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Bias voltage dependence of the magnetoresistance in ballistic vacuum tunneling:
Theory and application to planar Co(0001) junctions
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Motivated by first-principles results for jellium and by surface-barrier shapes that are typically used in
electron spectroscopies, the bias voltage in ballistic vacuum tunneling is treated in a heuristic manner. The
presented approach leads in particular to a parametrization of the tunnel-barrier shape, while retaining a
first-principles description of the electrodes. The proposed tunnel barriers are applid@@@Tplanar tunnel
junctions. Besides discussing main aspects of the present scheme, we focus in particular on the absence of the
zero-bias anomaly in vacuum tunneling.
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[. INTRODUCTION anomaly(ZBA) in vacuum tunneling of G®001) which was

recently found by Ding and co-workérélends itself support

At present, extensive efforts are undertaken to employ th&r an application of the proposed tunnel bariifar an ex-
electronic spin in “magnetoelectronic” devices. This aim perimental investigation of Co PTJ's with an oxide barrier,
challenges especially applied physics, but one is also corsee Ref. & We note in passing that the effect of interface

cerned with model systems of spin-dependent transport iftates on vacuum tunneling in fcc-@01) was recently in-
order to understand the basic phenomeRaototypical de- Vestigated theoreticalfy™* o
vices for studies of ballistic tunneling are planar tunnel junc- "€ paper is organized as follows. In Sec. Il, two heuristic

tions (PTJ'S, which consist of two magnetic electrodes sepa-WaYs of constructing a tunnel barriesecs. 11 B 2 and Il B 3

rated by an insulating spacer. Of particular interest are th&® mot_lvated. Sec. 1€ deals .W'th computational aspects of
dependencies of the tunnel magnetoresistait4R) on the calpulatlons for ballistic tunneling. Resu_lts for vacuum tun-
electronic structure of the leads and the spacer, on the Widtﬂe“ng between G®00)) electrodes are discussed in Sec. lIl.

of the spacer, and on the bias voltage.

The conductance of a PTJ depends on the density of states Il THEORETICAL
(DOY of the electrodes and of the tunneling probability of
the scattering channetsThe TMR can then be related to the A. Surface-barrier shapes of metals
spin polarization of the ferromagnetic electrodeBiasing, The shape of the surface barrier of a metal was investi-

which can be viewed as a shift of the chemical potential ofgated in a vast amount of publications. The possibility to
one electrode relative to that of the other, enlarges the rangsalculate accurately reflected intensities in low-energy-
of energies in which electrons can tunnel through the spaceglectron diffraction(LEED), which is a particular surface-
and introduces an energy dependence of the electrode spiensitive spectroscopy, led to several barrier models. Espe-
polarization. cially at very low energiesVLEED), the shape of the

State-of-the-art calculations for spin-dependent tunnelingurface barrier has a considerable effect on the LEBD
are based on the very successful density-functional theorgpectra? The free parameters that enter its functional de-
(DFT).* A bias voltage, however, leads to a nonequilibriumscription are fixed by fitting theoretical to experimental data,
state, which makes it difficult to apply DF'TAn appropriate  e.g., to VLEED intensities or to energies of surface and
theoretical description of such a system would require nonimage-potential staté$. The latter can be accessed by in-
equilibrium Green functiongsee, e.g., Ref.)5 Therefore a  verse or by two-photon photoelectron spectroscépyote
question arises of how one can maintain &heinitio frame-  that electronic-structure calculations using the local-density
work of electronic-structure calculations, in particular for theapproximation(LDA) do not reproduce the correct image
leads, but treat the bias voltage in a feasible manner. potential in the vacuum.

