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Heat-capacity scaling function for confined superfluids
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We study the specific-heat scaling function of confined superfluids using Monte Carlo simulation. While the
scaling function is insensitive to the microscopic details, it depends on the confining geometry and boundary
conditions (BC’s). In the present work we have studi€éd) cubic geometry with open BC’s in all three
directions andb) parallel-plate(film) geometry using open BC's along the finite dimension and periodic BC’s
along the other two dimensions. We find that the specific-heat scaling function is significantly different for the
two different geometries studied. The scaling function for each geontatrgr (b) is very different when
compared to that obtained for the same geometry but with periodic BC’s. On the contrary, we find that in case
(b) the calculated scaling function is very close to the earlier calculated using Dirichlet instead of open BC’s.
This demonstrates that Dirichlet and open boundary conditions act in a similar way. Our results for both scaling
functions obtained for the parallel-plate geometry and for cubic geometry with open BC’s along the finite
dimensions are in very good agreement with recent very-high-quality experimental measurements with no free

parameters.
DOI: 10.1103/PhysRevB.68.174503 PACS nuniber64.60.Fr, 64.70-p, 67.40.Kh, 67.40.Rp
I. INTRODUCTION versal scaling function for the specific heat for a well-defined

confining geometry. In other words, the scaling function does
Thermodynamic quantities such as the specific heat beaot depend on the microscopic details, but only depends on
come nonanalytic at a critical point associated with a seconcdthe nature of the universality class of the system, the confin-

order phase transition. For a finiter confined system with  ing geometry, and the boundary conditions which are felt by
a finite dimension such as a film characterized by a lebgth the order parameter.

close enough to the critical point such that the correlation |n this limit (t—0 andL—o) the scaling function is
length becomes comparable or larger thasuch thermody-  different for the three different cases mentioned previously
namic quantities are significantly altered; the reason is thaor the following reason: For a fixed value g1 and for
the degrees of freedom of the system are correlated to eagfhy large value of there is always a sufficiently small value
other over the entire system. Examples of such confined sysf t satisfying the condition where the correlation length is
tems are(@ a film of thicknessL where the system is con- much larger tha.. However, in this limit caséa) is the case
fined in one spatial dimensioiih) a barlike geometry with of a 2D plane, casé) is the case of a 1D line, and cas®
cross sectiol. X L and infinite length{such a pore or a wile  is the zero-dimensional case. Thus the val(e) for suffi-
where the system is confined in its two spatial dimensions, ogiently small values ofx| should be very different for these
(c) a cubic geometry of size® where the system is finite in  three geometries.

all three dimensiong3D). For any thermodynamic observ-  Though earlier experiments on superfluid helium films of
able we can define a system specific dimensionless quantitinite thicknes$ seemed to confirm the validity of the finite-
a scaling functiort; for example, in the case of the specific size scaling(FSS, there were later experimeftswhere it
heat near the critical point and for sufficiently larjewe  was shown that the superfluid density of thick helium films

may define the following scaling function: does not satisfy FSS when the expected values of critical
exponents were used. Similarly, in measurements of the spe-
1 C(t,L)—c(0») cific heat of helium in finite geometries, other than the ex-
f(x=tL")= ————F, ) o
c(0,L)—c(0.°) pected values for the critical exponents were fooind.

More recent experiments in microgravity environnfeas
wheret=T/T,—1 is the reduced temperature aod,L) is  well as Earth-bound experimeffsare consistent with scal-
the specific heat for the case of the system confined within &ng and they have determined the specific-heat scaling func-
finite lengthL. For a given case of confining geometry andtion for the parallel platéfilm) geometry case(a)] and they
given the condition which the order parameter satisfies at thare in reasonable agreement with the scaling function as was
boundaries of the system, asapproaches infinity and predicted by Monte Carlo simulatioh¥’ and renormaliza-
—0, the scaling function depends only on the value of thetion group technique¥: While the specific-heat scaling func-
combinationx=tLY”—namely, on the length in units of tion for case (b) confinement has been theoretically
the correlation length&(t)~t~”. A dimensionless function determined and it was found to be significantly suppressed
such asf(x) defined by Eq(1) can be thought of as a uni- relative to cas€a) there are so far no experimental data to

