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Functional renormalization group at large N for disordered elastic systems, and relation
to replica symmetry breaking
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We study the replica field theory which describes the pinning of elastic manifolds of arbitrary internal
dimensiond in a random potential, with the aim of bridging the gap between mean field and renormalization
theory. The full effective action is computed exactly in the limit of large embedding space dimensionN. The
second cumulant of the renormalized disorder obeys a closed self-consistent equation. It is used to derive a
functional renormalization group~FRG! equation valid in any dimensiond, which correctly matches the
Balents-Fisher result to first order ine542d. We analyze in detail the solutions of the large-N FRG for both
long- and short-range disorder, at zero and finite temperature. We find consistent agreement with the results of
Mezard and Parisi~MP! from the Gaussian variational method~GVM! in the case where full replica symmetry
breaking~RSB! holds there. We prove that the cusplike non-analyticity in the large-N FRG appears at a finite
scale, corresponding to the instability of the replica symmetric solution of MP. We show that the FRG exactly
reproduces, for any disorder correlator and with no need to invoke Parisi’s spontaneous RSB, the nontrivial
result of the GVM for small overlap. A formula is found yielding the complete RSB solution for all overlaps.
Since our saddle-point equations for the effective action contain both the MP equations and the FRG, it can be
used to describe the crossover from FRG to RSB. A qualitative analysis of this crossover is given, as well as
a comparison with previous attempts to relate FRG to GVM. Finally, we discuss applications to other problems
and new perspectives.
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I. INTRODUCTION

Elastic objects pinned by a quenched random potential
a relevant model for many experimental systems. It descr
interfaces in magnets1,2 which experience either short-rang
disorder~random bond!, or long-range~random field! disor-
der, the contact line of a liquid wetting a rough substrate3,4

or vortex lines in superconductors.5–8 It also provides pow-
erful analogies, via mode coupling theory, to complex s
tems such as structural glasses.9 One important observable i
the roughness exponentz of the pinned manifold.

From the theoretical side, this problem still offers cons
erable challenges. It is the simplest example of a class
disordered systems, including random field magnets, wh
the so-called dimensional reduction1,10–14 renders conven-
tional perturbation theory trivial and useless at zero temp
ture. The elastic object is usually parametrized by anN com-
ponent vectoru(x) in the embedding spaceRN, andxPRd is
the coordinate in the internal space. Apart from the case
the directed polymer~DP! in 111 dimensions (d51, N
51), where some exact results were obtained,15–19 analyti-
cal results are scarce. One important challenge is to un
stand the DP for anyN, due to its exact relation to th
Kardar-Parisi-Zhang growth equation whose upper criti
dimension is at present not known, and even its very e
tence is debated.20–23

Two main analytical approaches have been devised so
Each succeeds in evading dimensional reduction, provid
an interesting physical picture, but comes with its limit
tions. The first one is the mean-field theory, the repl
Gaussian variational method~GVM! ~Ref. 24! in the statics
0163-1829/2003/68~17!/174202~35!/$20.00 68 1742
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and the off equilibrium dynamical version.25,26 The GVM
approximates the replica measure by a replica symmetry
ken ~RSB! Gaussian, equivalently, the Gibbs measure fou
as a random superposition of Gaussians,24 and is argued to be
exact forN5`. It yields Flory values for the exponentz. As
for spin glasses, computing the next order corrections~i.e., in
1/N) at the RSB saddle point is very arduous.27–29One may
question whether it is the most promising route, since it is
yet unclear whether the huge degeneracy of states encod
the Parisi RSB is relevant to describe finiteN. There seems
to be some agreement that this type of RSB does not o
for low d andN. Certainly, in the simpler but still nontrivia
d50 limit, the Parisi type RSB found in the GVM shoul
exist only atN5`, apart from the interesting so-called ma
ginal case of logarithmic correlations.30 For the DP, another
exactly solvable mean-field limit is the Cayley tree, and th
too it is not clear how to meaningfully expand around th
limit.31–33

The second main analytical method is the function
renormalization group~FRG! which performs a dimensiona
expansion aroundd54 and was originally developed only t
one loop, within a Wilson scheme.6,34–36Its aim is to include
fluctuations, neglected in the mean-field approaches. Th
too, the dynamics37–41 has been investigated. The FRG fo
lows the second cumulant of the random potentialR(u) un-
der coarse graining, a full function since the field is dime
sionless ind54. It was found thatR(u) already becomes
nonanalytic in the one-loop equation atT50 after a finite
renormalization, at the Larkin scale.

Both methods circumvent dimensional reduction by p
viding a mechanism which is nonperturbative in the ba
©2003 The American Physical Society02-1



t

nc

ic
ex
if-
or
e
t

-

lu
fo

b

p
its

e
ke
el
a
t

lo
,

s

i

op
to
m

k
e

a

e

u
is
c
A
th
al
re

o

bl
io

lt
a
r-
as
dle

P
oss-
is
us

sed.
a

e
ut

ne
ta-

ex-

s of
ale.
g

ent
nd
the
r-
42.
tain
rth
an
re

of

de-

s-

the

r-

cs
der,

on
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disorder. The GVM evades dimensional reduction~DR!
thanks to the RSB saddle point. The FRG escapes via
generation of a cusplike nonanalyticity inR9(u) at u50.
Indeed, while the bare disorder correlator is an analytic fu
tion, FRG fixed points for the renormalizedR(u), perturba-
tive in e542d, are found only in the space of nonanalyt
functions, and subject to the condition that the resulting
ponentz is nontrivial. Both methods are disconcertingly d
ferent in spirit and it is an outstanding question in the the
of disordered systems how to compare and reconcile th
Comparisons were made between some predictions of
one-loop FRG and of the GVM.6,36 Balents and Fisher ob
tained the one-loop FRG equation for anyN restricted to
O(e), and found that its solution reproduces the Flory va
of z for long-range disorder, but yields subtle corrections
short-range disorder, exponential inN.

Physically both methods capture the metastable states
yond the Larkin scaleLc and it is tempting to compare how
they describe them. In Ref. 42 a coarse grained random
tential was defined and it was found within the GVM that
correlator mimics the one in the FRG, exhibiting som
nonanalyticity which was interpreted in terms of shock-li
singularities in the coarse grained disorder. Unfortunat
this analogy was demonstrated only around the Larkin sc
while a quantitative and more general connection able
reach perturbatively the true large scale behavior, as
achieved in the field theoretic FRG, is still missing.

The need for a study of the FRG at largeN is all the more
pressing since we have developed systematic higher
approaches within thee expansion.43–45Within these studies
we have found that higher loop FRG equations forR(u) at
uÞ0 contain nontrivial, potentially ambiguous ‘‘anomalou
terms’’ involving the nonanalytic structure ofR(u) at u
50. We have proposed a solution to lift these ambiguities
the statics at two loops.43–45 Since the large-N limit allows
one in principle to handle higher-loop corrections~i.e., to
treat anye) it should be useful to understand the many-lo
structure of the field theory. Stated differently, we want
understand which physical quantity precisely the FRG co
putes. Finally, developing a systematic 1/N expansion within
the FRG for anyd should provide a novel handle to attac
problems such as Kardar-Parisi-Zhang growth mod
~KPZ!, maybe avoiding the need for spontaneous RSB` la
Parisi altogether if it proves to be nonessential.

The aim of this paper is to study the FRG at largeN. For
this purpose we first perform an exact calculation of the
fective actionG@u# of the replicated field theory at largeN.
Its value for a uniform mode and further expansion in cum
lants yields a definition of the renormalized disorder cons
tent with field theoretic approaches. The second disorder
mulant is found to obey a closed self-consistent equation.
higher cumulants can be constructed recursively from
lower ones. It can be easily inverted below the Larkin sc
and there the solution is analytic and corresponds to the
lica symmetric solution of Me´zard and Parisi~MP!.24 Vary-
ing with respect to an infrared scale, here the mass, we
tain the FRGb function in any d at dominant order,N
5`. The continuation beyond the Larkin scale is remarka
easier to perform on the resulting FRG equation. Its solut
17420
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reveals that the FRGexactlyreproduces the nontrivial resu
of the GVM with full RSB for small overlap. We also give
formula which yields the complete RSB solution for all ove
laps. At no point in our derivation Parisi RSB is invoked,
replica symmetry is broken explicitly here. Since our sad
point equations for the effective action contain both the M
equations and the FRG, it can be used to describe the cr
over from the FRG to the RSB. A qualitative analysis of th
crossover is given, as well as a comparison with previo
attempts to relate the FRG to the GVM.42 Finally, applica-
tions to other problems and new perspectives are discus
A short version of this work has appeared in Ref. 46. In
related paper,47 we give all details of the calculation of th
O(1/N) corrections, with the aim of understanding finite b
largeN.

The outline of the paper is as follows. In Sec. II we defi
the model, the effective action, and its physical interpre
tion. In Sec. III we compute the effective action at largeN,
using the saddle point method, and perform a cumulant
pansion~Sec. disorder!. A graphical interpretation is given in
Sec. V. In Sec. VI we establish the FRG equation at largeN
~the b function of the theory!. Then in Sec. VII we perform
a detailed analysis of the FRG equation for a specific clas
disorder correlators, both below and above the Larkin sc
In Sec. VIII we compare the FRG with the MP solution usin
RSB. First we recall the MP approach and find agreem
with the predictions of the FRG calculation. Next we exte
these results to an arbitrary disorder correlator for which
GVM gives full RSB. Finally we discuss the physical inte
pretation and compare our approach with the one of Ref.
Section IX presents the conclusion. The Appendices con
several generalizations, the calculation of the third and fou
disorder cumulant, finite temperature fixed points, and
analysis and comparison with the effective action in mo
conventional field theories.

II. MODEL AND PROGRAM

A. Model and large-N limit

We consider the general model for an elastic manifold
internal dimensiond embedded in a space of dimensionN.
The position of the manifold in the embedding space is
scribed by a single valued displacement fieldu(x), wherex
belongs to the internal space andu is anN component vector
which belongs to the embedding space.~Its componentsui ,
i 51, . . . ,N, are specified below only when strictly nece
sary.! A well studied example is that of an interface~e.g. a
domain wall in a magnet! whered52 andN51. Thereu(x)
denotes the height of the interface. Other examples are
directed polymer (d51) in an N-dimensional space, which
can be mapped to theN-dimensional Burgers and Karda
Parisi-Zhang~KPZ! equations,48 or a vortex lattice in the
absence of dislocations described byd53 andN52, where
u(x) is there the deformation from the ideal crystal.5,6

Here we will study the equilibrium statistical mechani
of such an elastic manifold in presence of quenched disor
modeled by a random potentialV„x,u(x)…. It is described, in
a given realization of the random potential, by the partiti
function
2-2
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FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . . . PHYSICAL REVIEW B68, 174202 ~2003!
ZV5E D@u#e2HV[u]/T, ~2.1!

where

HV@u#

T
5E

q

1

2
C~q!21u~2q!•u~q!1

1

TEx
V„x,u~x!…

~2.2!

consists out of an elastic energy~expressed here in Fourie
space and taken to be isotropic!, and of a pinning energy du
to disorder. Here and below we denote

E
q
ªE ddq

~2p!d
, E

x
ªE ddx ~2.3!

andu•v5( i 51
N uiv i . Throughout, square brackets as, e.g.,

A@u# denote a functional, hereA of the field ua(x), while
parentheses as inA(u) denote functions.

A convenient form for the inverse bare propagator, us
below, is

C~q!215
q21m2

T
, ~2.4!

whereT is the temperature and the elastic constant is se
unity by a choice of units. The role of the additional ma
term m will be discussed below. An additional small sca
~ultraviolet, UV! cutoff L is implied here and will be made
explicit when needed.

This model is highly nontrivial and, apart from the cas
of N51 and d50,1, very few exact results ar
known.15–19,49 To obtain exact results for large embeddi
spaceN→`, we need to consider a fully isotropic version
the model withO(N) symmetry such that the model remai
non-trivial in that limit. As in a standard large-N treatment
@as for instance of thef4 O(N) model# one defines the res
caled field

v~x!5
u~x!

AN
. ~2.5!

We will freely switch from one to the other in the following
One also chooses the distribution of the random potentia
beO(N) rotationally invariant. It can be parametrized by
set of connected cumulants, of the form

V~x,u!V~x8,u8!5R~ uu2u8u!dd~x2x8!

5NB~~v2v8!2!dd~x2x8!, ~2.6!

V~x1 ,u1! . . . V~xp ,up!
con

5Ndx1 , . . . ,xp
~21!pS(p)~v1 , . . . ,vp!, p>3,

~2.7!

dx1 , . . . ,xp
ª)

i 52

p

dd~x12xi !. ~2.8!
17420
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This adequately models the case of uncorrelated~or short-
range correlated! disorder in the internal space, studied he
The second cumulant, which plays the central role, is t
defined in terms of a functionB(z). The higher cumulants
are not strictly necessary in the bare model, but they app
as we will see, under coarse graining. The distribution
disorder being translationally invariant, these functions s
isfy S(p)(v11v, . . . ,vp1v)5S(p)(v1 , . . . ,vp) for any v.
The model studied here is thus a slight generalization of
model studied by Mezard and Parisi,24 henceforth also re-
ferred to as MP, in the same limit.

Although we will consider the general case, it is useful,
in MP ~Ref. 24! to define two sets of simple models fo
which more specific results will be given. These are, resp
tively, the Gaussian, short-range~SR! disorder, correlator

B~z!5ge2z, ~2.9!

and the power-law correlations

B~z!5
g

~g21!
~a21z!12g, ~2.10!

which, for infiniteN always corresponds to long-range~LR!
disorder, a different universality class, as we will see belo
For finiteN, the long-range disorder corresponds, at the b
level, tog,11N/2; but this is modified at the renormalize
level, and the true frontier LR-SR for finiteN is nontrivial.

B. Program

Having defined the model, and before turning to calcu
tions, let us first outline what we aim at. All the conside
ations in the present section are valid for anyN, but, since in
Sec. III we will consider the large-N limit explicitly, we al-
ready make apparent the rescalings.

The model defined above has already been studied
MP.24 One of the aims of this study was to compute t
roughness exponent of the manifold, defined from the tw
point function as

^@u~x!2u~x8!#2&;Aux2x8u2z. ~2.11!

Besides the roughness exponentz, the amplitudeA is also of
interest whenever it is universal, as it is the case, e.g.,
long-range disorder. To this aim the model was replica
(u→ua), averaged over disorder and self-consistent sad
point equations where derived for the two-point function:

Gab~q![^va~q!vb~2q!&. ~2.12!

