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Heat-capacity scaling function for confined superfluids
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We study the specific-heat scaling function of confined superfluids using Monte Carlo simulation. While the
scaling function is insensitive to the microscopic details, it depends on the confining geometry and boundary
conditions ~BC’s!. In the present work we have studied~a! cubic geometry with open BC’s in all three
directions and~b! parallel-plate~film! geometry using open BC’s along the finite dimension and periodic BC’s
along the other two dimensions. We find that the specific-heat scaling function is significantly different for the
two different geometries studied. The scaling function for each geometry~a! or ~b! is very different when
compared to that obtained for the same geometry but with periodic BC’s. On the contrary, we find that in case
~b! the calculated scaling function is very close to the earlier calculated using Dirichlet instead of open BC’s.
This demonstrates that Dirichlet and open boundary conditions act in a similar way. Our results for both scaling
functions obtained for the parallel-plate geometry and for cubic geometry with open BC’s along the finite
dimensions are in very good agreement with recent very-high-quality experimental measurements with no free
parameters.
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I. INTRODUCTION

Thermodynamic quantities such as the specific heat
come nonanalytic at a critical point associated with a seco
order phase transition. For a finite~or confined! system with
a finite dimension such as a film characterized by a lengtL,
close enough to the critical point such that the correlat
length becomes comparable or larger thanL, such thermody-
namic quantities are significantly altered; the reason is
the degrees of freedom of the system are correlated to
other over the entire system. Examples of such confined
tems are~a! a film of thicknessL where the system is con
fined in one spatial dimension,~b! a barlike geometry with
cross sectionL3L and infinite length~such a pore or a wire!
where the system is confined in its two spatial dimensions
~c! a cubic geometry of sizeL3 where the system is finite in
all three dimensions~3D!. For any thermodynamic observ
able we can define a system specific dimensionless qua
a scaling function;1 for example, in the case of the specifi
heat near the critical point and for sufficiently largeL we
may define the following scaling function:

f ~x5tL1/n!5
c~ t,L !2c~0,̀ !

c~0,L !2c~0,̀ !
, ~1!

wheret5T/Tl21 is the reduced temperature andc(t,L) is
the specific heat for the case of the system confined with
finite lengthL. For a given case of confining geometry a
given the condition which the order parameter satisfies at
boundaries of the system, asL approaches infinity andt
→0, the scaling function depends only on the value of
combinationx5tL1/n—namely, on the lengthL in units of
the correlation lengthj(t);t2n. A dimensionless function
such asf (x) defined by Eq.~1! can be thought of as a un
0163-1829/2003/68~17!/174503~6!/$20.00 68 1745
e-
d-

n

at
ch
s-

or

ity,

a

e

e

versal scaling function for the specific heat for a well-defin
confining geometry. In other words, the scaling function do
not depend on the microscopic details, but only depends
the nature of the universality class of the system, the con
ing geometry, and the boundary conditions which are felt
the order parameter.

In this limit (t→0 and L→`) the scaling function is
different for the three different cases mentioned previou
for the following reason: For a fixed value ofx!1 and for
any large value ofL there is always a sufficiently small valu
of t satisfying the condition where the correlation length
much larger thanL. However, in this limit case~a! is the case
of a 2D plane, case~b! is the case of a 1D line, and case~c!
is the zero-dimensional case. Thus the valuef (x) for suffi-
ciently small values ofuxu should be very different for thes
three geometries.