Focusing on spin-dependent ballistic tunneling through Regarding electron diffraction, the classical electrostatic
PTJ's with finite bias, we investigate in the present work as gotential at a metal surface, with asymptotidg(z)
simple case tunneling through a vacuum barrier. The elec=1/(4z), was investigated by Mac Cdit:*® To avoid the
tronic properties of the electrodes can still be computediivergence at the metal surface, Cutler and Gibbopso-
within spin-polarized DFT. The crucial point is the electro- posed a model potential which interpolated between the
static potential in the spacer region. Guided by first-(constant inner potentialU of the metal and the image-
principles calculations for jelliufhand by theoretical models charge potential in the vacuum region. Among the various
for surface barriers, we construct tunnel barriers that shovproposed models, two became the most popular: the so-
the correct asymptotical behavior for large spacer thicknessalled JJJ barrier, named after the inventors Jones, Jennings,
In particular, one of them compares well with barrier shapesaind Jepsefi (see Sec. || B 3 beloyy and the Rundgren-
obtainedab initio for jellium. The absence of the zero-bias Malmstran (RM) barrief:®?° (for a discussion of JJJ and RM
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™ z the direct images of the chargg(labeled 1 in Fig. 1,

FIG. 1. Method of image charges for two metallic leddsay (1)
areas. The chargeg= +1 (black circle is located between the left Ves' (2)=— 2
lead £ (with surface atz;) and the right lead? (with surface at
z). Two series of image charges are obtained by reflection at thene sees thaV, represents a higher barrier thMng) be-

surfaces, starting with reflection eitherzzt(white Cil’Cleg oratzyp cause the images of even order produce an additional repu|_
(gray circleg. Each image charge is indicated by the order of re-gjon (+ +” in Fig. 1).

flection (1,2,3...) and thesign of the charge<). Only the first
three orders are depicted. 2. Image-charge potential as tunnel barrier

1 1
+
z2-2;, Zp—z2

o zelzpzgl, ()

barriers, see Ref. J4However, electron scattering is a dy- . The elelctrpstlatqu poten;!al bet\INeen two sen|1|-||nf|n|c';e Jellf'
namical process and these static shapes hold in principle on|é}Jm _metals m_chy Ilglg:Tab 'is Vaol_'E'ag]f! WZS hca culate _she .
for the energy of interest. An energy-dependent generaliz -onsistently within DFT by Lang.He found that even wit
tion of the JJJ barrier suggested by Tamura and Feder provjé”?'te b|a§ the potential in the eIectrers Is constant a few
to be successful in describing the image states at th&1Bd ohr radii (g) apart from the respective surfaces. Further,

surface” Further, the atomic structure at the surface leads téhe dlverg'encg of the classical |mage-'charge pgte\u‘gght.
a corrugated (three-dimensional surface potentia2-26 ¢ @ndzr is bridged over by a smooth interpolating function
However, for most applications the laterallyone- which shows the form of a typical LEED-motivated surface

dimensiongl and energetically invariant shapes appear to bé)amer(cf. Sec. Il A). Anq last, appl|c_at|on of a bias voltage
sufficient. apparently produces a linear potential drop in the spacer re-
gion [cf. Fig. 2b) in Ref. 6]. Guided by these findings we
construct in the following a tunnel barrier by means of the
B. Construction of the tunnel barrier classical electrostatic potentifgEq. (1)] and by LEED-type

In this section, we propose two methods of constructingsurface potentials. _ .
the tunnel barrier. The first method uses the electrostatic po- 10 avoid the divergences of the electrostatic poteivial
tential of a charge between two electrodec. 11 B 2, the & smooth continuous interpolating function between the
second approach is a simple superposition of surface potefinage-charge potential and the inner potentials of the leads,

tials (Sec. 11 B 3. U, andUy, is used(the vacuum energy is taken as energy
zero. For this paper we choose a Lorentzian skapet any
1. Electrostatic potential between two metal surfaces other reasonable shape can be used(see Sec. Il A The

