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We study the replica field theory which describes the pinning of elastic manifolds of arbitrary internal
dimensiond in a random potential, with the aim of bridging the gap between mean field and renormalization
theory. The full effective action is computed exactly in the limit of large embedding space diméhslte
second cumulant of the renormalized disorder obeys a closed self-consistent equation. It is used to derive a
functional renormalization groupFRG) equation valid in any dimensiod, which correctly matches the
Balents-Fisher result to first order &+ 4—d. We analyze in detail the solutions of the lafyd-RG for both
long- and short-range disorder, at zero and finite temperature. We find consistent agreement with the results of
Mezard and ParigiMP) from the Gaussian variational meth@@VM) in the case where full replica symmetry
breaking(RSB) holds there. We prove that the cusplike non-analyticity in the I&geRG appears at a finite
scale, corresponding to the instability of the replica symmetric solution of MP. We show that the FRG exactly
reproduces, for any disorder correlator and with no need to invoke Parisi's spontaneous RSB, the nontrivial
result of the GVM for small overlap. A formula is found yielding the complete RSB solution for all overlaps.
Since our saddle-point equations for the effective action contain both the MP equations and the FRG, it can be
used to describe the crossover from FRG to RSB. A qualitative analysis of this crossover is given, as well as
a comparison with previous attempts to relate FRG to GVM. Finally, we discuss applications to other problems
and new perspectives.
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. INTRODUCTION and the off equilibrium dynamical versiéi?® The GVM
approximates the replica measure by a replica symmetry bro-
Elastic objects pinned by a quenched random potential arken (RSB) Gaussian, equivalently, the Gibbs measureufor
a relevant model for many experimental systems. It describeas a random superposition of Gaussi&tand is argued to be
interfaces in magnet$ which experience either short-range exact forN=oc. It yields Flory values for the exponefit As
disorder(random bong or long-ranggrandom field disor-  for spin glasses, computing the next order correctiaes in
der, the contact line of a liquid wetting a rough substfdte, 1/N) at the RSB saddle point is very ardudiis?®® One may
or vortex lines in superconductots® It also provides pow- question whether it is the most promising route, since it is as
erful analogies, via mode coupling theory, to complex sysyet unclear whether the huge degeneracy of states encoded in
tems such as structural glasSeé3ne important observable is the Parisi RSB is relevant to describe finlle There seems
the roughness exponefitof the pinned manifold. to be some agreement that this type of RSB does not occur
From the theoretical side, this problem still offers consid-for low d andN. Certainly, in the simpler but still nontrivial
erable challenges. It is the simplest example of a class ad=0 limit, the Parisi type RSB found in the GVM should
disordered systems, including random field magnets, wherexist only atN=, apart from the interesting so-called mar-
the so-called dimensional reductfdfi~'* renders conven- ginal case of logarithmic correlatiod® For the DP, another
tional perturbation theory trivial and useless at zero temperaexactly solvable mean-field limit is the Cayley tree, and there
ture. The elastic object is usually parametrized byNecom-  too it is not clear how to meaningfully expand around that
ponent vectou(x) in the embedding spad®, andxe R%is  limit.3*32
the coordinate in the internal space. Apart from the case of The second main analytical method is the functional
the directed polymerDP) in 1+1 dimensions ¢=1, N renormalization grougFRG) which performs a dimensional
=1), where some exact results were obtaifed® analyti-  expansion around=4 and was originally developed only to
cal results are scarce. One important challenge is to undeene loop, within a Wilson schenfe*~2®Its aim is to include
stand the DP for anyN, due to its exact relation to the fluctuations, neglected in the mean-field approaches. There
Kardar-Parisi-Zhang growth equation whose upper criticatoo, the dynamic€~*! has been investigated. The FRG fol-
dimension is at present not known, and even its very exislows the second cumulant of the random poterf@él) un-
tence is debatet? 23 der coarse graining, a full function since the field is dimen-
Two main analytical approaches have been devised so fasionless ind=4. It was found thaR(u) already becomes
Each succeeds in evading dimensional reduction, providingonanalytic in the one-loop equation &0 after a finite
an interesting physical picture, but comes with its limita- renormalization, at the Larkin scale.
tions. The first one is the mean-field theory, the replica Both methods circumvent dimensional reduction by pro-
Gaussian variational methd@&VM) (Ref. 249 in the statics viding a mechanism which is nonperturbative in the bare
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disorder. The GVM evades dimensional reductidR) reveals that the FR@xactlyreproduces the nontrivial result
thanks to the RSB saddle point. The FRG escapes via thef the GVM with full RSB for small overlap. We also give a
generation of a cusplike nonanalyticity R’(u) at u=0.  formula which yields the complete RSB solution for all over-
Indeed, while the bare disorder correlator is an analytic functaps. At no point in our derivation Parisi RSB is invoked, as
tion, FRG fixed points for the renormalizd®{u), perturba- replica symmetry is broken explicitly here. Since our saddle
tive in e=4—d, are found only in the space of nonanalytic point equations for the effective action contain both the MP
functions, and subject to the condition that the resulting exequations and the FRG, it can be used to describe the cross-
ponent{ is nontrivial. Both methods are disconcertingly dif- over from the FRG to the RSB. A qualitative analysis of this
ferent in spirit and it is an outstanding question in the theorycrossover is given, as well as a comparison with previous
of disordered systems how to compare and reconcile thengttempts to relate the FRG to the GVKFinally, applica-
Comparisons were made between some predictions of tHéons to other problems and new perspectives are discussed.
one-loop FRG and of the GVN¥I*® Balents and Fisher ob- A short version of this work has appeared in Ref. 46. In a
tained the one-loop FRG equation for ahyrestricted to  related papet’ we give all details of the calculation of the
O(e), and found that its solution reproduces the Flory valueQ(1/N) corrections, with the aim of understanding finite but
of ¢ for long-range disorder, but yields subtle corrections forlarge N.
short-range disorder, exponentialh The outline of the paper is as follows. In Sec. Il we define
Physically both methods capture the metastable states b#he model, the effective action, and its physical interpreta-
yond the Larkin scalé . and it is tempting to compare how tion. In Sec. Ill we compute the effective action at laige
they describe them. In Ref. 42 a coarse grained random paising the saddle point method, and perform a cumulant ex-
tential was defined and it was found within the GVM that its Pansion(Sec. disorder A graphical interpretation is given in
correlator mimics the one in the FRG, exhibiting someSec. V. In Sec. VI we establish the FRG equation at l&ige
nonanalyticity which was interpreted in terms of shock-like (the 8 function of the theory Then in Sec. VIl we perform
singularities in the coarse grained disorder. Unfortunately@ detailed analysis of the FRG equation for a specific class of
this analogy was demonstrated only around the Larkin scaldlisorder correlators, both below and above the Larkin scale.
while a quantitative and more general connection able tdn Sec. VIl we compare the FRG with the MP solution using

reach perturbatively the true large scale behavior, as iRSB. First we recall the MP approach and find agreement
achieved in the field theoretic FRG, is still missing. with the predictions of the FRG calculation. Next we extend

The need for a study of the FRG at layés all the more  these results to an arbitrary disorder correlator for which the
pressing since we have developed systematic higher loogVM gives full RSB. Finally we discuss the physical inter-
approaches within the expansiorf>~*°Within these studies, Pretation and compare our approach with the one of Ref. 42.
we have found that higher loop FRG equations Rgu) at ~ Section IX presents the conclusion. The Appendices contain
u#0 contain nontrivial, potentially ambiguous “anomalous several generalizations, the calculation of the third and fourth
terms” involving the nonanalytic structure d®(u) at u  disorder cumulant, finite temperature fixed points, and an
=0. We have proposed a solution to lift these ambiguities irRnalysis and comparison with the effective action in more
the statics at two loop8*° Since the largeN limit allows  conventional field theories.
one in principle to handle higher-loop correctiofi®., to
treat anye) it should be useful to understand the many-loop Il. MODEL AND PROGRAM
structure of the field theory. Stated differently, we want to
understand which physical quantity precisely the FRG com-
putes. Finally, developing a systematitNlgxpansion within We consider the general model for an elastic manifold of
the FRG for anyd should provide a novel handle to attack internal dimensiord embedded in a space of dimensibin
problems such as Kardar-Parisi-Zhang growth modeldhe position of the manifold in the embedding space is de-
(KPZ), maybe avoiding the need for spontaneous RSB a scribed by a single valued displacement fialck), wherex

A. Model and large-N limit

Parisi altogether if it proves to be nonessential. belongs to the internal space amis anN component vector
The aim of this paper is to study the FRG at lalgeFor ~ which belongs to the embedding spadés components!’,
this purpose we first perform an exact calculation of the efi=1, ... N, are specified below only when strictly neces-

fective actionI'[u] of the replicated field theory at large ~ sary) A well studied example is that of an interfate.g. a

Its value for a uniform mode and further expansion in cumu-domain wall in a magng¢whered=2 andN=1. Thereu(x)

lants yields a definition of the renormalized disorder consisdenotes the height of the interface. Other examples are the
tent with field theoretic approaches. The second disorder cudirected polymer d=1) in anN-dimensional space, which
mulant is found to obey a closed self-consistent equation. Alcan be mapped to thE-dimensional Burgers and Kardar-
higher cumulants can be constructed recursively from théarisi-Zhang(KP2) equationg?® or a vortex lattice in the
lower ones. It can be easily inverted below the Larkin scaleabsence of dislocations describeddy 3 andN=2, where
and there the solution is analytic and corresponds to the repx(x) is there the deformation from the ideal crystal.

lica symmetric solution of Meard and ParisiMP).?* Vary- Here we will study the equilibrium statistical mechanics
ing with respect to an infrared scale, here the mass, we olef such an elastic manifold in presence of quenched disorder,
tain the FRGR function in anyd at dominant orderN modeled by a random potentl(x,u(x)). It is described, in
=o0, The continuation beyond the Larkin scale is remarkablya given realization of the random potential, by the partition
easier to perform on the resulting FRG equation. Its solutiorfunction
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This adequately models the case of uncorreldtedshort-
Zv:f DluleurT, (2.D)  range correlateddisorder in the internal space, studied here.
The second cumulant, which plays the central role, is thus
where defined in terms of a functioB(z). The higher cumulants
are not strictly necessary in the bare model, but they appear,
Hylu] :fiC(q)_lU(—Q)'U(Q)‘f‘lf V(X,u(x)) as we will see, under coarse graining. The distribution of
T 2 T/ 7 disorder being translationally invariant, these functions sat-
22 isfy SP(vi+v,... vp+v)=SP(vy,... v,) for any v.
The model studied here is thus a slight generalization of the
model studied by Mezard and Pari8ihenceforth also re-
ferred to as MP, in the same limit.
Although we will consider the general case, it is useful, as
d’q in MP (Ref. 24 to define two sets of simple models for
f ::f —_ f ::f d (2.3 which more specific results will be given. These are, respec-
a (2m)¢ X tively, the Gaussian, short-ran¢g®R) disorder, correlator

consists out of an elastic energgxpressed here in Fourier
space and taken to be isotropiand of a pinning energy due
to disorder. Here and below we denote

N

andu.quizluivi, Throughout, square _brackets as, e.g., in B(z)=ge 7, 2.9
Alu] denote a functional, her& of the field u,(x), while
parentheses as iy(u) denote functions. and the power-law correlations
A convenient form for the inverse bare propagator, used
below, is B(2)= (a%+2)177, (2.10
2, 2 (y—1)
_, g°tm
Cl@ ===, (2.4 which, for infinite N always corresponds to long-rangeR)

disorder, a different universality class, as we will see below.
whereT is the temperature and the elastic constant is set t@or finite N, the long-range disorder corresponds, at the bare
unity by a choice of units. The role of the additional masslevel, to y<<1+ N/2; but this is modified at the renormalized
term m will be discussed below. An additional small scale level, and the true frontier LR-SR for finitd is nontrivial.
(ultraviolet, UV) cutoff A is implied here and will be made
explicit when needed.

This model is highly nontrivial and, apart from the cases ) ] )
of N=1 and d=0,1, very few exact results are Having defined the model, and before turning to calcula-

known®-1%4To obtain exact results for large embeddingtio_”s’ let us first outline what we aim at. All the consider-
spaceN— 2, we need to consider a fully isotropic version of &tions in the present section are valid for awybut, since in
the model withO(N) symmetry such that the model remains Sec. Il we will consider the largaklimit explicitly, we al-
non-trivial in that limit. As in a standard largé-treatment  '€2dy make apparent the rescalings.

B. Program

[as for instance of the:* O(N) model one defines the res- The model defined above has already been studied in
caled field MP2* One of the aims of this study was to compute the
roughness exponent of the manifold, defined from the two-
u(x) point function as
v(X)=—. (2.5
N (UG —u(x) )~ Alx—x' |2, (2.1

One also chooses the distribution of the random potential tghterest whenever it is universal, as it is the case, e.g., for
be O(N) rotationally invariant. It can be parametrized by its |ong-range disorder. To this aim the model was replicated
set of connected cumulants, of the form (u—u,), averaged over disorder and self-consistent saddle
. point equations where derived for the two-point function:
V(x,u)V(x",u")=R(Jlu—u’]) 8%x—x")
:NB((U—U/)Z)éd(X—XI), (26) Gab(Q)E<Ua(CI)Ub(_Q)>- (212

This can always be done in a largedimit, and is then
solved via a RSB ansatz.

Our goal is in a sense broader. We want to understand the
full structure of the field theory, i.e., all correlation functions
=Ny, .. x(— PSP vy, ... 0p), p=3, and not only the two-point one. We will thus instead study
the generating function of correlations as well as the effec-

con
V(Xq,U7) ... V(Xp,Up)

27 tive action functional which yields the renormalized vertices.
P This program, defined here, will be carried out in the follow-

S o ::H 89(x,—x1). (2.9 ing sections explicitly f(_)r largé\. In this paper we will re-
S B strict ourselves to dominant order, but the aim is to under-
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stand large but finité\, including calculating of M corrections. This is deferred to Ref. 47.

1. Effective action and field theory

All physical observables for any can be obtained from the replicated action in presence of a source, i.e., an external force
Ja(X) acting on each replica:

29~ [ 1] D[ua]exp(—g AT+ [ 3 Ja(x)-ua(x)), (213

whereu,(x), a=1,... n are the replicated fieldeeach one The physical object which contains the information about
being anN component vectouia(x)). Differentiating with  the field theory at large scale is the effective action. It is the
respect to the replicated sourdg(x) in the limit n—0  generating function of the one-particle irreducible diagrams
yields all correlation functions. The finite-information is ~ and in conventional field theories its formal expansion in

also interesting. For instance, from powers of the field yields the renormalized vertices. All cor-
relation functions are then obtained simply as tree diagrams
Z:=Z[)J=0]=exp —nF,/T), (2.19 from these renormalized vertices. In particular it is known

) o that within ad=4— € expansion at zero temperature to at
one can retrieve the sample to sample distribution of the freg, 5¢ two-loop order the theory can be renormalizee.

energy 7y=—TIn 2y, as was done, e.g., in a finite size yengered UV finite and yielding universal resiilsy consid-
system ford=1.""""Thus, unless specified we will keep  gring counterterms only to the second cumulant. The latter is

arbitrary. o , , a functionR(u), and can be viewed as the set of all coupling
One can explicitly perform the disorder average in EQ.constants which simultaneously become marginatiind.
(2.13: To probe renormalizability to any number of loops, we want
to compute the effective action from first principles.
Z[\]]:f H Dlu,Je Nstuil, (2.15 The effective action functional is defined as a Legendre
a transform:
o1 1
8[u,1]=§f C(a) va(—a)-valq) Flul+MJ]= Xg Ja(X) - ua(x), (2.20
q
+ [ U000 -1a0-va0. (218 MII=In 23], 22
X

Strictly speaking the definition is the convex envelope
where herey,p(X) =v4(X) - vp(x) and here and below sum- TTu]=miny(fZ3Ja(X)-u.(x)—WJ]). Here we apply the
mations over repeated replica indices are implicit. We havelefinition to the replicated action, and will content ourselves
rescaled the source in a manner complementary to the fieldvith the differential definitions

3200 = VNja(%). (2.17 oTLul o 2.22
We have also introduced the bare interaction potential Sug(x)  ~H .
_ oW J]
1 1
_ = - T - =Uy(X), 2.2
U(x)= o72 % B(Xab) — 3173 gc S(XabsXbesXca) T+ 6J,(X) a(%) (223

(2.18  which relate a pair of valuesJ(u), later also denoted by
which is a function of a by n replica matrixy,, and has a (JLul,u). Sincel'[u] defines the renormalized vertices, its
cumulant expansion in terms of sums with higher numbers of €0 momentum limit defines theenormalized disorder
replicas. Because of translational symmetry @N) in- Thus in order to compute the' renormalized dlsprder, we only
variance it depends only on the matrix need tp comput@[u] (pgr unit volume for a uniform con-

figuration of the replica fieldi,(x) = u,= \Nv, (a so-called
9 fixed background configuratipnBecause of the statistical

tilt symmetry?'=>3i.e., invariance of disorder term in the
and the form of each cumulant is restricted. For instance oneeplicated action(2.16 under the translation ,(X) — v 4(X)
has S®(v1,05,03)=S(v1—v7)? (V2—v3)? (v3—v1)2),  +w(x), and of theO(N) invariance one can argue, and this
etc. The matrix potentidl () can thus be considered as a is what we find below, that for the mod€2.4) the scaled
convenient way to parametrize the disordeere the bare effective action per unit volumévhich for a uniform mode
disordej. is simply a function ofu,) should have the following form:

Xab*=XaaT Xob™ Xab™ Xba: (2.1
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3 1 -
r(@::mr(u): ﬁm2v§+ U(wv), (224

whereL is the volume of the system, and here and below

we use the notation

(2.25

for the nXn replica matrix. This defines the renormalized

disorder. Furthermore, whenevéfvv) can be expanded, up
to a constant, in the form

VU=Ug4 Uy

- -1 ~ 1 ~
U(vo)= P % B(v3,)— 3T gc Sy vi.vi)+ -,
(2.2
where here and in the following we denote
Uapi=Ua—Up; (2.27

then Eq.(2.26) defines theenormalized cumularfunctions

PHYSICAL REVIEW B 68, 174202 (2003

where §[ ¢] is the action which describes the ferromagnet
(e.g., a¢* theory or a Landau Ginsburg mogeThe func-
tional W[ J] evaluated for a unifornd reads

W)= f dDZ(d)et V0= f dbet'(Cain 2(0)+30),
(2.30

In the large-volume limit, the saddle point can be taken and,
since the Legendre transform is involutive, this yields the
relation between the effective actiongat O per unit volume
and the probability distribution of the order parameter as

~-T(®)= Iim%ln Z(D). (2.30)

L—oo

In the thermodynamic limit the effective action per unit vol-
ume can very well be a nonanalytic function. This is the case
e.g. in the ferromagnetic phase where its left and right sec-
ond derivatives atb=M do not coincide i is the sponta-
neous magnetization per unit volumé&Vhile the right de-

B(2), etc. As we will see below this is correct up to someivative at® =M is related to the inverse susceptibility, the

very subtle behavior at coinciding replica vectdi®. v 4,
=0 for some paira,b). Also note that the constant part

U(vv=0) is the free energy.