This can always be done in a large-N limit, and is then
solved via a RSB ansatz.

Our goal is in a sense broader. We want to understand
full structure of the field theory, i.e., all correlation function
and not only the two-point one. We will thus instead stu
the generating function of correlations as well as the eff
tive action functional which yields the renormalized vertice
This program, defined here, will be carried out in the follo
ing sections explicitly for largeN. In this paper we will re-
strict ourselves to dominant order, but the aim is to und
2-3
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PIERRE LE DOUSSAL AND KAY JÖRG WIESE PHYSICAL REVIEW B68, 174202 ~2003!
stand large but finiteN, including calculating of 1/N corrections. This is deferred to Ref. 47.

1. Effective action and field theory

All physical observables for anyN can be obtained from the replicated action in presence of a source, i.e., an externa
Ja(x) acting on each replica:

Z@J#5E )
a

D@ua#expX2(
a

HV[ua]/T1E
x
(

a
Ja(x)•ua(x) C, ~2.13!
fre
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whereua(x), a51, . . . ,n are the replicated fields~each one
being anN component vectorua

i (x)). Differentiating with
respect to the replicated sourceJa(x) in the limit n→0
yields all correlation functions. The finite-n information is
also interesting. For instance, from

ZªZ@J50#5exp~2nFV /T!, ~2.14!

one can retrieve the sample to sample distribution of the
energyFV52T ln ZV , as was done, e.g., in a finite siz
system ford51.17,50 Thus, unless specified we will keepn
arbitrary.

One can explicitly perform the disorder average in E
~2.13!:

Z@J#5E )
a

D@ua#e2NS[u, j ] , ~2.15!

S@u, j #5
1

2Eq
C~q!21va~2q!•va~q!

1E
x
U~x~x!!2 j a~x!•va~x!, ~2.16!

where herexab(x)5va(x)•vb(x) and here and below sum
mations over repeated replica indices are implicit. We h
rescaled the source in a manner complementary to the fi

Ja~x!5AN ja~x!. ~2.17!

We have also introduced the bare interaction potential

U~x!5
21

2T2 (
ab

B~ x̃ab!2
1

3!T3 (
abc

S~ x̃ab ,x̃bc ,x̃ca!1•••,

~2.18!

which is a function of an by n replica matrixxab and has a
cumulant expansion in terms of sums with higher number
replicas. Because of translational symmetry andO(N) in-
variance it depends only on the matrix

x̃abªxaa1xbb2xab2xba , ~2.19!

and the form of each cumulant is restricted. For instance
has S(3)(v1 ,v2 ,v3)5S„(v12v2)2,(v22v3)2,(v32v1)2

…,
etc. The matrix potentialU(x) can thus be considered as
convenient way to parametrize the disorder~here the bare
disorder!.
17420
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The physical object which contains the information abo
the field theory at large scale is the effective action. It is
generating function of the one-particle irreducible diagra
and in conventional field theories its formal expansion
powers of the field yields the renormalized vertices. All co
relation functions are then obtained simply as tree diagra
from these renormalized vertices. In particular it is know
that within a d542e expansion at zero temperature to
least two-loop order the theory can be renormalized~i.e.,
rendered UV finite and yielding universal results! by consid-
ering counterterms only to the second cumulant. The latte
a functionR(u), and can be viewed as the set of all coupli
constants which simultaneously become marginal ind54.
To probe renormalizability to any number of loops, we wa
to compute the effective action from first principles.

The effective action functional is defined as a Legen
transform:

G@u#1W@J#5E
x
(

a
Ja~x!•ua~x!, ~2.20!

W@J#5 ln Z@J#. ~2.21!

Strictly speaking the definition is the convex envelo
G@u#5minJ„*x(aJa(x)•ua(x)2W@J#…. Here we apply the
definition to the replicated action, and will content ourselv
with the differential definitions

dG@u#

dua~x!
5Ja~x!, ~2.22!

dW@J#

dJa~x!
5ua~x!, ~2.23!

which relate a pair of values (J,u), later also denoted by
(J@u#,u). SinceG@u# defines the renormalized vertices, i
zero momentum limit defines therenormalized disorder.
Thus in order to compute the renormalized disorder, we o
need to computeG@u# ~per unit volume! for a uniform con-
figuration of the replica fieldua(x)5ua5ANva ~a so-called
fixed background configuration!. Because of the statistica
tilt symmetry,51–53 i.e., invariance of disorder term in th
replicated action~2.16! under the translationva(x)→va(x)
1w(x), and of theO(N) invariance one can argue, and th
is what we find below, that for the model~2.4! the scaled
effective action per unit volume~which for a uniform mode
is simply a function ofua) should have the following form:
2-4
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Ĝ~v !ª
1

LdN
G~u!5

1

2T
m2va

21Ũ~vv !, ~2.24!

whereLd is the volume of the system, and here and bel
we use the notation

vvªva•vb ~2.25!

for the n3n replica matrix. This defines the renormalize
disorder. Furthermore, wheneverŨ(vv) can be expanded, u
to a constant, in the form

Ũ~vv !5
21

2T2 (
ab

B̃~vab
2 !2

1

3!T3 (
abc

S̃~vab
2 ,vbc

2 ,vca
2 !1•••,

~2.26!

where here and in the following we denote

vabªva2vb ; ~2.27!

then Eq.~2.26! defines therenormalized cumulantfunctions
B̃(z), etc. As we will see below this is correct up to som
very subtle behavior at coinciding replica vectors~i.e. vab
50 for some paira,b). Also note that the constant pa
Ũ(vv50) is the free energy.

The main result of the following sections will be the exa
calculation of the uniform part of the effective action, i.e.
the functionŨ(vv). This will be performed within a large-N
expansion:

Ũ~vv !5Ũ0~vv !1
1

N
Ũ1~vv !1•••, ~2.28!

and here we will obtain the dominant orderŨ0(vv); the
correctionsŨ1(vv) are calculated in Ref. 47. It will be a
function of a scale parameter. We choose to add a mass
m which provides such a scale. It is a convenient cho
since form5` one hasŨ5U: Fluctuations are totally sup
pressed and the effective action equals the action. One
then progressively lower the mass down to zero, star
from this initial condition, since ultimately one is intereste
in the massless limit. Another choice is to change the
cutoff, as will be discussed again below. It is now useful
give a more direct physical interpretation of this quantity,
addition to the above field theoretic interpretation.

2. Effective action as the distribution of the order parameter

The effective action for a uniform background is al
known to be related to the distribution of the order para
eter. Let us recall the relation for a simple pure ferromagn
The unnormalized probability distribution of the order p
rameterF5(1/Ld)*xf(x) wheref(x) is the local magneti-
zation is by definition

Z~F!5E D@f#dS F2
1

LdEx
f~x!D e2S[f] , ~2.29!
17420
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whereS@f# is the action which describes the ferromagn
~e.g., af4 theory or a Landau Ginsburg model!. The func-
tional W@J# evaluated for a uniformJ reads

W~J!5E dFZ~F!eLdJF5E dFeLd(
1

Ld ln Z(F)1JF).

~2.30!

In the large-volume limit, the saddle point can be taken a
since the Legendre transform is involutive, this yields t
relation between the effective action atq50 per unit volume
and the probability distribution of the order parameter as

2Ĝ~F!5 lim
L→`

1

Ld
ln Z~F!. ~2.31!

In the thermodynamic limit the effective action per unit vo
ume can very well be a nonanalytic function. This is the ca
e.g. in the ferromagnetic phase where its left and right s
ond derivatives atF5M do not coincide (M is the sponta-
neous magnetization per unit volume!. While the right de-
rivative atF5M is related to the inverse susceptibility, th
left one is zero, mathematically due to the prescription
take the convex envelope, and physically because one
always lower the magnetization at no cost in free energy
unit volume by introducing a domain wall. The above pro
erty ~2.31! can be extended to a givenq mode. Finally, note
that in d50 the above does not hold since there is no la
factorLd, and the probability distribution is directly given b
the actionS(F5f).

What is then the physical meaning of the quantity that
will be computing in the next sections? Let us, in analogy
the magnetization for a ferromagnet, define the center
mass of an interface:

w5
1

N1/2LdEx
u~x!. ~2.32!

Since we have added a mass in the elastic energy~2.4!,
which acts as an extra quadratic well bounding the fluct
tions of the interface, the disorder-induced fluctuations of
center of mass are always finite. One expects that they
verge typically asw;m2z asm→0, thus their behavior as a
function of m is of high interest and yields e.g. the inform
tion about the roughness exponent.

One can then define the probability distributionPV(w) of
the center of mass of the interface in a given realization
the random potentialV ~and in presence of the quadratic we
induced by the mass!. One can see that by definition th
generating function for a uniformj is the Laplace transform
of the probability distribution ofw, namely,

Z~ j !5E dw1 . . . dwn PV~w1! . . . PV~wn! e2NLd(
a

j awa,

~2.33!

then by the same saddle point argument as for the ferrom
net one expects, at least naively, that
2-5
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Ĝ@$wa%#52 lim
L→`

1

NLd
ln PV~w1! . . . PV~wn!. ~2.34!

Symbolically one can write

PV~w1! . . . PV~wn!'e2LdNĜ[ $wa%] , ~2.35!

provided this is taken with a grain of salt. Thus one can a
think of the renormalized disorderNŨ(v•v) as parametriz-
ing the set of correlations of an effective equivalent t
model (d50) which has the same set of correlations as
center of mass variable in the original model.

The pth connected moment of the center of mass is id
tical, up to a volume factor, to the zero-momentum limit
the connectedm point correlator of theu field, e.g.,

^wa1
. . . wap

&c5
1

Ld
^va1

~q1! . . . vap
~qp!&cuqi50

~2.36!

and, once the effective action is known, both can thus
obtained in principle as the sum of all tree graphs made fr
Ĝ@v# vertices. For instance the two-point function should
obtainable from

^wawb&5
1

Ld
Gab~q50!5

1

Ld
@Ĝ9@v50##ab

21 , ~2.37!

and the connected four-point function from

^wawbwcwd&
con5

1

Ld
Gabcd~qi50!

5
1

NLd (
e f gh

@Ĝ9@v50##ae
21@Ĝ9@v50##b f

21

3@Ĝ9@v50##cg
21@Ĝ9@v50##dh

21

3Ĝ99@v50#e f gh; ~2.38!

this, however, assumes analyticity, which as we will see
low, does not always hold. Another integral relation holds

^wawb&[E dw1•••dwnw1w2PV~w1! . . . PV~wn!

[W 129 ~ j 50!'E dw1•••dwnw1w2e2LdNG̃[ $wa%] .

~2.39!

III. CALCULATION OF THE EFFECTIVE ACTION

Let us now consider explicitly the large-N limit. One can
rewrite for anyN the starting generating functions~2.15! and
~2.16! as

Z@J#5E D@u#D@x#D@l#e2NS[u,x,l,J] , ~3.1!
17420
o

e

-

e
m
e

-

S@u,x,l, j #5
1

2Eq
C~q!21va~2q!•va~q!

2E
x
j a~x!•va~x!1E

x
U~x~x!!

2E
x

1

2
ilab~x!@xab~x!2va~x!•vb~x!#,

~3.2!

where the replica matrix fieldx(x)[xab(x) has been intro-
duced through a Lagrange multiplier matrixlab(x). Here
and below summations over repeated replica indices are
plicit. One can then explicitly perform the functional integr
tion over the fieldu(x), and obtain

Z@J#5E D@x#D@l#e2NS[x,l, j ] , ~3.3!

S@x,l, j #5
1

2
Tr ln~C211 il!

1E
x
U~x~x!!2

i

2
lab~x!xab~x!

2
1

2Ex,x8
j a~x!~C211 il!ax,bx8

21 j b~x8!,

~3.4!

where the inversion and trace are performed in both rep
space and spatial coordinate space.

It has now the standard form for a saddle point evaluat
of the functionalW@J#5 ln Z@J# except that the saddle poin
is not, in general, uniform in space. It is useful to define t
scaled functionalW̃@ j # through

W@J#5NW̃@ j 5J/AN#, ~3.5!

which has a well defined large-N limit and can be expanded
in 1/N as

W̃@ j #5W0@ j #1
1

N
W1@ j #1•••. ~3.6!

Deferring the calculation of the corrections to a futu
publication,47 we obtain here the dominant order in 1/N as

W0@ j #52S@x j ,l j , j #, ~3.7!

wherex j andl j depend onj (x) and are the solutions of th
saddle point equations obtained respectively by setting
zero the functional derivatives@at fixed j (x)]:

dS@x,l, j #

dlab~x!
U

x5x j ,l5l j

50, ~3.8!

dS@x,l, j #

dxab~x!
U

x5x j ,l5l j

50. ~3.9!
2-6
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The result is

x j
ab~x!5~Gj !ax,bx1~Gj : j !ax•~Gj : j !bx , ~3.10!

il j
ab~x!52]abU„x j~x!…, ~3.11!

Gj
215C211 il j , ~3.12!

whereGj is a matrix with both replica indices and spati
coordinates and inversion is carried out for both. Here a
below, replica indices are raised whenever explicit dep
dency is given, e.g.,xab[x j

ab . The notation for the
N-component vector (G: j )bx

i 5(c*yGbx,cyj c
i (y) is a short-

hand for a matrix product, and everywhere we denote by

]abU~f!ª]fab
U~f! ~3.13!

the simple derivative of the functionU(f) with respect to its
matrix argumentfab . Of course, if, for a givenj (x) there
are several solutions to these equations, then one must
over all saddle points, to the same order:

W@ j #' lnS (
sp

e2NS[xsp( j ),lsp( j ), j ] D . ~3.14!

This case will be discussed below, for now we ignore t
possible complication, as well as issues of the stability of
saddle point.

Now we want to take the Legendre transform and tra
the variablej for the variablev to obtain the effective action
G@u#. One also defines the scaled functional, and its 1N
expansion through

G@u#5NG̃@v5u/AN#, ~3.15!

G̃@v#5G0@v#1
1

N
G1@v#1•••. ~3.16!

Then (G̃@v#,W̃@ j #) and (G̃0@v#,W0@ j #) are also two pairs of
Legendre transforms. Thus the dominant order of the ef
tive action functional in the large-N limit is given by

G0@v#5E
x
va~x!• j v

a~x!2W0@ j v#, ~3.17!

with W0@ j # given by Eqs.~3.7! and~3.12!, and wherej v(x)
is thev(x)-dependent source solution of

dW0@ j v#

d j v
a~x!