. ) ) . interface potentiaV;; then reads
Consider a planar tunnel junction with the leddoccu-

pying the half space }=,z,], whereas the leadR fills ( -U, ze]—»,29])
[zr [, with z,<zx (Fig. 1). The electrostatic potenti&le eno -1 c v
of a chargeq=1 (black circle in Fig. 1 between the two arl+B(z=2)7T "+ye  zelzpz]
;emi-infinite metals can easily be obtained by the methc_)d of\/if(z): { V(2) ze[z},75] 3.
image charge¥® Because each metal surface acts as a mirror, 1+ ey -1y v ¢
one has to sum up two infinite series of image-charge poten- a1+ Br(z=2z)] YR Ze[Zr.Zz]
tials (white and gray circles in Fig.)1This procedure results L —Ug ze[z,[ |
in 4
z-2, Zp—2 The coordinateg’., ", andz). specify the positions of
Ved2) = 27+\If< ) +v , the onset of the interpolating Lorentzian, of the divergence of
Azr—12,) Zp— 7 Ir—Z

the potentialV, and of the transition t& with respect tol

(Fig. 2. They have to be obtained by comparing theoretical
zelz,,zz[. (1) results with other data, e.g., surface-state energies, VLEED

spectra, etc., for the surface systdne., in the limit z5

Here, y~0.577216 is Euler’s constant and denotes the —x). The parameters,, B,, and y, are fixed by the

digamma functiorf’ The latter is the logarithmic derivative conditions of smooth continuity iz and z/.. Analogous

of the gamma functionI'(z), W(z)=dInI'(2/dz with  considerations apply for the legd. The potentialV in the

P (1)=—1v, ¥(2)xInz for z—w», and ¥ (z)x— y—1/z for interior of the spacer can be chosen to incorporate the elec-

z—0". Obviously, V¢ diverges forz—z, andz—z;. It  trostatic potential between two metal electrodés, and the

shows further the well-known asymptotics for the presencédias voltage as well, as being discussed in the following.

of a single metallic lead. For example, expandMg in a Bringing two metals so close that electrons can tunnel

power series around=z; yields from one metal to the other aligns the Fermi levels of the two
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FIG. 3. Dependence of the interface potental[Eq. (4)] on the

FIG. 2. Image-charge potential as tunnel barrier. The barrierIead separation. The barriers with electrostatic poteigl[Eq.

shape is defined by the parameters as indicatédEq. (4)]. The (1)] are shown for separations of 10, 15, 20, andig§Bohr radiy

Lorentzian shapes extend over the rarigész4] and[z%,25] and at zero biagsolid; E,=0 ?\/). In addition, a barrier with first-order
connect smoothly to the electrostatic potentﬁia[ﬂj z"R7]2.,T7Iz1e lat- approximation _potentlallgs) [_Eq. (8)] is shown for 15 gseparation
ter comprises the image-charge potendgl[Eq. (1)] as well as the (iifizhglﬁie'\;he inner potentials of the leads are equel U
bias potentiaV,, [Eqg. (6)]. The inner potential&) ,.=13.61 eV and ~ '

Ur=12.61 eV for the left and the right lead, respectively, deter-

mine the bias voltage, 1o +1 eV. One advantage of the present approach is that the height

of the tunnel barrier is automatically adjusted in dependence
n the lead separation and on the bias voltage. Further, the
arrier shape shows the correct image potential asymptotics
for large lead separatioref. Eq. (3)]. In turn, the approach
should not be applied for too small separations because the
‘barrier shape would significantly differ from the interface
potential which would be obtained from a self-consistent cal-
culation for a narrow tunnel junction. This, however, could
possibly be compensated by adjusting the parameters
V(2)=Vod2)+Vy(2). 5) z, ... K z%' not for the semi-infinite system but for the
narrow junction.

leads. This energy shift is given by the contact potentiaﬁ
o,— Dy, ie., the difference of the work functiords, of £
and® of R. Note that the alignment of the Fermi levels is
accompanied by a shift of the inner potentials, that is, e.g
Uy of the semi-infinite system is replaced ty,— o,
+® 4. SinceV(z) was not specified explicitly in Eq4), it
can account for the contact potential and the bias voltage,

Here,Vis the electrostatic potential from E@L) andV, is

the bias, for which a linear drop over the interface region is 3. Superposition of surface barriers
assumed: For large lead separations and small bias voltages, the
probability of electrons to tunnel from one lead to the other
0 ze]—=»,z7]
z—-7;
Vi(2)={ Ey—— zelz;.z7] . (6)

R—Z;
E, ze[z5,,0[

This ansatz is motivated by the fact that the electric field is
well screened within the electrodes but unscreened within
the vacuum spacer.