The main result of the following sections will be the exact

calculation of the uniform part of the effective action, i.e. of

the functionU(vv). This will be performed within a largbt
expansion:

~ - 1.
U(vv)=Ug(vv)+ NU1(UU)+---, (2.28

and here we will obtain the dominant ordeiy(vv); the
correctionsU, (vv) are calculated in Ref. 47. It will be a

left one is zero, mathematically due to the prescription to
take the convex envelope, and physically because one can
always lower the magnetization at no cost in free energy per
unit volume by introducing a domain wall. The above prop-
erty (2.31) can be extended to a givepmode. Finally, note
that ind=0 the above does not hold since there is no large
factorLY, and the probability distribution is directly given by
the actionS(® = ¢).

What is then the physical meaning of the quantity that we
will be computing in the next sections? Let us, in analogy to
the magnetization for a ferromagnet, define the center of
mass of an interface:

(2.32

1
function of a scale parameter. We choose to add a mass term W= WLU(X)-
m which provides such a scale. It is a convenient choice

since form=o one hadJ)=U: Fluctuations are totally sup- Since we have added a mass in the elastic enékgy),
pressed and the effective action equals the action. One caghich acts as an extra quadratic well bounding the fluctua-
then progressively lower the mass down to zero, startingions of the interface, the disorder-induced fluctuations of the
from this initial condition, since ultimately one is interested center of mass are always finite. One expects that they di-
in the massless limit. Another choice is to change the UWerge typically asv~m™¢ asm—0, thus their behavior as a
cutoff, as will be discussed again below. It is now useful tofunction of mis of high interest and yields e.g. the informa-

give a more direct physical interpretation of this quantity, intion about the roughness exponent.

addition to the above field theoretic interpretation.

2. Effective action as the distribution of the order parameter

The effective action for a uniform background is also

One can then define the probability distributiBg(w) of
the center of mass of the interface in a given realization of
the random potentia¥ (and in presence of the quadratic well
induced by the magsOne can see that by definition the

known to be related to the distribution of the order param-generating function for a uniforrpis the Laplace transform
eter. Let us recall the relation for a simple pure ferromagnetof the probability distribution ofv, namely,

The unnormalized probability distribution of the order pa-
rameterd = (1/LY) [, (x) where(x) is the local magneti-
zation is by definition

Z((I)):fD[¢]5(¢—%L¢(x))e‘5[¢1, (2.29

Z(J)zf dW]_ e dNn PV(Wl) e P\/(Wn) eiNLdEa jawa,
(2.33

then by the same saddle point argument as for the ferromag-
net one expects, at least naively, that
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. 1 1 _
[{wyt]=— lim W|n Py(W,) ...Py(w,). (2.34 S[u,x,A,J]=§JqC(q) Ya(—q)-va(q)
L—oo
Symbolically one can write _J- %) v(X +fu X
» XJa()va() X(X())
Py(Wy) . .. Py(w,)~e b NIHwall) (2.39 L

provided this is taken with a grain of salt. Thus one can also - szihab(x)[xab(x)—va(x) vp(X)],
think of the renormalized disord®U(v-v) as parametriz-
ing the set of correlations of an effective equivalent toy 3.2
model @=0) which has the same set of correlations as thgyhere the replica matrix fielgt(x)= ya,(X) has been intro-

The pth connected moment of the center of mass is idenyng pelow summations over repeated replica indices are im-

tical, up to a volume factor, to the zero-momentum limit of pjicit. One can then explicitly perform the functional integra-
the connectedn point correlator of theu field, e.g., tion over the fieldu(x), and obtain

1 :
<Wal- . -Wap>c:F<Ual(Q1) . -Uap(Qp)>c|qi:0 Z[J]:f ,D[X]D[A]eiNS[X’)\'J]v (3.3
(2.39

1
and, once the effective action is known, both can thus be  S[x.\\j1=5Tr IN(C™*+i\)
obtained in principle as the sum of all tree graphs made from

I'[v] vertices. For instance the two-point function should be [
obtainable from + XU(X(X))—EKab(X)Xab(X)
1 1 A, 1 l . -1 . -1 . ’
(WaWp) = 5 Ban(=0) = " [v =011y, (237 =5 Ja00(CTHIN X)),

(3.9

where the inversion and trace are performed in both replica

and the connected four-point function from

con. 1 space and spatial coordinate space.
(WaWpWW ) :FGabcd(qi =0) It has now the standard form for a saddle point evaluation
of the functional\ J]=In Z[J] except that the saddle point
1 A A is not, in general, uniform in space. It is useful to define the
= N0 engh [["[v=0]1,a[I"[v=0]]p scaled functionafM[ j] through
X[o=01] F[v =011 WHII=NEI=3/VN), ©9
- _ which has a well defined largd-limit and can be expanded
XTI [Uzo]efgha (2.38 in 1/N as
this, however, assumes analyticity, which as we will see be- 1
low, does not always hold. Another integral relation holds: W[j1=WO[j]+ Nwl[jH o (3.6)
<WaWb>Ef dwy - - - AW, W WPy (Wy) . .. Py(W,) Deferring the calculation of the corrections to a future
publication?” we obtain here the dominant order irNlas
=W =0)~ [ oy e Tl WO 1=~ Sl A, @37

(2.39 wherey; and\; depend orj(x) and are the solutions of the
' saddle point equations obtained respectively by setting to

zero the functional derivativdsit fixed j(x)]:
Ill. CALCULATION OF THE EFFECTIVE ACTION

Let us now consider explicitly the largédimit. One can M =0, (3.9
rewrite for anyN the starting generating functiofi®.15 and ONap(X) Y=x: A=\
(2.16 as i i
oS x,\j] o 3.9
A91- [ PuIptADiAe M, @) a9 |y amny |
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The result is , (X): 5WO[JU] o d S[X N J]
X200 =(G)axoxt (Gj:)ax (G iidpes  (3.10 T sjaeg diaCo T
NP0 =235 (x; (X)), (3.11) _ f axi(y) aS  oN(y) aS }
D yL31a(X) axi(y) " dia(x) N(Y)]|.
GJ =C +|)\J, (312 1=l
whereG; is a matrix with both replica indices and spatial 9S a8 P
. . . . . I Taaa EETEraY _(GJ 'Jv)aX1
coordinates and inversion is carried out for both. Here and jalX) | _. Ja(X)|. _. v
below, replica indices are raised whenever explicit depen- =l =l
dency is given, e.g.,XabEXj"b. The notation for the 3.2)

N-component vector &:j)p,= XcfyGpx.cy] ¢(y) is @ short-  \here we have used the saddle-point equati8) and
hand for a matrix product, and everywhere we denote by (3.9

_ We can now use Ed3.19 in the saddle point equations

apU(¢) =0y, U($) (313 (3.8 and(3.9, and defining

the simple derivative of the functidd(¢) with respect to its
matrix argumentp,,. Of course, if, for a giverj(x) there
are several solutions to these equations, then one must sufiis yields a self-consistent equation fr(x),
over all saddle points, to the same order:

Xv:z/\/jv’ )\v:z)\' ;

iy

Xsb(x):l)a(x)'Ub(x)+(Gv)aX,bX’ (3.22
.y ~NSLxsi) Al | , _
Wil~In| 3 e (319 (G, 1>ax,by=<C*1>x,y6ab+2aabu<xv<x>)5*’<x—yzé ’

This case will be discussed below, for now we ignore this

possible complication, as well as issues of the stability of thavhich is also a self-consistent equation 8. Since the

saddle point. Legendre transform is involutive, one can also write
Now we want to take the Legendre transform and trade

the variablg for the variablev to obtain the effective action M:

I'[u]. One also defines the scaled functional, and if$ 1/ OV 4(X)

expansion through

j200=(G, ":0)ax, (3.24

which determines the derivative &f,[v] once Eq.(3.23 is

= solved.
I[u]=NT[v=u/\N], (3.19 One can however do better. Using E8.19 in Eq. (3.17)
1 one obtains the effective action for a spatially varying field
'F[v]zro[u]+ﬁrl[u]+---. (3.1 v(X):

U ~ Tolv]=v:(G, v+ Nooiol, 3.2
Then (C[v],W[]]) and (["o[v],Wg[]]) are also two pairs of _ _ olv]=0:(G, vt Sx, b 329
Legendre transforms. Thus the dominant order of the effecwhich gives
tive action functional in the larght limit is given by

1 1
| | Palv]= 5| Caluravay)+ 5T INC+20U(x,)
Fav]= [ 0a00-200-Well, ). 817 g

with W[ j] given by Eqs(3.7) and(3.12, and wherg ,(X) + fXU(Xv(X))JF fxva(x)ﬁabU(Xv(X))Ub(X)
is thev (x)-dependent source solution of
Wil o] - f X5 () bl (x, (X)) (3.26
T=va(x). (3.18 x
0],(X)

It is interesting to rewrite it with the help of E¢3.23 as a
One can now derive a self-consistent functional saddle poirfunctional of G, andv only:
equation forl o[ v]. First we establish the relation between

andj,, namely, FO[Gv,u]zzl“O[v]=—%Tr InG,
0a()=(Gy [)ax & 500 =(G,  1w)ax, (319
where from now on we define + EJXyC;xl,by[va(X)Ub(YH (Gy)ax,byl
G,=G; . (3.20
Equation(3.19 is obtained noting that - LU(UU(X)HG”)X’X)' (3.27
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We have dropped a constantn. Equation(3.27) has the

property
dcl'o[G,v]le=6,=0, (3.28

where the derivative acts only o8, leaving fixed allv,
since this coincides with the saddle point equatiB23.

PHYSICAL REVIEW B68, 174202 (2003

~ 1
U(vv)=U(x,)+ EJ tr{In[(g?+m?) 5+ 2TaU(x,)]
q

+(9*+m?)[(g?+m?) 8+ 2TaU(x,) 171}
4.3
The trace acts in replica space, and the log is a function of a

This makes apparent that it can also be obtained from gatrix, to be defined as usual. Since E4.3) contains the

variational methodvhere the average of the field is fixed, as d

we detail in Appendix A. Since the explicit nontrivial de-

pendence in Eq.3.27) using Eq.(3.23 is purely in terms of
the bilinearsv 4(X) -vp(X) at the same space points, it also

shows that one can write

1 ~
Folv]= EU:C711v+U0[v-v], (3.29
where the interactiofi.e., disorder part satisfies
SUq[v-
ool oy (3.30

S(va(X)-vp(y)

and is the solution of a self-consistent functional equation:

500[1)-1;] B
S0200-vg00) (e v+ (Gu))
Y anoy=(C _Ugw0) o
(Gy Daxoy=(C Duydan+ 5,5 57 (XY
(3.30)

erivatived,,U°(vv) we must first determine the latter. One
finds that, analogous to E¢B.31),

IapU (00) = dapU(X,) (4.4)

Xab= Uan+Tf [(q%+m?)6+2TaU(x,)]ap - (4.5
q

Since one can replace the mattil (y,) by 4U(vv) in the
denominator of Eq(4.5), this is also a self-consistent equa-

tion, which involves only d,,U(vv). Here inversion is
simplen by n matrix inversion ands is the Kronecken by
n identity matrix 6,,. One must be careful that

aU(vv)

&ab[](vv)= —(9(Ua- op)

(4.6)

is afirst derivativeof U(vv) with respect to the matrix ele-
mentv ;- v . One can also check that taking the derivative of
Eqg. (4.3 with respect tov, vy, correctly reproduces Eq.
(4.5). A direct derivation usegy/d(vv) from Eq. (4.5. A
more clever way is to remember that because of (B8,
one is allowed to differentiate only with respect to the ex-

A generalization of this equation is presented in Appendix Bplicit vv in y, in the first term, and that the remaining terms

IV. SELF-CONSISTENT EQUATION
FOR THE RENORMALIZED DISORDER

A. Uniform configuration and saddle-point equation

can be written as a function @&, only, and using again Eg.
(3.29.

This self-consistent equation fot) (vv), i.e., for the uni-
form part of the effective action is one of our main results
and the remainder of this paper is devoted to analyze it. It

Let us now consider the simpler problem of computingcontains a huge amount of information, since it encodes the
the effective action for a uniform field configuration, which full distribution (i.e., all cumulantsof the renormalized dis-
can be solved self-consistently. To be more specific we willbrder, and is thus quite nontrivial to analyze. It includes both
focus on the form(2.4) for the elastic energy. Also, to sim- the Gaussian variational Method of Mezard and P#rend
plify notations and since we will restrict ourselves to domi- the functional renormalization group. For simplicity, we now

nant order in I, we drop the index 0, so we set

Foﬁfy DOHDY (4'1)
and so on.

For a uniform fieldv ,(x) =v, the effective action(3.29
per unit volume takes the form

P(0) =T (0) = 22+ T 42
(U)'_F (v)=5Fm7va+U(vo). (4.2
Note that these are now simply functiofmot functional$ of
aNxn component vector, and (vv) is a function of then
by n matrix v zuy .
Equation(3.27) also yields a formula fot) o(vv) (up to a
constank

consider the bare disorder to be Gaussian and set all bare
cumulants except the second cumulBift) to zero.

The GVM is recovered upon setting=0 which is one
limit in which the equation “simplifies.” One sees that Eq.
(4.5 then reproduces the Mezard-Parisi equations, the self-
energyo,,, and two-point functiorG ,,(k) in Ref. 24, being

Tap=2T U (Xp=0), 4.7
Gab(k):ngo(k)a (4.8
(Xv=0)ab= kaab(k)- 4.9

In the glass phases, these exhibit spontaneous replica sym-
metry breaking, with multiple solutions corresponding to
saddle points obtained via replica permutations, and the

174202-8



FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . .. PHYSICAL REVIEW B 68, 174202 (2003

above equations are solved by a hierarchical Parisi ansatz for ~ 2/ _ ~
x(v=0)a,=x(v=0)(u) where O<u<1 is the overlap be- —2TdpU(vv)= $( ~Blpt Sap Béc)
tween replicas andb. We will give more details about this ¢
correspondence in the following.