5va~x!. ~3.18!

One can now derive a self-consistent functional saddle p
equation forG0@v#. First we establish the relation betweenv
and j v , namely,

va~x!5~Gv : j v!ax ⇔ j v
a~x!5~Gv

21 :v !ax , ~3.19!

where from now on we define

GvªGj v
. ~3.20!

Equation~3.19! is obtained noting that
17420
d
-

um

s
e

e

c-

nt

va~x!5
dW0@ j v#

d j v
a~x!

52
d

dj a~x!
S@x j ,l j , j #U

j 5 j v

52E
y
F]x j~y!

] j a~x!

]S
]x j~y!

1
]l j~y!

] j a~x!

]S
]l j~y!GU

j 5 j v

2
]S

] j a~x!
U

j 5 j v

52
]S

] j a~x!
U

j 5 j v

5~Gj v
: j v!ax ,

~3.21!

where we have used the saddle-point equations~3.8! and
~3.9!.

We can now use Eq.~3.19! in the saddle point equation
~3.8! and ~3.9!, and defining

xvªx j v
, lvªl j v

;

this yields a self-consistent equation forxv(x),

xv
ab~x!5va~x!•vb~x!1~Gv!ax,bx , ~3.22!

~Gv
21!ax,by5~C21!x,ydab12]abU„xv~x!…dd~x2y!,

~3.23!

which is also a self-consistent equation forGv . Since the
Legendre transform is involutive, one can also write

dG0@v#

dva~x!
5 j a~x!5~Gv

21 :v !ax , ~3.24!

which determines the derivative ofG0@v# once Eq.~3.23! is
solved.

One can however do better. Using Eq.~3.19! in Eq. ~3.17!
one obtains the effective action for a spatially varying fie
v(x):

G0@v#5v:~Gv
21!:v1S@xv ,lv , j v#, ~3.25!

which gives

G0@v#5
1

2Exy
Cax,by

21 va~x!vb~y!1
1

2
Tr ln„C2112]U~xv!…

1E
x
U„xv~x!…1E

x
va~x!]abU„xv~x!…vb~x!

2E
x
xv

ab~x!]abU„xv~x!…. ~3.26!

It is interesting to rewrite it with the help of Eq.~3.23! as a
functional ofGv andv only:

G0@Gv ,v#ªG0@v#52
1

2
Tr ln Gv

1
1

2Exy
Cax,by

21 @va~x!vb~y!1~Gv!ax,by#

1E
x
U„vv~x!1~Gv!x,x…. ~3.27!
2-7
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We have dropped a constant;n. Equation~3.27! has the
property

]GG0@G,v#uG5Gv
50, ~3.28!

where the derivative acts only onG, leaving fixed allv,
since this coincides with the saddle point equation~3.23!.
This makes apparent that it can also be obtained from
variational methodwhere the average of the field is fixed,
we detail in Appendix A. Since the explicit nontrivialv de-
pendence in Eq.~3.27! using Eq.~3.23! is purely in terms of
the bilinearsva(x)•vb(x) at the same space points, it als
shows that one can write

G0@v#5
1

2
v:C21:v1Ũ0@v•v#, ~3.29!

where the interaction~i.e., disorder! part satisfies

dŨ0@v•v#

d~va~x!•vb~y!!
50, xÞy ~3.30!

and is the solution of a self-consistent functional equatio

dŨ0@v•v#

d~va~x!•vb~x!!
5]abU„vv~x!1~Gv!x,x…

~Gv
21!ax,by5~C21!x,ydab1

dŨ0~v•v !

d@va~x!•vb~x!#
dd~x2y!.

~3.31!

A generalization of this equation is presented in Appendix

IV. SELF-CONSISTENT EQUATION
FOR THE RENORMALIZED DISORDER

A. Uniform configuration and saddle-point equation

Let us now consider the simpler problem of computi
the effective action for a uniform field configuration, whic
can be solved self-consistently. To be more specific we
focus on the form~2.4! for the elastic energy. Also, to sim
plify notations and since we will restrict ourselves to dom
nant order in 1/N, we drop the index 0, so we set

G0→G̃, Ũ0→Ũ, ~4.1!

and so on.
For a uniform fieldva(x)5va the effective action~3.29!

per unit volume takes the form

Ĝ~v !ª
1

Ld
G̃~v !5

1

2T
m2va

21Ũ~vv !. ~4.2!

Note that these are now simply functions~not functionals! of
a N3n component vector, andŨ(vv) is a function of then
by n matrix vavb .

Equation~3.27! also yields a formula forŨ0(vv) ~up to a
constant!:
17420
a

.

ll

Ũ~vv !5U~xv!1
1

2Eq
tr$ ln@~q21m2!d12T]U~xv!#

1~q21m2!@~q21m2!d12T]U~xv!#21%.

~4.3!

The trace acts in replica space, and the log is a function
matrix, to be defined as usual. Since Eq.~4.3! contains the
derivative]abŨ

0(vv) we must first determine the latter. On
finds that, analogous to Eq.~3.31!,

]abŨ~vv !5]abU~xv! ~4.4!

xv
ab5vavb1TE

q
@~q21m2!d12T]U~xv!#ab

21 . ~4.5!

Since one can replace the matrix]U(xv) by ]Ũ(vv) in the
denominator of Eq.~4.5!, this is also a self-consistent equ
tion, which involves only ]abŨ(vv). Here inversion is
simplen by n matrix inversion andd is the Kroneckern by
n identity matrixdab . One must be careful that

]abŨ~vv !5
]Ũ~vv !

]~va•vb!
~4.6!

is a first derivativeof Ũ(vv) with respect to the matrix ele
mentva•vb . One can also check that taking the derivative
Eq. ~4.3! with respect tova•vb correctly reproduces Eq
~4.5!. A direct derivation uses]x/](vv) from Eq. ~4.5!. A
more clever way is to remember that because of Eq.~3.28!,
one is allowed to differentiate only with respect to the e
plicit vv in xv in the first term, and that the remaining term
can be written as a function ofGv only, and using again Eq
~3.28!.

This self-consistent equation for]Ũ(vv), i.e., for the uni-
form part of the effective action is one of our main resu
and the remainder of this paper is devoted to analyze i
contains a huge amount of information, since it encodes
full distribution ~i.e., all cumulants! of the renormalized dis-
order, and is thus quite nontrivial to analyze. It includes b
the Gaussian variational Method of Mezard and Parisi24 and
the functional renormalization group. For simplicity, we no
consider the bare disorder to be Gaussian and set all
cumulants except the second cumulantB(z) to zero.

The GVM is recovered upon settingv50 which is one
limit in which the equation ‘‘simplifies.’’ One sees that Eq
~4.5! then reproduces the Mezard-Parisi equations, the s
energysab , and two-point functionGab(k) in Ref. 24, being

sab52T]abU~xv50!, ~4.7!

Gab~k!5Gv50
ab ~k!, ~4.8!

~xv50!ab5E
k
Gab~k!. ~4.9!

In the glass phases, these exhibit spontaneous replica
metry breaking, with multiple solutions corresponding
saddle points obtained via replica permutations, and
2-8
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above equations are solved by a hierarchical Parisi ansat
x(v50)ab5x(v50)(u) where 0<u<1 is the overlap be-
tween replicasa andb. We will give more details about this
correspondence in the following.

For now we will study the opposite limit of ‘‘strong’
explicit symmetry breaking field~all vab[va2vbÞ0). Then
we expect that the renormalized disorderŨ(vv) is given by
a single saddle point and can be expanded in replica sum
terms of unambiguous renormalized cumulants, i.e., up
constant

Ũ~vv !5
21

2T2 (
ab

B̃~vab
2 !2

1

3!T3 (
abc

S̃~vab
2 ,vbc

2 ,vca
2 !1•••.

~4.10!

This is the limit solved here, which we will show below
the natural limit in the FRG, and amounts, as we will d
cuss, to forcing the manifold in distant states within the R
picture. The rich crossover to RSB contained in Eq.~4.5!,
when some of thevab are set to zero will be discussed belo

B. Cumulant expansion

We now transform Eq.~4.5! for the formal function
Ũ(vv) in a set of equations for the second, third, fourth, . . .
cumulants. This is performed through an expansion in su
over an increasing number of free replica indices, andis not
an approximation. The such obtained equations are as ex
as Eq.~4.5!, i.e., exact to dominant order at largeN, albeit
more explicit. In fact, they allow a recursive exact calcu
tion of all cumulants. Their increasing complexity will illus-
trate the wealth of information summarized in Eq.~4.5!.

Let us first rewrite Eq.~4.5! using an infinite series:

]abŨ~vv !5]abU~xv! ~4.11!

xv5vv1TI1d1T(
n51

`

I n11@22T]Ũ~vv !#n

I nªE
k

1

~k21m2!n
, ~4.12!

where thenth power here denotes the matrix product. Sin
we consider a Gaussian bare model~2.18! where only the
second cumulant is nonzero one has

22T]abU~xv!5
2

T F2B8~ x̃v
ab!1dab(

c
B8~ x̃v

ac!G
~4.13!

using that]abx̃ab52(dab21).54 The same quantity for the
renormalized disorder reads
17420
for

in
a

-

s

ct

-

e

22T]abŨ~vv !5
2

T S 2B̃ab8 1dab(
c

B̃ac8 D
1

2

T2 S 2(
g

S̃1,abg8 1dab(
cg

S̃1,acg8 D 1•••,

~4.14!

where we denoteBab8 5B8(vab
2 ), S̃abc5S̃(vab

2 ,vbc
2 ,vac

2 ) and

S̃1,abc8 denotes a derivative with respect to the first argum

of the functionS̃ (S has the symmetries implied by replic
permutation symmetry!. All matrices we will encounter can
be parametrized as

Xab5xab1dabxa , ~4.15!

xab5xab
(0)1xab

(1)1xab
(2)1•••, ~4.16!

xa5xa
(0)1xa

(1)1xa
(2)1•••, ~4.17!

where xab do not contain any explicit Kroneckerdab , the
upper index denotes the number of free replica sums, e
xab

(1)5( fxab; f , xab
(2)5( f gxab; f g . Since under matrix produc

(Xp)ab or Hadamar product (Xab)
p the number of sums can

only increase, one gets only a finite number of terms in p
jecting out on terms with a given number of free repli
sums.

If in the same way we parametrize:

xv
ab5xab1dabxa , ~4.18!

x̃v
ab5x̃ab1dabx̃a , ~4.19!

then one easily sees that

B8~ x̃v
ab!5dab@B8~ x̃aa1x̃a!2B8~ x̃aa!#1B8~ x̃ab!,

B8~ x̃v
ab!2dab(

c
B8~ x̃v

ac!5B8~ x̃ab!2dab(
c

B8~ x̃ac!.

~4.20!

We can now expand in number of sums:

B8~ x̃ab!5B8~ x̃ab
(0)!1B9~ x̃ab

(0)!x̃ab
(1)1•••, ~4.21!

and the equivalence of Eqs.~4.13! and ~4.14!, using Eq.
~4.20!, implies

B̃ab8 5B8~ x̃ab
(0)!, ~4.22!

1

T (
g

S̃1,abg8 5B9~ x̃ab
(0)!x̃ab

(1) , ~4.23!

and so on for higher cumulants. Thus to obtain the sec
renormalized cumulant we only need to compute the p
x̃ab

(0) of x̃v
ab which contains no sum and no explicitdab . One

has, in general,

x̃ab
(p)5xaa

(p)1xbb
(p)1xa

(p)1xb
(p)22xab

(p) . ~4.24!
2-9
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Thus for the second cumulant we need onlyxab
0 and xa

0 .
Since one has, to be explicit,

@~22T]Ũ !2#ab5
4

T2 Fdab(
e f

B̃ae8 B̃a f8 2B̃ab8 (
f

~B̃a f8 1B̃b f8 !

1(
c

B̃ac8 B̃cb8 G1
4

T3 F2dab(
egh

B̃ae8 S̃agh8

2B̃ab8 (
gh

~S̃bgh8 1S̃agh8 !2(
eh

~B̃ae8 S̃abh8

1B̃be8 S̃abh8 !1(
hc

~B̃ac8 S̃cbh8 1B̃bc8 S̃cah8 !G
1•••, ~4.25!

where all terms not written have at least three free rep
sums@this is the case forO(S2) as well as terms involving
the fourth cumulant and higher#. Similarly @(22T]xŨ)p#ab
has at leastp21 free replica sums@from the O(Bp) term#.
This is much more what we need, which comes only fro
Eq. ~4.14! and, using Eq.~4.11!:

xab
(0)5vavb22I 2B̃ab8 , ~4.26!

xa
(0)5TI1 . ~4.27!

This yields

x̃ab
(0)5~va2vb!212TI114I 2~B̃ab8 2B̃aa8 !. ~4.28!

Thus we find that the renormalized second cumulant satis
a closed equation at anyT:

FIG. 1. Graphical representation of the third cumulant. The
tation is explained in Ref. 47. The first diagram yields the ter
proportional toI 2, and the second diagram the terms proportiona
I 3 in Eq. ~4.31!.
17420
a

es

B̃8~vab
2 !5B8„vab

2 12TI114I 2@B̃8~vab
2 !2B̃8~0!#…,

~4.29!

with no other contributions from higher cumulants at anyT.
Appendix D contains a nonlocal extension of this formu
Equation~4.29! can be integrated with the result

B̃~v2!5B„v212TI114I 2@B̃8~v2!2B̃8~0!#…

22I 2$B8„v212TI114I 2@B̃8~v2!2B̃8~0!#…%2.

~4.30!

A direct derivation from Eq.~3.3! is also possible.

C. Higher cumulants

Higher cumulants of the renormalized disorder can be
tained by the same method using Eq.~4.23! and its exten-
sions. They can also be obtained by the graphical meth
For simplicity here we give only the expression of the th
cumulant~see Fig. 1!. The complete expression for the four
cumulant together with all calculational details and an int
duction to the graphical method, can be found in Appen
C.

The third cumulant is found to be

S̃~x,y,z!5
6TI2

114I 2B̃9~0!
Symx,y,z@B̃8~x!B̃8~y!#

124I 3Symx,y,z$@B̃8~x!2B̃8~0!#B̃8~x!B̃8~y!%

28I 3B̃8~y!B̃8~z!B̃8~x!, ~4.31!

where Symx,y,z is 1/6 times the sum of all permutations o
x,y, andz. Note that this relation is exact for all values of th
massm, and not just a fixed point form. The only input in th

-
s
o

FIG. 3. The four one-loop diagrams correcting the disorder
fat dot represents a vertexB, a solid line the fieldu, and its cor-
relator. A dashed line attaches two fieldsu to a vertexB. We do not
draw replica indices.
FIG. 2. Examples for vertices and the one-loop tadpole diagram which is dominant at largeN.
2-10
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derivation is the absence of a third cumulant for the b
model (m5`). It would be interesting to include an add
tional bare third cumulant. The fourth cumulant is derived
Appendix C, where also details for the graphical method
given.

