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Crossed Andreev reflection in structures consisting of a superconductor with ferromagnetic leads
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A theory of crossed Andreev reflection in structures consisting of a superconductor with two ferromagnetic
leads is presented. The electric current due to the crossed Andreev reflection strongly depends on the relative
orientation of the magnetization of two ferromagnetic leads. It is shown that the dependence of the electric
current and magnetoresistance on the distance between two ferromagnetic leads is understood by considering
the interference between the wave functions in ferromagnets. The current and magnetoresistance are calculated
as functions of the exchange field and height of the interfacial barriers.
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I. INTRODUCTION

Much attention has been focused on the spin-depen
transport through magnetic nanostructures.1 Tunnel magne-
toresistance ~TMR! was observed in ferromagne
ferromagnet~FM/FM! tunnel junctions.2–5 In ferromagnet/
superconductor ~FM/SC! tunnel junctions, the curren
flowing thorough the tunnel junctions is spin polarized6

When spin-polarized quasiparticles~QP’s! are injected into
the SC from the FM, the superconducting gap is suppres
due to the spin accumulation in FM/SC and FM/SC/F
junctions.7–14 Detailed studies of the spin transport and
laxation in the SC have been done.15–17

In recent years, many theoretical and experimental stu
in relation to Andreev reflection18 in FM/SC metallic con-
tacts have been done because the spin polarization of
duction electrons is estimated by measuring the conducta
in this system.19–29 In FM/SC/FM double-junction systems
the coherence length in the SC is extracted by measuring
magnetoresistance~MR!.30,31 In a system consisting of SC’
with two ferromagnetic leads FM1 and FM2~see Fig. 1!,
there is a novel quantum phenomenon called crossed
dreev reflection:32–43 When an electron with energy belo
the superconducting gap in FM1 is injected into a SC,
electron captures an electron in FM2 to form a Cooper p
in the SC. As a result, a hole is created in FM2. Deutsc
and Feinberg33 have discussed crossed Andreev reflect
and MR by using the theory of Blonder, Tinkham, and Kla
wijk ~BTK!.44 They argued that crossed Andreev reflecti
should occur when the distance between FM1 and FM2 i
the order of or less than the size of the Cooper pairs~the
coherence length! and calculated the probability of crosse
Andreev reflection in the case that both ferromagnetic le
are half metals and the spatial separation of FM1 and FM
neglected~one-dimensional model!; i.e., the effect of the dis-
tance between two ferromagnetic leads on the crossed
dreev reflection is not incorporated. Subsequently, F
et al.35 have discussed crossed Andreev reflection and ela
cotunneling in the tunneling limit by using a lowest-ord
perturbation of the tunneling Hamiltonian. However, to e
cidate the effect of crossed Andreev reflection on the s
transport more precisely, it is important to explore how t
crossed Andreev reflection depends on the distance betw
two ferromagnetic leads as well as on the exchange fiel
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FM1 and FM2, for arbitrary transparency of the interfa
from the metallic limit to the tunneling limit.

In the present paper, we present a theory of crossed
dreev reflection in structures consisting of SC’s with tw
ferromagnetic leads. By extending the BTK theory to th
system, we derive an expression of the electric current
calculate the current and MR originating from crossed A
dreev reflection. The dependence of the current and MR
the distance~L! between FM1 and FM2 is examined. It
shown that the dependence of the crossed Andreev reflec
on the distanceL comes from the interference between t
wave functions in FM1 and FM2, and the probability d
creases rapidly as (kFL)23 with increasingkFL, but not the
coherence length of the SC,33 wherekF is the Fermi wave
number. The current and MR are calculated as functions
the exchange field and height of the interfacial barriers
order to clarify crossed Andreev reflection in the spin tra
port of the present system.

II. MODEL AND FORMULATION

We consider a system consisting of a superconductor w
two ferromagnetic leads~FM1 and FM2! as shown in Fig. 1.
FM1 and FM2 with widthWF are connected to a SC wit
width WS at x50. The distance between FM1 and FM2 isL.
The system we consider is described by the followi
Bogoliubov–de Gennes~BdG! equation:45

S H02shex D

D* 2~H01shex!
D S f s~r !

gs~r !
D 5ES f s~r !

gs~r !
D , ~1!