0163-1829/2003/687)/1745036)/$20.00 68 174503-1 ©2003 The American Physical Society



KWANGSIK NHO AND EFSTRATIOS MANOUSAKIS PHYSICAL REVIEW B68, 174503 (2003

compare. More recently, the specific-heat scaling function

for case(c) has been experimentally determinéd? <O>:Z_1f [T dé.0[ glexp(— ), ()
The main goal of this paper is to present the results of our '

Monte Carlo simulations to determine the specific-heat scal

ing function for cubes with open boundary conditidB<'s) O[ 8] denotes the dependence of the physical obsen@ble

n aI_I three o_hrectmns[conf_lnmg case(C)]. _In th|§ case the on the configuration{ #;}, and the partition functiorZ is
scaling function characterizes the zero-dimensional to three—iven by

dimensional transition. Our results for the scaling function
are compared to the very recently obtained experimental re-
sults for the specific-heat scaling function in the case of cu- Z:f IT dé.exp—pH). (6)

bic confinement®'*We find satisfactory agreement with no i

free parameters. In addition, we present results for the

specific-heat scaling function for the parallel-plate geometry \We computed the specific heatT,L) of the x-y model

on lattices of sizel;XL,XL with Ly=L,>L where we as a function of temperature on several cubic lattités
have applied periodic BC’s along the, , directions and (with L=20,30,40,50). Open(free) boundary conditions
open BC’s along the film-thickness direction of sizeThe  were applied in all directions; namely, the spins on the sur-
latter case was carried out in order to compare the results fdace of the cube are free to take any value. These spins
Dirichlet BC's (vanishing order parameter on the top andinteract only with the five nearest neighbors, one in the inte-
bottom of the film obtained earlie?:*° In Refs. 9 and 10 it rior and four on the surface of the cube, and there is one
was found that while the results with periodic BC’s along themissing neighbor. We have also calculated the specific-heat
film-thickness direction were very different from those ob- scaling functionf,(x) (to be defined in the following sec-
tained with Dirichlet BC's, the results obtained with Dirich- tion) for the case of the parallel-plate geometryX L,x L

let BC's fit the experimental results with no free parameter(L, ,>L) using periodic boundary conditions along the long
In this paper we find that the scaling function obtained withdirections of the film and open BC’s along the thickness
open BC'’s along a finite dimension is close to that obtainedjirectionL. For this case we need to take the lirif ;— oo

with Dirichlet and also fits reasonably well the experimentalfirst; in Ref. 10 , it was found that using; =L,=5L was

results obtained by the so-called confined heliumiarge enough, in the sense that systematic errors due to the

whereH=H/J is the energy in units o and3=J/T. Here

experimerft (CHEX). finite-size effects from the fact that, , are not infinite are
smaller than the statistical errors for realistic computational
II. MONTE CARLO CALCULATION time scales. The present simulations for films were done on

) i lattices 60 60X 12, 70< 70X 14, and 8x 80X 16. Calcula-

We have performed a numerical study of the scaling betjon for such films with Dirichlet BC'Swhich are achieved
havior of the specific heat ofHe in a cubic and in a film  ysing an antiferromagnetic pseudospin alignment for the
geometry at temperatures close to the critical temperaturgnins on the boundayyvere reported in Refs. 9 and 10.