Though earlier experiments on superfluid helium films
finite thickness2 seemed to confirm the validity of the finite
size scaling~FSS!, there were later experiments3,4 where it
was shown that the superfluid density of thick helium film
does not satisfy FSS when the expected values of crit
exponents were used. Similarly, in measurements of the
cific heat of helium in finite geometries, other than the e
pected values for the critical exponents were found.5

More recent experiments in microgravity environment6 as
well as Earth-bound experiments7,8 are consistent with scal
ing and they have determined the specific-heat scaling fu
tion for the parallel plate~film! geometry@case~a!# and they
are in reasonable agreement with the scaling function as
predicted by Monte Carlo simulations9,10 and renormaliza-
tion group techniques.11 While the specific-heat scaling func
tion for case ~b! confinement has been theoretical
determined12 and it was found to be significantly suppress
relative to case~a! there are so far no experimental data
©2003 The American Physical Society03-1
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compare. More recently, the specific-heat scaling funct
for case~c! has been experimentally determined.13,14

The main goal of this paper is to present the results of
Monte Carlo simulations to determine the specific-heat s
ing function for cubes with open boundary conditions~BC’s!
in all three directions@confining case~c!#. In this case the
scaling function characterizes the zero-dimensional to th
dimensional transition. Our results for the scaling functi
are compared to the very recently obtained experimenta
sults for the specific-heat scaling function in the case of
bic confinement.13,14 We find satisfactory agreement with n
free parameters. In addition, we present results for
specific-heat scaling function for the parallel-plate geome
on lattices of sizeL13L23L with L15L2@L where we
have applied periodic BC’s along theL1,2 directions and
open BC’s along the film-thickness direction of sizeL. The
latter case was carried out in order to compare the results
Dirichlet BC’s ~vanishing order parameter on the top a
bottom of the film! obtained earlier.9,10 In Refs. 9 and 10 it
was found that while the results with periodic BC’s along t
film-thickness direction were very different from those o
tained with Dirichlet BC’s, the results obtained with Dirich
let BC’s fit the experimental results with no free parame
In this paper we find that the scaling function obtained w
open BC’s along a finite dimension is close to that obtain
with Dirichlet and also fits reasonably well the experimen
results obtained by the so-called confined heliu
experiment6 ~CHEX!.

II. MONTE CARLO CALCULATION

We have performed a numerical study of the scaling
havior of the specific heat of4He in a cubic and in a film
geometry at temperatures close to the critical tempera
Tl . The superfluid transition of liquid4He belongs to the
universality class of the three-dimensionalx-y model; thus,
we are going to use this model to compute the specific h
at temperatures nearTl using the cluster Monte Carlo
method.15 The x-y model on a lattice is defined as

H52J(
^ i , j &

sW i•sW j , ~2!

where the summation is over all nearest neighborssW
5(cosu,sinu) is a two-component vector which is con
strained to be on the unit circle, andJ sets the energy scale

We define the energy density of our model as follows:

E5^e&532
1

V K (
^ i , j )

sW i•sW j L , ~3!

whereV5L3 for the cubes andV5HL2 for the film geom-
etry. We have calculated the specific heat using the exp
sion

c5VT22~^e2&2^e&2!. ~4!

The above thermal averages denoted by the angular bra
are computed according to
17450
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^O&5Z21E )
i

du iO@u#exp~2bH!, ~5!

whereH5H/J is the energy in units ofJ andb5J/T. Here
O@u# denotes the dependence of the physical observabO
on the configuration$u i%, and the partition functionZ is
given by

Z5E )
i

du iexp~2bH!. ~6!

We computed the specific heatc(T,L) of the x-y model
as a function of temperature on several cubic latticesL3

~with L520,30,40,50). Open~free! boundary conditions
were applied in all directions; namely, the spins on the s
face of the cube are free to take any value. These s
interact only with the five nearest neighbors, one in the in
rior and four on the surface of the cube, and there is o
missing neighbor. We have also calculated the specific-h
scaling functionf 1(x) ~to be defined in the following sec
tion! for the case of the parallel-plate geometryL13L23L
(L1,2@L) using periodic boundary conditions along the lo
directions of the film and open BC’s along the thickne
directionL. For this case we need to take the limitL1,2→`
first; in Ref. 10 , it was found that usingL15L255L was
large enough, in the sense that systematic errors due to
finite-size effects from the fact thatL1,2 are not infinite are
smaller than the statistical errors for realistic computatio
time scales. The present simulations for films were done
lattices 60360312, 70370314, and 80380316. Calcula-
tion for such films with Dirichlet BC’s~which are achieved
using an antiferromagnetic pseudospin alignment for
spins on the boundary! were reported in Refs. 9 and 10.