V. GRAPHICAL INTERPRETATION

In this section, we sketch how the central results at la
N can be obtained graphically, first the saddle-point equa
~4.29!, which gives the effective disorderB̃ as a function of
the bare disorderB, and second theb function ~6.9!.

The graphical rules for the perturbation theory of the re
licated model have been described in detail in Ref. 55
N51, and we refer the reader to this work for elementa
details. Here there are, in addition,N components of the field
ua

i , the propagator being diagonal in all indices. For t
present purpose we are mostly interested in the countin
N, and since it is difficult to represent graphically both vec
and replica indices, we work with unsplitted vertices~see
Ref. 55! and specify the replica content only when need
Disorder vertices may contain arbitrary number of deriv
tives and some examples are represented on Fig. 2. As u
there is a factor of 1/N per derivative~i.e. per dashed line! at
each vertex~see, e.g., Fig. 2, usingv25u2/N), N per vertex,
andN per loop.

We consider the effective action, i.e. the sum of all on
particle irreducible diagrams~1PI!, and later focus on its
two-replica part. We start our analysis atT50 with the three
possible 1-loop diagrams, as presented in Fig. 3. They
obtained from contracting

N

2 (
ab

BS ~ux
a2ux

b!2

N DN

2 (
cd

BS ~uy
c2uy

d!2

N D . ~5.1!

In order to simplify the calculation we omit the terms tak
at coinciding replicas@e.g.,B8(0)], they can be added at th
end. Contracting Eq.~5.1! twice between pointsx andy gives

FIG. 4. Loops which give additional factors of 1/N, as ex-
plained in the main text.

FIG. 5. Tree configurations which contribute toB̃(v2).
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N

2
Cxy

2 (
ab

FB8S ~ux
a2ux

b!2

N DB8S ~uy
a2uy

b!2

N D
1

2

N
B8S ~ux

a2ux
b!2

N DB9S ~uy
a2uy

b!2

N D ~uy
a2uy

b!2

N

1
2

N
B9S ~ux

a2ux
b!2

N D ~ux
a2ux

b!2

N
B8S ~uy

a2uy
b!2

N D
1

4

N
B9S ~ux

a2ux
b!2

N D ~ux
a2ux

b!2

N
B9S ~uy

a2uy
b!2

N D ~uy
a2uy

b!2

N G
1~higher replica terms!. ~5.2!

This is graphically depicted in Fig. 3. The important obse
vation is that only the first diagram, with a closedu loop is
contributing in the limit of largeN. This analysis can be
repeated to higher loop order. Again, only diagrams as
first one in Fig. 3 contribute. Especially, there are no loo
with three propagators or more, as loops 4 or 6 in Fig.
Also, there are no ‘‘metaloops,’’ i.e., loops formed by loop
as loop 5 in Fig. 4. Finally, only diagrams as those in Fig
survive, which as building block have only the elementa
one-loop diagram with a closed loop contributing a factor
N, as the first diagram in Fig. 3. These are treelike diagra
where the nodes are made out ofB and the links out of the
above-mentioned one-loop diagram~two parallel replica
lines in the splitted diagrammatics55 which produce the de-
sired two-replica term!. At junction points the replica lines
branch also in parallel. These are of course not tree diagra
i.e., they are 1PI and contribute to the effective action. N
in Fig. 5 that since there is a 1/(2T2) factor per vertex, but
that each vertex~except one! comes with two propagators
~factor T2) the counting in temperature is right to produce
two-replica term with the expected 1/(2T2) global factor~the
three-replica terms proportional toT have been discarded
etc.!.

FIG. 6. Self-consistent equation at leading order forB̃8(vab
2 )

5B8(xab). The wiggly line denotes a derivative, and is combin
torially equivalent to choosing oneB. At finite T one can attach an
additional arbitrary number of tadpoles to anyB.
2-11



ca
e

l:

ve

b

b

-

e

in

-
ti-
th

ed

e-
e

le
te

fo
m

UV

of

t.
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B̃8~v2!5 (
,50

`
B(n11)~v2!$4I 2@B̃8~v2!2B̃8~0!#%,

,!

5B8„v214I 2@B̃8~v2!2B̃8~0!#…. ~5.3!

Note that we have added the term with coinciding repli
indices, dropped previously. The combinatorial factor com
from the expansion of the exponential function ine2S. That
it indeed resumes toB8 with a shifted argument is natura
For a functionf (x) taking the expectation valuêf (x)& in a
theory with only a first moment̂x& is equivalent to calcu-
lating f (^x&). Taylor expanding the latter leads to the abo
combinatorics~Fig. 6!.

By the same arguments the full effective action can
written as the sum over treelike~but not tree! diagrams rep-
resented in Fig. 5 where, in addition, each vertex can
dressed by an arbitrary number of tadpoles~see Fig. 2!. Each
tadpole brings an additional factor ofT, thus tadpoles con
tribute to the two replica term only atT.0. At finite tem-
perature, any of thev2’s could be contracted, leading to th
replacement

~va2vb!2→~va2vb!212TI1 . ~5.4!

@This offers another possibility to verify the combinatorics
Eq. ~5.3!.# Thus the final result is

B̃8~v2!5B8„v212TI114I 2@B̃8~v2!2B̃8~0!#…. ~5.5!

We now illustrate how to recover theb function. Apply-
ing 2m]/]m to B̃ implies to derive each integral with re
spect tom appearing in each loop of Fig. 5. Diagramma
cally this amounts to choosing in the tree of Fig. 5 one of
bonds~loop I 2) which connects twoB’s. Summing over all
trees, it gives a term

2S 2m
]

]m
I 2D @B̃8~v2!222B̃8~v2!B̃8~0!# ~5.6!

since the two trees attached to the loopI 2 are nothing but
B(v2), derived once, and again itself with things attach
i.e., B̃8(v2) as given in Eq.~5.5!. This reproduces theT50
term in Eq.~6.9!. The second contribution comes from d
riving TI1. The graphical derivation is complicated, and w
refer the interested reader to Ref. 47 where a more comp
but much more involved, diagrammatic method is presen

VI. FUNCTIONAL RENORMALIZATION
GROUP EQUATIONS

A. From self-consistent to FRG equation

We will now study the self-consistent equation, exact
N5`, for the second cumulant correlator of the rando
potential that we have derived in Sec. V,

B̃8~x!5B8„x12TI114I 2@B̃8~x!2B̃8~0!… ~6.1!

which involves only the two one-loop integrals:
17420
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I 15E
0

L ddk

~2p!d

1

k21m2
, ~6.2!

I 25E
0

L ddk

~2p!d

1

~k21m2!2
, ~6.3!

where we have indicated symbolically that a short scale
cutoff is needed forI 2 to be finite if d>4 and forI 1 for d
>2.

There is a simple way to obtain directly the solutions
Eq. ~6.1! which we will detail below. It is also interesting to
turn this equation into a FRG equation for the functionB̃(x)
as a function of the scale parameterm. Indeed this yields the
b function of the field theory in the limit of infiniteN, which
is our main goal. Let us show first how one does this.

Let us first take a derivative of Eq.~6.1! with respect tox.
One obtains

B̃9~x!

114I 2B̃9~x!
5B9„x12TI114I 2@B̃8~x!2B̃8~0!#….

~6.4!

Taking the derivativem]m of Eq. ~6.1! and using Eq.~6.4!
gives

m]mB̃8~x!5
B̃9~x!

114I 2B̃9~x!
$2m]m~TI1!14~m]mI 2!@B̃8~x!

2B̃8~0!#14I 2m]mB̃8~x!24I 2m]mB̃8~0!%.

~6.5!

Regrouping the terms one obtains

m]mB̃8~x!5B̃9~x!$2m]mTI124I 2m]mB̃8~0!

14~m]mI 2!@B̃8~x!2B̃8~0!#%. ~6.6!

From Eq.~6.5! one also has

m]mB̃8~0!5
B̃9~0!

114I 2B̃9~0!
2m]m~TI1!. ~6.7!

Inserting Eq.~6.7! into Eq. ~6.6! finally yields

m]mB̃8~x!5B̃9~x!F2~m]mTI1!
1

114I 2B̃9~0!

14~m]mI 2!@B̃8~x!2B̃8~0!#G . ~6.8!

This equation is valid for any space dimensiond. It can be
integrated once with respect tox to obtain the final result

m]mB̃~x!5
2m]m~TI1!

114I 2B̃9~0!
B̃8~x!12~m]mI 2!

3@B̃8~x!222B̃8~0!B̃8~x!#, ~6.9!

where we have dropped anm-dependent integration constan
2-12
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A general method to study~and solve! the FRG equation
~6.8! is then to start fromm5` where the initial condition is
B̃(x)5B(x) in the presence of a UV momentum cutoffL, or
a lattice with lattice constanta51/L. Then one studies how
B̃(x) evolves asm is slowly decreased.

There are thus two possible paths to solve the probl
namely the direct inversion of the self-consistent equat
and the solution of Eq.~6.8! with the above initial condition.
Both are studied below. These two methods are cle
equivalent when the solutionB̃(x) is analytic atx50. In-
deed, in the above derivation, we have assumed thatB̃9(0)
exists. This will not always hold, as we now discuss. Wh
the proper ensuing modifications are is a subtle point wh
will be examined later.

B. General features: Analytic vs nonanalytic solution

Before solving this equation let us first find the conditio
under which there exists an analytic solution. This will gi
us insight in the phases of the model. One notes from
~6.4! that

1

B̃9~0!
5

1

B9~2TI1!
24I 2 . ~6.10!

For m5` the starting value isB̃9(0)5B9(0).0, in any
dimension d. ~The force correlator decays for small di
tances.! As m is decreased several things can happen.

Let us start withT50. Then ford,4, sinceI 2 diverges
for small m, one sees from Eq.~6.10! that B̃9(0) becomes
infinite asm→mc

1 , where the Larkin massmc is the solution
of

4SdE
0

L

dq
qd21

~q21mc
2!2

5
1

B9~0!
, ~6.11!

with SD51/@2d21pd/2G(d/2)# and has the standard depe
dencemc;B9(0)1/e of the inverse Larkin length on the bar
disorder~a Larkin lengthLc51/mc can be defined!. Since
B̃9(0) is like R̃99(0) positive, this divergence is the usu
one of the FRG, as also found in one- and two-lo
studies,35,36,43–45,56where it signals that the functionR̃(u)
becomes non-analytic and that a cusp singularity forms
u50 in the second derivative2R̃9(u), i.e., in the correlator
of the pinning force. This is usually interpreted as a gla
phase with many metastable states beyond the Larkin len
Thus for d,4 the function always becomes nonanalytic
large scale~small mass!, and there is a single glass phas
For d.4, sinceI 2 is convergent, the cusp occurs only if th
bare disorder is sufficiently large.

At nonzero temperatureT.0 Eq. ~6.10! shows that for
2,d,4 thermal fluctuations do not change the scena
Since I 1 remains finite, temperature only slightly renorma
izes the value ofmc downward, as
17420
,
n

ly

t
h

q.

at

s
th.
t
.

.

4SdE
0

L

dq
qd21

~q21mc
2!2

'
1

B9@2TSdLd22/~d22!#
~6.12!

for L@mc . For d,2 the effect of thermal fluctuations i
more important. For definiteness let us consider the se
models with power law correlations~2.10!. Then Eq.~6.10!
becomes

1

B̃9~0!
5

1

gg
~a212TI1!11g24I 2 . ~6.13!

Since both integrals diverge for small mass asI 1;1/m22d,
I 2;1/m42d, one can distinguish three cases.

~i! If disorder correlations decay fast enoughg.gc(d)
52/(22d) then the I 1 term wins and asm→0 one has
B̃9(0)→0, indicating that disorder is subdominant, resulti
in a high-temperature phase. In that case the solution is
lytic asm→0. There is however a more complicated beha
ior for intermediate values ofm ~see Appendix E!.

~ii ! If disorder correlations decay slower, i.e.,g,gc(d),
the term proportional toI 2 wins and the solution always
becomes non-analytic at some Larkin mass.

~iii ! In the marginal case,g5gc(d) there is a transition a
some critical temperatureTc between a high-temperatur
phase and a glass phase.

These features are very general and each of these c
will be studied in more details below.

One can immediately see that the existence of an ana
solution for B̃(u) is in one to one correspondence to t
existence of a locally stable replica symmetric solution of
MP equations. Indeed the condition for the stability of the R
saddle point is precisely that the replicon eigenvalue be p
tive, namely, that24

l rep~p!5124I 2~p!B9~2TI1!, ~6.14!

I 2~p!5E
k
~k21m2!21@~k1p!21m2#21 ~6.15!

be positive for allp. The RSB instability occurs when th
lowest eigenvalue, which corresponds top50, vanishes.
The conditionl rep(p50)50 is equivalent to the vanishing
of Eq. ~6.10!, i.e. of the divergence ofB̃9(0) and the emer-
gence of non-analytic behavior. Thus the generation o
cusp in the FRG coincides at largeN exactly with the insta-
bility of the RS solution.

It is easy to see that an analytic solutionB̃(x) of Eq. ~6.1!
and ~6.8! cannot describe the glass phase atT50. Indeed
when B̃(x) is analytic, Eq.~4.31! and similar results for
higher cumulants indicate that the full effective action is an
lytic. It is then immediate to obtain correlations from i
derivatives. For instance, from Eq.~2.36! the 2-point func-
tion at q50 is simply

1

N
^ua~q!•ub~q!&uq505

T

m2
dab22

B̃8~0!

m4
. ~6.16!
2-13
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On the other hand, settingx50 in Eq. ~6.1! one finds

B̃8~0!5B8~2TI1!. ~6.17!

Thus atT50 one recovers the dimensional reduction~DR!
resultu2;m2d22z with z5zDR5(42d)/2 instead of a non-
trivial value for z expected in the glass phase. Furtherm
since the effective action is analytic, all higher connec
cumulants will trivially vanish atT50 ~or be equal to the
bare ones if the bare model contains such higher cumula!
from the DR property. Clearly, in the glass phase, the
scaling is expected to be incorrect and a non-analytic s
tion should be found, as well as a way to escape Eq.~6.17!.
Below we find how such a mechanism occurs within t
FRG.