Figure 3 presents a series of tunnel barriers in dependence
of the lead separatior}, —z%. The heights of the barriers
increase with separatiofior an experimental estimation of
the barrier height/s distance, see Ref.,)7As already men-
tioned, taking the first-order approximatiafty) instead of
Vs leads to a reduced heigfif. the dashed line for 18,
lead separation The shape dependence on the bias is ad-
dressed in Fig. 4. For rather large bias, the linear potential 0
drop in the interface region can be clearly retrieved. We note z (Bohr)
in passing that the present construction produces potential
shapes that compare qualitatively well with those obtained FIG. 4. Dependence of the interface pote¥al[Eq. (4)] on the
ab initio for jellium by Lang® Further, a similar approach bias. For a lead separation of &5 (Bohr radij, the right leadR is
was recently used to explain the Stark shifts of surface statesiased from—6 eV to+6 eV (as indicated on the right; alternating
in scanning tunneling spectroscafly. solid and dashed linesj ,=U=13.61 eV).

Vit (eV)

-10 -5 5 10
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0 significantly with bias in[z,,zz], in contrast to the former
constructionFig. 4). In particular, the linear potential drop is
not observed.

o -5
> , ,
L 4. Resume
> _10 The two construction recipes result in tunnel barriers with
different features. While the more elaborate di. (4)]
produces barrier shapes which are qualitatively close to those
15 . . . s obtained from first-principles for jelliuhthe barriers of the

-5 10 -5 10 15 superposition approadteqg. (7)] lack most of these impor-
tant features. In particular, the linear potential drop in the
FIG. 5. Formation of an interface barrier by superposition oftsepr?;ee(; ret%mnelf]erpIs?ljneg.e?]?j?n?pp;ggmizr(;s na(::;;lrlye/et_)e o
surface barriers. Without bias, two surface barriers of JJJ type ( . . gy-aep 9

dimensional tunnel barriers.

dashed-dotted an® dashedl are superposed to yield the interface .
barrier (solid. The inner potentials are equalUf=U, Wang and co-workers obtained the shape of the tunnel

=13.61 eV). The application of a bias shifts the inner potential Ofbarrler by matching tWO surface systems that Were calculated
R (dotted:E,=3 eV, cf. the arrowand results in the other tunnel fOr €qual but opposite shifts of the work fum?t'OHSThe
barrier (also solid. The positions of the image-potential diver- 'esulting bias-dependent barriers agree well with that shown
gences arg,=—7.5 a andzz="7.5 g (Bohr radij, respectively, N Fig. 4.

A =Az=1.25R; [Eq. (8)]. The vacuum level is taken as energy

zero. C. Computational aspects of ballistic tunneling

0 5
z (Bohr)

) ] ) ) For the ballistic-tunneling calculations we applied the
is very small. Hence, in a self-consistent calculation for dayer-KKR  (Korringa-Kohn-Rostokeér — approach  of
tunnel junction, the tunnel barrier appears to be almost exXyaclaren and co-workefswhich is based on the Landauer-

clusively determined by the electron density of the respectivesjiiiiker result for the tunnel conductandeAt a given en-

lead and not significantly influenced by that of the other lead,

This consideration might lead one to construct a tunnel bar(_ergyE and in-plane crystal momentuky, one computes the

rier by superposition of the respective surface barriers Bloch states) andmy, of the electroded’ andR and clas-
y SUperp P ' sifies them with respect to their propagation direction: to the

right (+) or to the left (). The scattering matri$ of the
Vi(2)=V((2) +Vr(2), (7)  spacesS s first computed in a plane-wave basis using LEED
algorithms(like layer doubling and layer stacking; see, for
whereV andVy, are the surface potentials of the respectiveexample, Ref. 3lland subsequently expressed in terms of the
leads. Taking JJJ barriet$pne arrives at scattering channels, i.e., in the Bloch-state basis. The trans-

missionT(Et,IZH) at the tunnel energf, is then a sum over

;1—exp[)\ﬁ(zﬁ—z)] zelzp,] all pairs of Bloch states that are incidentdrand outgoing in
4(z,~2) R,
Vi(2)= U,
" aexplB(z.—2)] +1 zel ==zl T(EI,R”):n;nR |Sn o (B K2 9)
(8) ’