FIG. 1. Schematic diagram of a superconductor~SC! with two
ferromagnetic leads~FM1 and FM2!. FM1 and FM2 with widthWF

are connected to the SC with widthWS at x50. The distance be-
tween FM1 and FM2 isL.
©2003 The American Physical Society04-1
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whereH0[2(\2/2m)¹22mF is the single-particle Hamil-
tonian measured from the Fermi energymF , E is the QP
excitation energy, ands51 (2) is for the up~down! spin
band. The exchange fieldhex is given by

hex~r !5H h0 ~x,0,uy2L/2u,WF/2!,

0 ~x.0!,

6h0 ~x,0,uy1L/2u,WF/2!,

~2!

where1h0 and 2h0 represent the exchange fields in FM
for parallel and antiparallel alignments of the magnetizati
respectively. The superconducting gap is expressed as

D~r !5H D ~x.0,uyu,WS/2!,

0 ~x,0!.
~3!

We assume that the temperature dependence of the supe
ducting gap is given byD5D0tanh(1.74ATc /T21),46

whereD0 is the superconducting gap atT50 andTc is the
superconducting critical temperature. In order to capture
effect of the interfacial scattering, we employ the followin
potential at the interfaces,x50:

HB~r !5Hd~x!$u1~y!1u2~y!%, ~4!

whered(x) is the delta function andu1(2)(y)5u(WF/22uy
2(1)L/2u), u(x) being the step function. Throughout th
paper, we neglect the impurity scattering in SC’s and
proximity effect near the interfaces.33,47–51

The solution of the BdG equation in the SC region
given by

C6k
l
1~r !5S u0

v0
D e6 ikl

1xFSC,l~y!,

C6k
l
2~r !5S v0

u0
D e6 ikl

2xFSC,l~y!, ~5!

wherer5(x,y), andu0 andv0 are the coherence factors,

u0
2512v0

25
1

2 F11
AE22D2

E G . ~6!

For E,D, u0 and v0 are complex conjugates.FSC,l(y) is
the wave function in they direction,

FSC,l~y!5A 2

Ws
sin

lp

Ws
Fy1

Ws

2 G , ~7!

where l is the quantum number which defines the chann
The eigenvalue of they mode for channell is

El5
\2

2m S lp

WS
D 2

. ~8!

The x component of the wave number of an electron~hole!
like QP,kl

1(2) , is expressed as

kl
65

A2m

\
AmF6AE22D22El . ~9!
17450
,
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In the FM1 ~FM2! region, the solutions are given by

C6p
s,l
1 ~r !5S 1

0D e6 ips,l
1 xFFM1(FM2),l~y!,

C6p
s,l
2 ~r !5S 0

1D e6 ips,l
2 xFFM1(FM2),l~y!, ~10!

whereFFM1(FM2),l(y) is the wave function in they direction,

FFM1(FM2),l~y!5A 2

WF
sin

lp

WF
Fy2~1 !

L

2
1

WF

2 G ,
~11!

and ps,l
1(2) is the x component of the wave number of a

electron~hole! with s spin:

ps,l
6 5

A2m

\
AmF6E6shex2El . ~12!

We consider the scattering of an electron withs spin in
channeln injected into the SC from FM1. There are th
following six processes: ordinary Andreev reflection and n
mal reflection at the interface of FM1/SC, crossed Andre
reflection, crossed normal reflection, transmission to the
as an electronlike QP, and the one as a holelike QP. Th
fore, the wave function in each region is expressed as
lows: in the FM1 region,

CFM1~r !5S 1

0D eips,n
1 xFFM1,n~y!1(

l 51

` Fas,lnS 0

1D eips,l
2 x

1bs,lnS 1

0D e2 ips,l
1 xGFFM1,l~y!, ~13!

in the FM2 region,

CFM2~r !5(
l 51

` Fcs,lnS 0

1D eiqs,l
2 x

1ds,lnS 1

0D e2 iqs,l
1 xGFFM2,l~y!, ~14!

and in the SC region,

CSC~r !5(
l 51

` Fas,lnS u0

v0
D eikl

1x1bs,lnS v0

u0
D e2 ikl

2xGFSC,l~y!.