It will emerge from our study that for the case whe
disorder is relevant in the large scale limit~i.e., the long-
range caseg,gc(d) mentioned above! the nonanalytic so-
lution of the FRG equation will correspond to the full replic
symmetry breaking solution of MP. The situation for th
short-range case is more delicate. Both are discussed be

C. FRG equation for rescaled disorder,dË4

Equation~6.8! is valid ~for N5`) in any spatial dimen-
sion d. Since one has the exact relation

2
1

2
m]mI 15m2I 2 , ~6.18!

one sees that the FRG equation~6.8! has a well defined limit
L→` for d,4. It makes formulaes somewhat simpler
we will start by considering this case; the cased>4 will be
studied later. Note that although the equation has a w
defined limit, its solution may require a UV cutoff@e.g., as is
manifestly the case in integrating~6.18! above#.

Thus from now on we studyd,4 and consider the infi-
nite UV cutoff limit. Then one has

I 25Ad

m2e

e
, Ad5

2

~4p!d/2
GS 32

d

2D , ~6.19!

with e542d. It is convenient to define the rescaled dime
sionless function

b~x!54Adm4z2eB̃~xm22z!, ~6.20!

wherez is a fixed number, but arbitrary for now. Note th
whether one works withB̃ or the rescaledb(x) does not
make any difference for the possibility of a nonanalyticity
a divergence of the second derivative.

Then b(x) satisfiesthe FRG equation in the infinite-N
limit:

2m]mb~x!5b@b#5~e24z!b~x!12zxb8~x!1
1

2
b8~x!2

2b8~x!b8~0!1Tm

b8~x!

11
b9~0!

e

1cm . ~6.21!
17420
e
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The rescaled temperature and the energy exponentu are de-
fined as

Tm5T
4Ad

e
mu, ~6.22!

u5d2212z. ~6.23!

To obtain Eq.~6.21! we have also integrated Eq.~6.8! once,
so there isa priori a m-dependent integration constant.

We emphasize that this FRG equation~6.21! that we have
derived is valid, to dominant order in 1/N, in any dimension
d,4 and at any temperatureT. In a previous study36 Balents
and Fisher studied another limit, arbitraryN, but only to first
order in e542d and T50. If we consider the dominan
order inN, of their equation, we find that it is identical to th
T50 part of Eq.~6.21! ~up to some changes in notation!.
Equation~6.21!, however, is valid toall orders in e, an im-
portant point which the method used in Ref. 36 could n
address. A comparison of Eq.~6.21! to our recent two-loop,
i.e., O(e2) studies, requires expanding to next order in 1/N,
and is performed in Ref. 47.

Furthermore Eq.~6.21! includes the effect of temperatur
to all orders ine. Expanding the term proportional toT to
lowest order in disorderb, one finds the termTmb8(x). This
is the large-N limit of the tadpole term obtained in the one
loop FRG atT.0,41,57–59

] l R̃~u!5T(
i 51

N

] i
2R̃~u!→] lB~v2!5TB̃8~v2!1

T

N
v2B̃9~v2!,

~6.24!

where for infiniteN the last term drops out.@It appears how-
ever, to next order in 1/N ~Ref. 47!#.

The form and the effect of the temperature term in E
~6.21! to all orders ine is radically different from its one-
loop truncation. Indeed, in the one-loop FRG the tempera
is known to smoothen the cusp and render the functionR̃(u)
analytic in a boundary layeru;T̃m @e.g., forN51 ~Refs. 41,
57, and 60! with R̃99(0);1/T̃m . Here, however, as furthe
analysis confirms below, foru.0 the divergence ofb̃9(0) is
self-reinforcing since it kills the term proportional toTm . We
find that it usually occurs at a finite~Larkin! scale. In the
marginal caseu50, we will find nontrivial analytic finite-
temperature fixed points.

VII. DETAILED ANALYSIS OF THE FRG EQUATIONS

A. Inversion of self-consistent equation

Let us now show how one can invert the self-consist
equation~6.1!. We first rewrite it in terms of the rescale
correlator

b8~x!54Adm2z2e

3B8S m22zH x1
1

e
@b8~x!2b8~0!#12TI1m2zJ D ,

~7.1!
2-14
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where in the term proportional to temperature, ford.2 we
mean limL→`TI1 choosing a bare temperatureT;L (22d)

~this choice is known to be necessary to give a universal
finite b function, see e.g. the discussion in Ref. 47!. One can
of course keep an explicitL dependence everywhere, b
that leads to needless complications without changing
result.

The above equation~7.1! is easily inverted into

x5m2zFS y

4Adm2z2eD 1
1

e
~y2y0!2T̃m , ~7.2!

where we define

y5y~x!52b8~x!, ~7.3!

y052b8~0!524Adm2z2eB̃8~0!, ~7.4!

T̃m52TI1m2z, ~7.5!

with T̃m5Tm /(22d) for d,2, andF is the inverse func-
tion of 2B8(x), i.e.,

~2B8!„F~y!…5y. ~7.6!

This means in turn that the FRG equation~6.21! is fully
integrable, a feature not immediately obvious if one does
know that it originates from a self-consistent equation~an
observation not made in Ref. 36!. To better understand thi
integrability property let us show that Eq.~6.21! can be
transformed into alinear equation. Let us first take a deriva
tive of Eq.~6.21! and express it in terms of the new functio
y(x) @Eq. ~7.3!#,

2m]my5~e22z!y12zxy82y8~y2y0!1Tm

y8

12
y08

e

,

~7.7!

where we denotey085y8(0). Converting this into an equa
tion for the inverse functionx(y) one finds

m]mx5~e22z!yx812zx2~y2y0!1
Tmex08

ex0821
, ~7.8!

with x085x8(y0).61 We have used that m]my(x)
52y8(x)m]mx„y(x)… and have canceled a factor of 1/x8(y)
on both sides.~The validity nearx50 beyond the Larkin
length is reexamined below.!

One recovers now that the general solution of this lin
equation is Eq.~7.1! since it is the sum of the general sol
tion of the homogeneous part

x5m2zf~yme22z!, ~7.9!

wheref is an arbitrary function, and of a particular solutio

x5
1

e
~y2y0!2T̃m . ~7.10!
17420
d

e

ot

r

The y dependence obviously satisfies Eq.~7.8! and for the
constant part to work we use:

2m]my05~e22z!y01Tm

y08

12
y08

e

~7.11!

2m]mT̃m522zT̃m1Tm . ~7.12!

The first line comes from evaluating Eq.~7.7! at x50 and
assuming analyticity, i.e., that limx→0y8(x)(y(x)2y0)50,
an equality which will not work beyond the Larkin lengt
(m,mc), as found below.

Now that we have clarified the connections between
two approaches~the self-consistent equation and FRG! we
can try to find solutions valid in the small mass limit. T
analyze the solutions of the large-N FRG equation~6.21!,
two approaches are legitimate, corresponding to differ
points of view. The first, natural in mean field, is exact int
gration. But then one discovers that the solution becom
nonanalytic upon reaching the Larkin mass. It thus raises
non-trivial question on how to continue this solution beyo
the Larkin length. Before doing so, we will first examine
second point of view, more familiar from standard RG arg
ments.

B. FRG point of view: search for fixed points

The standard RG approach amounts to constructing
computing theb function of the theory, and then searchin
for a fixed point~function! which describes the large sca
physics. Usually, finding the basin of attraction of the fix
point, or relating arbitrary initial conditions to the final ap
proach of the fixed point is an unmanagably difficult task
is fortunately also besides the goal of the RG, which is
compute universal large scale physics independently of
irrelevant details of the bare model. Here, however, beca
of the large-N limit, we can integrate the RG flow exactl
and in principle ‘‘solve’’ any bare model. Let us temporari
ignore this integrability feature and focus on finding the z
roes of theb function.

Theb function was derived previously within ane expan-
sion and nonanalytic fixed points were found to o
loop6,35,36and also to two loops.43,45,55In the latter case ad
ditional ‘‘anomalous’’ terms are present in theb function for
the nonanalytic theory to be renormalizable and a mean
ful fixed point to exist. Viewing the right-hand side of Eq
~6.21! as the large-N limit of the true b function, let us
follow the same strategy and ask whether we can find n
trivial fixed points.

Let us studyT50 and use the equivalent linear form o
the FRG equation. We want to find the solutionsy(x) of

~e22z!yx812zx2~y2y0!50. ~7.13!

y0 is a fixed number@we want to imposey05y(0)], since
we are looking for a fixed point function. Keepingy0 arbi-
trary, one first tries a linear solutionx5ay1b which yields
a51/e and b52y0 /(2z). Writing x(y)5(y/e)2y0 /(2z)
1f(y) one finds a homogeneous equation forf, and thus
2-15
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PIERRE LE DOUSSAL AND KAY JÖRG WIESE PHYSICAL REVIEW B68, 174202 ~2003!
x~y!5
y

e
2

y0

2z
1ay22z/~e22z!. ~7.14!

Imposing nowy05y(0), i.e., x(y0)50, fixes the value ofa
and one finds thefamily of zero temperature fixed pointfunc-
tions, parametrized byz:

x5x* ~y!5
y

e
2

y0

2z
1

e22z

2ze
y0

e/~e22z!y22z/(e22z).

~7.15!

Sincex.0, y0.0 one must have 2z/(e22z).0 and thus

0,z,
e

2
. ~7.16!

The casez5e/2 corresponds to a Larkin random forc
model. For the same reason, we must exclude the brany
.y0 and thusx* (y) is given by the unique solution of Eq
~7.15! with x.0 and 0<y<y0. Finally, for z50 we find the
fixed point:

x5x* ~y!5
1

e
@y2y02y0ln~y/y0!#. ~7.17!

An important observation is that all of these fixed poin
exhibit automatically the expected cusp. Indeed one fi
that x8(y0)50, i.e. x(y) in Eq. ~7.15! vanishes and has
minimum aty5y0:

x* ~y!5
1

2~e22z!y0
~y2y0!21O@~y2y0!3#. ~7.18!

This gives

b̃8~x!5b̃8~0!1AAx1O~x!, ~7.19!

with A5A2(e22z)ub̃8(0)u, implying that the second de
rivative diverges asx→01

b̃9~x!;
A

2Ax
1O~x0!. ~7.20!

Recalling thaty52b8(x) we see that all fixed points with
z.0 correspond to a power-law long-range correlatorb(x),
while z50 corresponds to a Gaussian short range disorde
we follow the standard RG arguments, we can now sort m
els ~2.6! into these universality classes. Since for the b
model

B8~z!;z2g, ~7.21!

and since the decay ofR(u) in Eq. ~2.6! at largeu can be
argued to be identical forB and B̃ ~for LR fixed points! we
find

z5z~g!5
42d

2~11g!
~7.22!

or z50 for short range correlations. These values are v
to dominant order in 1/N. In Ref. 36 the effect of theO(1/N)
terms in the one-loop FRG equation was studied, i.e.
17420
s

If
d-
e

id

e

corrections ofz were estimated to orderO(e) and at zero
temperature. For SR disorder it was found that the resul
the GVM ~i.e., Flory! is corrected by termsaN exponentially
small in N, i.e. zSR5z(g5N/211)1aNe1O(e2). For LR
disorder withg.g* (N) result ~7.22! was found to be un-
corrected toO(e). ~The crossover SR to LR occurs atg*
such thatz(g* )5zSR). One can in fact argue that Eq.~7.22!
is always exact in the LR case~see e.g. discussion in Re
55!.

Several important remarks are in order. First we ha
found the fixed points of the inverted linear form~7.8! of the
FRG equation. A valid question is whether this is equivale
to finding the fixed points of the initial form of theb func-
tion ~6.21!. Second we have found fixed pointsassumingthat
m]my050. Since this isdifferent from what has been found
previously in Eq.~7.11! at T50, one can ask whether thes
result are compatible.

These two questions have a common answer. Examin
more closely what has really been done in this section,
note that it is equivalent to declaring both Eq.~6.21! and
~7.8! valid for any x.0 and interpreting everywherey0
5y(01) in Eq. ~7.8! and, equivalentlyb8(0) asb8(01) de-
fined by continuity asx→01. This is legitimate since the
transformation from Eq.~6.21! to ~7.8! is certainly valid for
x.0 and we note that this answers the second ques
above since Eq.~7.7!, i.e., the derivative of Eq.~6.21!, evalu-
ated atx→01 yields

2m]my~01!5~e22z!y~01!2 lim
x→01

y8~x!@y~x!2y~01!#,

~7.23!

which works both in the regimem.mc where the solution is
analytic y(01)5y(0) and in the fixed point regimem→0
when the cusp has developed and the last term in Eq.~7.23!
has a nonzero limit according to Eq.~7.19! and ~7.20!.

We expect these fixed points to be the physically corr
solutions at smallm. We now investigate whether we ca
confirm this by providing the solution at infiniteN, for arbi-
trary massm, i.e., continue our solution~7.1! beyond the
Larkin length.

C. Full solution beyond the Larkin mass

We now show that one can connect the two regimes,
the regime form.mc where an analytic solution exists to th
asymptotic one, form→0, studied in the previous section
This can be done here because of the full integrability of
infinite-N limit and provides a rare and non-trivial insigh
into what happens around the Larkin scale.

It is instructive to start our analysis with the specifi
power law models with LR correlations~2.10!, together with
the case of SR correlations~2.9!, in the form of a Gaussian
The solution for an arbitrary bare potentialB(z) is more
subtle, and will be given in Sec. VIII D, and Appendix H.

For the power law correlators the inverse function in E
~7.1! is
2-16
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2B8~z!5
g

~a21z!g
⇔ z5F~y!5S y

gD 21/g

2a2.

~7.24!

For Gaussian correlations it is

2B8~z!5ge2z ⇔ z5F~y!5 ln~g/y!. ~7.25!

We can now insert this result into the general solution~7.2!
of the self-consistent equation.z is arbitrary, but the conve
nient choice~to later obtain a fixed point! is z5z(g) such
that them dependence of the first term drops. Let us defi

g̃54Adg. ~7.26!

We then obtain, for power law models,

x5S y

g̃
D 21/g

1
1

e
~y2y0!2m2za22T̃m ~7.27!

