriers
Z for hy/ug=0.6. The solid, dashed, and dotted lines represent th
case ofkeL=10, 15, and 20.

and is almost constant fdr in the range ofZ=0.5. This
dependence is understood as follows. MR consists of the
denominator 5p and the numeratokp— I 5p, Which mainly This work was supported by NAREGI Nanoscience
come from the process of ordinary Andreev reflection andProject, Ministry of Education, Culture, Sports, Science and
crossed Andreev reflection, respectively. Crossed AndreeVechnology(MEXT) of Japan, and by a Grant-in-Aid from
reflection is more sensitive to scattering at the interfaciaMEXT and CREST of Japan.

barriers than ordinary Andreev reflection, and therefore the

value of | p— I ,p decreases more rapidly than thatlgf in

the range ofZ=<0.5, and therefore the magnitude of MR APPENDIX: BOUNDARY CONDITIONS

decreases with increasing for keL=10, 15, and 20 as
shown in Fig. 9.

Although the impurity scattering in the SC and the prox-
imity effect are neglected in our theory, these assumption
are justified as follows. First, as shown in the present calcu
lations, the crossed Andreev reflection process occurs on i
scale which is less than several nanometerskfor 1 A~1

ACKNOWLEDGMENT

The coefficientsa, |, by in, Coins doiny @ n, and
Besin in Egs. (13), (14), and (15) are determined from the
poundary condition16) and (17) as follows?%>2~%4Substi-
futing the wave functionél3), (14), and(15) for the bound-
y conditions(16) and (17), we obtain

(Ref. 57. This scale is much smaller than the mean free path 1 @ 0 1

of the SC3° and therefore the effect of impurity scattering in [ )‘me AN+ lag ! .| +b, m( ) Dy |(y)]
the SC on the crossed Andreev reflection is neglected. Sec- \ 0 ' =1l 1 0 ’

ond, in the present paper, we consider the case that the area o 0 1

of the contacts of FM1 and FM2 with the SC are several X 01(V) + c +d ( ) ® i
nanometers and thus the proximity effect can be 1Y) Z’l ol 1 =l o Fzi (¥) 02(Y)

neglected>47~4°

Vo
IV. CONCLUSION = 0 +'8""”(uo) Psci(y)0s(y) (AL)

We present a theory of crossed Andreev reflection in
structures consisting of a superconductor with two ferromagand

. 2mH| (1 ” ~ 2mH\ (0 . .2mH\(1
Pon—! 72 1\ 0o q’FMl,n(Y)+2:l ag,in| Pg, 1 72 11 =Dy in| Poyti 22 1o Pepg(Y) ( 01(Y)
- ~2mH\(0 omH\ (1
+|§1 C(r,|n<q<r,|_| _ﬁz ) 1)_du,ln Q,J;,|+| 72 )(0) CI),:MZ’,(y)GZ(y)

Il
M ¢

Dgcy(y) Os(y). (A2)

Ug (Vo
aa,lnkr(v())—ﬂa,mh (Uo)

1
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First, by multiplying both sides of EqAL) by ®sc,(y) and By solving the Eqs(A3), (A6), and(A8), the coefficients
integrating them with respect t9 we obtain Agins Boiny Couny doiny @pin, @andpB, |, are determined.
1 o 0 1 In the nu_merical calculation, we truncate the number of
( )Alnm+ > lagl . |+b, m( ”Allm channels in the ferromagnetic lea@V1 and FM2 and SC
o) 7 = T\l 10 ’ by the cutoff constant®/r and Mg, respectively. TheM g
w andM g are taken to be large enough to make the calculation
n E c 0 +d 1) A results converge.
& | oinlg) " Teinig) | M Especially, in the half metallic Hp/ur=1) FM1 and
FM2 with width We=4/k, there is only one propagating
B Uo n Vo (A3) model =1 in Eqg.(10). In this case, we can neglect the eva-
~ @o,mn v Ba,mn Ug/’ nescent modé=2 and take the cutoff constant in FM1 and

FM2 to beMg=1. In the case of no interfacial barrier& (
=0), at the low-energy regiore(~0), the coefficient of the
crossed Andreev reflection part in the wave function of FM2,

where A3 m(L) is the overlap integral between the wave
functions in FM1(FM2) and SC, and is given by

(L+Wg)2 C: 11, IS written as
Al,lm(l-)zf Dy (V) Pscm(y)dy,  (Ad) B
(L= We)2 CI +C,I~
(—L+Wp)/2 Crar~ T c, (A9)
Aojm(L)= Dy (V) Pscm(y)dy.  (AS5)
(ZL=We)/2 where
Second, by multiplying both sides of EGA2) by ® gy m(Y) Ci=ipT(p +Q7)(g"—Q,), (A10)
and integrating them with respect ypwe obtain
i) /1 il 10 Co=ip (P —Q)(A" +Q3), (A11)
+ . m —_ - m
(p(r,m_l 52 )(0 5mn+ao,mn< pa,m_'? (1> C3=[p+p’+QIQI—(p+—pf)(Qf—Ql_)IZ]
omH\ (1 X[a7q"+0;0; = (4" =q7)(Q; —Q;)/2],
- bo,mn( Py mti ?) ( 0) (A12)
. wherep™=p;;, 9" =q;,, andl'" is the interference term
Uo _[ VYo between the wave functions of FM1 and FM2 through SC
_ + _ ]
_21 g ink, (Uo) Bo.nk (Uo) Agmis (A6) which strongly depends o, given by

hered,, i K ker delta defined * +
where 8,,,, is a Kronecker delta defined as r (L):% KEA L (L) A (L)

1 (m=n),
= (A7) ke V2keW,
mn [0 (m#n). N%(kFL)*?ﬁexq_L/z@
Third, by multiplying both sides of EqA2) by ®gyp m(Y)
and integrating them with respect ypwe obtain ) 3
o ) xXexp *i kFL—T (A13)
~.2mH ~2mH
C(r,mn( qq,m_|7) (1> _drr,mn( q,ﬁ,m+l7 <0> and w
=> agmkﬁ< )_Balnkl_( ”Azm- (A8) - .
=1 ‘ Vo ' Ug ' Substituting Eq(A9) for Eq. (18), we obtain
|
_ C 2+ C 2+C C* ei(2k,:L—37T/2)+ C*C e—i(ZKFL—37T/2)
R%'qizkgle 1| | 2| 1~2 1%2 (kFL)_squ—L/é)
' 8|C4l?
kEWF|C1|2 . _3
Ww[l—SIH(ZkFL'Fd))](kFL) exp(—L/¢§), (A15)
3
where ¢ is a phase given by
C,C3=|C,C3e'?, (A16)

and we use the relatiofC,|?=|C,|?=|C,C%|.
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