The above sums comprise both majority-and minority-spin

for the surface barrier of. The values ofa, and . are  Bjoch states and thus(E, ;) contains the spin summation
determined by requiring smooth continuity 2&z,. Be-  jmplicitly. The tunnel conductanc&(E,) is obtained by

causeU . is known from the self-consistent calculation for symming over the two-dimensional Brillouin zof2BZ),
the surface systenz,- and\ . remain as the only parameters

to be adjusted. For the surface potential®bne obtains an -
analogous form. G(E)=Go_ > T(E¢ k). (10
. . . ke 2BZ

The simple superposition of surface barriers appears to be 1
problematic for heterojunctions or biased junctions. In bothHere,G,=e?/h is the quantum of conductance which equals
cases, the relative energy shift of one electrode,Baye-  1/(27) in atomic units:®Adaptive mesh refinement provides
sults in a finite potential which extends into the entire otheran efficient method to obtain accurate and well-converged
electrodel. This is due to the fact that the surface potential2BZ sums, in particular, if small parts of the 2BZ contribute
of R extends infinitely far intcC. One way to overcome this significantly to the conductanc®.
problem is to take the bias only as an energy shift in the With a bias voltage applied, electrons can tunnel from
interior of R, that is, to replace the inner potentidl, by  occupied states of one lead into unoccupied states of the
Ur—E. Figure 5 shows such a superposition of JJJ surfacether lead. The total conductance is then obtained by inte-
barriers. The inner potential ® is shifted byE,=3 eV (cf. grating over the energy interval given by the Fermi energies
the arrow. Apparently, the barrier shape does not changeEg of the electrodes. The averaged conductance thus reads
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1 maxEg Err) complex wave numbers, .3%4° Therefore the electrode
G(Ep dE;. (11) eigenfunctions are no longer true Bloch states but become
evanescent statd$m(k, ) #0]. Eigenstates stemming from
The tunnel magnetoresistan€EMR) p is defined as the Bloch stategIm(k,)=0 for =0]show typically the small-
asymmetry of thelaverageyl conductances for paralléP) est Imk,) and can therefore be separated from evanescent
and antiparalle[AP) alignment of the electrode magnetiza- states Im(k,)#0 for 7=0].2n the spacetS, the nonzero
tions, n leads to damping in addition to the intrinsic one, artifi-
cially enhancing the decay of the conductance with spacer
_ GalP)—Ga(AP) 1p thickness. Further, the scattering matfhis no longer uni-
PG (P +Go(AP) (12 tary and hence the total current is not conserved. Therefore
one has to choose carefully in order to produce reliable
To treat in practice the bias voltage we proceed as folresults. We found that a value af=10"* eV produces no
lows. First, self-consistent electronic-structure calculationgonsiderable artefacts.
for the semi-infinite leadsC and R generated muffin-tin The Landauer-Bttiker approach used here avoids the
(MT) potentials of the bulk, of the surface, and in the computation of the Green function of the complete system,
vacuum region. The MT zeroes were taken as inner potenwhich is in particular problematic for a nonequilibrium sys-
tials U, andUy, respectively(the MT zero is the constant tem. Considering the asymptotic transmission channels
potential in the interstitial regionFor each of the leads, the (Bloch statey states that are localized at the barrier do not
MT potentials in the vacuum region were replaced by acontribute to the transmission.
smooth surface barrier, the parameters of which were ob- Recently, Davis and MacLaren reported on model calcu-
tained as follows. lations for spin-dependent tunneling at finite btasn their
The spectral densitie6SD’s) of the surface layers ob- work, however, the electronic structure of the Fe electrodes
tained from anab initio calculation served as reference to was approximated by plane waves, whereas the barrier was
which the SD’s obtained for the corresponding system butssumed as steplike with a linear drop. Although conceptual