T, . The superfluid transition of liquidHe belongs to the We used the Monte CarlMC) method and in particular
universality class of the three-dimensionay model; thus,  wolff's cluster algorithm'® We carried out of the order of
we are going to use this model to compute the specific hea§o 000 MC steps for thermalization to obtain equilibrium
at temperatures neaf, using the cluster Monte Carlo configurations. We made of the order of 10 000—50 000 mea-

15 H H ] . .
method.” The x-y model on a lattice is defined as surements allowing 500 MC steps between successive mea-
surements to obtain statistically uncorrelated con-
H=-32 s, ?) figurations.

@)
where the summation is over all nearest neighb(ﬁs, Il SCALING FUNCTIONS
=(cos#,sind) is a two-component vector which is con-  The main goal of this paper is to present a calculation of
strained to be on the unit circle, addsets the energy scale. the specific-heat scaling function for the case of cubic con-
We define the energy density of our model as follows: finement and open BC's. In this calculation we have used
open BC'’s in all three directions of the cube. We found that
1 .- using open BC'’s the results for the specific-heat scaling were
E=(e)=3— V< 2 S;- Sj> : (3 very close to those obtained with Dirichlet BC’s. This will be
(D) demonstrated in the next section where we compare the pre-
whereV=L3 for the cubes an&=HLZ for the film geom-  Viously published resufts® for fims with Dirichlet BC's
etry. We have calculated the specific heat using the expre&nd results reported in this paper for films with open BC's.
sion One can imagine a number of different scaling functions
for the specific heat. Any dimensionless combination such as
c=VT 4((e?)—(e)?). (4)  the ratio given by Eq(1) can be used as a scaling function.
However, the various experimental groups have extracted
The above thermal averages denoted by the angular bracketgo scaling functions, the so-calléd(x) and f,(x) with x
are computed according to =tLY". These scaling functions are defined as follows:
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-0.95 ' ' . . In order to calculate the universal functidn(x) [Eq.

(8)], we need to know the bulk specific heat,>) also.

.‘v’. Since we are restricting ourselves to the critical region, we
3

L ]

a ;Sep:g d‘i;% . may write the following:
oo ®0% oo -

c(t>02)=c(0%)+Cc t™ 9, (10)

@
g’ ® c(t<02)=c(02)+c; /r|t| ", (12

—f(x)
[<:5]

1
%@ r=—, (12)
-1.05 4 Cq

wherer is the universal amplitude ratio and it is most accu-
@%%% $ % rately determined experimentally*® from the critical prop-
erties of bulk helium to be =1.053(2) (Ref. 17. Inserting
Egs.(10) and(11) into Eqg.(8), we obtain

-1.1

o A W 20 % fo(tL¥)=[c(00) —c(t,L)Jt"+c;, t>0, (13
FIG. 1. The scaling function-f(x) defined by Eq(1). fo(tL™)=[c(00) —c(t,L)]|t|*+cy/r t<0, (14)
which can be calculated by using our computétiL) and

c(t,L)—c(tg,®) =L f(tL¥), (7)  the values ot(0%) andc; from Ref. 16.

N " IV. FILMS WITH OPEN BOUNDARY CONDITIONS
[c(t, ) —c(t,L) Jt*=fo(tL™). () . . :
In Refs. 9 and 10 the specific-heat scaling function for a
C_parallel—plate geometry on lattices of sizge XL, XL with

We limit our goal to calculate the specific-heat scaling fun L.—L,>L was calculated. In Refs. 9 and 10 periodic BC's

tion for the confined geometry and not the bulk critical ex- T - ;
ponents or critical amplitude ratios. We take the values foflong theL, , directions and staggere@irichlet) BC's or
eriodic BC'’s along the film-thickness direction of sikze