2 ~ ~
For now we will study the opposite limit of “strong” +—2( - 1abg T Sab Stacg| T
explicit symmetry breaking fieltall v ,p=v,—v,#0). Then T 9 cg
we expect that the renormalized disordlsfuv) is given by (4.149

a single saddle point and can be expanded in replica sums in ) o~ - 5 o o
terms of unambiguous renormalized cumulants, i.e., up to #here we denot®;,=B"(vzp), Sape=S(v3p:Vhe:vac) and
constant Si abc denotes a derivative with respect to the first argument

of the functionS (S has the symmetries implied by replica

1 permutation symmetpy All matrices we will encounter can

- -1 - ~ .
U(vv)= — B(v2,)— S(v2, v v )+, be parametrized as
( ) 2T2 % ( ab) 3!T3 g):c ( ab'Ybc ca)
(410) Xab:Xab+ 5abXa, (413
_ (0 1 2
This is the limit solved here, which we will show below is Xab= X4 X +xG)+ - -, (4.19
the natural limit in the FRG, and amounts, as we will dis- 0) 4 (D)1 o(2)
cuss, to forcing the manifold in distant states within the RSB Xg=Xg '+ Xg +Xg '+, (4.17

picture. The rich crossover to RSB contained in E45),

. . where x,, do not contain any explicit Kronecket,,, the
when some of the ,, are set to zero will be discussed below. ab y exp ab

upper index denotes the number of free replica sums, e.g.,
X =3 Xapt, X =StgXanrg- Since under matrix product
B. Cumulant expansion (XP)4p or Hadamar productX,;,)P the number of sums can
only increase, one gets only a finite number of terms in pro-

We now transform Eq.(4.5 for the formal function .’ . . ;
~ : i ) jecting out on terms with a given number of free replica
U(vv) in a set of equations for the second, third, fourth. sums.

cumulants. This is performed through an expansion in SUms |t i the same way we parametrize:
over an increasing number of free replica indices, @snaot
an approximationThe such obtained equations are as exact XSbZXab+ SabXas (4.18
as Eq.(4.5), i.e., exact to dominant order at lardi albeit
more explicit. In fact, they allow a recursive exact calcula- ~ab_"7 ~
tion of all cumulants Their increasing complexity will illus- Xo = Xab OabXa: (4.19
trate the wealth of information summarized in E4.5). then one easily sees that

Let us first rewrite Eq(4.5 using an infinite series:

B’ (X2°) = 8apl B’ (Xaat Xa) — B’ (Xaa) 1+ B’ (Xab),
9apU (v0) = dapU (X,) (4.11) B - _ -
B’ (x2")— 6@ B' (X2 =B"(Xab) — 6@ B’ (Xao)-
® (4.20

_ _ T n
X“_UU+TI15+T,;1 Ineal=2ToU(v)] We can now expand in number of sums:

B'(Xan) =B' () +B" (XX +--- 42D
1 . .
|n:=f —_— (4.12 and the equivalence of Eq$4.13 and (4.14), using Eq.
k (k2+m?)" (4.20, implies
where thenth power here denotes the matrix product. Since B.,=B'(x). (4.22
we consider a Gaussian bare mo¢2I18 where only the
second cumulant is nonzero one has 1o~ o~ (ON~
T % Si,abg: B (Xg%)))(gjb)’ (4.23
2 - - . .
1T ab rTac and so on for higher cumulants. Thus to obtain the second
2T 920U (xy) T{ B'(x") 5"“’2 B'(x.) renormalized cumulant we only need to compute the part

(413 %9 of ¥® which contains no sum and no explid,. One
has, in general,

using thatd,pxan=2(ap—1).>* The same quantity for the ~
renormalized disorder reads XS = X+ xR+ x P x P —2x R (4.24
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PIERRE LE DOUSSAL AND KAY JARG WIESE PHYSICAL REVIEW B68, 174202 (2003

oo o ¢ ¢ e ¢ ¢
Q /‘\/‘\
FIG. 3. The four one-loop diagrams correcting the disorder. A
fat dot represents a vertd a solid line the fieldu, and its cor-

relator. A dashed line attaches two fielalfo a vertexB. We do not
draw replica indices.
FIG. 1. Graphical representation of the third cumulant. The no-
tation is explained in Ref. 47. The first diagram yields the terms V2N ors 2 ~, 2. =,
proportional tol ,, and the second diagram the terms proportional to B'(v3p) =B (vapt+2TI1+415[B' (vgp) —B'(0)]),
I3 in Eq. (4.31). (4.29

with no other contributions from higher cumulants at any
Appendix D contains a nonlocal extension of this formula.
Equation(4.29 can be integrated with the result

Thus for the second cumulant we need omf}, and x3.
Since one has, to be explicit,

~ ., 4
[(=2TdU) ]ab—_IT2

San2 BacBi—Bon2 (BytBiy) B(v?) =B +2TI1+41,[B'(v)-B'(0)])
—21,{B' (v2+2TI,+41,[B' (v?)—B'(0)]}2
25ab§: E;e~égh (4-30)
egh

- ~ 4
+§ Bachb +§

A direct derivation from Eq(3.3) is also possible.

- Béb% (S[’)gh+ Sz,igh)_; (Bz;ese;bh

¢ C. Higher cumulants
+BLZ )+ B3 +B.T Higher cumulants of the renormalized disorder can be ob-

beSabi) % (BacScont Boc Cah)} tained by the same method using #4.23 and its exten-
sions. They can also be obtained by the graphical method.
T (4.29 For simplicity here we give only the expression of the third
where all terms not written have at least three free replic&umulant(see Fig. 1 The complete expression for the fourth
sums[this is the case fo©(S?) as well as terms involving cumulant together with all calculational details and an intro-
the fourth cumulant and highrSimilarly [(—ZTf?XU)p]ab duction to the graphical method, can be found in Appendix
: C.

has at leasp—1 free replica sum§from the O(BP) term|. . .
This is much more what we need, which comes only from The third cumulant is found to be
Eq. (4.14) and, using Eq(4.11):

- 6Tl ~ ~
X =vavp—21,BL, (4.26 S(x.y.2)= 1+4I2é’(0) SYMey B COBTY)]
XO=T1,. (4.27) +2413Sym, y AIB'(0~B"(0)]B' (0B ()}
This yields —813B'(y)B' (2B’ (x), (4.39

XD =(va—vp)?+2T1,+41,(B,—Bly). (42
Xab = (Va~ Up) ! 2(Bap=Bad). (428 where Sym, , is 1/6 times the sum of all permutations of
Thus we find that the renormalized second cumulant satisfies,y, andz Note that this relation is exact for all values of the

a closed equation at anly massm, and not just a fixed point form. The only input in the

’ 7 r\ |
_;_BH(U2)(UZ)2 %BI"(UZ)('Uz):i TB'('UQ)

FIG. 2. Examples for vertices and the one-loop tadpole diagram which is dominant aNlarge
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D )<

<0

O =8B

N[ —=
=

.-<>0 Q A = e 4+ e 4+ .
° e - B(12)

[ ]
0‘@;03@’0’ FIG. 6. Self-consistent equation at leading order B(v2,)

=B’(xap)- The wiggly line denotes a derivative, and is combina-

Oo%oo
+
OO%OO
0
o
-+

° torially equivalent to choosing or. At finite T one can attach an
O additional arbitrary number of tadpoles to aBy
[ ]
FIG. 4. Loops which give additional factors ofN// as ex- N , (Ud—ud)? , (U3—up)?
plained in the main text. Ecxy% B N B N
derivation is the absence of a third cumulant for the bare (ua—ub)z (ud— uP)2\ (ud—ub)2
model (m=<°). It would be interesting to include an addi- + —B’( X N X )B”( Y N Y ) Y N Y
tional bare third cumulant. The fourth cumulant is derived in
Appendix C, where also details for the graphical method are (Ud—uP)2\ (ud—ub)? (ud—uP)2
i " X X X X ' y y
iven. —
: i 2| (| (g | ()
V. GRAPHICAL INTERPRETATION 4 [(u2-ud)?) (uB-ud)? [ (ud-ub)?| (ui-ud)?
In this section, we sketch how the central results at large N ( N ) N ( N ) N
N can be obtained graphically, first the saddle-point equation i )
drap i P g + (higher replica terms (5.2

(4.29, which gives the effective disord& as a function of

the bare disordeB, and second th@ function (6.9). . . . N . :
The graphical rules for the perturbation theory of the rep-Th'.S |s_graph|cally deplf:ted n Fig. 3. The Important o_bser
ation is that only the first diagram, with a closedoop is

licated model have been described in detail in Ref. 55 fo Lo o . ;
contributing in the limit of largeN. This analysis can be

N=1, and we refer the reader to this work for elementary d to higher | q . v di h
details. Here there are, in additidd,components of the field ~'ePeated to higher loop order. Again, only diagrams as the

ul, the propagator being diagonal in all indices. For thefirst one in Fig. 3 contribute. Especially, there are no loops

present purpose we are mostly interested in the counting i§ith three propagators or more, as loops 4 or 6 in Fig. 4.
N, and since it is difficult to represent graphically both vectorAISO, there are no “metaloops,” i.e., loops formed by loops,
and replica indices, we work with unsplitted verticesee @S 100p 5 in Fig. 4. Finally, only diagrams as those in Fig. 5
Ref. 55 and specify the replica content only when neededSurvive, which as building block have only the elementary
Disorder vertices may contain arbitrary number of deriva-one-loop diagram with a closed loop contributing a factor of
tives and some examples are represented on Fig. 2. As usudi as the first diagram in Fig. 3. These are treelike diagrams,
there is a factor of N per derivative(i.e. per dashed lineat ~ where the nodes are made out®find the links out of the
each vertexsee, e.g., Fig. 2, using?=u?/N), N per vertex, above-mentioned one-loop diagraftwo parallel replica
andN per loop. lines in the splitted diagrammat®®swhich produce the de-
We consider the effective action, i.e. the sum of all one-sired two-replica term At junction points the replica lines
particle irreducible diagramglPl), and later focus on its branch also in parallel. These are of course not tree diagrams,
two-replica part. We start our analysisTat 0 with the three i.e., they are 1Pl and contribute to the effective action. Note
possible 1-loop diagrams, as presented in Fig. 3. They ar@ Fig. 5 that since there is a 1/{2) factor per vertex, but
obtained from contracting that each verteXexcept ong comes with two propagators
a b2 c 2 (factor T?) the counting in temperature is right to produce a
E E B(_(ux—ux) )E E B( (uy—uy) ) . (5.0 two-replica term with the expected 1/T3) global factor(the
2 N 2w N three-replica terms proportional 6 have been discarded,
etc).

In order to simplify the calculation we omit the terms taken ) o ) )
We are now in a position to derive the self-consistent

at coinciding replicage.g.,B’(0)], they can be added at the

end. Contracting Eq5.1) twice between points andy gives  equation (4.29). The key-observation is that deriving B(v?)
once with respect to its argument, amounts in the graphical

intepreation of Fig. 5 to choose one of the bare vertices

*OPOe $<O®<>®  pB(y?), and deriving it. B'(v?) thus is B’ (v?), with as many

~ O O O 0 branches attached as one wants. Every branch consists of a
B =2&o¢-ob—o¢o+o¢'o"o"o‘ one-loop integral =1, times another tree; the latter is
Q b4 o< again E(vz), given that one of the bare vertices is chosen,

_ i.e., again B'(v?). Since attaching loops to B’ (v?) amounts
FIG. 5. Tree configurations which contribute B§v?). to deriving B’ (v*) once for every loop, we arrive at
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- = B Y (w2){41,[B' (v?)—B'(0)]}¢ A ddk 1
B'(v3)=2 : | 1=f I IY (6.2)
=o £l o (2m)YKk*+m
=B’ (v2+41,[B'(v¥)—B'(0)]). (5.3 A d% 1
= —_— 6.3
Note that we have added the term with coinciding replica- 2 fo (2m)9 (k2+m?)? 63

indices, dropped previously. The combinatorial factor comes - .
from the exggnsign of the )éxponential functionein®. That where_we have indicated syr_npohpally that a short scale UV
it indeed resumes t8’ with a shifted argument is natural: c;u;off is needed fol, to be finite if d=4 and forl, for d

For a functionf(x) taking the expectation valud(x)) ina =~ < . . L .
theory with 0n|§/ ; first ?nomen(o% i equivaltl;(nt(tg>calcu- There is a simple way to obtain directly the solutions of

lating f((x)). Taylor expanding the latter leads to the aboveEq' (6..1) WhICh' We'WI|| detail below..lt is also mteres;tmg to

combinatoricsFig. 6). turn this equation into a FRG equation for the_fun_ctBJ(rx)
By the same arguments the full effective action can be?S @ function of the scale parameterindeed this yields the

written as the sum over treelikiut not tre¢ diagrams rep- ,8 functlon of the field theory in t.he limit of infinité\, Wh|ch

resented in Fig. 5 where, in addition, each vertex can bé Our main goal. Let us show first how one does this.

dressed by an arbitrary number of tadpdiese Fig. 2. Each Let us flrst take a derivative of E¢6.1) with respect tox.

tadpole brings an additional factor & thus tadpoles con- ©One obtains

tribute to the two replica term only at>0. At finite tem- =,

perature, any of the?’s could be contracted, leading to the B (i() =B'(x+2TI,+41,[B'(x)—B'(0))).

replacement 1+41,B"(x)

(6.9
Taking the derivativamd,, of Eq. (6.1) and using Eq(6.4)

[This offers another possibility to verify the combinatorics in 91V€S
Eq. (5.3).] Thus the final result is

(v3—vP) 2= (v3—0P)?+2TI,. (5.4)

- B”(x) -
~ - - MdyB’ (X) = ———=——{2md,(T11) + 4(Mdy,l ,)[ B’ (X)
B/ (v2)=B'(v2+2TI,+41,[B' (b)) —-B'(0)]). (5.5 " 1+41,B"(x) mo m2
We now illustrate how to recover the function. Apply- —B'(0)]+41,mdnB’ (x) — 41,mdnB' (0)}.
ing —ma/am to B implies to derive each integral with re- (6.5

spect tom appearing in each loop of Fig. 5. Diagrammati- Regrouping the terms one obtains
cally this amounts to choosing in the tree of Fig. 5 one of the

bonds(loop I,) which connects twd’s. Summing over all ma E'(x)=~B”(x){2ma T1,— 41,md,B'(0)
trees, it gives a term m m m
+4(mdyl,)[B’(x)—B’(0)]}. (6.6)

J - ~ -
2( —m-—ls [B'(v?)?-2B'(v?)B’'(0)] (5.6) From Eq.(6.5 one also has
. : - B"(0)
since the two trees attached to the ldgpare nothing but ma,B’(0)= - 2ma(Tly). 6.7)
B(v?), derived once, and again itself with things attached, 1+41,B"(0)

i.e., B’ (v?) as given in Eq(5.5). This reproduces th&=0 Inserting Eq.(6.7) into Eq. (6.6) finally yields
term in Eq.(6.9. The second contribution comes from de-
riving Tl,. The graphical derivation is complicated, and we

refer the interested reader to Ref. 47 where a more complete, m&m~B’(x) =B"(x) 2(mdy,Tly) =
but much more involved, diagrammatic method is presented. 1+41,B7(0)
VI. FUNCTIONAL RENORMALIZATION +4(mdl,)[B' (x)-B'(0)]|. (6.8

GROUP EQUATIONS

This equation is valid for any space dimensinit can be

) _ ) integrated once with respect xoto obtain the final result
We will now study the self-consistent equation, exact for

A. From self-consistent to FRG equation

N=o, for the second cumulant correlator of the random _ 2mMin(Tly) ~
potential that we have derived in Sec. V, MImB(X) = ———=——B"(X) +2(Mdpyl )
1+41,B"(0)
B'(x)=B’(x+2T1+4I,[B'(x)~B'(0)) (6.1 X[B'(x)2—2B'(0)B'(x)], (6.9
which involves only the two one-loop integrals: where we have dropped amdependent integration constant.
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A general method to studfand solve the FRG equation A qé-t 1
(6.8) is then to start froom= o> where the initial condition is 4SdJ’ dg 55~
e . o (g?+md? B'2TSHAY 2/(d—2)]
B(x) =B(x) in the presence of a UV momentum cutaff or c 6.1
a lattice with lattice constarg=1/A. Then one studies how (6.12
B(x) evolves agnis slowly decreased. for A>m.. For d<2 the effect of thermal fluctuations is

There are thus two possible paths to solve the problemmnore important. For definiteness let us consider the set of
namely the direct inversion of the self-consistent equatiormodels with power law correlation®.10. Then Eq.(6.10
and the solution of E¢(6.9) with the above initial condition. becomes
Both are studied below. These two methods are clearly

. o . . — _ l l
equivalent when the solutioB(x) is analytic atx=0. In = (@t 2TI)trr—al,, 6.13

deed, in the above derivation, we have assumedBHed) B"(0) 9v
exists. This will not always hold, as we now discuss. What g

the proper ensuing modifications are is a subtle point whichPince bftg integrals diverge for small massl gs 1/m*"%,
will be examined later. I,~1/m*" ¢ one can distinguish three cases.