~15!

Here, ps,l
6 , qs,l

6 , and kl
6 are the wave numbers in FM1

FM2, and SC, respectively.
The boundary conditions at the interfaces (x50) are as

follows:

CFM1u1~y!1CFM2u2~y!5CSCuS~y!, ~16!
4-2
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dCSC

dx
uS~y!2

d

dx
@CFM1u1~y!1CFM2u2~y!#

5
2mH

\2
@CFM1u1~y!1CFM2u2~y!#, ~17!

whereuS(y)5u(WS/22uyu). From the boundary conditions
the coefficientsas,ln , bs,ln , cs,ln , ds,ln , as,ln , andbs,ln
are determined~see the Appendix!20,52–54. The probabilities
of Andreev reflection Rs,mn

1,he , normal reflection Rs,mn
1,ee ,

crossed Andreev reflectionR̃s,mn
1,he , crossed normal reflection

R̃s,mn
1,ee , transmission to the SC as an electronlike QP,Ts,mn

1,e8e ,

and the one as a holelike QP,Ts,mn
1,h8e , are written as

Rs,mn
1,he 5

ps,m
2

ps,n
1

uas,mnu2, Rs,mn
1,ee 5

ps,m
1

ps,n
1

ubs,mnu2,

R̃s,mn
1,he 5

qs,m
2

ps,n
1

ucs,mnu2, R̃s,mn
1,ee 5

qs,m
1

ps,n
1

uds,mnu2,

Ts,mn
1,e8e5H ks,m

1

ps,n
1

~u0
22v0

2!uas,mnu2, E.D,

0, E,D,

Ts,mn
1,h8e5H ks,m

2

ps,n
1

~u0
22v0

2!ubs,mnu2, E.D,

0, E,D,

~18!

where the superscriptse8 (h8) and 1 in Eq.~18! indicate the
electron~hole! like QP in the SC and injection from FM1
respectively.

Let us evaluate the current in FM1. When the bias volta
V is applied to the system~see Fig. 1!, the current carried by
electrons withs spin in channelm is given by

I s,m
1,e 5

e

hE0

`

@ f s,m,→
1,e ~E!2 f s,m,←

1,e ~E!#dE, ~19!

whereh is Planck’s constant, andf s,m,→
1,e (E) is the distribu-

tion function of an electron with positive group velocity
the x direction and is expressed as

f s,m,→
1,e ~E!5 f 0~E2eV!, ~20!

wheref 0(E) is the Fermi distribution function. The distribu
tion function of electrons with negative group velocity in th
x direction, f s,m,←

1,e (E), is given by
17450
e

f s,m,←
1,e ~E!5(

l 51

`

@Rs,ml
1,ee f 0~E2eV!1Rs,ml

1,eh f 0~E1eV!#

1(
l 51

`

@R̃s,ml
2,ee f 0~E2eV!1R̃s,ml

2,eh f 0~E1eV!#

1(
l 51

`
vS,lNS,l

vF,m
s NF,m

s
@Ts,ml

1,ee81Ts,ml
1,eh8# f 0~E!, ~21!

wherevS,l andvF,l
s are the group velocity of an electron i

channell in the SC and the one withs spin in channell in
FM1, respectively,NS,l andNF,l

s are the density of states i
channell in the SC and the one of thes spin band in channe
l in FM1, respectively. Using the relations

Rs,ml
1,ee(eh)5Rs,lm

1,ee(he) , R̃s,ml
2,ee(eh)5R̃s,lm

1,ee(he) ,

vS,lNS,lTs,ml
1,ee8(eh8)5vF,m

s NF,m
s Ts,lm

1,e8e(h8e) ~22!

and the conservation law of the probability,

(
l 51

`

@~Rs,lm
1,ee 1Rs,lm

1,he 1R̃s,lm
1,ee 1R̃s,lm

1,he !1~Ts,lm
1,e8e1Ts,lm

1,h8e!#51,

~23!

we obtain

I s,m
1,e 5

e

h (
l 51

` E
0

`

@~Rs,lm
1,he 1R̃s,lm

1,he !@ f 0~E!2 f 0~E1eV!#

1~12Rs,lm
1,ee 2R̃s,lm

1,ee !@ f 0~E2eV!2 f 0~E!##dE.

