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BCS theory for s¿g-wave superconductivity in borocarbides Y„Lu …Ni2B2C
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The s1g mixed gap functionDk5D@(12x)2x sin4u cos 4f# (x: weight of theg-wave component! has
been studied within BCS theory. By suitable consideration of the pairing interaction, we have confirmed that
the coexistence ofs andg waves, as well as the state with equals andg amplitudes~i.e.,x51/2) may be stable.
This provides the semiphenomenological theory for thes1g-wave superconductivity with point nodes which
has been observed experimentally in borocarbide YNi2B2C and possibly in LuNi2B2C.
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I. INTRODUCTION

The rare-earth nickel borocarbidesRNi2B2C (R5Y, Lu,
Tm, Er, Ho, and Dy! have attracted great interest in rece
years due to superconductivity~SC! as well as its possible
coexistence with antiferromagnetic order.1,2 It has initially
been thought that these materials can be understood
largely isotropic s-wave pairing via the conventiona
electron-phonon coupling.3 However, various recent exper
mental results particularly on the two nonmagnetic boroc
bides Y(Lu)Ni2B2C, including specific heat,4–7 thermal
conductivity,8,9 Raman scattering,10 NMR relaxation rate,11

photoemission spectroscopy,12 scanning tunneling micros
copy, and spectroscopy,13 have unambiguously shown tha
the gap function is highly anisotropic~with anisotropy ratio8

Dmin /Dmax<1022 in YNi2B2C). For example, theAH depen-
dence of the specific heat in the vortex state indicates a
perconducting state with nodal excitations.4–6 The T3 power
law behavior of the spin-lattice relaxation rate11 also sug-
gests the existence of nodes. Very recently, compelling
dence has been presented by Izawaet al. from the angular-
dependent thermal conductivity in a magnetic field that
gap function of YNi2B2C has point nodes which are locate
along the@1,0,0# and @0,1,0# directions.8 The same conclu-
sion can be also drawn from the angular-dependent spe
heat data.7 A highly anisotropics-wave gap~with possible
nodes! was also discovered in LuNi2B2C by thermal conduc-
tivity measurements as a function of temperature and fi
strength.9 Thus the previous isotropics-wave theory has to
be critically reconsidered.

Recently Makiet al. have proposed that the so calleds
1g-wave spin singlet gap function for Y(Lu)Ni2B2C super-
conductors, i.e.,14,15,8

Dk5
D

2
~12sin4u cos 4f!, ~1!

is consistent with the experimental observation. Hereu,f
are the polar and azimuthal angles ofk, respectively. The
second ‘‘g-wave’’ contribution is given by a fourth degre
fully symmetric (A1g) basis functionc (4)(u,f) in tetragonal
D4h symmetry which is, up to a constant, equal to the r
‘‘tesseral harmonic’’ functionZ44

c (u,f)5(1/A2)@Y4
4(u,f)

1Y4
24(u,f)#. We have
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c (4)~u,f!5kx
41ky

426kx
2ky

25sin4u cos 4f. ~2!

In the gap function~1!, the amplitudes ofs and g compo-
nents are assumed to be equal. Thus 4~and only 4! point
nodes atu5p/2 andf50,p/2,p,3p/2 are realized, see th
middle panel of Fig. 1. This is exactly what has been o
served experimentally.8 Based on the above gap functio
quite a few physical properties have been calculated suc
thermal conductivity,8 Raman spectra,16 sound attenuation,17

etc., and good agreement with the experimental result
obtained.

On the other hand, there is no symmetry reason for
constraint of equal amplitudes ofs andg. More generally, the
s1g gap function can be described by

Dk5D@~12x!2x sin4u cos 4f#5D f ~u,f! ~3!

with a tuning parameterx characterizing the weight of the
g-wave component. Obviously Eq.~1! corresponds to the
special casex51/2. If x,1/2, thes wave is dominant and
the nodes will be removed; while ifx.1/2, theg wave has a
strong weight and will contribute eight line nodes. The thr
different cases have been shown in thexy plane in Fig. 1.