(i) If disorder correlations decay fast enougtr y.(d)
=2/(2—d) then thel,; term wins and asn—0 one has
B”(0)—0, indicating that disorder is subdominant, resulting

Before solving this equation let us first find the conditionsin a high-temperature phase. In that case the solution is ana-
under which there exists an analytic solution. This will give lytic asm—0. There is however a more complicated behav-
us insight in the phases of the model. One notes from Egjor for intermediate values ah (see Appendix E
(6.4) that (i) If disorder correlations decay slower, i..< y.(d),

the term proportional td, wins and the solution always
becomes non-analytic at some Larkin mass.
11 (iii) In the marginal casey= y.(d) there is a transition at
= = —A4l,. (6.10 " X
B"(0) B"(2Tly) some critical temperaturd. between a high-temperature
phase and a glass phase.
_ These features are very general and each of these cases
For m=c the starting value i88"(0)=B"(0)>0, in any  will be studied in more details below.
dimensiond. (The force correlator decays for small dis-  One can immediately see that the existence of an analytic
tances. As mis decreased several things can happen. solution for B(u) is in one to one correspondence to the

Let us start withT=0. Then ford<4, S|~nce| 2 diverges existence of a locally stable replica symmetric solution of the
for smallm, one sees from E¢6.10 that B"(0) becomes \Mp equations. Indeed the condition for the stability of the RS
infinite asm—m_ , where the Larkin mass is the solution  saddle point is precisely that the replicon eigenvalue be posi-
of tive, namely, thaf

Areg P)=1—415(p)B"(2Tly), (6.14

B. General features: Analytic vs nonanalytic solution

qd—l
(q*+md)? B'(0)’

A
45, J dq (6.10
0

lo(p)= fk(k2+ m?) [ (k+p)?+m?]"t  (6.19

with Sp=1/[29"17921'(d/2)] and has the standard depen-
dencem,~B"(0)Y of the inverse Larkin length on the bare
disorder(a Larkin lengthL.=1/m. can be defined Since

be positive for allp. The RSB instability occurs when the
lowest eigenvalue, which corresponds pe=0, vanishes.
=, e » c ) The condition\ ¢(p=0)=0 is equivalent to the vanishing
B”(0) is like R""(0) positive, this divergence is the usual of Eq. (6.10, i.e. of the divergence d&”(0) and the emer-

one of the FRG, as also found in one- and tWo'loc’pgence of non-analytic behavior. Thus the generation of a

studies;*****~*>*where it signals that the functioR(U)  cusp in the FRG coincides at largieexactly with the insta-
becomes non-analytic and that a cusp singularity forms agjjity of the RS solution.

u=0 in the second derivative R"(u), i.e., in the correlator Itis easy to see that an analytic solutB(x) of Eq. (6.1)

of the pi.nning force. This is usually interpreted as a glass;ng (6.8 cannot describe the glass phaseTat0. Indeed
phase with many metas_table states beyond the Larkin Iengtovhen B(x) is analytic, Eq.(4.31) and similar results for
Thus ford<4 the function always .beco"T‘es nonanalytic athigher cumulants indicate that the full effective action is ana-
large scale(small masys and there is a single glass phase.

. . . Iytic. It is then immediate to obtain correlations from its
Ford>4, sincel, is convergent, the cusp occurs only if the derivatives. For instance, from E(.36 the 2-point func-
bare disorder is sufficiently large. tion atq=0 is simply ’
At nonzero temperaturg>0 Eq. (6.10 shows that for
2<d<4 thermal fluctuations do not change the scenario. 1 T B'(0)
_Smcell remains finite, temperature only slightly renormal- N<ua(Q)'ub(Q)>|q=O:_25ab_ 2_4_ (6.16
izes the value ofn, downward, as m

174202-13



PIERRE LE DOUSSAL AND KAY JARG WIESE PHYSICAL REVIEW B68, 174202 (2003

On the other hand, setting=0 in Eq.(6.1) one finds The rescaled temperature and the energy expofi@né de-

B fined as
B'(0)=B'(2Tl,). (6.17
4A
Thus atT=0 one recovers the dimensional reducti@R) m—T—dmg, (6.22
resultu’~m~972¢ with {={pr=(4—d)/2 instead of a non- €
trivial value for { expected in the glass phase. Furthermore o=d—2+2¢. 6.23

since the effective action is analytic, all higher connected
cumulants will trivially vanish aff=0 (or be equal to the To obtain Eq.(6.21) we have also integrated E(6.8) once,
bare ones if the bare model contains such higher cuml)lants:,o there ia priori a m.dependent integration constant.
from the DR property. Clearly, in the glass phase, the DR We emphasize that this FRG equati@?21) that we have
scaling is expected to be incorrect and a non-analytic soluderived is valid, to dominant order inN/ in any dimension
tion should be found, as well as a way to escape(E4.7).  d<4 and at any temperatufie In a previous studif Balents
Below we find how such a mechanism occurs within theand Fisher studied another limit, arbitra¥y but only to first
FRG. order ine=4—d and T=0. If we consider the dominant
It will emerge from our study that for the case where order inN, of their equation, we find that it is identical to the
disorder is relevant in the large scale linfite., the long- T=0 part of Eq.(6.21) (up to some changes in notatjon
range casey< y.(d) mentioned abovethe nonanalytic so-  Equation(6.21), however, is valid taall ordersin e, an im-
lution of the FRG equation will correspond to the full replica portant point which the method used in Ref. 36 could not
Symmetry breaking solution of MP. The situation for the address. A Comparison of E(fﬁZ.D to our recent two-|oop’
short-range case is more delicate. Both are discussed beloye  O(e?) studies, requires expanding to next order iN,1/

C. FRG equation for rescaled disorder,d<4

Equation(6.9) is valid (for N=«) in any spatial dimen-
siond. Since one has the exact relation

— =Mdpl=m?l,,

5 (6.18

one sees that the FRG equati@n8) has a well defined limit

A—o for d<4. It makes formulaes somewhat simpler so

we will start by considering this case; the cakse4 will be

and is performed in Ref. 47.

Furthermore Eq(6.21) includes the effect of temperature
to all orders ine. Expanding the term proportional b to
lowest order in disordéb, one finds the terrn,b’(x). This
is the largeN limit of the tadpole term obtained in the one-
loop FRG atT>0,457-%9

N
&|~R(u)=TZl FR(U)— 3 B(v?)=TB' (v?) + %vzg"(vz),

(6.29

studied later. Note that although the equation has a wellwhere for infiniteN the last term drops ouflt appears how-

defined limit, its solution may require a UV cutd#.g., as is
manifestly the case in integrating.18 abovd.

Thus from now on we studg<4 and consider the infi-
nite UV cutoff limit. Then one has

—€

|2:Ad P (619

A ——2 I3 d
d_(4ﬂ_)d/2 _E !

ever, to next order in N (Ref. 47].

The form and the effect of the temperature term in Eq.
(6.21) to all orders ine is radically different from its one-
loop truncation. Indeed, in the one-loop FRG the temperature
is known to smoothen the cusp and render the fund&u)
analytic in a boundary layer~T,, [e.g., forN=1 (Refs. 41,

57, and 60 with R""(0)~1/T,,. Here, however, as further

with e=4—d. It is convenient to define the rescaled dimen-analysis confirms below, fa#>0 the divergence db"(0) is

sionless function

b(x)=4A;m*~ B(xm %), (6.20

where{ is a fixed number, but arbitrary for now. Note that

whether one works wittB or the rescaled(x) does not

make any difference for the possibility of a nonanalyticity or

a divergence of the second derivative.
Then b(x) satisfiesthe FRG equation in the infinii
limit:

—mdb(x)=B[b]=(e—4)b(x)+2{xb' (x)+ %b’(x)z

b’(x)

b"(0
1+ ©)

—b'(X)b’(0)+ T, +Cp.

(6.21)

€

self-reinforcing since it kills the term proportional 1g,. We
find that it usually occurs at a finitd.arkin) scale. In the
marginal case#=0, we will find nontrivial analytic finite-
temperature fixed points.

VII. DETAILED ANALYSIS OF THE FRG EQUATIONS

A. Inversion of self-consistent equation

Let us now show how one can invert the self-consistent
equation(6.1). We first rewrite it in terms of the rescaled
correlator

b’ (x)=4Am?¢ €

XB'| m™%

1
X+ E[b’(x)—b’(O)]+2TIlm2§] )

(7.1
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where in the term proportional to temperature, dor2 we
mean lim,_..Tl; choosing a bare temperatufie~ A2~ 9

PHYSICAL REVIEW B 68, 174202 (2003

The y dependence obviously satisfies E@.8) and for the
constant part to work we use:

(this choice is known to be necessary to give a universal and

finite B function, see e.g. the discussion in Ref).43ne can

of course keep an explicih dependence everywhere, but
that leads to needless complications without changing the

result.
The above equatiof.1) is easily inverted into

x=mep| — +1( —yo)—T (7.2
4Adm2§’f € ¥y~=¥o m .
where we define
y=y(x)=—b"(x), (7.3
yo=—b’(0)=—4Am*~<B’(0), (7.4)
T=2TI;m?%, (7.5

with T,,=T,,/(2—d) for d<2, and® is the inverse func-
tion of =B’ (x), i.e.,

(=B )(@(y)=y. (7.6
This means in turn that the FRG equatih2l) is fully

integrable, a feature not immediately obvious if one does not

know that it originates from a self-consistent equatian

observation not made in Ref. B6To better understand this

integrability property let us show that E@6.21) can be

!

Yo
—Mdpyo=(e—2{)Yo+ Tr 7
Yo
=

(7.1

M T = —2¢T 0t Thy. (7.12

The first line comes from evaluating E(/.7) at x=0 and
assuming analyticity, i.e., that lim gy’ (x)(y(x)—Yyo)=0,
an equality which will not work beyond the Larkin length
(m<m,), as found below.

Now that we have clarified the connections between the
two approachesthe self-consistent equation and FR®e
can try to find solutions valid in the small mass limit. To
analyze the solutions of the larg¢-FRG equation(6.21),
two approaches are legitimate, corresponding to different
points of view. The first, natural in mean field, is exact inte-
gration. But then one discovers that the solution becomes
nonanalytic upon reaching the Larkin mass. It thus raises the
non-trivial question on how to continue this solution beyond
the Larkin length. Before doing so, we will first examine a
second point of view, more familiar from standard RG argu-
ments.

B. FRG point of view: search for fixed points

The standard RG approach amounts to constructing and
computing theB function of the theory, and then searching

transformed into dinear equation. Let us first take a deriva- for a fixed point(function) which describes the large scale
tive of Eq.(6.21) and express it in terms of the new function physics. Usually, finding the basin of attraction of the fixed

y(x) [Eq. (7.3)],

—Mdpy=(e—20)y+2{xy' =y (Y=Yo) + Tm——
0

1__

€

(7.7

where we denotgy=y’(0). Converting this into an equa-

tion for the inverse functiox(y) one finds

!
TheXo

1 (7.9

M X=(€—20)yX' +2{x—(y—Yo) +

!

with  x;=x'(yo).** We have used that md,y(x)
=—y'(x)mdXx(y(x)) and have canceled a factor ok1(y)
on both sides(The validity nearx=0 beyond the Larkin
length is reexamined below.

One recovers now that the general solution of this linear

point, or relating arbitrary initial conditions to the final ap-
proach of the fixed point is an unmanagably difficult task. It
is fortunately also besides the goal of the RG, which is to
compute universal large scale physics independently of the
irrelevant details of the bare model. Here, however, because
of the largeN limit, we can integrate the RG flow exactly
and in principle “solve” any bare model. Let us temporarily
ignore this integrability feature and focus on finding the ze-
roes of theB function.

The B function was derived previously within anexpan-
sion and nonanalytic fixed points were found to one
loop®>3%%®and also to two loop&**>°°In the latter case ad-
ditional “anomalous” terms are present in tjgefunction for
the nonanalytic theory to be renormalizable and a meaning-
ful fixed point to exist. Viewing the right-hand side of Eq.
(6.21) as the largeN limit of the true B8 function, let us
follow the same strategy and ask whether we can find non-
trivial fixed points.
Let us studyT=0 and use the equivalent linear form of

equation is Eq(7.1) since it is the sum of the general solu- e FRG equation. We want to find the solutigr() of

tion of the homogeneous part

x=m?¢p(ym %), (7.9

(e=20)yx' +2{x=(y—Yo)=0. (7.13
Yo is a fixed numbefwe want to imposey,=y(0)], since

where ¢ is an arbitrary function, and of a particular solution we are looking for a fixed point function. Keepiryg arbi-

1 -
X=—(y=Yo) = Tn. (7.10

trary, one first tries a linear solution=ay+b which yields
a=1/e and b= —yy/(2¢). Writing x(y)=(y/€)—Yyo/(2¢)
+ ¢(y) one finds a homogeneous equation fgrand thus
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_Y_ Yo . -2ue-20

X(y)= < 2¢ +ay .

Imposing nowy,=Yy(0), i.e.,x(yy) =0, fixes the value o

and one finds th&amily of zero temperature fixed poifunc-
tions, parametrized by:

(7.149

Y Yo €-2¢

=x* = el(e—20)\,—2¢l(e—20)
X=x7(y) € 2§+2§e° y )

(7.15

Sincex>0, yo>0 one must have Z(e—2¢)>0 and thus

€
0<(<5. (7.16

The casel=¢€/2 corresponds to a Larkin random force

PHYSICAL REVIEW B68, 174202 (2003

corrections of were estimated to ordedD(e) and at zero
temperature. For SR disorder it was found that the result of
the GVM (i.e., Flory) is corrected by termay exponentially
small inN, i.e. Zsg=Z(y=N/2+1)+aye+O(€?). For LR
disorder withy>y*(N) result(7.22 was found to be un-
corrected toO(€). (The crossover SR to LR occurs at
such that/(y*)={sg). One can in fact argue that E..22

is always exact in the LR cagsee e.g. discussion in Ref.
55).

Several important remarks are in order. First we have
found the fixed points of the inverted linear fol8) of the
FRG equation. A valid question is whether this is equivalent
to finding the fixed points of the initial form of thg func-
tion (6.21). Second we have found fixed poirgtssuminghat
mdyo=0. Since this idifferentfrom what has been found
previously in Eq.(7.11) at T=0, one can ask whether these

model. For the same reason, we must exclude the branch .o it are compatible.

>y, and thusx* (y) is given by the unique solution of Eq.

(7.15 with x>0 and Osy=<Yy,. Finally, for {=0 we find the
fixed point:

1
X=Xx*(y)= ;[y—yo—yoln(y/yo)]- (7.17

These two questions have a common answer. Examining
more closely what has really been done in this section, we
note that it is equivalent to declaring both E.21) and
(7.8 valid for any x>0 and interpreting everywherg,
=y(0") in Eq. (7.8 and, equivalentlyp’(0) asb’(0") de-
fined by continuity ax—0*. This is legitimate since the

An important observation is that all of these fixed pointstransformation from Eq(6.21) to (7.8) is certainly valid for
exhibit automatically the expected cusp. Indeed one find¥>0 and we note that this answers the second question

that x'(yo) =0, i.e.x(y) in Eq. (7.19 vanishes and has a above since Eq7.7), i.e., the derivative of Eq6.21), evalu-
minimum aty=yj: ated atx— 07 yields

1
X )= 520y, VYO FOLY Y0 (718 —mgny(0*)=(e~20)y(0")~ lim ¥ ()[y()~¥(0*)],

x—0"
This gives (7.23

b’ (x)=b’(0)+AXx+0O(x), (7.19

with A=+/2(e—2¢)|b’(0)|, implying that the second de-
rivative diverges agx—0"

which works both in the regime>m, where the solution is
analyticy(0")=y(0) and in the fixed point regimen—0
when the cusp has developed and the last term in(E@3
has a nonzero limit according to E.19 and(7.20.

We expect these fixed points to be the physically correct
solutions at smalin. We now investigate whether we can
confirm this by providing the solution at infinitg, for arbi-
Recalling thaty= —b’(x) we see that all fixed points with trary massm, i.e., continue our solutiori7.1) beyond the
>0 correspond to a power-law long-range correldtor), Larkin length.
while {=0 corresponds to a Gaussian short range disorder. If
we follow the standard RG arguments, we can now sort mod-
els (2.6) into these universality classes. Since for the bare
model

- A
b”(x)~ ——=+0(x°). (7.20
X

2.x

C. Full solution beyond the Larkin mass

We now show that one can connect the two regimes, i.e.,
the regime fom>m. where an analytic solution exists to the

B'(z)~z7, (7.21)

and since the decay d&(u) in Eqg. (2.6) at largeu can be
argued to be identical foB andB (for LR fixed point§ we
find

§:§(Y):m (7.22

asymptotic one, fom—0, studied in the previous section.
This can be done here because of the full integrability of the
infinite-N limit and provides a rare and non-trivial insight
into what happens around the Larkin scale.

It is instructive to start our analysis with the specific
power law models with LR correlatior.10, together with
the case of SR correlatiorig.9), in the form of a Gaussian.
The solution for an arbitrary bare potentiB(z) is more

or (=0 for short range correlations. These values are valiGubtle, and will be given in Sec. VIII D, and Appendix H.

to dominant order in N. In Ref. 36 the effect of th©(1/N)

For the power law correlators the inverse function in Eq.

terms in the one-loop FRG equation was studied, i.e. th¢7.1) is

174202-16



FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . ..

X

m=m,.

Y=y, (m)

Yolm)

m>m C

FIG. 7. The functionx(y) given by Eq.(7.27) or (7.29. The
physical branch is the one with<yj.
— 1y
(X) —aZ.

(7.29

Voon 9
-B (Z)—m@Z

For Gaussian correlations it is

—-B'(z)=ge e z=>d(y)=In(gly). (7.25

We can now insert this result into the general soluti@rR)
of the self-consistent equatiod.is arbitrary, but the conve-
nient choice(to later obtain a fixed pointis {= () such

PHYSICAL REVIEW B 68, 174202 (2003

independentf m, andy.= e for SR disorder. Fom>m, the
minimum occurs at negativeand the slope af=y,<y. is
nonzero, indicating an analytic solutigrix) = —b’(x). For
largem only the first term on the right hand side of E@.2)
contributes and one recovers essentially the bare dis&der
Decreasingn simply amounts to translate the curve upward
along positivex, andy, increases as the curxéy) cuts the
axisx=0 closer to the minimum. It reaches it at the Larkin
mass, solution ofy=vy,, i.e.,

mz‘a®+ T =(gy/ o)1 =T. (7.33
For SR disordely,=y.= € gives m§=§/e. Exactly asm
—>mc+ the solution acquires a cusp and one finds

b’(x)—b’(0)~\—2(e—2{)b’(0)x, (7.34
i.e., the same result as E{..19.