~24!

The current carried by holes withs spin in channelm in
FM1, I s,m

1,h , and the currents carried by electrons and hole
FM2, I s,m

2,e and I s,m
2,h , respectively, are calculated in a simila

way as

I s,m
1,h 5

e

h (
l 51

` E
0

`

@~Rs,lm
1,eh 1R̃s,lm

1,eh !@ f 0~E2eV!2 f 0~E!#

1~12Rs,lm
1,hh 2R̃s,lm

1,hh !@ f 0~E!2 f 0~E1eV!##dE,

~25!

I s,m
2,e 5

e

h (
l 51

` E
0

`

@~Rs,lm
2,he 1R̃s,lm

2,he !@ f 0~E!2 f 0~E1eV!#

1~12Rs,lm
2,ee 2R̃s,lm

2,ee !@ f 0~E2eV!2 f 0~E!##dE,

~26!

I s,m
2,h 5

e

h (
l 51

` E
0

`

@~Rs,lm
2,eh 1R̃s,lm

2,eh !@ f 0~E2eV!2 f 0~E!#

1~12Rs,lm
2,hh 2R̃s,lm

2,hh !@ f 0~E!2 f 0~E1eV!##dE.

~27!
4-3
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By using Eqs.~24!–~27!, we obtain the total current in th
system:

I 5(
s,m

@ I s,m
1,e 1I s,m

1,h 1I s,m
2,e 1I s,m

2,h #. ~28!

We define the magnetoresistance as

MR[
RAP2RP

RP
5

I P2I AP

I AP
, ~29!

whereRP(AP)5V/I P(AP) is the resistance in parallel~antipar-
allel! alignment.

III. RESULTS

In the following calculation, we take the temperature, t
applied bias voltage, the width of the SC, and the superc
ducting order parameter to beT/Tc50.01, eV/D050.01,
WS51000/kF , and mF /D05200, respectively, wherekF is
the Fermi wave number. First, we consider the case that F
and FM2 are half metals (h0 /mF51) and the strength of the
interfacial barrierZ5mH/\2kF50. The width of FM1 and
FM2 is taken to beWF54/kF . In this case, there is only on
propagating mode@ l 51 in Eq. ~10!#. We obtain the maxi-
mum possible value of MR, i.e., MR521, independently of
L. In order to understand this behavior, we consider thL
dependence of the currents in parallel and antiparallel al
ment as shown in Fig. 2. When an electron with up spin
FM1 is injected into the SC, ordinary Andreev reflectio
does not occur because electrons with down spin are ab
in FM1. In parallel alignment, crossed Andreev reflecti
does not occur either because there are no electrons
down spin in FM2. Therefore, no current flows in the syst
as shown in Fig. 2. On the other hand, in antiparallel alig
ment, while ordinary Andreev reflection is absent, cros
Andreev reflection occurs because there are electrons
down spin in FM2, which is a member of a Cooper pair,
an incident electron with up spin from FM1, and therefo
finite current flows in the system as shown in Fig. 2. As
result, we find MR521 irrespective ofL in the case of half
metallic FM1 and FM2. The current in the antiparallel alig

FIG. 2. The current as a function ofL. FM1 and FM2 are half
metals (h0 /mF51). The solid and dashed lines are for the curre
in the antiparallel and parallel alignment of the magnetizatio
respectively.
17450
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ment decreases, oscillating with increasingL. The behavior
of the current is understood as follows. From Eqs.~24!–~28!,
the current in antiparallel alignment at low temperatures a
low applied bias voltage is expressed as

I AP;
e2V

h
@R̃↑,11

1,he1R̃↓,11
1,eh1R̃↓,11

2,he1R̃↑,11
2,eh#. ~30!