with a smooth surface barrier were compared. The paramsimilar, our approach goes beyond that work. First, the elec-
eters of the smooth barrier were modified until the SD’s wererodes are treated on a first-principles level. Second, the bar-
in agreement. The focus laid in particular on the energyier shows the correct asymptotisr the free surfacesand,
range used in the subsequent tunneling calculations and @nce the shape parameters are fixed, depends automatically
surface states. For Q@001), an important feature is the en- on both lead separation and bias.
ergy of the majority surface state EFO [cf. Fig. 2b) in
Ref. 8; see also Refs. 33—t turned out that the latter is IIl. RESULTS FOR Co (0001
very sensitive to the shape of the smooth surface baaier
cording to the so-called “round-trip criterion” of the phase- ~ Recently, Ding and co-workers investigated the bias-
accumulation model for surface states or quantum-welvoltage dependence of the TMR with a spin-polarized scan-
states® it depends on the reflectivity of the surface baprier Ning tunneling microscopéSTM).? In contrast to tunneling
Having fixed the barrier parameters, the tunnel junctionthrough oxide barriers, they observed no zero-bias anomaly
was built from the bulk and surface potentials of the two(ZBA), i.e., a(rathej sharp maximum of the TMR at zero
electrodes and the interface barr[&qgs. (4)—(6)]. Besides bias(see, for example, Ref. 42With a vacuum barrier re-
the smooth interface barrier, the spadecomprises all lay- placing an oxide barrier, the TMR appeared to be almost
ers with MT potentials that differ from the respective bulk constant. This finding suggests that the ZBA is mainly due to
potentials. In example, for a Q@001 tunnel junction the imperfections in oxide barriers, rather than to scattering at
first four layers on either side of the smooth tunnel barriermagnons and spin excitatiofis the leads Further, the so-
were used. The bias was taken into account by shifting théalled DOS effect, i.e., the energy dependence of the spin-
inner potential of one of the leadmuffin-tin zerg and de-  resolved density of states of the leads, proved to be small in
termining the barrier shagé&q. (1)]. The smooth barriev,;  the case of C®001).
was treated as a single layer in the multiple-scattering calcu- The experimental findings of Dingt al. were corrobo-
lations. Its scattering matri®was obtained within the propa- rated by ballistic tunneling calculations for planar(G@0J)
gator formalisn?’ junctions as sketched in Sec. Il C. The tunnel barrier was
The surface barrier of the semi-infinite leads is repretaken as a superposition of surface barrigsc. 11 B 3. In
sented by MT potentials in thab initio calculations. There- the present work, we focus on corresponding calculations but
fore it contains a corrugation, i. e., an in-plane asymmetry ofor the more elaborate image-charge poterftgsc. 11 B 2.
the barrier potential. The smooth barriers used in the present The calculations of Ref. 8 and of the present work differ
work did, however, not account for a corrugation. Since theémainly in the used interface barriers: the superposition of JJJ
main effect on the SD’s is due to the barrier shape along th&arriers(Ref. 8 and the more sophisticated image-potential
surface normal, the influence of the corrugation is regarde@pproach(Sec. 11 B 2. The potentials of the Co electrodes
as of minor importance, in particular at closed-packed metawere identical. Although the parameters of the tunneling cal-
surfaces. culations differed slightlye.g., the number df; used in the
As usual for the KKR method, a small imaginary pgrt 2BZ integration, Eq(10)], the results of both calculations
has to be added to the energ® leading in general to are comparable and of the same accuracy. Since both calcu-

Go= =
& |Erc— Errl ) minEe, Erp)
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FIG. 6. (Colon TransmissionT(EF,IZ”) of vacuum tunneling in 0.0 ) ) ) ) P (*})
Co(000)) for P[(a), top] and AP[(b), bottom| alignment of the lead “ 00 02 04 06 08 10
magnetizations. For 0-eV bias, the lead separation was chosen as E, - Eg, (eV)