We used the Monte Carlo~MC! method and in particular
Wolff’s cluster algorithm.15 We carried out of the order o
30 000 MC steps for thermalization to obtain equilibriu
configurations. We made of the order of 10 000–50 000 m
surements allowing 500 MC steps between successive m
surements to obtain statistically uncorrelated co
figurations.

III. SCALING FUNCTIONS

The main goal of this paper is to present a calculation
the specific-heat scaling function for the case of cubic c
finement and open BC’s. In this calculation we have us
open BC’s in all three directions of the cube. We found th
using open BC’s the results for the specific-heat scaling w
very close to those obtained with Dirichlet BC’s. This will b
demonstrated in the next section where we compare the
viously published results9,10 for films with Dirichlet BC’s
and results reported in this paper for films with open BC

One can imagine a number of different scaling functio
for the specific heat. Any dimensionless combination such
the ratio given by Eq.~1! can be used as a scaling functio
However, the various experimental groups have extrac
two scaling functions, the so-calledf 1(x) and f 2(x) with x
5tL1/n. These scaling functions are defined as follows:
3-2
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HEAT-CAPACITY SCALING FUNCTION FOR CONFINED . . . PHYSICAL REVIEW B68, 174503 ~2003!
c~ t,L !2c~ t0 ,`!5La/n f 1~ tL1/n!, ~7!

@c~ t,`!2c~ t,L !#ta5 f 2~ tL1/n!. ~8!

We limit our goal to calculate the specific-heat scaling fun
tion for the confined geometry and not the bulk critical e
ponents or critical amplitude ratios. We take the values
the bulk critical exponents and the universal amplitude ra
as determined experimentally.17 Previous MC work such as
the work of Ref. 16 shows that the critical exponents
within error bars from the experimental values. Rec
analysis of the most accurate experimental results for b
helium17 finds good agreement with the theoretical result18

for the critical exponents. Our approach to use the exp
mentally determined values of the critical exponents and
plitude ratios and to determine the scaling function by app
ing FSS on the calculatedc(t,L) has no fitting parameter
and this allows no ambiguity. Therefore we usen50.6709 as
obtained from accurate experiments17 such as the so-calle
lambda point experiment~LPE!, an experiment in micro-
gravity environment. The hyperscaling relationa5223n
yields a/n520.0189, and the correlation lengthj(t)
5j0

6utu2n becomes equal to the system sizeL at the reduced
temperaturet0, i.e., t05(j0

1/L)1/n with j0
150.498.

In order to find the universal functionf (x) defined by Eq.
~1!, we need to knowc(0,̀ ). We use the bulk values fo
c(0,̀ ) obtained by studying the finite-size scaling of t
specific heat of cubes with periodic BC’s.16 In Fig. 1 the
scaling function2 f (x) obtained for cubes with open BC’s i
all three directions is compared to that obtained with perio
BC’s.16

The scaling functionf 1(x) @Eq. ~7!# can be calculated
using our calculatedc(t,L) and

c~ t0 ,`!5c~0,̀ !1c1
1t0

2a , ~9!

where the values ofc(0,̀ ) and c1
1 for the x-y model are

obtained from Ref. 16.