2b8~0!5y05g̃~m2za21T̃m!2g, ~7.28!

since we wanty(0)5y0 i.e.,x(y0)50. This solution is valid
for m.mc and the value ofb8(0) is the DR result~6.17!.
For short-range disorder the solution form.mc is

x5 ln~ g̃m2e/y!1e21~y2y0!2T̃m ~7.29!

2b8~0!5y05g̃m2ee2T̃m, ~7.30!

having setz50 in that case. We recall thaty(x)52b8(x).
Note that the bare disorder is recovered form→`. We have
kept temperature, but here we discuss only the case wh

u5u~g!5d2212z~g!.0, ~7.31!

i.e., 2,d,4, or d,2 with g,gc(d)52/(22d). In that
caseT̃m decreases asm decreases, and, as mentioned abo
the role of temperature is minor.

Let us plot the right-hand side of Eqs.~7.27! or ~7.29! in
Fig. 7. The curvex(y) has the indicated shape in all cases
cuts the axisx50 aty5y0 and has a minimumx8(yc)50 at
y5yc with

yc5g̃1/(11g)~e/g!g/(11g), ~7.32!

FIG. 7. The functionx(y) given by Eq.~7.27! or ~7.29!. The
physical branch is the one withy,y0.
17420
e

e

t

independentof m, andyc5e for SR disorder. Form.mc the
minimum occurs at negativex and the slope aty5y0,yc is
nonzero, indicating an analytic solutiony(x)52b8(x). For
largem only the first term on the right hand side of Eq.~7.2!
contributes and one recovers essentially the bare disordeB.
Decreasingm simply amounts to translate the curve upwa
along positivex, andy0 increases as the curvex(y) cuts the
axis x50 closer to the minimum. It reaches it at the Lark
mass, solution ofy05yc , i.e.,

mc
2za21T̃mc

5~ g̃g/e!1/(11g)5:T̃c . ~7.33!

For SR disordery05yc5e gives mc
e5g̃/e. Exactly asm

→mc
1 the solution acquires a cusp and one finds

b8~x!2b8~0!'A22~e22z!b8~0!x, ~7.34!

i.e., the same result as Eq.~7.19!.
Although it is a priori not obvious how to follow this

solution form,mc , the following remarkable property indi
cates how to proceed. If we compute theb function, i.e., the
right hand side of Eq.~7.8! using Eq.~7.27! at m5mc and
z5z(g) we find that it exactly vanishes. Similarly the b
function for b8(x) also exactly vanishesfor all x.0 pro-
vided we also use Eq.~7.23!, i.e., all b8(0) are defined as
b8(01). Thus atm5mc the functionhas already reached its
fixed point form x5x* (y), and freezesfor m,mc . For the
disorder correlators studied here,b(x) evolves according to
Eq. ~7.27! or ~7.29! until mc where it reaches its fixed poin
b5b* (x), and does not evolve form,mc . In particular
y052b8(01) freezes atmc and one has2m]my050 for
m,mc , exactly as was discussed in the previous section

The solution form,mc is thus

x5~y/g̃!21/g1e21~y2y0!2T̃c , m,mc

2b8~01!5y05g̃T̃c
2g , ~7.35!

where the parameterT̃c is defined in Eq.~7.33!, thus it ex-
actly identifies with the zero temperature fixed point~7.15!
with z5z(g), as can be explicitly verified. This is easil
understooda posteriori, since the same functions appear a
in both cases we have two conditions to fix the two unde
mined amplitudesx(y0)5x8(y0)50. It does, however,
heavily rely on the exact power law form of the model, so
is not immediately obvious how it will extend to anarbitrary
bare modelB(z). One clearly cannot expect in the gener
case that convergence to the fixed point will be comple
within a finite scale. The solution to this puzzle is give
below. Similarly the solution for the Gaussian SR disord
correlator form<mc is given by settingm5mc in Eq. ~7.29!
and ~7.30! with y05e ~which determinesmc).

The result of this section thus provides unambiguousl
solution beyond the Larkin scale which connects with t
zero-temperature fixed point. It justifies the previous sect
and the value obtained forz. We found that for power law
and Gaussian models the freezing mechanism apparen
~7.23! leads to:
2-17
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2m]my~01!5~e22z!y~01!, m.mc ~7.36!

2m]my~01!50, m,mc . ~7.37!

The fixed point is reached atm5mc .

D. Role of temperature

In the case where disorder is relevant, i.e., foru(g).0
@i.e., 2,d,4; d,2 for g,gc52/(22d)] we found in the
previous section that temperature plays only a minor r
since the convergence to the nonanalytic zero-tempera
fixed point occurs on a finite~Larkin! RG scale. Whether it
should be called a zero temperature fixed point can also
debated since it is reached whenTm5Tmc

. A proper defini-
tion of the renormalized temperature may then include
denominator in Eq.~6.21!.

Let us now examine the marginal caseu(g)50, g
5gc(d) and d52 for SR disorder. Here we give the ma
results, further details are examined in Appendix F.

The analytic solution is given by Eq.~7.27! andy0 given
by ~7.28!, where hereT̃m54AdT/@e(22d)# does not flow as
m is lowered. Let us examine the second derivative,

1

b̃9~0!
52x8~y0!5

1

gy0
S g̃

y0
D 1/g

2
1

e

5
1

e F S T

Tc
mu1

a2m2z

T̃c
D 11g

21G , ~7.38!

which is a rescaled version of Eq.~6.13!. The first line in Eq.
~7.38! holds more generally~in the infinite UV cutoff limit!
and to obtain the second we have setz5z(g), u5u(g) and
assumedd,2. Setting nowg5gc , i.e., u50, we find that
there is a transition at a temperatureT5Tc defined by

Tc5
e~22d!

4Ad
T̃c5

e~22d!

4Ad
~ g̃g/e!1/(11g), ~7.39!

such that forT.Tc the solution is analytic for allm down to
m50, given by Eq.~7.27! and b̃9(0) remains finite and
given by Eq.~7.38!. This is a line of analytic fixed points
which terminates atTc . For T,Tc the solution freezes as i
the previous Section, and becomes non-analytic at and be
the Larkin mass

a2mc
2z5T̃cS 12

T

Tc
D . ~7.40!

The cased50, g51 corresponds to the logarithmicall
correlated disorderB(z)52g ln(a21z). It has been studied
for finite N in Ref. 30, where it was shown that there is
transitionfor any Nat Tc5Ag (g5s/N in the notations of
Ref. 30!. The above result is in agreement with this value
Tc . There, forN51,2 there is also a line of fixed points fo
T.Tc with a continuously varying dynamical exponent~and
also one forT,Tc with a different dynamical exponent an
some form of RSB!. Since the dynamical exponent is pertu
17420
e
re

be

e

w

r

batively related tob̃9(0), obtained above for infiniteN, it
would be particularly interesting to study the 1/N corrections
in this case.

Let us now examine the case of SR disorder~2.9! in d

52. More details are given in Appendix F. One hasT̃m
52TI15(T/p)ln(L/m). The analytic solutions~7.29! and
~7.30! become

x5 ln~y0 /y!1e21~y2y0!, ~7.41!

y05g̃mT/p2eL2T/p, ~7.42!

with e52. Thus there is a transition atT5Tc52p. For T
,Tc , we find y0 to increase asm decreases and reachy0
5e at the Larkin mass. Form,mc the solution remains
frozen to ~7.41! with y05e. For T.Tc , we find thaty0
flows to zero and disorder is irrelevant. The physics is
same as the one contained in the variational method for
periodic model ind526 which exhibits a~so-called mar-
ginal! one-step RSB solution.

The caseg.gc(d), (d,2) is discussed in Appendix E
Although an analytic solution exists asm→0 and disorder is
formally irrelevant, there are some freezing phenomena
intermediatem. It corresponds to the case where MP foun
in addition to a RS solution, a one-step RSB solution wh
is so called nonmarginal~different in nature from the one
step solutions obtained in the caseu50).

VIII. COMPARISON BETWEEN THE RSB
AND THE FRG APPROACH

In this section we compare the FRG approach at largN
with the GVM using RSB. Since the two methods study t
same model in the same limit~largeN) a precise connection
should exist.

We start by comparing the two methods at the level of
results of the calculations. We first perform the comparis
for power law models. Then we generalize the FRG solut
to arbitrary bare disorder correlator. Based on these res
we address the deeper connections between the two meth
and emphasize what we learn from them about the phys
consequences.

A. Zero momentum correlation function from the FRG

Our main result up to now is a non-trivial solution for th
renormalized disorder correlatorB̃(z) as a function of the
scale parameterm, i.e., the effective action for the zero mo
mentum mode. Since this function is once differentiable, i
B̃(z)5B̃(0)1B̃8(0)z1O(z3/2), we can extract from its first
derivative the two-point correlation function at zero mome
tum ~see Sec. II B 2!:

^va~q!•vb~q8!&5
1

N
^ua~q!•ub~q8!&

5Gab~q!~2p!ddd~q1q8!, ~8.1!
2-18
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Gab~q50!5
T

m2
dab22

B̃8~0!

m4
5

T

m2
dab2

bm8 ~0!

2Ad
m2d22z,

~8.2!

where in the last equation we have used definition~6.20! for
the rescaled functionb, and added the indexm to recall its
dependence on the mass. In the caseu.0, for the power-law
models ~2.10!, we thus find, usingbm8 (0)52y0 from Eq.
~7.28!,

GaÞb~q50!52g~mc
2za21T̃mc

!2gm2d22z

5
1

2Ad
g̃1/(11g)S e

g D g/(11g)

m2d22z, ~8.3!

and, form.mc the DR results~6.16! and~6.17! @wheremc is
determined by Eq.~7.33!# and, we recall,z5e/@2(11g)#.

B. Explicit full RSB solution at large N

Let us recall the RSB solution at largeN and resolve
carefully the MP saddle-point equation in the presence o
mass. We only assume that there is indeed full RSB, to
checkeda posteriori. Let us first re-express the general s
lution, valid for an arbitraryB, in a rather compact form.

In the RSB method one first parametrizes the correla
matrix as Gab(k)5G(k,u) and the self-energy matri
TGab

21(k)2(k21m2)dab5sab5s(u), in terms of the over-
lap 0,u,1 between~distinct! replicasa andb ~and denote
G̃5Gaa). The saddle-point equations then read

FIG. 8. Full RSB solution for the function@s#(u)1m2 and a
finite massm. s(u) has identical behavior, with two plateaus
valuess(u50) ands(u5uc). In both cases, upon increasing th
mass only, um varies ~increases! and the lower plateau moves up
the rest of the function being unchanged, see Eqs.~8.51! in the text.
The dashed line is the zero mass solution. The lower breakpoinm

reaches the upper one uc at the Larkin massm5mc above which
the solution becomes RS. The FRG gives exactly the lower pla
value for s(u50)5s(u5um) and itsm-dependence. From it, th
full RSB solution can be reconstructed, see Sec. VIII E.
17420
a
e
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n

s~u!52
2

T
B8„x̃~u!…, ~8.4!

x̃~u!52E
k
@G̃~k!2G~k,u!#

5x̃~uc!1E
u

uc

dwE
k

2Ts8~w!

$k21m21@s#~w!%2
, ~8.5!

x̃~uc!52TE
k

1

k21m21Sc

, ~8.6!

with

@s#~u!5us~u!2E
0

u

dws~w! ~8.7!

and Sc5@s#(u>uc). The last two equations are the RSB
matrix inversion formulas;s(u) is assumed to be continu
ous. Taking a derivative of Eq.~8.4! with respect to u gives

s8~u!5s8~u!4B9~ x̃~u!!E
k

1

$k21m21@s#~u!%2
.

~8.8!

This equation admits two solutions: Eithers(u) is constant,
or satisfies themarginality condition

154B9~ x̃~u!!E
k

1

$k21m21@s#~u!%2
. ~8.9!

We thus look for a solution of the full RSB equations~see
Fig. 8! with a nontrivial functions(u) for um,u,uc joined
by two plateaus

s~u!5s~uc!, u>uc , ~8.10!

s~u!5s~um!, u<um . ~8.11!

Similar forms are valid forG(k,u) andx̃(u). The breakpoint
uc is related to the physics at the Larkin scalemc , which, at
weak disorder, can be much smaller than the UV scaleL,
while um depends on the IR cutoffm. Equation~8.9! also
yields, by continuity, a closed equation which dete
minesSc ,

154B9S 2TE
k

1

k21m21ScD Ek

1

~k21m21Sc!2
,

~8.12!

as well as

154I 2B9„x̃~um!…, ~8.13!

since @s#(u)50 for u<um . To solve these equations on
firsts determines the function@s#(u) ~see below!, then finds
uc and um . One can already note at this stage that Eq.~8.12!
is exactly the condition~6.12! which determines the Larkin
massmc , equivalent to the vanishing of the replicon:

au
2-19
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Sc5mc
22m2 for m,mc ~8.14!

andSc50 ~no RSB! for m.mc .
To find @s#(u) for arbitraryB and cutoff, one notes6 that

with the help of Eqs.~8.9! and~8.4! s can be expressed as
function of @s# as

s~u!52
2

T
B8X~B9!21S 1

4E
k

1

~k21m21@s#~u!!2
D C,

~8.15!

where (B9)21 is the inverse function ofB9. Then one notes
that u as a function ofs of @s# is from Eq. ~8.7! simply
1/u5ds/d@s#. This yields immediately, using the chain rul

u524T

F E
k

1

~k21m21@s#~u!!2G 3

E
k

1

~k21m21@s#~u!!3

3B-X~B9!21S 1

4E
k

1

~k21m21@s#~u!!2
D C.

~8.16!

Upon inversion one obtains the exact function@s#(u), and
inserting into Eq.~8.15! s(u). More precisely, we see tha
the sum@s#(u)1m2 is a m-independent function of u, an
thus from Eq.~8.15! s(u) is alsom independent. Then on
solves the self-consistent equation~8.12! for Sc , and finally
obtains uc from the above. The result can be written usi
Eq. ~8.12! in the simple form

uc524T

F E
k

1

~k21mc
2!2G 3

E
k

1

~k21mc
2!3

3B-X~B9!21S 1

4E
k

1

~k21mc
2!2

D C. ~8.17!

Thus uc depends only on the Larkin mass and is independ
of m ~See Appendix G for another derivation and a disc
sion of this useful property.! Similarly one obtains

um524T
I 2

3

I 3
B-X~B9!21S 1

4I 2
D C,

I 35E
k

1

~k21m2!3
. ~8.18!
17420
nt
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Let us apply these considerations to the power law mo
~2.10!. For this model the Larkin mass is determined by E
~7.33!. Next one has

B-„~B9!21~y!…52
g̃g~11g!