7.52 A . The maximum transmission is about 0(®lalignment.

Both panels share the same sgaldote that only the central part of FIG. 7. Ballistic conductancé (in units of Gy, the quantum of

the two-dimensional Brillouin zone is displayed. conductancevs tunnel energy; in Co(0003) for P [(a), bottom]
and AP[(b), top] alignment. The biag, ranges from 0.0 to 1.0 eV

lations rely on the same electrode potentials, the band stru@nd is indicated at the top of each data &{; is the Fermi energy

ture and the spectral density shown in Ref. 8 can be con? l€adL.

sulted' for the interpretation of the results presented in th%ependent DOS in the relevant region of the 2BZ decreases

following. R with energy. We checked the spectral density carefully but
The transmissio (E;, k), Eq.(9), depends on the rela- found no significant feature that would corroborate un-

tive orientation of the lead magnetizatio® and AR, as is  equivocally the latter explanation.

shown for O eV bias(tunneling atEg) in Fig. 6. For The transmission$ (E,,k;) show ringlike structuregFig.

the chosen lead separation of Z.8 , only those Bloch ), the radii of which increase with tunnel energy. The ring

states with aEH in the central part of the 2BZ contribute area, i.e., the area in the 2BZ which contributes most to the

significantly to the transmission. The normal componeniconductance, increases quadratically with radius. Because

of the wave vector within the tunnel barriek, (2) the ring width andT(E,,k) within the ring remain almost

- \/Z[EF—Vif(Z)]—IZf, is imaginary and gives rise to constantwith increasing tunnel energy, the conductances

strongly evanescent states in the tunnel barrier for Blocicreéase approximately quadratically, too, as is particularly
evident forG(AP) [cf. the data for 0.2—1.0-eV bias in Fig.

states with Iargé?u, and thus to a small transmission. For

o< — o 7(b)].
Bloch states withk nearT (i.e.,kj=0), the decay withinthe  However, the preceding explanation cannot explain a fur-
barrier is less and the transmission can be larger. In total, thig,e, interesting feature: the increase ®P) for biases of
results in a “focusing” of T(E; k|) at the 2BZ center. 0.6, 0.8, and 1.0 eV that occurs at tunnel enerigsEg,

Both the P and the AP case show minor transmission closground 0.0, 0.2, and 0.4 eV, respectivifyg. 7(a)]. Inspec-
to I'. These minima are surrounded by ringlike structures otion of the transmissions and of the spectral densitat
increased transmission. The maximum P transmission is-0.6 eV produced no significant feature that would explain
larger than for AP alignmentby a factor of about 10), but this behavior(this is corroborated by findings of LeClair
the AP transmission displays a broader ring compared to thet al®). The feature occurs also for AP alignméRtg. 7(b)]

P transmission. but not as pronounced as in the P case.

When integrated over the 2BZ, one finds tha(P) The increase with bias compensates the decreask;for
>G(AP) (Fig. 7 for zero bias With increasing bias, the =E,, as is shown for the averaged conductanGgs in
conductances for tunneling &=Er, decrease. Since bal- Fig. 8a). WhereasG,(P) decreases slightlgwith a small
listic tunneling is a phase coherent process, shifting of theninimum at zero bigs G,(AP) increases withE,|. There-
electronic states of one electrode relative to those of the othdore the resulting TMRp [Eq. (12)] drops with bias, too.
by the bias might reduce the phase coherence, or the spiktowever, the decrease which is about 15% at 0.6 eV is
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06 F ' ' ' ] non-negligible effect. Therefore details of the barrier are ex-
05 | (b) ] pected to have significant influence on the tunnel magnetore-
o4l ] sistance.
0.3 i 1 1 1 1 1 ]
0.0008 : : : : : IV. CONCLUDING REMARKS