Although it is a priori not obvious how to follow this
solution form<m,, the following remarkable property indi-
cates how to proceed. If we compute tBdunction, i.e., the
right hand side of Eq(7.8) using Eq.(7.27) at m=m, and
{={(y) we find that itexactly vanishesSimilarly the 8
function for b’(x) also exactly vanishegor all x>0 pro-
vided we also use E(q7.23, i.e., allb’(0) are defined as
b’(0*%). Thus atm=m, the functionhas already reached its

that them dependence of the first term drops. Let us definefixed point form x=x*(y), andfreezesfor m<m.. For the

g=4A40. (7.26
We then obtain, for power law models,
y —1ly
X= (:) +;(y—yo)—m25a2—'~l'm (7.2
g
—b’(0)=yo=g(m**a’+Ty) 7, (7.28

since we wany(0)=yj i.e.,X(yg) =0. This solution is valid
for m>m, and the value ob’(0) is the DR result{6.17).
For short-range disorder the solution foe>m; is

x=In(gm=4y)+ e Ay—yo)—Tm (7.29

—b’(0)=y,=gm ‘e 'm, (7.30

having setZ=0 in that case. We recall thg(x)=—b'(x).
Note that the bare disorder is recoveredifor . We have
kept temperature, but here we discuss only the case wher

0=0(y)=d—2+2¢(vy)>0, (7.3)
i.e., 2<d<4, ord<2 with y<y.(d)=2/(2—d). In that

disorder correlators studied helgx) evolves according to

Eq. (7.27) or (7.29 until m, where it reaches its fixed point

b=b*(x), and does not evolve fom<m;. In particular

yo=—b’(0") freezes atm, and one has-md,y,=0 for

m<m;, exactly as was discussed in the previous section.
The solution form<<m, is thus

x=(y[g) Y+ e Hy—yo)—Tc, m<m,

—b'(0%)=yo=0T.”, (7.35
where the parameték, is defined in Eq(7.33, thus it ex-
actly identifies with the zero temperature fixed padintl5
with {={(y), as can be explicitly verified. This is easily
understood posteriorj since the same functions appear and
in both cases we have two conditions to fix the two undeter-
mined amplitudesx(yg)=x'(yo)=0. It does, however,
heavily rely on the exact power law form of the model, so it
is not immediately obvious how it will extend to ambitrary

%are modelB(z). One clearly cannot expect in the general

case that convergence to the fixed point will be completed
within a finite scale. The solution to this puzzle is given
below. Similarly the solution for the Gaussian SR disorder

caseT,, decreases am decreases, and, as mentioned aboveorrelator form=m, is given by settingn=m, in Eq.(7.29

the role of temperature is minor.
Let us plot the right-hand side of Eq§..27) or (7.29 in

and(7.30 with yy= € (which determinesn.).
The result of this section thus provides unambiguously a

Fig. 7. The curvex(y) has the indicated shape in all cases. Itsolution beyond the Larkin scale which connects with the

cuts the axix=0 aty=y, and has a minimum’(y.;) =0 at
y=Y. with

Y=g AN (el )73, (7.32

zero-temperature fixed point. It justifies the previous section
and the value obtained far. We found that for power law

and Gaussian models the freezing mechanism apparent in
(7.23 leads to:
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—Mdpy(07)=(e=2{)y(0"), m>m; (7.3  patively related td"(0), obtained above for infinite\, it
would be particularly interesting to study theNl¢orrections
—Mdpy(07)=0, m<m. (7.37  in this case.

Let us now examine the case of SR disord2®) in d
=2. More details are given in Appendix F. One hag
=2TIl,=(T/a)In(A/m). The analytic solutiong7.29 and
(7.30 become

The fixed point is reached at=m,.

D. Role of temperature

In the case where disorder is relevant, i.e., #gry) >0
[|.e.,_2<d<4;_d<2 for y<vy.=2/(2—d)] we found in the x=In(yo/y)+ e Hy—yo), (7.41)
previous section that temperature plays only a minor role
since the convergence to the nonanalytic zero-temperature _
fixed point occurs on a finitéLarkin) RG scale. Whether it yo=gm'/ 7 €A T/ (7.42
should be called a zero temperature fixed point can also be
debated since it is reached wh&p=Ty, . A proper defini- with e=2. Thus there is a transition &=T.=2. For T
tion of the renormalized temperature may then include the~Tc, We findy, to increase asn decreases and reagfy
denominator in Eq(6.21). =e€ at the Larkin mass. Fom<m, the solution remains
= v.(d) andd=2 for SR disorder. Here we give the main flows to zero and disorder is irrelevant. The physics is the
results, further details are examined in Appendix F. same as the one contained in the variational method for the
The analytic solution is given by E7.27 andy, given  Periodic model ind=2° which exhibits a(so-called mar-

= i -step RSB solution.
by (7.28, where her& = 4A,T/[ ¢(2— d)] does not flow as  9"a) One-s o . .
m is lowered. Let us examine the second derivative, The casey> YC(Q)’ (d<.2) IS .d|scussed N Ap_pend|x .E'
Although an analytic solution exists as— 0 and disorder is

1 (5\Y 1 formally irrelevant, there are some freezing phenomena at
- =—x'(Yo) = _<g> _Z intermediatem. It corresponds to the case where MP found,
b”(0) YYo\Yo € in addition to a RS solution, a one-step RSB solution which

is so called nonmargingdifferent in nature from the one-

1+
1 ( T azng) y_ll 73y SeP solutions obtained in the cage 0).

€

— 0
—mi+ —
Te

c
VIll. COMPARISON BETWEEN THE RSB

which is a rescaled version of E@.13). The first line in Eq. AND THE FRG APPROACH

(7.38 holds more generallyin the infinite UV cutoff limit)

and to obtain the second we have &et{(vy), 6= 6(vy) and In this section we compare the FRG approach at I&ge

assumedi<2. Setting nowy=1y,, i.e., #=0, we find that  with the GVM using RSB. Since the two methods study the

there is a transition at a temperatdre T, defined by same model in the same limtargeN) a precise connection
should exist.

e(2—d)~ €2—-d) ~ N
= = (1+y)
A, T, A, (gvle) , (7.39

We start by comparing the two methods at the level of the
results of the calculations. We first perform the comparison
for power law models. Then we generalize the FRG solution
such that forT>T_ the solution is analytic for alndownto  to arbitrary bare disorder correlator. Based on these results,
m=0, given by Eq.(7.27) and E"(o) remains finite and Wwe address the deeper connections between the two methods,
given by Eq.(7.38. This is a line of analytic fixed points and emphasize what we learn from them about the physical
which terminates at.. For T<T, the solution freezes as in consequences.
the previous Section, and becomes non-analytic at and below
the Larkin mass

Tc

A. Zero momentum correlation function from the FRG

(7.40 renormalized disorder correlat@(z) as a function of the
scale parametan, i.e., the effective action for the zero mo-
The cased=0, y=1 corresponds to the logarithmically Lnentur~n modti. Since this function is once differentiable, i.e.,
correlated disordeB(z) = — g In(a®+32). It has been studied B(z)=B(0)+B’(0)z+0(z*?, we can extract from its first
for finite N in Ref. 30, where it was shown that there is a derivative the two-point correlation function at zero momen-
transitionfor any Nat T.=+/g (g=¢/N in the notations of tum (see Sec. I B 2
Ref. 30. The above result is in agreement with this value for

T Our main result up to now is a non-trivial solution for the
a?m=T (1— —)
C C T .
C

T.. There, forN=1,2 there is also a line of fixed points for 1

T>T, with a continuously varying dynamical exponéand (va(@)-vp(a)) = (Ua(®) - up(a’))

also one forT<T, with a different dynamical exponent and

some form of RSB Since the dynamical exponent is pertur- =Ga(q)(2m98%qg+q’), (8.1
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[o6l(u) + m®

[

0 Uy, u, 1

FIG. 8. Full RSB solution for the functiofo](u)+m? and a

finite massm. o(u) has identical behavior, with two plateaus at
valuesa(u=0) ando(u=u;). In both cases, upon increasing the
mass only, | varies(increasesand the lower plateau moves up,

the rest of the function being unchanged, see E®5)) in the text.

PHYSICAL REVIEW B 68, 174202 (2003

2 ~
o(w=-FB"(x(u), (8.9
wu=2 809Gk
k

- o 2Ta' (W)
=x(u%)+ fu dwfk s s [o] (W)} (8.5
x(uc)zszk L. (8.6

with

[U](U)ZUU(U)—fOUdWU(W) (8.7

andX°=[o](u=u.). The last two equations are the RSB-
matrix inversion formulaspg(u) is assumed to be continu-
ous. Taking a derivative of Ed8.4) with respect to u gives

The dashed line is the zero mass solution. The lower breakpgint u

reaches the upper ong at the Larkin massn=m, above which

the solution becomes RS. The FRG gives exactly the lower plateau

value for o(u=0)=o(u=u,) and itsmdependence. From it, the
full RSB solution can be reconstructed, see Sec. VIII E.

B'(0) T br(0)

—0)\— _ — _ —d-2¢
Gab(q_o)_ m2 5ab 2 m4 - m2 5ab 2Ad m ’
(8.2

where in the last equation we have used definit®R20 for

the rescaled functiob, and added the indem to recall its
dependence on the mass. In the cés®, for the power-law
models(2.10, we thus find, using,,(0)=—y, from Eg.

(7.28,

Gazp(q=0)=2g(m‘a®+ Ty ) "m 4%

yI(1+7y)

€
m—d—2§,

Y

(8.3

and, form>m, the DR result$6.16) and(6.17) [wherem, is
determined by Eq(7.33] and, we recall{=¢€/[2(1+ y)].

B. Explicit full RSB solution at large N
Let us recall the RSB solution at largé and resolve

1
k {k2+m?+[a](u)}?
(8.8

This equation admits two solutions: Eithefu) is constant,
or satisfies thenarginality condition

o' (=0’ (u)4B"(x(u))

1=4B"(x(u)) j (8.9

k {k2+mP+[o](u)}?
We thus look for a solution of the full RSB equatio(see
Fig. 8 with a nontrivial functiono(u) for u,<u<u, joined
by two plateaus

o(W)=0(l), U=Uc,

(8.10
(8.11)

Similar forms are valid fo5(k,u) andy(u). The breakpoint
U is related to the physics at the Larkin scalg, which, at
weak disorder, can be much smaller than the UV scale
while u,, depends on the IR cutoffn. Equation(8.9) also
yields, by continuity, a closed equation which deter-
minesX,

oW=o(Uy), USUy.

1=4B"

1 1
2T ,
fk k2+ m2+2°) fk (K2+m?+3°)?
(8.12

carefully the MP saddle-point equation in the presence of a I
mass. We only assume that there is indeed full RSB, to b&S Well as

checkeda posteriori Let us first re-express the general so-

lution, valid for an arbitraryB, in a rather compact form.

1=41,B"(x(uy)), (8.13

In the RSB method one first parametrizes the correlatiorsince [ +](u)=0 for u<u,,. To solve these equations one

matrix as Gg,(k)=G(k,u) and the self-energy matrix
TG, (k) — (k*+ m?) 8,p= 0= 0(U), in terms of the over-

lap 0<u<1 between(distinct replicasa andb (and denote

G=G,,). The saddle-point equations then read

firsts determines the functidrr](u) (see below, then finds
U. and y,. One can already note at this stage that Bdl2
is exactly the conditioni6.12 which determines the Larkin
massm,, equivalent to the vanishing of the replicon:
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gczmg_mZ for m<m, (8.14 Let us apply these considerations to the power law model
(2.10. For this model the Larkin mass is determined by Eq.
and>.=0 (no RSB for m>m,. (7.33. Next one has
To find [o](u) for arbitraryB and cutoff, one notéshat
with t_he help of Eqs(8.9) and(8.4) o can be expressed as a o éy(lJr v) [ 4Agy (2+9)/(1+y)
function of[ o] as B”((B")"*(y))=— =
4A4 ¥g
— 2 B/ BII -1 1 (819
(W= T (B) f 1 ' In the Ilimit of infinite UV cutoff A, wusing I,
— 2\ —€l2 _ 2y—1-e€l2 ;
« (R2+ m2+ [o](W))2 Eq(n(18)16) Aq/e and I 3=(m?) Ag/4, we obtain from
(8.15 Y
where B”) ! is the inverse function oB”. Then one notes m?+[o](u)=(Au)??, (8.20
that u as a function otr of [o] is from Eq. (8.7) simply
1/u=da/d] o]. This yields immediately, using the chain rule: 1
R T (A2 21 y)
f 2, 2 2 -
ue 4T k (ke+m°+[o](u)) — (8.22
1
fk(k2+ m’+[a](u)® u.=m/A, (8.23
e[ (871 1 with =d—2+2¢, ¢=€l[2(1+7)]. Using Eq.(8.15 one
f 1 ' finds themrindependent result
k (K2+m?+[o](u))?
(8.16 o(W)=5— eﬂz"'u’“z’g. (8.29

Upon inversion one obtains the exact functian|(u), and .
inserting into Eq.(8.15 o(u). More precisely, we see that In_ particular one has the value of the lower platgaee
the sum[o](u)+m? is a mindependent function of u, and 19 8
thus from EQ.(8.195 o(u) is alsom independent. Then one ) ) )
solves the self-consistent equati@12 for 2., and finally m = o
obtains y from the above. The result can be written using om(0) =0 (Un) = 2—0 U, zTgAmz . (829
Eq. (8.12 in the simple form
Let us note the relation#20,(0)=1 which will be dem-

{ j 1 3 onstrated to hold more generally below.
k (k2+m3)?
U= —4T—1C C. Correlation function in MP solution compared to FRG
fﬁ The inversion formula yielding the diagonal correlation
k(k“+mg) from the RSB solution is
1 1
xXB"[ (B") — | |. 8.1

1+

om(0) +f1 du  [o](u)

-
1 G =0)= — P e
2a(4=0) m? m? un U m?+[o](u)

k (k2+m?)2

Thus y depends only on the Larkin mass and is independent is 4 sum of contributions from all overlaps0<1. In
of m (See Appendix G for another derivation and a disCusyarticylar the contribution from states witkro overlapi.e.,

sion of this useful propertySimilarly one obtains the most distant states, is
4TIgB’”((B")‘1( ! ) Ton(0)
Up=—4T— —, o
" E 4l Geal0=0)lu-0=0(q,u=0)=—2—. (827
3:f ; (8.19  We can now compare with the FRG. One has, usired
k (k>+m?)3 —2+2¢, 2t=€(1+):
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2
_ —2-9
2_0TAm

To(0)
Gaa(A=0)|u-0=—"5—
m

2(1+'}’) 6(1+2y)/(1+7)
T ey 4A4(1+9)

=GiR%(q=0),

(,y'é)l/(l+ y)m7d72§

(8.28

as given by Eq(8.3. Thus, for this power-law model, we

found that the FRG gives exactly and only the contribution

from the most distant statdthe lower plateau in the RSB

solution. Before discussing the reasons and consequences,
let us show that this feature is much more general than pow

law models, and holds in any case where full RSB holds.

D. Solution of the FRG equation for arbitrary disorder
correlator B

In Sec. VII C we found how to continue the solution of

the FRG equation beyond the Larkin scale. It involved freez-

ing of the m dependence of,=—-b’'(0) at m=m, and

worked only for two special forms of disorder correlators,
which happened to be already fixed point forms. It is impor-
tant to find the solution for a more general form of the bare

correlatorB(z), and this is what we achieve here.
Let us examine whether we can find a solution for amy
of the FRG equatioii7.8) in inverted variables

MIrXm(Y) = (€= 20) Y X (Y) + 2{Xim(Y) =Y + Yo,

(8.29
which corresponds to a more general functi?fz). We take
special care here to indicate that(y) is an m dependent
function of y [we notexg,(y)=dyXn(y) and we recall that
Ym(X)=—Db/(x)]. The idea is to play with then dependence
of yo=Yyo(m) since this is really all the freedom we have.
Let us restrict our analysis for simplicity t6=0, the gen-
eralization being straightforward. The definitionygf(m) is
given implicitly by

Xm(Yo(m))=0 (8.30

for all m. The total derivative thus vanishes:

d
mem Xm(Yo(M)) = MdXm(Yo) + X/n(Yo) Mdmyo=0.
(8.31)

Together with EQ.(8.29 at y=y,, it yields [recall that
Xm(Y0) =0]

[MImYyo+ (€=24)YolXm(Yo) =0. (8.32

There are only two possible solutions:
MdmYo+ (€—2¢)yo=0, (8.33
Xm(Yo) =0. (8.34

PHYSICAL REVIEW B 68, 174202 (2003

solution beyond the Larkin scale, i.e., assuming tgly,)
=0, together withx(yo(m))=0, which of course implies
MmXm(Yo) = 0.