4Ad
S 4Ady

gg̃
D (21g)/(11g)

.

~8.19!

In the limit of infinite UV cutoff L, using I 2
5(m2)2e/2Ad /e and I 35(m2)212e/2Ad/4, we obtain from
Eq. ~8.16!

m21@s#~u!5~Ãu!2/u, ~8.20!

Ã5
1

4TAd~11g!
e (112g)/(11g)~gg̃!1/(11g), ~8.21!

um5mu/Ã, ~8.22!

uc5mc
u/Ã, ~8.23!

with u5d2212z, z5e/@2(11g)#. Using Eq.~8.15! one
finds them-independent result

s~u!5
2

22u
Ã2/uu2112/u. ~8.24!

In particular one has the value of the lower plateau~see
Fig. 8!

sm~0!5s~um!5
2

22u

m2

um
5

2

22u
Ãm22u. ~8.25!

Let us note the relation um]m2sm(0)51 which will be dem-
onstrated to hold more generally below.

C. Correlation function in MP solution compared to FRG

The inversion formula yielding the diagonal correlatio
from the RSB solution is

Gaa~q50!5
T

m2 F11
sm~0!

m2
1E

um

1 du

u2

@s#~u!

m21@s#~u!
G ,

~8.26!

and is a sum of contributions from all overlaps 0<u<1. In
particular the contribution from states withzero overlap, i.e.,
the most distant states, is

Gaa~q50!uu505G~q,u50!5
Tsm~0!

m4
. ~8.27!

We can now compare with the FRG. One has, usingu5d
2212z, 2z5e(11g):
2-20



ion

c
w
.

of
ez

rs
or
r

e.

ic
e

n

ors
e

he

FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . . . PHYSICAL REVIEW B68, 174202 ~2003!
Gaa~q50!uu505
Tsm~0!

m4
5

2

22u
TÃm222u

5
2~11g!

eg

e (112g)/(11g)

4Ad~11g!
~gg̃!1/(11g)m2d22z

5GaÞb
FRG~q50!, ~8.28!

as given by Eq.~8.3!. Thus, for this power-law model, we
found that the FRG gives exactly and only the contribut
from the most distant states~the lower plateau in the RSB
solution!. Before discussing the reasons and consequen
let us show that this feature is much more general than po
law models, and holds in any case where full RSB holds

D. Solution of the FRG equation for arbitrary disorder
correlator B

In Sec. VII C we found how to continue the solution
the FRG equation beyond the Larkin scale. It involved fre
ing of the m dependence ofy052b8(0) at m5mc and
worked only for two special forms of disorder correlato
which happened to be already fixed point forms. It is imp
tant to find the solution for a more general form of the ba
correlatorB(z), and this is what we achieve here.

Let us examine whether we can find a solution for anym
of the FRG equation~7.8! in inverted variables

m]mxm~y!5~e22z!yxm8 ~y!12zxm~y!2y1y0 ,
~8.29!

which corresponds to a more general functionB(z). We take
special care here to indicate thatxm(y) is an m dependent
function of y @we notexm8 (y)5]yxm(y) and we recall that
ym(x)52bm8 (x)]. The idea is to play with them dependence
of y05y0(m) since this is really all the freedom we hav
Let us restrict our analysis for simplicity toT50, the gen-
eralization being straightforward. The definition ofy0(m) is
given implicitly by

xm„y0~m!…50 ~8.30!

for all m. The total derivative thus vanishes:

m
d

dm
xm„y0~m!…5m]mxm~y0!1xm8 ~y0!m]my050.

~8.31!

Together with Eq.~8.29! at y5y0, it yields @recall that
xm(y0)50]

@m]my01~e22z!y0#xm8 ~y0!50. ~8.32!

There are only two possible solutions:

m]my01~e22z!y050, ~8.33!

xm8 ~y0!50. ~8.34!

The first holds before the Larkin scale and the second, wh
implies a nonanalyticb(y), beyond. We now want to find th
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solution beyond the Larkin scale, i.e., assuming thatxm8 (y0)
50, together withx(y0(m))50, which of course implies
m]mxm(y0)50.

Equation~8.29! with y05y0(m) is trivially separable and
admits the general solution

xm~y!5m2zFS y

4Adm2z2eD 1
1

e
y

2m2zE
m

` dm8

m8
y0~m8!m822z, ~8.35!

where for nowy0(m) is arbitrary and so is the function
F(y). ~It will be identified below with (2B8)21 as in Sec.
VII !. The first condition one must impose is the definitio
xm@y0(m)#50, i.e.,

05m2zFS y0~m!

4Adm2z2eD 1
1

e
y0~m!

2m2zE
m

` dm8

m8
y0~m8!m822z, ~8.36!

which should be valid both form.mc andm,mc . Taking
m(d/dm) of Eq. ~8.36! yields, using Eq.~8.36! again

F1

e
1

me

4Ad
F8S y0~m!

4Adm2z2eD G @m]my0~m!1~e22z!y0~m!#

50. ~8.37!

In order to satisfy this equation, at least one of the fact
must vanish. The regimem,mc corresponds to the first, th
regimem.mc to the second factor being zero.

For m.mc one hasm]my0(m)1(e22z)y0(m)50 lead-
ing to

y0~m!5Am2z2e, ~8.38!

and the above solution becomes:

x5m2zFS y

4Adm2z2eD 1
1

e
~y2y0!. ~8.39!

This can clearly be identified with the analytic solution of t
self-consistent equation~7.1! found before in Sec. VII, and
thus implies thatF is the reciprocal function of2B8. Equa-
tion ~8.36! is trivially satisfied by

FS y0

4Adm2z2eD 50. ~8.40!

Applying 2B8 to Eq. ~8.40! fixes A to be

A524AdB8~0!, ~8.41!

and one recovers the dimensional reduction result.
The interesting new information is obtained form,mc .

Then the first factor in Eq.~8.37! vanishes, i.e.
2-21
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05
1

e
1

me

4Ad
F8S y0~m!

4Adm2z2eD . ~8.42!

Deriving Eq.~8.35! with respect toy one sees that Eq.~8.42!
correctly implies

x8~y0!50, ~8.43!

thus the solution forb8(x) has a cusp. Equation~8.42! de-
termines the functiony0(m) for m,mc . Note that if the
power law in the correlator holds only asymptotically,y0(m)
will nicely converge to a constant~for the right choice ofz)
due to the asymptotic power law tail, but may vary arbitrar
according to the irrelevant corrections to power law. This
studied in more details in Appendix H.

It is convenient to rewrite the final result, i.e., Eqs.~8.36!
and ~8.42!, in the form:

bm8 ~0!54Adm2z2eB8„x̃m~0!…, ~8.44!

4I 25
4Ad

e
m2e5

1

B9„x̃m~0!…
, ~8.45!

x̃m~0!5
bm8 ~0!

e
m22z2E

m

` dm8

m8
bm8
8 ~0!m822z,

~8.46!

where we use the notationx̃m(0)[x̃m
FRG(0). Theconnection

with the RSB solution becomes obvious in this form. Co
paring with Eq.~8.13!, Eq. ~8.45! of the FRG solution iden-
tifies with the marginality condition at u5um , the lower pla-
teau of the RSB solution; see Fig. 8. It allows one
determine x̃m(0); the two other equations are self
consistently obeyed and givebm8 (0). Comparing with Eq.
~8.4! at u5um yields the identifications

x̃m~u50!5x̃~u5um!5x̃m
FRG~0!, ~8.47!

Tsm~0!

m4
5

Ts~um!

m4
5

2bm8 ~0!

2Ad
m2d12z, ~8.48!

and thus we obtain

Gab
FRG~q!5GGVM~q,u50!5G̃GVM~q!uu50 . ~8.49!

It thus holds for an arbitrary disorder correlator, provided
solution to Eqs.~8.44! and~8.45! exists, i.e., for the class o
functionsB(u) which yield full RSB~also called continuous
RSB! within the MP approach. Of course, Eqs.~8.44! and
~8.45! were derivedwithout any assumption about replic
symmetry breaking.

Extension toT.0 is obvious. Adding the last term of Eq
~7.8! and following the same steps as above, one finds

Fm]my01~e22z!y01
eTm

exm8 ~y0!21Gxm8 ~y0!50.

~8.50!
17420
s
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The vanishing of the first factor yields the finiteT analytic
solution studied in the previous section~equivalent to the RS
solution of MP!. Continuation beyond the Larkin mass im
plies xm8 (y0)50, in which case the additional temperatu
term in Eq.~7.8! vanishes and one is back to theT50 equa-
tions ~8.45!, ~8.44!: Thus only the value of the Larkin mas
depends on temperature, everything else is independentT.

E. Full RSB solution from the FRG result

In the previous section we have shown that the FR
yieldssm(u50) @via bm8 (0)], i.e. the value of the RSB func
tion only at u50. In fact, as we now discuss, by varying th
mass one can scan the whole functions(u) of MP for any u,
and thus the FRG yields the same information as contai
in the functions(u). Remarkably, we can obtain an explic
expression fors(u), even though the argument of this fun
tion, the ‘‘overlap’’ is not obviously related to any quantity i
the FRG. Furthermore, we can also compute the
correlation-function of Mezard Parisi, if one knows on
sm(0) for all m, which is given by the FRG.

Thus from now on we assume that we know onlysm(u
50) as a function ofm through the FRG, together with som
general properties of the MP solution. As we have alrea
found in Sec. VIII B, and is shown more directly in Appen
dix G, the GVM saddle point equations, upon assuming
continuous RSB, satisfy the two ‘‘RG equations’’

]msm~u!50, ~8.51!

]m~@sm#~u!1m2!50, ~8.52!

valid for any u such thats8(u)Þ0. One can thus relate th
solutionsm(u) at finitem to the solution at zero masss0(u).

Note that Eqs.~8.51! and ~8.52! have been hypothesize
by Parisi and Toulouse for the Sherrington Kirkpatrick~SK!
model.62 However, it has been shown that there they are o
approximately satisfied; see, e.g., Refs. 63 and 64.

Analysis of these equations shows that, up to the bre
point, one has

sm~u!5s0~u!, u.um , ~8.53!

@sm#~u!1m25@s0#~u!, u.um , ~8.54!

sm~u!5sm~0!, u,um , ~8.55!

@sm#~u!50, u,um . ~8.56!

um is thus uniquely defined from the solution at zero mass

sm~0!5s0~um!, ~8.57!

@s0#~um!5m2. ~8.58!

Indeed one has, taking derivatives of Eqs.~8.57! and ~8.58!
with respect tom2,

]m2sm~0!5s08~um!]m2um , ~8.59!

ums08~um!]m2um51, ~8.60!
2-22
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where here we introduce for convenience]m25(1/2m)]m .
These two equations give

um5
1

]m2sm~0!
. ~8.61!

One thus finds that the functions0(u) is implicitly given by

s0S u5
1

]m2sm~0!
D 5sm~0!. ~8.62!

Sincesm(0) can be extracted from the FRG, we see thatwe
can obtain the full functions(u) from the FRG.

One notes that the upper breakpoint um
c 5uc is indepen-

dent of m. As shown in Sec. VIII B, um increases upon in
crease ofm, and reaches uc at the Larkin mass, i.e., for umc

5uc .
Let us show how one can recast the correlation funct

of MP, given in Eq.~8.26! at zero momentum, entirely usin
FRG data:

Gaa~q50!

T
5

1

m2
1

sm~0!

m4
1E

um

uc du

u2 S 1

m2
2

1

m21@sm#~u!
D

1E
uc

1 du

u2 S 1

m2
2

1

m21ScD . ~8.63!

Using our previous results gives

Gaa~q50!

T
5

1

m2
1

sm~0!

m4
1E

um

uc du

u2 S 1

m2
2

1

@s0#~u!D
1S 1

uc
21D S 1

m2
2

1

mc
2D . ~8.64!

Shifting from the variable u to the variablem defined by
um5u, one finds that the correlation function can be e
pressedentirely from the knowledge ofsm(0). To seethis,
note that

du

u2
52dF1

uG52d@]m2sm~0!#52]m2
2 sm~0!d~m2!.

~8.65!

This gives

Gaa~q50!

T
5

1

m2
1

sm~0!

m4
1E

m2

mc
2

dm2S 1

m2
2

1

m2D ]m2
2 sm~0!

1S 1

uc
21D S 1

m2
2

1

mc
2D , ~8.66!

where we have used that@s0#(um)5m2. After an integration
by part and again using Eq.~8.61! at u5uc , one finds the
remarkably simple formula
17420
n

-

Gaa~q50!

T
5

sm~0!

m4
1E

m2

mc
2 dm2

m4
]m2sm~0!1

1

mc
2

5
sm~0!

m4
1E

m2

mc
2 dsm~0!

m4
1

1

mc
2

, ~8.67!

valid for m<mc . Recalling the relation betweensm(0) and
B̃8(0) we see that the MP result is a simple average of
correlations corresponding to masses betweenm and mc .
Note that one can derive a similar formula forG(k,u) ob-
tained by MP as a function ofsm(0).

In summary, although strictly speaking our FRG res
gives only the contribution of distant states to the two-po
correlation function, it does allow one to obtain the who
MP result, although we do not yet have a derivation with
the framework of the FRG alone. One should also note t
formula ~8.46! is in a sense equivalent to the inversion fo
mula of hierarchical matrices which relatesx̃(u)52*k@G̃
2G(k,u)# to the self energys(u). This raises the questio
of whether the FRG equations ‘‘know’’ about ultrametric m
trix inversion. These results hold for continuous RSB and
case of nonmarginal RSB~when the marginality condition is
not obeyed! is discussed in Appendix E.

F. Discussion: Explicit versus spontaneous replica
symmetry breaking

Let us examine what has been achieved and how it c
pares with other works. We are interested in the behavio
the effective action of the replicated field theory for largeN.
Let us focus here on the uniform configuration, for whi
G(u)5LdG̃(u), where we denoteG̃(u) the effective action
per unit volume.TG̃(u) then represents the free energy p
unit volume, depending on a setua , a51, . . . ,n in the pres-
ence of external sourcesJa which impose field average
^ua(x)&5ua . The usual free energyF is recovered foru
50, F5TG(u50).