/./'_‘/.\'/‘\‘_'\\ We have proposed an heuristic approach for treating the
0.0006 1

bias voltage in vacuum tunneling. It keeps the first-principle

8’ e P description of the electrodes but replaces the cumbersome
= 0.0004 - o AP 1 electrostatic potential of the tunnel barrier by a smooth inter-

&) W polating form. The parameters of the latter can be obtained

0.0002 1 from ab initio calculations for the semi-infinite systems. We

(a) would like to note that the implementation of the approach in

0.0 : : : : : layer-KKR computer codes is straightforward, but should

08 -04 E 00 04 08 also be feasible in other methodshree-dimensional or
b (€V)
screened KKR
FIG. 8. Magneto-resistance of vacuum tunneling in(@0J). Recent experimental investigations by Ding and

(a) Averaged conductandd,, (in units of G,, the quantum of con- coworker§_ addre_ssed the origin of the_ zero-bias anomaly
ductancgvs biasE,, for P (closed symbolsand AP(open symbols  (ZBA) which typically occurs in tunneling through oxide
alignment[cf. Eq.(11)]. (b) Tunnel magnetoresistanpevs E, [Eq.  barriers. Using a spin-polarized scanning tunneling micro-
(12)]. scope(STM), the tunneling proceeded through the vacuum
barrier between a G6001) surface and an amorphous STM
much less than that observed for oxide barriers. In the latteiP- The observed absence of the ZBA provided evidence for
case, the TMR drops by 50 to 80% at 0.6 #Being due to the ZBA being mainly due to defect scattering in oxide bar-
could term the drop in Fig.(®) as “DOS effect,” rather than interfaces. The latter occur also in the STM experiment
as zero-bias anomaly. whereas defects cannot appear in the vacuum barrier. Our
Since inelastic processéscattering at magnons, spin ex- calculatlons(tm_s wo_rk and Ref. 8 for vacuum tunneling
citations are not included in our theory, one can concludethrough planar junctions showed also no ZBA, therefore cor-
that the ZBA found in tunnel junctions with oxide barriers roborating the exp.erlmental_results and t.hel_r interpretation.
can be attributed to defect scattering in the oxide barrier. Tunnel calculations provide a rather indirect test of the
This finding is consistent with the fact that the ZBA de- Proposed barrier shapes. A more direct one would be to com-
creases with the improvement of the preparation techniquere the_orgtlcal energy positions and_ linewidths of so-called
for ferromagnet-oxide interfacdsee Ref. 8 and references field-emission resonancEswith experimental ones. These
therein. electronic states can be viewed as surface states that are
In a previous investigatioh,we used the superposition trapped between the bulfin the presence of a bulk-band
approach(Sec. 1l B 3 for the tunnel barrier. There, both the 9@P and the tunnel barrier between sample and an STM tip.
averaged conductances and the TMR were almost constaht'@ field-emission resonances show up as sharp maxima in
for biases up to 0.5 eV. Comparing with the present resultghe differential conductance and depend—like the shape of
that were obtained within the image-potential approtsc. thg tunnel barrier—on both bias voltage and tip-sample sepa-
Il B 2), one has to keep in mind that details of the calcula-ation. , .
tions differ (e.g. theIZH mesh. However, these have only As a possible extension of the present work, one could

minor influence. The most striking difference is the shape oit.hmk of a treatment of tunnel junctions with *filled” spacers

the tunnel barrier which is varied in two aspects. First, the(mStead of vacuum in particular with oxide barriers. Fur-

JJJ barrier used in Ref. 8 is rather smooth with respect to thteper’ work is in progress to describe the tunneling with bias

interpolating Lorentzian chosen here. Generally speaking\,/OItage fully on anab initio level.
the latter produces a larger reflection. Second, the shape in
the central part of the barrier differs. In particular for large
lead separations, the barrier height becomes impoftnt We would like to thank Hai Feng Ding, Arthur Ernst,
Figs. 3 and & Further, the linear bias potential which is Ingrid Mertig, Silke Roether, Wulf Wulfhekel, and Peter
missing in the superposition approach is expected to have Zahn for stimulating discussions.
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