Equation(8.29 with yo=yq(m) is trivially separable and
admits the general solution

L
2y

y

Xm(y) =MD | ———
mlY AAgmM2E-€

. ’
_m2§f dm -2
m m

(8.39

—Yo(m’)m

Shhere for nowyq(m) is arbitrary and so is the function

®(y). (It will be identified below with —B’) ! as in Sec.
VII). The first condition one must impose is the definition

XmlYo(M)]=0, i.e.,

Yo(m)

2¢
m=®
AAgMZET €

0=

1
+ EYo(m)

!

= dm
—msz —,yo(m’)m’*zg, (8.36
m m

which should be valid both fom>m, and m<m_. Taking
m(d/dm) of Eqg. (8.36 yields, using Eq(8.36 again

1+ me [ yo(m) 5 e
€ 4Aq 4AGM2E € [MImYo(M)+(e—2L)yo(M)]
=0. (8.37

In order to satisfy this equation, at least one of the factors
must vanish. The regime<m, corresponds to the first, the
regimem>m, to the second factor being zero.

For m>m, one haand,,yo(m) + (e—2¢)yo(m)=0 lead-
ing to

Yo(m)=Am?"¢, (8.38
and the above solution becomes:
\Y 1
x=m%® +—(y—VYo). 8.3
( i TV (B39

This can clearly be identified with the analytic solution of the
self-consistent equatiofv.1) found before in Sec. VII, and
thus implies thatb is the reciprocal function of-B’. Equa-
tion (8.36) is trivially satisfied by

Yo
— | = 8.4
4AgM?¢ € (849
Applying —B’ to Eq.(8.40 fixes A to be
A=—4A,B’'(0), (8.41)

and one recovers the dimensional reduction result.

The first holds before the Larkin scale and the second, which The interesting new information is obtained for<m, .

implies a nonanalytib(y), beyond. We now want to find the

Then the first factor in Eq(8.37) vanishes, i.e.
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|

Deriving Eq.(8.39 with respect to one sees that E¢8.42
correctly implies

€

Yo(m)
4AgM3E €

= —+4 ’
0 € 4Ad

(8.42

X' (Yo)=0, (8.43

thus the solution fob’(x) has a cusp. Equatiof8.42 de-
termines the functioryo(m) for m<m;. Note that if the
power law in the correlator holds only asymptoticaiky(m)

will nicely converge to a constartor the right choice of)
due to the asymptotic power law tail, but may vary arbitrarily

PHYSICAL REVIEW B68, 174202 (2003

The vanishing of the first factor yields the finifeanalytic
solution studied in the previous secti@muivalent to the RS
solution of MP. Continuation beyond the Larkin mass im-
plies x/,(Yo) =0, in which case the additional temperature
term in Eq.(7.8) vanishes and one is back to the=0 equa-
tions (8.45), (8.44): Thus only the value of the Larkin mass
depends on temperature, everything else is independént of

E. Full RSB solution from the FRG result

In the previous section we have shown that the FRG
yields o,(u=0) [via b/,(0)], i.e. the value of the RSB func-
tion only at u=0. In fact, as we now discuss, by varying the

according to the irrelevant corrections to power law. This ismass one can scan the whole functieu) of MP for any u,

studied in more details in Appendix H.
It is convenient to rewrite the final result, i.e., E¢8.36
and(8.42, in the form:

b/(0)=4Agm* B’ (x;n(0)), (8.49
a1, =204 e ! (8.45
=M "=, .

2 e B"(xrm(0))
b/(0)

- = dm’
xm(0)= m*“—f —b,(0)m’ ~ %,
m m’

(8.46
FRG
m

where we use the notatiop,(0)=x-?%0). Theconnection
with the RSB solution becomes obvious in this form. Com-
paring with Eq.(8.13), Eq. (8.49 of the FRG solution iden-
tifies with the marginality condition at=au,,, the lower pla-
teau of the RSB solution; see Fig. 8. It allows one to
determine x,(0); the two other equations are self-
consistently obeyed and give,(0). Comparing with Eq.
(8.4) at u=uy,, yields the identifications

Xm(u=0)=x(u=uy) = xF%0), (8.47)
Tom(0)  To(uy) —bip©0) .
m# - m? - 2Aq m , (8.48
and thus we obtain
GER%(q)=G®M(q,u=0)=8°"™(q)|—o. (8.49

and thus the FRG yields the same information as contained
in the functiono(u). Remarkably, we can obtain an explicit
expression fowr(u), even though the argument of this func-
tion, the “overlap” is not obviously related to any quantity in
the FRG. Furthermore, we can also compute the full
correlation-function of Mezard Parisi, if one knows only
om(0) for all m, which is given by the FRG.

Thus from now on we assume that we know only(u
=0) as a function ofnthrough the FRG, together with some
general properties of the MP solution. As we have already
found in Sec. VIII B, and is shown more directly in Appen-
dix G, the GVM saddle point equations, upon assuming full
continuous RSB, satisfy the two “RG equations”

Imom(W) =0, (8.51

(8.52

valid for any u such that-'(u)#0. One can thus relate the
solutiono,(u) at finitem to the solution at zero massy(u).

Note that Eqs(8.51) and(8.52 have been hypothesized
by Parisi and Toulouse for the Sherrington Kirkpatri@K)
model®? However, it has been shown that there they are only
approximately satisfied; see, e.g., Refs. 63 and 64.

Analysis of these equations shows that, up to the break-
point, one has

&m([am](u)+m2)=0,

It thus holds for an arbitrary disorder correlator, provided a

solution to Eqs(8.44) and(8.45 exists, i.e., for the class of
functionsB(u) which yield full RSB(also called continuous
RSB) within the MP approach. Of course, Ed8.44 and
(8.45 were derivedwithout any assumption about replica
symmetry breaking

Extension toT >0 is obvious. Adding the last term of Eq.
(7.8 and following the same steps as above, one finds

€T

m
— X/ =0.
éxm(yo) -1 m(yO)

(8.50

MdpyYo+ (€—20)Yo+

om(u)=0o(U), U>Up, (8.53
[oml(u)+m?=[00](U), U>Up, (8.59
om(W)=0om(0), U<up, (8.55
[on](U)=0, u<u,,. (8.56

U, is thus uniquely defined from the solution at zero mass by
om(0)=0o(Un), (8.57)
[o0](Up) =m?, (8.59

Indeed one has, taking derivatives of E¢&57) and (8.58
with respect tam?,

(8.59
(8.60

Imeom(0) = 0'6( Unm) dm2Un

Um0 o(Unm) dpmelm =1,
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where here we introduce for conveniengg=(1/2m)d,,. Gas(q=0) ,,(0) m? dp? 1
These two equations give a2 == J’ S 0,20,(0)+ —
T m m M m?
1 2
Up—m——— (8.61) _on(0) medo,(0) 1
™ 9meom(0) == it e + 2 (8.67)

One thus finds that the functiamy(u) is implicitly given by yajid for m<m, . Recalling the relation between,(0) and

B’(0) we see that the MP result is a simple average of the
O( _ 1 )ZO_ (0) (8.62 correlations corresponding to masses betweeand m. .
m(0). .

Im20m(0) Note that one can derive a similar formula fGi(k,u) ob-
tained by MP as a function af ,(0).
Sinceo,(0) can be extracted from the FRG, we see that In summary, although strictly speaking our FRG result
can obtain the full functiorr(u) from the FRG gives only the contribution of distant states to the two-point

One notes that the upper breakpoifjt=t, is indepen-  correlation function, it does allow one to obtain the whole
dent of m. As shown in Sec. VIII B, j increases upon in- MP result, although we do not yet have a derivation within
crease ofm, and reaches.uat the Larkin mass, i.e., forn;g the framework of the FRG alone. One should also note that
=U;. formula (8.46 is in a sense equivalent to the inversion for-

Let us show how one can recast the correlation functiormula of hierarchical matrices which relatggu)=2/,[ G
of MP, given in Eq.(8.26) at zero momentum, entirely using —G(k,u)] to the self energy-(u). This raises the question

FRG data: of whether the FRG equations “know” about ultrametric ma-
trix inversion. These results hold for continuous RSB and the
G.a(q=0) 1 0y(0) w dul 1 1 case of nonmarginal RSBvhen the marginality condition is
—_—=—t—+ - not obeyed is discussed in Appendix E.
T m?> m* un U2\ M2 m?+[om](u)

F. Discussion: Explicit versus spontaneous replica
. (8.63 symmetry breaking

+f1 dul 1 1
e U2\ m? m2+3°

Using our previous results gives

Let us examine what has been achieved and how it com-
pares with other works. We are interested in the behavior of
the effective action of the replicated field theory for laige
Let us focus here on the uniform configuration, for which
['(u)=L9T(u), where we denot& (u) the effective action

per unit volume.TT (u) then represents the free energy per

Gaa(d=0) _ 1  0n(0) fucd_u(l 1 )
m?  Lool()

2 ot 2

T m?> m Up U

unit volume, depending on a set, a=1,...n in the pres-
1 1 1 2 © )
H=—1| - (8.64) ence of external source$, which impose field averages
U m?  mZ (ua(X))=u,. The usual free energy is recovered foru
" . ) i =0, F=TI'(u=0).
Shifting from the variable u to the variable defined by The saddle point method allows one to write, in the limit

u,=u, one finds that the correlation function can be eX-gf infinite N,
pressecentirely from the knowledge otr,(0). To seethis,

note that e TU—_g LTW_S ¢ NT,0=ul) (g g6g

du 1 5 5 .

—=—d 4| ~dIm2om(0) ] =~ d5eom(0)d(m®). wherel'(v) satisfies the saddle point equatidds2), (4.3),

u (8.69 and (4.5, and theX_ denotes a sum over saddle points

' whenever more than one solution exi&t3o be accurate the
This gives saddle-point method computes
1

Gaa0=0) _ 1 om0 (e, (1 1], ) lim —T'(u=v\N), (8.69

T m2 m? 2 H m 2 w2 N—= NL

where the limit is takerat fixedv.
(8.66 As mentioned in Sec. IV A, the saddle point equations
' (4.5 containboth the FRG and the GVM. They depend on
the set ofv,, and when expanded in cumulants, takadt
where we have used thmo](uﬂ)=/.l,2. After an integration v,p=v,—v,#0, they lead to the FRG equations. This ap-
by part and again using E@8.61) at u=u., one finds the proach clearly consists in imposing axplicit breaking of
remarkably simple formula replica symmetry. Also we expect that in that case a single

1)L 1
ue m m2

C
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saddle point exists. This is indicated by the fact that thesmall extra external sourcgNj, such that allv,,#0, i.e.,
quantity'é”(vz)*lzB”(Xv)*1—4lz plays the role of a rep- an average, such that when there are several states, the dif-

licon eigenvalue and remains frozen and positivedfor0.  ferent replicas are chosen in maximally separated states (u

By contrast, MP studied the case wherevglj=0 and found =0).

spontaneouseplica symmetry breaking, i.e., multiple saddle  Note that the quantity computed by the FRG specifies the

points, differing by permutations- of replicas. system’s preparation, while such a procedure still has to be
We can now make contact between the two approache&orked out for the MP solution. In the presence of a broken

and understand why we have obtained, via the FRG, theymmetry this is an important issue, and the FRG gives a

correlations of MP corresponding to the distant states. Let ugatural solution.

focus on the modg=0, and define the center of mass vari- It would be interesting to understand further the limit

ableU:=(1/LYu(x) (i.e., without rescaling irN) and con- vap— 0 coming from our solution,_ which one can _caII the
sider ( Jul ( g i) crossover from FRG to RSB. It is clearly nontrivial. For

instance, one question is what we get if we take a sodrce

5 - - - 0 - =(jVN,—jJN,0,...,0) sothat we still have spontaneous
Z(J)Zf du; ... du, Py(uy)...Py(uy) et g Jala, RSB in n—2 copies, or if we divide the replicas in two
8.70  groups ofn/2 each,J=(jyN,..jVyN,—jN,0,.—jVN) so

that RSB persists within each packet.
Py(U) is the probability distribution ofi in a given disorder Another important issue is what happens at large but finite
configuration: N. For anyN, if one parametrizes the two-replica part of the
effective action usindR(u,p) =NBy(u2,/N), one can write
the two-point correlation function as

PV(I])=J'D[u]é(ﬁ—%Lu(x))e‘”\/[“]”. (8.71)

In the present paper we have computed 8370, scaling Gan(q=0)=—2B}(0)m™* (8.73
J.~+N, and taking allJ, different in order to impose all
vap# 0~0(1). Because of this scaling witN we obtained a . =
differentsaddle point than MPshifted byj; see Eq(3.12],  for a#b. We have determined the functidBy(x) for x
and since allJ, are different, this saddle point has explicit =0(N°, i.e., u;=0(YN). To obtainBy(0) for finite N,
RSB. According to Sec. Il this giveE[u] whenu scales as  however, one needs priori to know R(u,,) for u,p,
JN, i.e., we determ~ined the averaged probabilit84) and ~0O(NY), i.e.,EN(x) for x=0(1/N). The two could be the
(2.35 for fixed w=u/N. same, or there could be a boundary layer of sizd. 1A
On the other hand MP found that priori the knowledge of this requires including theN1¢or-
rections in the FRG equatiotas is examined in Ref. 47
This may help to better understand the connection of this
regime to RSB. This is important since there are cdeeas
(8.72 for d=0, #<0) where we know that Paris-type RSB cannot

. - _survive at finiteN.
One should in principle be able to recover the two-point

correlation function(8.26) obtained by MP adding small
sourcesJ, as in (8.70 and taking derivatives af,=0. G. Interpretation: Comparison with BBM approach
Clearly, to reproduce the MP result, these should be taken as
J,=0(N%—0 and notO(4/N) so as to maintain the unper-
turbed MP saddle point. For instance the diagonal two-poin
correlation function is obtained usind;=J, all other J,

Py(Ty) . .. Py(ly) =S, e~ (W2LUC)an(a=0)ua Uy,
w

A previous stud§? aimed at connecting the RSB solution
Eo the FRG. The authors defined, for each configuration of
he disorder, an “effective random potentidll\,(¢,) for a
) . i . given mode(e.g., the zero modeStarting from the MP so-
:.0’ and d|ffe_rent|at|ng twice with respect b [_The off lution (8.72), they computed the second cumulanihf and
diagonal one involves), —J,0,...) ] Equale~r1tly |t~sho~uld showed that it exhibits a nonanalyticity, reminiscent of the
be obtainable from the effective action far,,=u,—Up  one found in the FRG. A parallel was drawn withda0,
=0O(N?). Thus scalingu,~ N and J~N as was done N=1 toy model wherdJ, satisfies an exact RG equation of
here selects the distant states in the MP solution. The fache Burgers-KPZ type with random initial conditions.
that we obtain exactly the MP result for these states showShocks, well known to develop in this equation, provide an
that there is no intermediate scaling regime. appealing physical picture for the singularities in the energy
We emphasize that our primary aim here is not to recovefandscape responsible for the nonanalyticity in the FRG be-
the MP result, but to understand what exactly the FRG preyond the Larkin length, .
dicts, in view of getting a better understanding of FRG Comparison between this study and the present one shows
within, e.g., thee expansion. Extension of the FRG beyond several important differences, with interesting physical con-
the Larkin scale requires giving a meaning to the limit sequences. The scaling in in N, and the definition of the
—0". We find here that what the FRG actually computes‘renormalized” disorder are different. As here, the authors of
[fromb’(0*)] is a second moment af in the presence of a Ref. 42 focus on the zero mode, but with a different scaling
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with system size: They definebg:=L 92 u(x) =LY, IX. DISCUSSION AND CONCLUSION
such that fluctuations ap, remain of order one. Other quan- | this paper we have studied the FRG at lakg&rom an

titles are exact saddle-point calculation of the replicated effective ac-

tion at largeN we have derived the exact renormalization

group equation, valid in any dimensiahfor infinite N, for

— - the field theory of pinning. It is expressed as dunction

Uy( o) Uv(dg) =Ream( do— ¢o) = Beam((do— $0)?). for the second cumulant of the disorder correlator, and is
(8.79 exact as the second cumulant satisfies a remarkably simple

This definition means that the modg, sees an equivalent closed equation. To ord€¥(e) it agrees with the one derived
d=0 toy model, with random potenti&l,(¢,). Comparing Py Balents and Fisher.

with Egs.(2.35 and(2.37), we see that since the rescaling in ~ This result teaches us a lot about how the FRG works and
L is different there can be no relation betweRfy,(0) or ~ helps put the FRG approach to tkeexpansion on more
Brsy,(0) and the two point correlation function, neither the solid grounds. Since here the FRG flow equation is formally

one of MP, nor the one obtained here in the FRG. To Obtairx?quivalent to a self-consistent saddle-point equation, it is

the two-point correlation of MP one would still havegolve ~ [ully integrable, i.e., one can follow the RG flow from any
the toy model defined by (o), i.e., compute initial condition. It is thus possible to examine in detail what

happens around the Larkin length and how the disorder cor-

. _ relator develops the nonanalyticity. Let us emphasize that to

f dep . . . dpg b5 bg e,z Uu(9o/T, (8.76  our knowledge this is the first time that the emergence of
nonanalytic behavior in the FRG is proven rigorously, be-