the bulk cr_itical expor_lents and the _universal amplitude ratio%/ere applied. It was found that while the calculated scaling
as determined experimentaly.Previous !V_IC work such as function for the parallel-plate geometry using periodic BC's
the work of Ref. 16 shows that the critical exponents are, o, o three directions was very different from that ob-
within error bars from the experimental values. Recentsineq with Dirichlet BC's along the top and bottom of the
ana'llyse of the most accurate experimental results for bullgjate and periodic BC’s along the other two long directions,
helium'” finds good agreement with the theoretical resiilts the Jatter scaling function fits the experimental results with
for the critical exponents. Our approach to use the expering free parameter. This was explained on the basis that
mentally determined values of the critical exponents and amphysically the order parameter along the film thickness van-
plitude ratios and to determine the scaling function by applyishes at the boundaries of the film and therefore Dirichlet
ing FSS on the calculated(t,L) has no fitting parameters BC's are more appropriate.
and this allows no ambiguity. Therefore we use0.6709 as In this paper we have used open BC'’s along the top and
obtained from accurate experimetitsuch as the so-called bottom of the plate, instead of Dirichlet BC's, and periodic
lambda point experimentLPE), an experiment in micro- BC’s along the two long directions of the plate. Since the
gravity environment. The hyperscaling relation=2—3v film tgrmina_tes on the top and bottom surfaces, for the pseu-
yields a/v=-0.0189, and the correlation lengts(t) dospins which belong to these two surfa(:msthe language
— &2 [t| " becomes equal to the system sizat the reduced of the x-y mode) there are no neighboring spins beyond the
temperaturdy, i.€.,ty= (gg/l_)l/v with £ =0.498. top and bottc;m subrfacedplanes 3f ;he pla;;t_e. Ther_efore, even if
In order to find the universal functiof{x) defined by Eq. we use opettiree) boundary conditions, this termination acts

as a “zero-order parameter constraint” beyond the top and
(1), we need to knouc(0<). We use the bulk values for 1) uqm of the plate. This implies that these two BC's—

c(0,©) obtained by studying the finite-size scaling of the namely, staggered BC's and open BC's—are very similar for
specific heat of cubes with periodic BCSIn Fig. 1 the  thick enough films.

scaling function— f(x) obtained for cubes with open BC'sin  |n order to make a direct comparison of our calculated
all three directions is compared to that obtained with periodict, (x) to the experimental,(x), we express all lattice units

BC's.'® in physical units using the following equatidn:
The scaling functionf,(x) [Eq. (7)] can be calculated
using our calculated(t,L) and f100[phys= M 100 jattice (15
mGB —alv
C(tg,%2)=c(0°)+c ity %, (9) NS5 (alA)—ev, (16)

whereV,, is the molar volume of liquid helium at the point
and saturated vapor pressukg, is Boltzmann’s constant,
anda the lattice spacing in the-y model required to make

where the values of(0,) andc; for the x-y model are
obtained from Ref. 16.
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FIG. 2. Film geometry: the computed universal functiqiix)
with open BC's(solid circles is compared to the previously calcu-
lated scaling function using Dirichlet BCi&ef. 9 (data shown as
starg and periodic BC'{shown as plus signsnd the experimental
results of Lipaet al. (Ref. 6 (open circley and those of Mehta

et al. (Ref. 8 (open triangles

x=tL"”

FIG. 4. The universal functiof,(x) for cubes of size.® with
open boundary conditions.

the theoretical results for the specific-heat scaling function
and the experimental results is quite good taking into consid-
eration the fact that there is no free parameter.

contact with the critical behavior of the correlation length in

helium. This prefactoh =15.02 J/(Kmol) and it was deter-

mined in Ref. 9.

In Fig. 2 we compare the results féy for the case of
films obtained with open BC'’s along the direction of the film
thickness to those obtained earli€tand to the experimental
results®® It is clear that within error bars our results for the
specific-heat scaling function are the same for both cases

BC's.