The natural question then arises of how to understand
origin of the aboves1g hybrid pairing. So far, a micro-
scopic theory for the pairing potential is not available whi
might be complicated due to the complex Fermi surface
borocarbides18 and the possibility of strongly anisotropi
Coulomb interactions. As a first step, however, it is necess
to investigate phenomenologically how thes1g state can be
realized by constructing an appropriate pairing potent
This is the topic of the present work. As shown below, with
BCS weak-coupling theory we have found that a stable
existence ofs andg waves requires a pairing potential whic
includes the cross term betweens- andg-wave functions. In
particular, we will show how the fine-tuningx51/2 s1g can
be realized almost independent of temperature belowTc .

A similar issue has been addressed by Lee and Choi19 in
their theory to explain Raman scattering data, but no co
plete study was presented. First, they do not consider thu
dependence of theg-wave part, i.e., implicitly assume a ga
function with cylindrical symmetry. Second, they adopt g
models with a strongg component. As shown before in Fig
1, they will exhibit eight line nodes, which are inconsiste
with the experimental results8 which have revealed fou
point nodes.
©2003 The American Physical Society01-1
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II. PAIRING INTERACTION AND BCS THEORY
FOR THE s¿g WAVE STATE

In view of the orthogonality ofs- andg-wave functions in
Eq. ~3!, one may naturally express the pairing potential
sum of two separable parts whose weight is given by t
parametersVs andVg :20

Vkk852@Vs1Vgc (4)~u,f!c (4)~u8,f8!#. ~4!

Here the unprimed and primed angles correspond tok and
k8, respectively. Each term in Eq.~4! is separable with re-
spect to wave vectorsk andk8.

Here we try to propose a pairing potential, similar to th
used in Ref. 19 for the cylindrical gap, by adding anoth
mixing termVsg :

Vkk852$Vs1Vgc (4)~u,f!c (4)~u8,f8!1Vsg@c (4)~u,f!

1c (4)~u8,f8!#%. ~5!

Before we proceed to solve the gap equation using
pairing potential~5! we first would like to discuss the reaso
for its form in more detail. For a continuum system with fu
translation and rotation symmetry, the pairing potentialVkk8
is only a function ofuk2k8u, or the angle between the tw
wave vectors in view ofuku,uk8u.kF ~the Fermi wave vec-
tor!. ThenVkk85V( k̂• k̂8), with k̂• k̂8 denoting the cosine o
the angle betweenk and k8, can be expanded in terms o

FIG. 1. Thexy-plane (u5p/2) polar plots of thes1g wave gap
uDku for various tuning parametersx.
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s
o

t
r

e

Legendre polynomials. And by use of the spherical harmo
addition theorem, it can be finally written as

V~ k̂• k̂8!5(
l 50

`

Vl (
m52 l

l

Ylm~u,f!Ylm* ~u8,f8! ~6!

through spherical harmonicsYlm(u,f). Obviously theVs
term corresponds tol 50 and theVg term results from the
sum of (l ,m)5(4,4) and (4,24). But the cross term;Vsg
in Eq. ~5! cannot be obtained from Eq.~6!. So we are led to
go beyond the above formalism to considerVkk8 as a general
function which depends onk and k8 individually. This will
be the case when the fact of having only discrete latt
translation and rotation symmetry is considered. Then
pair potential has to be expanded in terms of the basis fu
tions cG

i ( l )(u,f) of the crystal symmetry group (D4h) be-
longing to a specific irreducible representationG of degreel
and degeneracy indexi. The generalized expansion the
reads, suppressing the multiplicity index ofG,

Vkk85(
G l l 8

VG
( l l 8)~k,k8!(

i
cG

i ( l )~u,f!cG
i ( l 8)~u8,f8!* .

~7!