It is shown from Eq.~A1!–~A16! in the Appendix that theL
dependence of the probability of crossed Andreev reflec
R̃↑,11

1,he originates from the interference term between the wa
functions of FM1 and FM2, and

R̃↑,11
1,he}@12sin~2kFL1f!#~kFL !23exp~2L/j!, ~31!

where j5jGL(pD/2AD22E2), jGL5\vF /pD being the
Ginzburg-Landau~GL! coherence length,vF is the Fermi
velocity, andf is a phase defined as Eq.~A16!. The prob-
abilitiesR̃↓,11

1,eh , R̃↓,11
2,he , andR̃↑,11

2,eh show the sameL dependence

as R̃↑,11
1,he in Eq. ~31!, and therefore the current in antiparall

alignment, Eq. ~30!, decreases rapidly with a rate o
(kFL)23, oscillating with period ofp with increasingkFL.
Note that thekFL dependence of the probabilities is dom
nated by the term (kFL)23, not the exponential term exp
(2L/j),33 sincekFj@1.55,56

s
,

FIG. 3. The absolute value of MR as a function ofL in the case
that the exchange fieldh0 /mF are 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

FIG. 4. The current as a function ofL in the case ofh0 /mF

50.6. The solid and dashed lines are for the currents in the a
parallel and parallel alignment, respectively.
4-4
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We next consider theL dependence of MR for severa
values of the exchange field in the case thatWF510/kF and
Z50 ~Fig. 3!. In this case, there are several propagat
modes in FM1 and FM2. The magnitude of MR decrea
with increasingL for each value of the exchange field. Th
behavior of MR is understood by considering theL depen-
dence of the current in parallel and antiparallel alignment.
shown in Fig. 4, in the case thath050.6mF , the finite cur-
rent in the parallel alignment flows because ordinary A
dreev reflection occurs and is almost independent ofL. On
the other hand, the current in antiparallel alignment
creases with increasingL since the contribution of the
crossed Andreev reflection process to the current decre
with increasingL, and therefore the magnitude of MR d
creases with increasingL. In this case, the oscillation of th
current in antiparallel alignment is suppressed because e
trons and holes in the several propagating modesl in Eq.
~10! contribute to the current and wash out the oscillatio
The reason why MR forh050.8mF(0.5mF) are almost equa
to MR for h050.7mF(0.4mF) is as follows. In Fig. 5, theh0
dependence of MR is plotted. We find three drops in MR
h0;0.12mF , 0.62mF , and 0.92mF . MR for h0
50.8mF(0.5mF) andh050.7mF(0.4mF) are in the same pla
teau. This plateau structure is understood by considering
denominatorI AP and the numeratorI P2I AP in Eq. ~29! sepa-

FIG. 6. The current as a function ofh0 for L510/kF . The solid
and dashed lines are for the current in the antiparallel and par
alignment, respectively.

FIG. 5. MR as a function ofh0 for L510/kF .
17450
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rately. As shown in Fig. 6,I AP is mainly given by ordinary
Andreev reflection and decreases with increasingh0 because
the number of channels for the minority spin decreases b
when passing acrossh0;0.12mF , 0.62mF , and 0.92mF . Es-
pecially, in the range ofh0 /mF50.92–1, there is no open
channel for minority spin and ordinary Andreev reflection
completely prohibited. Therefore, we find MR521 ~see
Fig. 5!. Figure 7 shows theh0 dependence ofI P2I AP, which
is mainly due to the crossed Andreev reflection. The mag
tude of I P2I AP is much smaller than that ofI AP, and there-
fore MR shows the plateau structure as shown in Fig. 5,
MR for h050.8mF(0.5mF) are almost equal to MR forh0
50.7mF(0.4mF).

Finally, we investigate the effect of the interfacial barrie
on the transport in this system. Figure 8 shows theL depen-
dence of MR forh050.6mF and several values of interfacia
barrier parameterZ. As seen in Fig. 8, MR approaches ze
with increasingL and shows a strong dependence on
height of the interfacial barrierZ. The decrease of MR with
increasingL is explained by the same way as in the case
no interfacial barriers~Fig. 3!. To investigate theZ depen-
dence of MR in detail, we calculate theZ dependence of MR
for kFL510, 15, and 20 as shown in Fig. 9. The magnitu
of MR decreases with increasingZ in the range ofZ&0.5

lel

FIG. 7. The difference between the currents in the parallel
antiparallel alignment as a function ofh0.