This task is difficult, since it requires not only the secondyond perturbative calculations. Indeed, the one-loop FRG is
cumulant, but also higher onéaot computed in Ref. 42  insufficient per se to provide such a proof since the runaway
More importantly, it requires the large argument behaviorof R”(0) could very well be argued to be the analog of the
do— o4 of Rgam(y), not obtained in Ref. 42, were attention famous Landau ghost, i.e., a flow to a strong coupling fixed
was focused on the Larkin scalsee below. Thus the infor-  point without the need, or better the possibility, for renormal-
mation contained irRggy is physically interesting but not ization within a non-analytic functional space. Here we dem-

obviously related to large scale correlations. It is in a sens@nstrate that this is not the case, at least for infihite

Uv(do)=—TInPy(¢o), (8.74

(e.g., for thed=0 case discussed in Ref.@loser in spirit If we had restricted the analysis to the self-consistent
to Wilson-Polchinski type RE® versus an RG based on the equation, the continuation beyond the Larkin scale would
effective action(see Refs. 45 and 67 have seemed quite problematic. Remarkably, the FRG equa-
Re-expressed in the variables of the present work, th&0n, equivalent below the Larkin scale, provides an unam-
result of Ref. 42 reads biguous way to continue the flow equation beyond the Larkin
scale. Even more remarkably, its solution reproduces exactly
o _ a2 the small overlap result of the full RSB solution of MP, a
B(u?)=B’(0)u’+c a) us, (8.77  nontrivial result which, within MP, cannot be obtained with-

out constructing the full RSB solution. The mechanism for

wherec is a constant. Because of the different rescaling, thdhis seems to be that the FRG solution in that case naturally
nonana'ytic term has a coefficient growing with the systernsatisﬁes the so-called mal’ginality condition. In faCt, it turns
size, which expresses again that it is not an effective actiorRut to be equivalent to it, and we were able to find a formula
However, since tha? term is simply the bare disorder, and yielding the complete RSB solution for all overlaps. This is

the non-analytic term involves only the Larkin scae, it striking since we did not make any assumption about Parisi

seems that this carries information for and only for the phys-RSB' We a\(OIded the issue altogether _by using a method
here RSB is not spontaneous, but explicit.

ics below and around the Larkin length, and does not contai : O .
any information about large scale behavior. Thus, despit%KG'VendtTat;he vah;:hty ?f tk?e Parisi Ansatz,.te.g., for tthe
exhibiting shock behavior at the Larkin scale, we think it has mogg)e "t . ast no i yet f.e%n pro;/hefgesE! eh drecetn
little to do with the FRG as a perturbative method to obtainP9ress), 1tis interesting to find a method which does

rely on RSB. In fact there may well be deeper connections to

large scale behavior. Not surprisingly, th&pgy is nonper- be unveiled between the Parisi algebra of ultrametric matri-

turbative ine=4—d, contrarily to the one obtained in stan- . : . . S
ces and the type of singular differential equations arising in

dard FRG, which is of ordee. .
Another important difference with the present approach is:[he FRG. Another example where a RSB solution can

the scaling withN. The approach of Ref. 42 used the unper_equivalently be obtained via an RG type equation is the Der-

turbed MP saddle point and thus, as was extensively disr-'da.SpOhn s_ol_utlon of t_he DP on the Cayl_ey tredhis _has
Inspired a similar solution for a model with translationally

cussed in the previous section, it focusesﬁyg=0(N°) invariant disorder in Ref. 30.

while we focus onu,,=O(N), (i.e., v5,~1/N there and We have thus shown agreement with the main results of
v2,~1 herd. Further work is needed to connect these re-the full and the marginal one-step RSB solutions of Mezard
gimes. On the other hand it seems that the thermal boundagnd Parisi. This is also interesting since it has been widely
layer can be found within this approath. debated whether the RSB method captures the physics: Our
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results raise no doubt for infiniti. J. Kurchan and M. Meard. K.J.W. was supported by the
More puzzling is the situation for SR disorder. There MPDeutsche Forschungsgemeinschaft through Heisenberg Grant

find both a stable replica symmetric solution and a one-steplo. Wi 1932/1-1, and in part by the National Science Foun-

solution where minimization over the breakpoint has to bedation under Grant No. PHY99-07949.

enforced(marginality condition violated For Gaussian dis-

order both SO|Ut.iOHS of MPhav¢=(2—d)/2 Slmllarly the . APPENDIX A: VARIATIONAL FORMULATION
FRG naturally finds the finite temperature RS solution with
{=(2—d)/2 (and one fixed point solution &=0 with / Let us extend the variational method of Ref. 24 to the case

=0). A nonanalytic solution also seems to exist in the FRGWhere the average of the field,(x) is fixed to a nonzero
and work is in progress to analyze it further and elucidatevalue denoted here,(x) = +Nuv,(x). One defines the varia-
whether it is related to the nonmarginal one-step solution ofional Hamiltonian and free energy

MP. Let us note that inl=0 we essentially know thaapart

from y=1) RSB does not hold at finitd (the phase transi- 1 — —

tion predicted by the GVM in that case must go away at /valUl= Efxy[ua(x)_Ua(X)](Gvar)xa,yb[”a(Y)_Ub(Y)]'
finite N, T>0). So there is little doubt that the correct (A1)
branch at finiteN is the RS one, as also given by the FRG.

For the DP problem witld=1, on the other hand, it is not o

yet clear whether both branchésT=0 fixed point starting Fual Gyar,v]=—T InJ Dlulexp(—Hyaful/T)
from (=0 or a finite T non-analytic solution with{=(2

—d)/2) can coexist. One scenario is that they would cross +(H—Hyad)n

var

over at some lower value & =N, yielding the upper criti-
cal dimension of KPZ. The calculation of the FR&func-  which satisfies(for n positive integer the usual boundr
tion to next order in M should shed light on this question, =—TIn Z<F,,,. Here H=NS[u,0] defined in the text, is
and is thus of high interest. It is presented in Ref. 47. Ouithe replicated Hamiltonian. Comparing with E§.27), one
method thus provides a unique candidate for a field theory ofinds that
the strong-coupling phase. . .

To summarize, the present method is promising in solving Fual Guarv 1 T=To[ Gyar,v, U], (A2)
mean field models, by using explicit rather than spontaneous o o
RSB. It would be of interest to investigate whether otherwhere the last argument indicates that férfinite U(x)
models like the SK model could be solved via the sameshould be replaced by (x); in the infiniteN limit U=U.
route. More importantly, it may open an alternative road toRestricting to a bare model with only a second cumulant one
tackle disordered systems from a different direction than exfinds (omitting the bars ow):
panding around RSB saddle points, a task which still has to
be accomplished. Of course, in the end, the same difficulties 1 . ~
may be in store. They could hide in the subleties due to the  U@wv(X),(G))w) =~ = > Bap)%(G,)2D),
nonanalytic behavior of thg@ function at largeN. However, 277 @b
we are optimistic, since we have understood the infiNite-

limit, at least in the full-RSB case. Also, a solution has been . , dw —w22 5 U-W\/_ w?
found forN=1 to twa>*3*4and three loop ordér, and for B(v"2)= (22 vi+2 N aNEIE
finite N at two-loop order.

Let us close by indicating that many extensions of this Bab_ gaa, ghb_ gab_ gba (A3)

work are possible and some in progress. One example is the
random field problem, still under intense deb%t& for . _ , _ ,
which we have also computétthe effective action at large N 9eneralB(s,2) is a function of two variables, which be-
N, and at two-loop order. Finally, the same method applies t¢omes a function of the SUTB(S,Z)—>B(S;r z) only asN
the dynamics, classical or quantum: it has been sfdhat ~ —, since in that limit(vw)=0 and <W2>=N, without
the mode-coupling approximation in glasSasentifies with  fluctuations, in the Gaussian measure /2,
(non-marginal mean field (largeN) dynamics, exhibiting

aging solutions. However this picture leaves out thermally AppeNDIX B: EEFECTIVE ACTION IN NONUNIFORM

'?hctiva';ed processes, and ouNIrhethod may be promising BACKGROUND: GENERAL FORMULATION
ere too.

Note added in proofTalagrand has recently provéon- In some applications bilocal terms may already be present
published that the Parisi ansatz for the SK model yields thein the starting action. Let us thus give a more general and
correct ground state. compact result, which also includes that case. It is derived by

a simple extension of the methods of Sec. Ill.

Let us consider @N-component fieldg,, with compo-
nents¢,, i=1,... N, which can carry other indices, coor-
We gratefully acknowledge discussions with L. Balents,dinates, or be a set of fieldscet . . GeneralO(N)-invariant

E. Brezin, J.P. Bouchaud, L. Cugliandolo, Y.Y. Goldschmidt, forms for the action functional are
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1
3[¢]=§¢1C_11¢+N3m[¢], (B1)

‘//xy:Nqsx' d’yv (B2)

whereS;,{ ¢] is a functional of thebilocal field ¢, (which

is also a bi-index matrix if the fieldp carries other indices,

etc). Then the effective action associatedecan be written
as

1

I'l¢]= §¢1C’11¢+ NCO[y]+ T y]+---, (B3
whereI'%[ 4] is a functional of the bilocal fieldsyy in Eq.
(B2) and satisfies the self-consistent equation

or° S x1
S = (B4)
Xy~ wxy+ G[¢]xyv (B5)
51"0 -1
G[z/;]xy=<c1+2 51511/']) : (B6)

Xy
Xxy IS another(set o bilocal fields.

APPENDIX C: CALCULATION OF HIGHER CUMULANTS

In this Appendix we compute the third and fourth renor-
malized cumulants of the disorder. One uses the parametri- (M3),

zation
N R
U(vv)__ﬁ % B(Uab) P E S(vab ch’ ac)
TGN LI S S P
24T abed
(Cy
We need the matriM 5p=(—2T3,U(x))apl y=v» UP tO the

fourth cumulant:

5ab2 éi,acg_E éi,abg)
cg g

- 5ab§h éi,acgh_z éi,abgh)- (CZ)

gh

The equality of Eq.4.13 (pushed to the fourth cumulant,

i.e. the above formujaand of Eq.(4.14 using Eq.(4.20,
implies:

B,,=B'(xY), (C3)

PHYSICAL REVIEW B 68, 174202 (2003

O o) O
O O A

FIG. 9. Graphical representation of the fourth cumulant. The
notation is explained in Ref. 47. Each diagram corresponds to a
square bracket in EqC21), in the same order.

E S abg=B" X, (C4

1
2 Qlang=B" GXE+5 B"'(X(O))(X(l))z.
(CH

Thus we need compute the terms with one and two free
replica sumsy'}) andy(3). Because of Eq4.24 it means
that we needy't, x{, x@, andx{?). To compute them
we use the definitions4.12 and(4.18. We thus need pow-
ers of the matrixM, but only terms with zero, one or two
replica sums. The expression d¥1f),,, given in Eq.(4.25

is thus sufficient, and we also need

2T2

8 — o~ - - — o
) b:F ; [BieBpe(BarT BpitBer) —BaeBpiBer
E;b(ééfE;e+Eéf§5e+§;eééf)] (CG)

dropping all terms with three or more sums. One then finds

xP=2i 2 Bl.. (C7)

2 - 4 - - -
Xglb):_f'z%: Si,angrf's —B;bZ (Bas+Bpy)

(C8)

(C9)

1 4
2)_ _ — oy o _ B’ <Y <
Xab =~ 7 |2; Q1abght = |3[ Bab% (S1,pght St ,agn)

- Eh (Eéeéi,abh+éée§1,abh) + hzc (Eécéi,cbh

e

B 8 B B! (B B B’
+Bbcsl,cah) +_2|4; [BaeBbe(Baf+Bt,nf+Bef)
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BBy Bl Ban(BaBhet By Bhet BiBho 1,
(C10

71

which yieldsy{}) andx{3) using Eq.(4.24.

1. Third cumulant

To obtain the third cumulant we now insegt}) in Eq.
(C5) (see Fig. 1. One can rewrit®”(x>,), indeed taking the
derivative of Eq.(4.29 with respect taw2, shows that

S

B"(X%)= —> . (C1D)
(Xab 1+41,B],

This becomes, regrouping the term@habg and dividing by

the common denominator 1/&14|2"ng) we obtain

& S 1. ’ 1. ’
% Sl,abg+ 41 ZBab Esl,aag+ Esl,bbg

:2T|2Egb§ (BL.+B,.) +813B., > [E;b(égg%{,g)

e M~~~ 1. . -~
—BBag—BhoBog—BagBin+ 5BagBgat 580 gb}.
(C12
This first yields
- 4T1,B"(0) -,
1 aab™ B (C13

1+41,B"(0)
Inserting this back yields
g _2T1aBas (B! +B/)+8I,B [(E B'(0))
! — - ! + ! + n I !
1,abc 1+4|ZB"(0) ac bc 3Pab) ab
Y D’ B B’ 1. 1 \2 1. r\2
X(Bac+ Bbc)_ BacBbc+ E(Bac) + E(Bbc) :
(C19
In terms of functions it gives

PHYSICAL REVIEW B68, 174202 (2003

2T 0B (y) + B/ (2)]+ 815" ()

é’ X\, 2) = —————=——
(x.y.2) 1+41,B"(0)

X1 [(B"(x)—B'(0)][B'(y)+B'(2)]

~ ~ 1. 1.
~By)B @+ 5B P+ 5B T

(C15
Integrating once, this yields the simple expresqi:31) for
the third cumulant given in the main tefdee Fig. 1 Note
that, up to terms which vanish at=0, it can be expressed in

terms of the functiorB’(x) —B’(0) only.

2. Fourth cumulant

From Eg.(C5) one has

S

PRSI Y. SV (C16)
e Labe e 1+4|28Ia,b abe
1 , Bl,
2; Qlabef_g; 1+4|2~gb abef
ab
+ —————————YapeY , (C17
2(1+41,By)3 20

where we have usel” (x{9) =B.,/((1+41,B",)° obtained

a a

by further differentiation of Eq(4.29 with respect twgb.
We also define

[

Yabe= T}gjb): 4l 2[ - > (éi,aae+éi,be +‘é:ll,abe}

- - 1 -
+21,T(Blet+ Bt’,e)+8|3{ — E(B;a'i- Bip) (Biet Bpe)

=

3 (BiBia BB +BiBia BB

(C18.1)
and

~ ~ 1. 1. ~ ~ ~ o~ - o~
Zapet= T2X§12b): 2| 2[ Ql,abef_ EQl,aaef_ EQl,bbef +2I ZT(Sl,aef+ S1,bef) +4l ST( BaeBaf+ BbeBbf)

815 (53,80 BhySine0 (BBl BiBiamn)+ (BBt rae BhSiin0

+Ban(Sipert Staer) T (BaeSianit BheStant) — (BarSifhet Bt;fsi,fae)}

+8l 4[ E;eéée(ZEéf+Eéf) +~Bt,1e~Bl;e(2’Bt,Jf+§éf) - (Eéeﬁéf+ééeééf)ﬁéf_ 3§éa(§;f§;e+ﬁéféée)

— 2B Bho(Bar+ Bhi+ Bl +2BL By Bt 2BLy(BLBLT By Bhet E;eééf)} '

(C18.2
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which should be further symmetrized overndf for later use(indicated by Sy below).
The fourth cumulant equation yields, regrouping and simplifying the denominédars using also the third cumulant
equation:

=~ I 1 1. m nsl abeélabf ’ o
5Q1avert 212Bap Q1 aaeft Q1 bbef| =5Babz, = +21,TSYym [ By(S] aert St per)]
ab ab

15 TB BBl BiBho)+ 81 BSym — (BBt BisSiier

- (Bz’iesi,aaf+ Bl,)esi,bbf) + (Ballfsi,fae_" Bl;fsi,fbe) + Ballb( Si,bef"‘ Si,aef)

+(BLeS aniT BheStanr) — (BarS pet BrSi rae)

+81,B5,Symyq BieBae(2BL+Bey) +BpeBpe( 2B+ By — (BaeBag

+BheBh)Bar— 3Baa(BaBaet Bl Bhe) — 2B Bho(Ba+ By + Boy) + 2B, Bh By

 2B1u(Bu Bl Bl B BiBhn| c19
Settinga=b and solving, one finds

1 _ 41,TB"(0)

=Q =———F——8S é’ +
2Q1,aaef 1+4|ZB"(0) Yt 1,aef

8T215B"(0) 81,B"(0)T

_ + — B
[1+41,B"(0)]> 1+4I,B"(0)

heBhr (C20

This gives the final result for the fourth cumulant:

Qabed™ Symabcdl
48{ —4B(B.,B.BLs+4(B.)B.BL+2(BL) BBl .—4B.B.BLBL.+B.B. deCBcd}l
+ 192{ 4(Bg)BLpBeaBac— 4Bo(BLy) BigBac— 8B(BaBL B Bact 4(BLy) BB LBA+ 4BLy(BL) BLaBic
+8B7BLB Bl BBGBLB) B BLo— 8BL,BL BB B+ 4(BLo) Bl B Bl 4Bl BLBLBL
—4(BL) B BL Byt 2B BLBLBL B+ (BLy)A(BLy) 2Byt 4(BL)?BLBLBL.— 4By(BL)?BLBr
+ (Eéd)z(géd)rgd} E
+19 ZT[ 2B,,BacBadBant 2BLpBadBhBar— 2BoBLyBacBac+ (Bap) BLaBic

- Il

—2B.,BL4BlBL.— 2ByBL BB+ (BLy)?BLBL.— 2B BLBL Bl ——=
ab~ad™bc 0~ab™cd ab cd ab”ac”ad*0 1+4|286
+32T| BB E'} 's
anBacBag 1+41,B)
2 ” |§
+48T abBadBac+ BabBchac (1+4|2E6)2
12812 B. B, B! B”’} E (C2)
Pemed™0 |1+ 41,813
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fim) fim) fim)

T*

m, m mN\_ m m. m

0(7) >0 6(y)=0 0(7) <0
FIG. 10. The functiorf(m) defined in Eq.(E2).

where Sym,,.q denotes 1/24 times the sum of all 24 permu- -
tations of the indicesa,b,c,d, and we noteNB()=~B’(0), (B") Fz (4gyl,)HA+y 52
ByB~;=B"(0) andBj =B"(0). Note that all terms contain- f(m)= 2, 21, . (E2)

ing B'(0) can be eliminated by the redefinitids/,(x)
=B’(x)—B’(0). Graphically this is presented on Fig. 9,
with each rectangular bracket corresponding to one diagra
in the same order.

rT\{vhere we have also inserted the value of the inverse func-
tion, with B”((B")~(x))=x, for the power law models.
This condition is equivalent to the vanishing of the replicon,

. i.e. it is the line where the RS solution of the GVM becomes
APPENDIX D: CUMULANT EXPANSION unstable to RSB.