For basis functions of different degreel , l 8 but belonging to
the same representationG the contribution will generally be
nonzero. Then forG5A1g and l 50, l 854 or vice versa one
can naturally obtain the nondiagonal contributionsVA1g

(04)

}Vsg in D4h symmetry.
The pairing potential~5! is therefore a reasonable choic

for our problem and we can now solve the correspond
standard BCS gap equation which reads

Dk52(
k8

Vkk8

Dk8

2Ek8

tanh~bEk8/2!, ~8!

whereb51/(kBT) andEk5A(«k2m)21Dk
2 is the quasipar-

ticle spectrum.«k is the free electron dispersion andm is the
chemical potential. It is easy to check that the gap funct
~3! is a self-consistent solution of Eq.~8! under the pairing
interaction~5!, if the gap amplitudeD and tuning paramete
x satisfy the following self-consistent equations:

12x5Vs(
k

f ~uk ,fk!

2Ek
tanh~bEk/2!

1Vsg(
k

c (4)~uk ,fk!
f ~uk ,fk!

2Ek
tanh~bEk/2!,

~9!

2x5Vg(
k

c (4)~uk ,fk!
f ~uk ,fk!

2Ek
tanh~bEk/2!

1Vsg(
k

f ~uk ,fk!

2Ek
tanh~bEk/2!. ~10!

where the angles have been indexed by their correspon
wave vector for clarity. Replacing the summation by integ
tion according to
1-2
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(
k

.
N~0!

4p E
2\vD

\vD
djE dV,

where \vD is an energy cutoff to enforce the constra
u«k2mu<\vD (vD : Debye frequency for phonon-mediate
SC! andN(0) is the density of states at zero energy for t
spectrum«k2m, we may obtain the following equations:

12x5
1

4p
~ṼsI 11ṼsgI 2!, ~11!

2x5
1

4p
~ṼgI 21ṼsgI 1!. ~12!

Above, Ṽs5N(0)Vs , Ṽg5N(0)Vg , Ṽsg5N(0)Vsg are re-
defined dimensionless interaction constants, and the integ
I 1,2 are written as follows:

I 15E
0

1

djE dV
f tanh~bAj21D2f 2/2!

Aj21D2f 2
, ~13!

I 25E
0

1

djE dVc (4)
f tanh~bAj21D2f 2/2!

Aj21D2f 2
, ~14!

where we use the abbreviated symbolsf andc (4), and\vD
has been taken as the energy unit.

III. NUMERICAL RESULTS

We first considerVsg50, i.e., assume the pairing pote
tial ~4!. It was found that one or twos1g solutions~i.e., D

.0, 0,x,1) may appear whenṼg is quite a few times
greater thanṼs . On the other hand, it is easy to check th
the pures wave (x50) and pureg wave (x51) are always
trivial solutions. Thus one needs to compare their free e
gies to find the stable solution. In unit ofN(0)(\vD)2 the
free energy is given by

F52
1

2pE0

1

djE dVFAj21D2f 21
2

b
ln~11e2bAj21D2f 2

!G
1D2~12x!2/Ṽs1D2x2/Ṽg . ~15!

Detailed calculation shows that thes1g mixed state is un-
stable in most of the parameter space. As an example
have shown in Fig. 2 all the solutions and their relative e
ergies as functions ofṼg for fixed Ṽs50.2 andT50. Two
s1g solutions may be present, as shown by the dotted
dashed lines. But compared to the pures- and/or g-wave
solutions, they are found to be energetically unfavorable,
the lowest panel in Fig. 2.21 Thus thes1g mixture seems
very unlikely under the pairing interaction which is the su
of two separable parts~4!.

Once VsgÞ0, the above situation changes substantia
Now the pures andg waves are no longer solutions of Eq
~11! and ~12!, i.e., only the possibility of the mixeds1g
solutions is present. We have checked within a broad ra
of Vg /Vs that a singles1g solution exists for nearly al
17450
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Vsg,0. As for the realization of thex51/2 s1g state, we
discuss the details in the following.

First we consider the special caseVs5Vg52Vsg . Then,
by adding Eqs.~11! and~12! one can immediately obtain th
solution with x51/2 independent of temperature, whic
means thats andg waves always coexist with equal ampl
tudes. This result is obvious because in this case the pa
interaction~5! can be simply factorized again into the for
f (u,f)* f (u8,f8) with fixed x51/2. Then only the gap am
plitude D(T) is left. It decreases gradually withT and van-
ishes at the transition temperatureTc , as shown by the
dashed line in the upper panel of Fig. 3 whereṼs50.2 is
used.