FIG. 8. MR as a function ofL for various values of the interfa
cial barrier parameterZ andh0 /mF50.6.
4-5
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and is almost constant forL in the range ofZ*0.5. This
dependence is understood as follows. MR consists of
denominatorI AP and the numeratorI P2I AP, which mainly
come from the process of ordinary Andreev reflection a
crossed Andreev reflection, respectively. Crossed Andr
reflection is more sensitive to scattering at the interfac
barriers than ordinary Andreev reflection, and therefore
value of I P2I AP decreases more rapidly than that ofI AP in
the range ofZ&0.5, and therefore the magnitude of M
decreases with increasingZ for kFL510, 15, and 20 as
shown in Fig. 9.

Although the impurity scattering in the SC and the pro
imity effect are neglected in our theory, these assumpti
are justified as follows. First, as shown in the present ca
lations, the crossed Andreev reflection process occurs on
scale which is less than several nanometers forkF;1 Å21

~Ref. 57!. This scale is much smaller than the mean free p
of the SC,56 and therefore the effect of impurity scattering
the SC on the crossed Andreev reflection is neglected. S
ond, in the present paper, we consider the case that the
of the contacts of FM1 and FM2 with the SC are seve
nanometers and thus the proximity effect can
neglected.33,47–49

IV. CONCLUSION

We present a theory of crossed Andreev reflection
structures consisting of a superconductor with two ferrom

FIG. 9. MR as a function of the height of the interfacial barrie
Z for h0 /mF50.6. The solid, dashed, and dotted lines represent
case ofkFL510, 15, and 20.
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netic leads. By extending the BTK theory to this system,
calculate the current and magnetoresistance due to cro
Andreev reflection. It is shown that the dependence of
crossed Andreev reflection on the distance between two
romagnetic leads,L, is given by the interference between th
wave functions in ferromagnetic leads. The probability
crossed Andreev reflection follows (kFL)23, wherekF is the
Fermi wave number, and therefore the magnetoresista
due to crossed Andreev reflection strongly decreases
increasingkFL except for the case of half metallic ferroma
nets. It is also presented that the dependences of the ma
toresistance on the exchange field show a plateau struc
and the magnitude of the magnetoresistance rapidly
creases with increasing the height of the interfacial barrie
These dependences are explained by considering the rel
between the probabilities of ordinary Andreev reflection a
crossed Andreev reflection.
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APPENDIX: BOUNDARY CONDITIONS

The coefficientsas,ln , bs,ln , cs,ln , ds,ln , as,ln , and
bs,ln in Eqs. ~13!, ~14!, and ~15! are determined from the
boundary conditions~16! and~17! as follows.20,52–54Substi-
tuting the wave functions~13!, ~14!, and~15! for the bound-
ary conditions~16! and ~17!, we obtain

H S 1

0DFFM1,n~y!1(
l 51

` Fas,lnS 0

1D 1bs,lnS 1

0D GFFM1,l~y!J
3u1~y!1(

l 51

` Fcs,lnS 0

1D 1ds,lnS 1

0D GFFM2,l~y!u2~y!

5(
l 51

` Fas,lnS u0

v0
D 1bs,lnS v0

u0
D GFSC,l~y!uS~y! ~A1!

and

e

H S ps,n
1 2 i

2mH

\2 D S 1

0DFFM1,n~y!1(
l 51

` Fas,lnS ps,l
2 2 i

2mH

\2 D S 0

1D 2bs,lnS ps,l
1 1 i

2mH

\2 D S 1

0D GFFM1,l~y!J u1~y!

1(
l 51

` Fcs,lnS qs,l
2 2 i

2mH

\2 D S 0

1D 2ds,lnS qs,l
1 1 i

2mH

\2 D S 1

0D GFFM2,l~y!u2~y!