FIG. 1. The scaling function2 f (x) defined by Eq.~1!.
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In order to calculate the universal functionf 2(x) @Eq.
~8!#, we need to know the bulk specific heatc(t,`) also.
Since we are restricting ourselves to the critical region,
may write the following:

c~ t.0,̀ !5c~0,̀ !1c1
1t2a, ~10!

c~ t,0,̀ !5c~0,̀ !1c1
1/r utu2a, ~11!

r 5
c1

1

c1
2 , ~12!

wherer is the universal amplitude ratio and it is most acc
rately determined experimentally17,19 from the critical prop-
erties of bulk helium to ber 51.053(2) ~Ref. 17!. Inserting
Eqs.~10! and ~11! into Eq. ~8!, we obtain

f 2~ tL1/n!5@c~0,̀ !2c~ t,L !#ta1c1
1 , t.0, ~13!

f 2~ tL1/n!5@c~0,̀ !2c~ t,L !#utua1c1
1/r t ,0, ~14!

which can be calculated by using our computedc(t,L) and
the values ofc(0,̀ ) andc1

1 from Ref. 16.

IV. FILMS WITH OPEN BOUNDARY CONDITIONS

In Refs. 9 and 10 the specific-heat scaling function fo
parallel-plate geometry on lattices of sizeL13L23L with
L15L2@L was calculated. In Refs. 9 and 10 periodic BC
along theL1,2 directions and staggered~Dirichlet! BC’s or
periodic BC’s along the film-thickness direction of sizeL
were applied. It was found that while the calculated scal
function for the parallel-plate geometry using periodic BC
along all three directions was very different from that o
tained with Dirichlet BC’s along the top and bottom of th
plate and periodic BC’s along the other two long direction
the latter scaling function fits the experimental results w
no free parameter. This was explained on the basis
physically the order parameter along the film thickness v
ishes at the boundaries of the film and therefore Dirich
BC’s are more appropriate.

In this paper we have used open BC’s along the top
bottom of the plate, instead of Dirichlet BC’s, and period
BC’s along the two long directions of the plate. Since t
film terminates on the top and bottom surfaces, for the ps
dospins which belong to these two surfaces~in the language
of thex-y model! there are no neighboring spins beyond t
top and bottom surface planes of the plate. Therefore, eve
we use open~free! boundary conditions, this termination ac
as a ‘‘zero-order parameter constraint’’ beyond the top a
bottom of the plate. This implies that these two BC’s
namely, staggered BC’s and open BC’s—are very similar
thick enough films.

In order to make a direct comparison of our calculat
f 1(x) to the experimentalf 1(x), we express all lattice units
in physical units using the following equation:9

f 1~x!uphys5l f 1~x!u latt ice , ~15!

l[
VmkB

a3 ~a/Å!2a/n, ~16!

whereVm is the molar volume of liquid helium at thel point
and saturated vapor pressure,kB is Boltzmann’s constant
anda the lattice spacing in thex-y model required to make
3-3
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contact with the critical behavior of the correlation length
helium. This prefactorl515.02 J/(K mol) and it was deter
mined in Ref. 9.

In Fig. 2 we compare the results forf 1 for the case of
films obtained with open BC’s along the direction of the fil
thickness to those obtained earlier9,10 and to the experimenta
results.6,8 It is clear that within error bars our results for th
specific-heat scaling function are the same for both case
BC’s.

While the scaling function is sensitive to boundary con
tions, this indicates that it is hard to distinguish Dirichl
from open BC’s for the specific-heat scaling function. W
feel that when we use physical BC’s the agreement betw

FIG. 3. The scaling functionf 1(x) obtained for cubes of sizeL3

with open~solid circles! and that obtained for cubes with period
BC’s ~open circles! are compared.

FIG. 2. Film geometry: the computed universal functionf 1(x)
with open BC’s~solid circles! is compared to the previously calcu
lated scaling function using Dirichlet BC’s~Ref. 9! ~data shown as
stars! and periodic BC’s~shown as plus signs! and the experimenta
results of Lipaet al. ~Ref. 6! ~open circles! and those of Mehta
et al. ~Ref. 8! ~open triangles!.
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the theoretical results for the specific-heat scaling funct
and the experimental results is quite good taking into con
eration the fact that there is no free parameter.