Generally, the three interaction parameters have differ
absolute values. Various situations can be described by
ing these model parameters. We use the following strateg
choose reasonable values: First, we fix the value ofṼs , e.g.,
0.2 throughout the work which sets the overall scale forTc .
Then we assume a value forṼg and tuneṼsg to realize the
s1g state with the constraintx51/2 at T50. Experimen-
tally, the detection of nodes by the field angular-depend
thermal conductivity is applicable only at very low temper
tures, i.e.,T!Tc . Thus the measurement actually provid
evidence of point nodes only forT→0, as described by the

FIG. 2. The parametersD, x, and relative energyDE as func-

tions of Ṽg for Ṽs50.2 (Ṽsg50) and T50. The solid and dot-
dashed lines are for pureg- ands-wave solutions, respectively. Th
dotted and dashed lines are for two possibles1g mixed solutions.
The energy of the pures-wave solution is taken as the referen
point in the lowest panel. Energy unit forD is \vD and forDE is
N(0)(\vD)2.
1-3
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constraint. In this way, the valueṼsg may be determined fo
each givenṼg . We have obtained a nearly linear relatio
betweenṼsg and Ṽg , as shown in Fig. 4. For example, fo
Ṽs50.2 we haveṼsg.20.2410.2Ṽg . With the interaction
parameters fixed we can now study an intriguing issue h
the x51/2 fine-tunings1g state atT50 evolves with tem-
perature. One would expect that not only the gap amplit
D, but also the tuning parameterx will change with tempera-
ture. If it decreases, the node points would cease to exist
a gap would open with increasing temperature. In princi
this is indeed observed. As an example, we takeṼg50.1.
ThenṼsg.20.22 is obtained to realize thex51/2 s1g so-
lution atT50. Under these interaction parametersD(T) and
x(T) are calculated self-consistently from Eqs.~11! and~12!.
The results are shown by the solid lines in Fig. 3. It is int
esting to see thatx varies with T monotonically and very
slowly. In the current example withVg,Vs , x becomes less
than 1/2 at finiteT. However, the deviation from 1/2 is les
than 1% even atT5Tc . This means that a very strong a
isotropic gap withDmin /Dmax<1022 is present in the whole

FIG. 3. The order parameterD and tuning parameterx as func-
tions of temperatureT. D andT are in units of\vD . The solid lines

are forṼs50.2, Ṽg50.1, Ṽsg520.22, and the dashed lines are f

Ṽs5Ṽg52Ṽsg50.2 corresponding to the special case
T-independentx51/2 s1g wave.
ty

an
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superconducting region essentially still describing a gap w
point nodes. Thus we conclude thats1g pairing with nodal
excitations is a robust solution for all temperatures belowTc
and should not be considered as accidental. We also men
that x becomes larger than 1/2 at finiteT for the choice of
Vg.Vs ~not shown!, but again only a small deviation is ob
tained.

IV. CONCLUSION

In the above section, we have obtained a stable hybrs
1g-wave state within BCS theory based on the phenome
logical pairing interaction~5!. Also we have realized thex
51/2 hybrid state which has point nodes by an appropr
choice of the interaction parameters. In particular, we h
confirmed that the hybrid state with highly anisotropic g
may be robust in the whole superconducting region be
Tc . This provides the semiphenomenological theory to u
derstand thes1g (x51/2) gap function proposed by Mak
et al.14 Thus the explanation of the experimentally observ
point nodes in borocarbides Y(Lu)Ni2B2C can be achieved
in a self-consistent way. A microscopic theory of our ph
nomenological pairing model is yet to be developed. Fina
we mention that similars1g mixed gap functions are als
proposed very recently for skutterudite PrOs4Sb12,22 and
their justification should be possible based on a sim
analysis as presented here.
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FIG. 4. The requiredVsg /Vs vs Vg /Vs for a few differentṼs , in
order to realize thex51/2 s1g-wave nodal gap function atT
50.
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