5(
l 51

` Fas,lnkl
1S u0

v0
D 2bs,lnkl

2S v0

u0
D GFSC,l~y!uS~y!. ~A2!
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First, by multiplying both sides of Eq.~A1! by FSC,m(y) and
integrating them with respect toy, we obtain

S 1

0DL1,nm1(
l 51

` Fas,lnS 0

1D 1bs,lnS 1

0D GL1,lm

1(
l 51

` Fcs,lnS 0

1D 1ds,lnS 1

0D GL2,lm

5as,mnS u0

v0
D 1bs,mnS v0

u0
D , ~A3!

whereL1(2),lm(L) is the overlap integral between the wa
functions in FM1~FM2! and SC, and is given by

L1,lm~L !5E
(L2WF)/2

(L1WF)/2

FFM1,l~y!FSC,m~y!dy, ~A4!

L2,lm~L !5E
(2L2WF)/2

(2L1WF)/2

FFM2,l~y!FSC,m~y!dy. ~A5!

Second, by multiplying both sides of Eq.~A2! by FFM1,m(y)
and integrating them with respect toy, we obtain

S ps,m
1 2 i

2mH

\2 D S 1

0D dmn1as,mnS ps,m
2 2 i

2mH

\2 D S 0

1D
2bs,mnS ps,m

1 1 i
2mH

\2 D S 1

0D
5(

l 51

` Fas,lnkl
1S u0

v0
D 2bs,lnkl

2S v0

u0
D GL1,ml , ~A6!

wheredmn is a Kronecker delta defined as

dmn5H 1 ~m5n!,

0 ~mÞn!.
~A7!

Third, by multiplying both sides of Eq.~A2! by FFM2,m(y)
and integrating them with respect toy, we obtain

cs,mnS qs,m
2 2 i

2mH

\2 D S 0

1D 2ds,mnS qs,m
1 1 i

2mH

\2 D S 1

0D
5(

l 51

` Fas,lnkl
1S u0

v0
D 2bs,lnkl

2S v0

u0
D GL2,ml . ~A8!
17450
By solving the Eqs.~A3!, ~A6!, and~A8!, the coefficients
as,ln , bs,ln , cs,ln , ds,ln , as,ln , andbs,ln are determined.
In the numerical calculation, we truncate the number
channels in the ferromagnetic leads~FM1 and FM2! and SC
by the cutoff constantsMF and MS , respectively. TheMF
andMS are taken to be large enough to make the calcula
results converge.

Especially, in the half metallic (h0 /mF51) FM1 and
FM2 with width WF54/kF , there is only one propagatin
model 51 in Eq. ~10!. In this case, we can neglect the ev
nescent model>2 and take the cutoff constant in FM1 an
FM2 to beMF51. In the case of no interfacial barriers (Z
50), at the low-energy region (E;0), the coefficient of the
crossed Andreev reflection part in the wave function of FM
c↑,11, is written as

c↑,11;
C1G11C2G2

C3
, ~A9!

where

C15 ip1~p21V1
2!~q12V2

2!, ~A10!

C25 ip1~p22V1
1!~q11V2

1!, ~A11!

C35@p1p21V1
1V1

22~p12p2!~V1
12V1

2!/2#

3@q1q21V2
1V2

22~q12q2!~V2
12V2

2!/2#,

~A12!

wherep65p↑,1
6 , q65q↑,1

6 , andG6 is the interference term
between the wave functions of FM1 and FM2 through S
which strongly depends onL, given by

G6~L !5(
m

`

km
6L1,1m~L !L2,1m~L !

;
kFA2kFWF

4
~kFL !23/2exp~2L/2j!

3expF6 i S kFL2
3p

4 D G ~A13!

and

V1(2)
6 5(

m

`

km
6L1(2),1m

2 . ~A14!

Substituting Eq.~A9! for Eq. ~18!, we obtain
R̃↑,11
1,he5kF

3WF

uC1u21uC2u21C1C2* ei (2kFL23p/2)1C1* C2e2 i (2kFL23p/2)

8uC3u2
~kFL !23exp~2L/j!

;
kF

3WFuC1u2

4uC3u2
@12sin~2kFL1f!#~kFL !23exp~2L/j!, ~A15!

wheref is a phase given by

C1C2* 5uC1C2* ueif, ~A16!

and we use the relationuC1u2.uC2u2.uC1C2* u.
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