While the scaling function is sensitive to boundary condi-
tions, this indicates that it is hard to distinguish Dirichlet
from open BC’s for the specific-heat scaling function. We
feel that when we use physical BC's the agreement betweelf

V. CUBIC CONFINEMENT

In this section we present the results for the scaling func-
tions f,(x) andf,(x) obtained for cubes of size® with L
=20,30,40,50 using open and periodic BC’s in all three di-
rections. As was shown in the previous section offese)
(l;}C's are similar to using Dirichlet BC's and they both ex-
press the physical condition imposed by the confinement or
the termination of the system. In Fig. 3 we compare the
scaling functionf;(x) obtained for open BC’s with that ob-
tained for periodic BC's® Notice the suppression df (x)
hen calculated with open BC'’s relative to the case of peri-
odic BC’s. This is similar to the case of the parallel-plate
geometry(Fig. 2). The scaling function$;(x), however, are

1.5 T T T
20 T
1 L
A L=20
15 L < L=30 i
05 T<T, O L=40
LB O L=50
0 10 R
X <I> i A ¢
= 5 8280 § Ty
—05 f‘i 2 5l © % o ¢'w v
. e N = 5
° oA B agey B
-1 r T>T o =
ot o o 1
15| ] &
5 5 |
a0 _20 0 20
i -10 L .
x=tL 10 100
x=tL"

FIG. 3. The scaling functiofi;(x) obtained for cubes of size’

with open(solid circles and that obtained for cubes with periodic

BC's (open circleg are compared.

FIG. 5. The universal functiof,(x) for cubes of size.® with
periodic boundary conditions.
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‘ tween the scaling function calculated with open BC’s and
© Monte gg::g;gggg dIiBCCBC experiment is quite satisfactory considering the fact that
so- @ O Experiment ] there is no free parameters.

T<T,

VI. CONCLUSIONS

30T In this paper we have used tkey model which describes

the fluctuations of the superfluid order parameter near the
critical point to calculate the scaling functions associated
with the specific heat for the case where the superfluid is
confined in a cubic geometry and in parallel-plate geometry.
Both in the theoretical calculations and in the experiments,
the region very near the superfluid transition is probed such
that the correlation length associated with the superfluid or-
_10 . L der parameter is of the size of the confining length.
0 1 " 10 100 First, we calculated the specific-heat scaling function for
x=t the case of parallel-plate confining geometry using open
FIG. 6. The computed universal functidp(x) for open and  boundary conditions along the top and bottom surfaces of the
periodic BC's and for cubes is compared to the experimental resultélm. Our results are very close to those obtaidwith
(Refs. 13 and 14 Dirichlet (staggered BC)salong the top and bottom surfaces
of the film. Both calculations are in satisfactory agreement
very different for cubic and parallel-plate geometry. Notice,with experimental results® while the results of earlier cal-
for instance, that for the case of cubic confinement with opermulations using periodic boundary conditidheere found to
BC’s f,(x) is negative for all values ok, something very disagree with the experimental scaling function near the su-
different from what happens for any of the calculated or theperfluid transition.
experimental scaling functions for parallel-plate confine- Just recently, experimental measuremeritson super-
ment. fluid helium confined in cubes became available. This
In Fig. 4 we give the results of our present Monte Carloprompted us to calculate the heat-capacity scaling function
calculation of the functiorf,(x) for cubes with open BC's of superfluids for cubic confinement. When we used open
using Eqgs.(13) and (14). Figure 5 shows the results of our boundary conditions in all three directions of the cube we
calculation with periodic boundary conditions. Figure 6 com-find very good agreement between the calculated and the
pares the scaling functiofy(x) obtained for open BC’s and measuretf**scaling functions with no adjustable parameter.
for periodic BC's. Notice the qualitatively different behavior On the contrary, if periodic boundary conditions are used at
for the same scaling function for the same geometry but difthe boundaries of the cube, which are unphysical boundary
ferent boundary conditions. conditions for a confined system, there is great disagreement
Experimentally the universal scaling functidn(x) for  between the calculated and measured specific-heat scaling
cubic confinement has just become availdBf In order to  functions.
make a direct comparison of our calculated scaling function
f5(x) to the experimentally determined, we express all lattice
units in physical units. The prefactor is the same as in the ACKNOWLEDGMENTS
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