V. CUBIC CONFINEMENT

In this section we present the results for the scaling fu
tions f 1(x) and f 2(x) obtained for cubes of sizeL3 with L
520,30,40,50 using open and periodic BC’s in all three
rections. As was shown in the previous section open~free!
BC’s are similar to using Dirichlet BC’s and they both e
press the physical condition imposed by the confinemen
the termination of the system. In Fig. 3 we compare
scaling functionf 1(x) obtained for open BC’s with that ob
tained for periodic BC’s.16 Notice the suppression off 1(x)
when calculated with open BC’s relative to the case of pe
odic BC’s. This is similar to the case of the parallel-pla
geometry~Fig. 2!. The scaling functionsf 1(x), however, are

FIG. 4. The universal functionf 2(x) for cubes of sizeL3 with
open boundary conditions.

FIG. 5. The universal functionf 2(x) for cubes of sizeL3 with
periodic boundary conditions.
3-4
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very different for cubic and parallel-plate geometry. Notic
for instance, that for the case of cubic confinement with op
BC’s f 1(x) is negative for all values ofx, something very
different from what happens for any of the calculated or
experimental scaling functions for parallel-plate confin
ment.

In Fig. 4 we give the results of our present Monte Ca
calculation of the functionf 2(x) for cubes with open BC’s
using Eqs.~13! and ~14!. Figure 5 shows the results of ou
calculation with periodic boundary conditions. Figure 6 co
pares the scaling functionf 2(x) obtained for open BC’s and
for periodic BC’s. Notice the qualitatively different behavio
for the same scaling function for the same geometry but
ferent boundary conditions.

Experimentally the universal scaling functionf 2(x) for
cubic confinement has just become available.13,14 In order to
make a direct comparison of our calculated scaling funct
f 2(x) to the experimentally determined, we express all latt
units in physical units. The prefactor is the same as in
case of the functionf 1(x):

f 2~x!uphys5l f 2~x!u latt ice , ~17!

wherel is the constant given in the previous section by E
~16! and its numerical value isl515.02 J/(K mol).

In Fig. 6, f 2(x) obtained from our MC calculation is com
pared with the experimental data.13,14 The agreement be

FIG. 6. The computed universal functionf 2(x) for open and
periodic BC’s and for cubes is compared to the experimental res
~Refs. 13 and 14!.
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tween the scaling function calculated with open BC’s a
experiment is quite satisfactory considering the fact t
there is no free parameters.

VI. CONCLUSIONS

In this paper we have used thex-y model which describes
the fluctuations of the superfluid order parameter near
critical point to calculate the scaling functions associa
with the specific heat for the case where the superfluid
confined in a cubic geometry and in parallel-plate geome
Both in the theoretical calculations and in the experimen
the region very near the superfluid transition is probed s
that the correlation length associated with the superfluid
der parameter is of the size of the confining length.

First, we calculated the specific-heat scaling function
the case of parallel-plate confining geometry using op
boundary conditions along the top and bottom surfaces of
film. Our results are very close to those obtained9,10 with
Dirichlet ~staggered BC’s! along the top and bottom surface
of the film. Both calculations are in satisfactory agreem
with experimental results6–8 while the results of earlier cal
culations using periodic boundary conditions16 were found to
disagree with the experimental scaling function near the
perfluid transition.

Just recently, experimental measurements13,14 on super-
fluid helium confined in cubes became available. T
prompted us to calculate the heat-capacity scaling func
of superfluids for cubic confinement. When we used op
boundary conditions in all three directions of the cube
find very good agreement between the calculated and
measured13,14scaling functions with no adjustable paramet
On the contrary, if periodic boundary conditions are used
the boundaries of the cube, which are unphysical bound
conditions for a confined system, there is great disagreem
between the calculated and measured specific-heat sc
functions.
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