FOR NONLOCAL EFFECTIVE ACTION One can then plotsee Fig. 1Dthe functionf(m) for the

three cases defined in the text, l&Ry) >0, marginal ()

=0 and SRO(y)<0 whered(y)=d—2+(4—d)/(1+ ).

The LR and marginal cases, which correspond to continuous

and one step marginal RSB solutions, have been discussed in

the text and there the FRG gives back exaet}y(0) of the

1 1 MP solution. We defer the detailed study of the SR case to

™ __ = Bro21_ - N'&,2 .2 2 further work, and give here a few general remarks.

Vlvo]= 272 % Blug) 3173 gc Svap Vherveal - First one notices in Fig. 10 that solving the FRG equation
(D1) decreasing the mass from infinity one first has the analytic

solution which coincides with the RS one. Fdr>T*
The self-consistent equatidB.31) then yields, by a similar = max,f(m) it remains analytic down ton=0. ForT<T* a

The cumulant expansion can be generalized to study th
effective action for non-uniform configurations. The func-
tional U[v-v] is a functional of the fieldng(x) and can be
expanded as

(v

expansion in numbers of sums: cusp arises when the left branch of the line is reached. Thus
5 despite the reentrance of the analytic solution at smalk
6B[v-v] freezing of the FRG solution has already occurred and it is
8(va(X) - vp(X)) clearly important to understand how to extend the FRG in
5 the shaded region. On the other hand, a one-step solution of
A oo ) 6B[v-v] the MP saddle-point equations exists, obtained by varying
=B vab(x)+2T|1+4fyC><y S(va(y) - vp(y)) the free energy with respect tq.. Its precise boundary de-

pends on the model, but it is generally contained within the
shaded regiorifor details, see Refs. 24,26,29 and).7An
: (D2)  intriguing property of the GVM is the simultaneous exis-
tence, within the rightmost portion of the shaded region near
the axism=0, of two locally stable solutions, one RS and
APPENDIX E: ANALYSIS FOR ALL m the other one-step RSB. Thus, although the line in Fig. 10 is
AND SHORT-RANGE CASE the locus of a continuous transition from RS to RSB, in this
) ) ) rightmost portion of then-T diagram, the one-step nonmar-
To refine the analysis and study the behavior for all valuegying| RSB solution appears discontinuously, before the line
of m, let us rewrite from Eq.(6.10 the condition thatB s reached ad is lowered. Work is in progress to make

B SB[v-v]
5(Ua(y) : Ua(Y))

remains analytic for alim. It reads contact between FRG and RSB in this SR case, and in par-
ticular to understand whether there are also two branches of
T>f(m) forall m (ED solutions of the FRG equation in that region.
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APPENDIX F: FINITE-TEMPERATURE FIXED POINTS

From the RG point of view it is interesting to search for

finite temperature fixed pointé~P) of the FRG equation,
especially in view of future extensions to finité(since we
know at least in some cases, that these persist at fi)itdt
is convenient to use Eq7.8). These FPs exist only in the
marginal case#=0, i.e.{=(2—d)/2 for d<2 or {=0 for

d=2, so thatT,,=4A4T/e does not flow. This is the case Determiningx,

studied here.

1.d<2

Following the same steps as in Section VII B, the general

solution of the fixed-point conditiormd,x(y)=0 in Eq.
(7.9) for a fixed value of¢>0, imposingx(y,) =0 is

Y Yo €20 [yg)*e20
X*(y)=7 20" 2z Yo m
T ex! 20/(e—20)
&[(&) )
20(exy—1) L1y

Taking a derivative ayy=y,, we obtain a self-consistency
condition for x;. One solution isxy=0, the “zero-

temperature” fixed point discussed in Sec. VII B. The other,, .+, B'(2) = — g exp(—Z/a?

one is

€T

Voe—20) -

— €Xy= (F2

with the condition that it must be positive. Reinserting Eqg.
(F1) we obtain the final form for the finite-temperature fixed

point:
Y Yo €-2{ [yo|*¥ 2D
* _ -7 _ i
T2 e y"(y)
1 -2 2¢l(e—20)
N Yo(e=20) || Yo 1
2L € y
v T 2¢l(e-20)

The term in the second line of EGF3) was not present in the
“zero-temperature” fixed-point solutio7.15. Note that it
does not vanish aT=0 but at the higher temperatuie
=T, such thafl ,=y(e—2¢)/e. At this point,x; also van-
ishes and the solutiob’ (x) = —y(x) becomes nonanalytic.

The fixed-point analysis alone does neither fix the value of

Yo, NOrT;.
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2.d=2

Let us now solve the fixed point conditiandx(y)=0
in Eq. (7.8 for {=0, imposingx(yg) =0. One finds

T X{
@+r’“—°l) In(ylyo).  (F4)

€ 6X0_

Y—Yo
* -7 ‘- _
X*(y)= "

again one finds, in addition to the solution
Xp=0:

—exp=—"—1. (F5)

Yo

Reinserting, one finds finally the finite-temperature fixed
points

Y—Yo

T
* —
x*(y)= - N(y/yo), (F6)
with e=2 andT,,=T/#. There is thus a line of fixed points
with {=0 in d=2, parametrized by temperatung, being
again undetermined.

To compare with the solution of the flow equation, we
obviously need to consider a broader class of SR models
). The solution is then

x=aZIn(yo!y)+ € (y—Yo), (F7)

yozamT/(waz)—eA—T/(waZ), (F8)
with e=2. For small disorderg, and T>T.=ewa?
=2ma?, yo(m) flows to zero asn—0 and the solution re-
mains analytic. Fol <T_ the solution develops a cusp when
Yo reaches/o=yo(m.) = e€a?, i.e., at the Larkin mass:

~ \ U[2(1-TITY)]
9 ) ATH(Te=T).

me= (F9)

a’e
Thus only forT=T, the solution reaches fan—0 an ana-
lytic finite-T fixed point associated witlj=0, of the form
Eq. (F6). Thus ind=2 the line of finite-temperature fixed
points with /=0 corresponds to the line of critical fixed
points as the parametaris varied.

APPENDIX G: RG FORMULATION
OF THE RSB SOLUTION

In this appendix, we derive simple RG equations for the
MP solution in the full RSB case. This gives a more direct

However we can now explicitly check that this fixed-point derivation of the key equation®.51) and (8.52. We start

solution identifies with the analytic solutiong.27 and
(7.28 when settingm—0, using T,,=T,,/(2—d) and ¢
=1/y=(2—d)/2. This identification works only forT
>T., and sincey, is now fixed by Eq(7.28, we can com-
pute T, and find that it is given by E(.7.39. Below T, the
solution freezes am=m, at the zero temperature fixed
point.

from [see Eqs.(8.4) and (8.5, equivalent to Eq.(5.4) of
MP]:

2 ~
a'(u)=—?B’(ZTJK[G(k)—G(k,u)]) (G)

Taking a derivative with respect toyields
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E(y))

FIG. 11. Function(H5), describing the approach to the fixed

point in presence of an additional bare power law tail.

1=4B" 2Tfék—Gk f !
- ( k (0 ('u)) k {2+ p+[o](u)}?
(G2

for all u such thatr’ (u) # 0. Using that due tfgsee Eq(8.5),
equivalent to Eq(5.2) of MP]:

- 1
K)—G(k,u)=
Gl—Glkw u{k?+m?+[o](u)}
_jld_v— (G3
u v? k2+m2+[a'](v),
we have
3,[G(K)—G(k,u)]=— O (G4
ul G( (k,u)]= T ol F

On the other hand, we can take a derivative of @) with
respect tam?:

dpeor(U) = —45"( 2Tfk[é(k)—e(k,u)]>

xfamz[é(k)—e(k,u)]. (G5)
k
Eliminating B”(- - -) using(G2) one finds
d ) !
W | e ol
=—Jkamz[c”3(k)—c;(k,u)]. (G6)

Taking another derivative with respect toafter using Eq.
(G4) gives

o'(u)

dm2o(U) B
5ufk K2+ m?+[o](u)}? _&msz {K2+m2+[a](u)}?
(G7)

PHYSICAL REVIEW B68, 174202 (2003

f uo’ (U)dmeo(u) :J’ o' (W{1l+ Il a](u)}
kK {kK2+m?+[al(u}®  Jk {K+mP+[o](u)}®

Since for allu, [ (k?+m?+[a](u)) 3#0 and by assump-
tion o' (u)#0, RSB reveals its universality in the simple
relation

Udpa(u)=1+d,2[o](u), (G9)

which, upon another derivation, yields the two “RG equa-
tions”

mzi{m2+[(r](u)}=o (G10
dm? ’
) d
m RU(U):O. (Gll)

APPENDIX H: CONVERGENCE TO THE FIXED POINT

Since we have found the solution of the FRG equation for
arbitrary disorder correlations, it is instructive to study the
convergence to the FRG fixed point in the case where the
initial disorder is not of the simple forrf2.10 on an explicit
example. We start from a disorder correlator which is the
superposition of two power laws

9 19

_B'(2)= ,
(2 (a’+z)” (a’+2)«

(HD)
with a> 1y, s.t. for largez the first term dominates and fixes
the exponenf = e/[2(1+ y)]. We will determine the inverse
function ®(x) only for C' small. One finds

€ y
IR ) A DY G VY B ] —(1s8)-1
A, " <4Ad y ey - (H2)
with C'~C, and we have defined
1 1-a+y
(—SZT. (H3)

We have choseg=(y/€)” to simplify all prefactors.
Inserting into Eq(8.42, we obtain:

(yoms—2§)—1—l/y + C(yome—zg)—l—ll(?: m-e. (H4)
By multiplying with m< andy{°* /®
lent formula

, we obtain the equiva-

F(yo)=yyy ™ /(0 —y(o+DIo— _ cm(o= A+ 7)de,
(HY)

The left-hand side is plotted in Fig. 11; note that always the
first exponent is negative, and the second and third are posi-
tive. Thus the solution fom=0 or C=0 is simplyy,=1.

For non-vanishingC and m, the solution can be obtained
graphically as the intersection of ¥) with

Noting that the derivatives of the numerator cancel, we get— Cm(®~ /(1 *7€ Note that there is a solution for any,
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Form—0, the approach tgy=1 is obtained by lineariz-
ing F(yo), with the result

C
Yo— 1= 1’nyym(5*7)/[(1+7)5]e_ (HG)

APPENDIX I: PURE O(N) MODELS, NONANALYTIC
EFFECTIVE ACTION

In this section we recall the corresponding result for the
effective action of the generic pu@(N) model at largeN.
One mechanism by which the effective action may become y
non-analytic is given on the standard examplap6ftheory.

FIG. 12. Relation betweexandy in scalar field theory: above,
1. Self-consistent equation at, and below the critical temperature.

The genericO(N) model in dimensiornl is defined by the

action L A
x=(W')"~ (y)—Tf T (18)
s—lflV 24 22 2NVU(X)2 11 TaTa

=7 XE[ u(x)] Homu(x)"+ N | (12)
Here m is used as a parameter, the bare mass bm'ﬁg y=W'(x), (19)
=m?+2V’'(0). For a uniform mode one hasl'[u]
=L9T[v] in terms of the rescaled field=u/\N. One de- andy=0.
fines Let us write the associated FRG equation. One has

- 1 - .
Iv]==m??+V(v?)=W(v?). (12) _
2 —md, W' (X)=—m?—2TW'

A 1
x+Tf ST TN
Similarly, one defines a gq°+2W'(x)

A 1
1 \\ /!
—Tm2 X[ —md W(x)]f —_—r,
W(z)= 5m z+V(2), (13) m g [g%+2W'(x)]?
whether absorbing or not the mass into thare or renor- (110)
malized potential. Again, form=, one hasV=V. The

same method as in Sec. lll yields the saddle point equations A 1
for infinite N: W’ (x)=W" x+Tf —_—
g g2+ 2W'(x)
V' (0)=V'(2+G(v)), (14) \ L
x| 1—-2TW'(x) %1 (111)
S0) T - a [g?+2W'(x)]?
V)= .
a @2+ m?+2V' (v2+G(v))
. . L i Thus:
More details, a graphical derivation, and thé&l l¥xpansion
are given in Ref. 47. A condition for the stability of the
theory is that _ - A 1
—mamW’(x)=2Tm2W”(x)f ﬁ—mz.
oW (v2):=m2+2V' (b2)=0 forall v2.  (16) 9 [g7+2W(x)] 112
2. Solution and FRG equation
Let us start from the form For d<4 taking A to infinity, this becomes
~ A 1
W’(X)=W, X+ f ST (|7) - Aq - ~
a g +2W'(x) —mamw'(x)z2T?m2w"(x)[2w'(x)]*f’2—m2.
The self-consistent solutions of this equation are formally (113)
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3. ¢* theory and nonanalytic behavior

For the ¢* theory V(x) = %(x— 1)2 this reads

X)==m"+ = (x— - | =,
2 2 2 Jg g?+2W'(x)
(114)
(y) 2 +1 m* TfA ! (115)
X = — -
=g g a g%+2y

for y=yq with x(yg)=0. At T=0, asm s decreased, there
is a transition in anyd when m3=m?—g vanishes. Fod
>2, the transition persists fof<T., and occurs whem?

- ngngqulq2 vanishes, with the standard result:

A1
ch —=1, (116)
aq

which depends strongly on the UV-cutaff. y, vanishes at
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If one wants the two first terms to dominate and to scale in
the same way, one needs<2 and B=«ae/2—2. For all

three terms to scale the same way one need, =2
—d. Inserting Eq.(118) into Eq. (113) yields

’ _ Ad ’ —€l2
1-af(z)— Bzf (z)—ZT?f (2)[2f(z)] “<. (119)

Again this can be transformed into a linear RG equation for

z(f):
Ad _
(1—af)Z’(f)—,BZ(f)ZZT?(Zf) €2, (120)
The solution of the above equation with=2, =2—d is

Ag d2y2 ["— e —dr2
z(f)=—2T?(2f—1)( V2 (ot —1) 792,
g
(121)

A particular solution is

the transition, and in the ordered phase the effective action 2(f)=(2f—1)(@-272 (122)

has a non-analytic form. In addition of bran¢i5) for y
=0, x>X,=1-m?/g—T[31/g% the functionx(y) has a
branchy=0 for 0<x<Xx., wherex, is the order parameter
(see Fig. 12

Exactly atT=T. we should recover that the effective ac-
tion exhibits the standard power-law nonanalyticltyM ]
=M1"?. Indeed, from the self-consistent solutioh5), sub-
tracting the same witli=x. andy=0 one gets

2 Ay 11
X(V)= —y+ (2y)d-2)2T J —

for 2<d<4. This corresponds té=(2+d)/(2—d). It can

(117)

. m?
W' (x)= 7+x2/<d—2>. (123)

In the limit of zero mass this yield¥’(x)=x%@~2). One

can also pursue the RG approach in the ordered phase, as is
done usually in the form of a nonlinear sigma model, and
deal with a nonanalytic effective action.

Although the mechanism for the disordered systems stud-
ied in the main text seems to be different fratfi models, it
raises the question of the meaning of the nonanalyticity in
the disordered problem. Is it the signature that we are dealing
with a glass phase, where a symmetry has been broken? We

be recovered by solving the FRG equation. One can look foknow that for infiniteN, this is also accompanied by RSB,

fixed-point solutions of the form

W' (x) = m*f (m?x). (118)

but this does not have to be so in general, i.e. the cusp can
arise without RSB, just from localizatigisingle ground state
dominance
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