The saddle point method allows one to write, in the lim
of infinite N,

e2G(u)5e2LdG̃(u)'(
p

e2NLdĜp(v5u/AN), ~8.68!

whereĜ(v) satisfies the saddle point equations~4.2!, ~4.3!,
and ~4.5!, and the(p denotes a sum over saddle poin
whenever more than one solution exists.65 To be accurate the
saddle-point method computes

lim
N→`

1

NLd
G~u5vAN!, ~8.69!

where the limit is takenat fixedv.
As mentioned in Sec. IV A, the saddle point equatio

~4.5! containboth the FRG and the GVM. They depend o
the set ofva , and when expanded in cumulants, takingall
vab[va2vbÞ0, they lead to the FRG equations. This a
proach clearly consists in imposing anexplicit breaking of
replica symmetry. Also we expect that in that case a sin
2-23
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saddle point exists. This is indicated by the fact that
quantity B̃9(v2)215B9(xv)2124I 2 plays the role of a rep-
licon eigenvalue and remains frozen and positive forv.0.
By contrast, MP studied the case where allvab50 and found
spontaneousreplica symmetry breaking, i.e., multiple sadd
points, differing by permutationsp of replicas.

We can now make contact between the two approac
and understand why we have obtained, via the FRG,
correlations of MP corresponding to the distant states. Le
focus on the modeq50, and define the center of mass va
able ũª(1/Ld)u(x) ~i.e., without rescaling inN) and con-
sider

Z~J!5E dũ1 . . . dũn PV~ ũ1! . . . PV~ ũn! e2Ld(
a

Jaũa.

~8.70!

PV(ũ) is the probability distribution ofũ in a given disorder
configuration:

PV~ ũ!5E D@u#dS ũ2
1

LdEx
u~x!D e2HV[u]/T. ~8.71!

In the present paper we have computed Eq.~8.70!, scaling
Ja;AN, and taking allJa different in order to impose al
vabÞ0;O(1). Because of this scaling withN we obtained a
differentsaddle point than MP@shifted byj; see Eq.~3.12!#,
and since allJa are different, this saddle point has explic
RSB. According to Sec. III this givesG@u# whenu scales as
AN, i.e., we determined the averaged probabilities~2.34! and
~2.35! for fixed w5ũ/AN.

On the other hand MP found that

PV~ ũ1! . . . PV~ ũn!5(
p

e2(1/2)Ld(Gp)ab(q50)ũa•ũb.

~8.72!

One should in principle be able to recover the two-po
correlation function~8.26! obtained by MP adding sma
sourcesJa as in ~8.70! and taking derivatives atJa50.
Clearly, to reproduce the MP result, these should be take
Ja5O(N0)→0 and notO(AN) so as to maintain the unpe
turbed MP saddle point. For instance the diagonal two-po
correlation function is obtained usingJ15J, all other Ja
50, and differentiating twice with respect toJ. @The off
diagonal one involves (J,2J,0, . . . ).# Equivalently it should
be obtainable from the effective action forũab5ũa2ũb

5O(N0). Thus scalingũab;AN and J;AN as was done
here selects the distant states in the MP solution. The
that we obtain exactly the MP result for these states sh
that there is no intermediate scaling regime.

We emphasize that our primary aim here is not to reco
the MP result, but to understand what exactly the FRG p
dicts, in view of getting a better understanding of FR
within, e.g., thee expansion. Extension of the FRG beyon
the Larkin scale requires giving a meaning to the limitu
→01. We find here that what the FRG actually compu
@from b8(01)] is a second moment ofw in the presence of a
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small extra external sourceAN ja such that allvabÞ0, i.e.,
an average, such that when there are several states, the
ferent replicas are chosen in maximally separated state
50).

Note that the quantity computed by the FRG specifies
system’s preparation, while such a procedure still has to
worked out for the MP solution. In the presence of a brok
symmetry this is an important issue, and the FRG give
natural solution.

It would be interesting to understand further the lim
vab→0 coming from our solution, which one can call th
crossover from FRG to RSB. It is clearly nontrivial. Fo
instance, one question is what we get if we take a sourcJ
5( jAN,2 jAN,0, . . . ,0) sothat we still have spontaneou
RSB in n22 copies, or if we divide the replicas in tw
groups of n/2 each,J5( jAN,..jAN,2 jAN,0,..2 jAN) so
that RSB persists within each packet.

Another important issue is what happens at large but fin
N. For anyN, if one parametrizes the two-replica part of th
effective action usingR̃(uab)5NB̃N(uab

2 /N), one can write
the two-point correlation function as

Gab~q50!522B̃N8 ~0!m24 ~8.73!

for aÞb. We have determined the functionB̃N(x) for x

5O(N0), i.e., uab5O(AN). To obtainB̃N8 (0) for finite N,

however, one needsa priori to know R̃(uab) for uab

;O(N0), i.e., B̃N(x) for x5O(1/N). The two could be the
same, or there could be a boundary layer of size 1/N. A
priori the knowledge of this requires including the 1/N cor-
rections in the FRG equation~as is examined in Ref. 47!.
This may help to better understand the connection of
regime to RSB. This is important since there are cases~e.g.
for d50, u,0) where we know that Paris-type RSB cann
survive at finiteN.

G. Interpretation: Comparison with BBM approach

A previous study42 aimed at connecting the RSB solutio
to the FRG. The authors defined, for each configuration
the disorder, an ‘‘effective random potential’’UV(f0) for a
given mode~e.g., the zero mode!. Starting from the MP so-
lution ~8.72!, they computed the second cumulant ofUV and
showed that it exhibits a nonanalyticity, reminiscent of t
one found in the FRG. A parallel was drawn with ad50,
N51 toy model whereUV satisfies an exact RG equation
the Burgers-KPZ type with random initial condition
Shocks, well known to develop in this equation, provide
appealing physical picture for the singularities in the ene
landscape responsible for the nonanalyticity in the FRG
yond the Larkin lengthjLO .

Comparison between this study and the present one sh
several important differences, with interesting physical co
sequences. The scaling inL, in N, and the definition of the
‘‘renormalized’’ disorder are different. As here, the authors
Ref. 42 focus on the zero mode, but with a different scal
2-24
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FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . . . PHYSICAL REVIEW B68, 174202 ~2003!
with system size: They definef0ªL2d/2*xu(x)5Ld/2ũ,
such that fluctuations off0 remain of order one. Other quan
tities are

UV~f0!52T ln PV~f0!, ~8.74!

UV~f0!UV~f08!5RBBM~f02f08!5B̃BBM„~f02f08!2
….

~8.75!

This definition means that the modef0 sees an equivalen
d50 toy model, with random potentialUV(f0). Comparing
with Eqs.~2.35! and~2.37!, we see that since the rescaling
L is different there can be no relation betweenRBBM9 (0) or

B̃BBM8 (0) and the two point correlation function, neither th
one of MP, nor the one obtained here in the FRG. To ob
the two-point correlation of MP one would still have tosolve
the toy model defined byUV(f0), i.e., compute

E df0
1 . . . df0

n f0
af0

b e2(
a

UV(f0
a)/T. ~8.76!

This task is difficult, since it requires not only the seco
cumulant, but also higher ones~not computed in Ref. 42!.
More importantly, it requires the large argument behav
f02f08 of RBBM(y), not obtained in Ref. 42, were attentio
was focused on the Larkin scale~see below!. Thus the infor-
mation contained inRBBM is physically interesting but no
obviously related to large scale correlations. It is in a se
~e.g., for thed50 case discussed in Ref. 42! closer in spirit
to Wilson-Polchinski type RG,66 versus an RG based on th
effective action~see Refs. 45 and 67!.

Re-expressed in the variables of the present work,
result of Ref. 42 reads

B̃~ ũ2!5B8~0!ũ21cS L

jLO
D d/2

ũ3, ~8.77!

wherec is a constant. Because of the different rescaling,
nonanalytic term has a coefficient growing with the syst
size, which expresses again that it is not an effective act
However, since theũ2 term is simply the bare disorder, an
the non-analytic term involves only the Larkin scalejLO , it
seems that this carries information for and only for the ph
ics below and around the Larkin length, and does not con
any information about large scale behavior. Thus, des
exhibiting shock behavior at the Larkin scale, we think it h
little to do with the FRG as a perturbative method to obt
large scale behavior. Not surprisingly, then,RBBM is nonper-
turbative ine542d, contrarily to the one obtained in stan
dard FRG, which is of ordere.

Another important difference with the present approach
the scaling withN. The approach of Ref. 42 used the unp
turbed MP saddle point and thus, as was extensively
cussed in the previous section, it focuses onũab5O(N0)
while we focus onũab5O(N), ~i.e., vab

2 ;1/N there and
vab

2 ;1 here!. Further work is needed to connect these
gimes. On the other hand it seems that the thermal boun
layer can be found within this approach.68
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IX. DISCUSSION AND CONCLUSION

In this paper we have studied the FRG at largeN. From an
exact saddle-point calculation of the replicated effective
tion at largeN we have derived the exact renormalizatio
group equation, valid in any dimensiond for infinite N, for
the field theory of pinning. It is expressed as theb function
for the second cumulant of the disorder correlator, and
exact as the second cumulant satisfies a remarkably sim
closed equation. To orderO(e) it agrees with the one derive
by Balents and Fisher.

This result teaches us a lot about how the FRG works
helps put the FRG approach to thee-expansion on more
solid grounds. Since here the FRG flow equation is forma
equivalent to a self-consistent saddle-point equation, i
fully integrable, i.e., one can follow the RG flow from an
initial condition. It is thus possible to examine in detail wh
happens around the Larkin length and how the disorder
relator develops the nonanalyticity. Let us emphasize tha
our knowledge this is the first time that the emergence
nonanalytic behavior in the FRG is proven rigorously, b
yond perturbative calculations. Indeed, the one-loop FRG
insufficient per se to provide such a proof since the runaw
of R99(0) could very well be argued to be the analog of t
famous Landau ghost, i.e., a flow to a strong coupling fix
point without the need, or better the possibility, for renorm
ization within a non-analytic functional space. Here we de
onstrate that this is not the case, at least for infiniteN.

If we had restricted the analysis to the self-consist
equation, the continuation beyond the Larkin scale wo
have seemed quite problematic. Remarkably, the FRG e
tion, equivalent below the Larkin scale, provides an una
biguous way to continue the flow equation beyond the Lar
scale. Even more remarkably, its solution reproduces exa
the small overlap result of the full RSB solution of MP,
nontrivial result which, within MP, cannot be obtained wit
out constructing the full RSB solution. The mechanism
this seems to be that the FRG solution in that case natur
satisfies the so-called marginality condition. In fact, it tur
out to be equivalent to it, and we were able to find a form
yielding the complete RSB solution for all overlaps. This
striking since we did not make any assumption about Pa
RSB. We avoided the issue altogether by using a met
where RSB is not spontaneous, but explicit.

Given that the validity of the Parisi Ansatz, e.g., for th
SK model, has not yet been proven~despite recent
progress69!, it is interesting to find a method which doesnot
rely on RSB. In fact there may well be deeper connections
be unveiled between the Parisi algebra of ultrametric ma
ces and the type of singular differential equations arising
the FRG. Another example where a RSB solution c
equivalently be obtained via an RG type equation is the D
rida Spohn solution of the DP on the Cayley tree.31 This has
inspired a similar solution for a model with translational
invariant disorder in Ref. 30.

We have thus shown agreement with the main results
the full and the marginal one-step RSB solutions of Mez
and Parisi. This is also interesting since it has been wid
debated70 whether the RSB method captures the physics: O
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results raise no doubt for infiniteN.
More puzzling is the situation for SR disorder. There M

find both a stable replica symmetric solution and a one-s
solution where minimization over the breakpoint has to
enforced~marginality condition violated!. For Gaussian dis-
order both solutions of MP havez5(22d)/2. Similarly the
FRG naturally finds the finite temperature RS solution w
z5(22d)/2 ~and one fixed point solution atT50 with z
50). A nonanalytic solution also seems to exist in the FR
and work is in progress to analyze it further and elucid
whether it is related to the nonmarginal one-step solution
MP. Let us note that ind50 we essentially know that~apart
from g51) RSB does not hold at finiteN ~the phase transi
tion predicted by the GVM in that case must go away
finite N, T.0). So there is little doubt that the corre
branch at finiteN is the RS one, as also given by the FR
For the DP problem withd51, on the other hand, it is no
yet clear whether both branches~a T50 fixed point starting
from z50 or a finite T non-analytic solution withz5(2
2d)/2) can coexist. One scenario is that they would cr
over at some lower value ofN5Nc yielding the upper criti-
cal dimension of KPZ. The calculation of the FRGb func-
tion to next order in 1/N should shed light on this question
and is thus of high interest. It is presented in Ref. 47. O
method thus provides a unique candidate for a field theor
the strong-coupling phase.

To summarize, the present method is promising in solv
mean field models, by using explicit rather than spontane
RSB. It would be of interest to investigate whether oth
models like the SK model could be solved via the sa
route. More importantly, it may open an alternative road
tackle disordered systems from a different direction than
panding around RSB saddle points, a task which still ha
be accomplished. Of course, in the end, the same difficu
may be in store. They could hide in the subleties due to
nonanalytic behavior of theb function at largeN. However,
we are optimistic, since we have understood the infiniteN
limit, at least in the full-RSB case. Also, a solution has be
found for N51 to two55,43,44and three loop order,71 and for
finite N at two-loop order.

Let us close by indicating that many extensions of t
work are possible and some in progress. One example is
random field problem, still under intense debate,72,73 for
which we have also computed74 the effective action at large
N, and at two-loop order. Finally, the same method applie
the dynamics, classical or quantum: it has been shown9 that
the mode-coupling approximation in glasses75 identifies with
~non-marginal! mean field ~large-N) dynamics, exhibiting
aging solutions. However this picture leaves out therma
activated processes, and our 1/N method may be promising
there too.

Note added in proof.Talagrand has recently proven~un-
published! that the Parisi ansatz for the SK model yields t
correct ground state.
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APPENDIX A: VARIATIONAL FORMULATION

Let us extend the variational method of Ref. 24 to the c
where the average of the fieldua(x) is fixed to a nonzero
value denoted hereūa(x)5ANv̄a(x). One defines the varia
tional Hamiltonian and free energy

Hvar@u#5
1

2Exy
@ua~x!2ūa~x!#~Gvar!xa,yb@ua~y!2ūb~y!#,

~A1!

Fvar@Gvar,v̄#52T lnE D@u#exp~2Hvar@u#/T!

1^H2Hvar&Hvar
,

which satisfies~for n positive integer! the usual boundF
52T ln Z<Fvar. HereH5NS@u,0# defined in the text, is
the replicated Hamiltonian. Comparing with Eq.~3.27!, one
finds that

Fvar@Gvar,v̄#/T5G0@Gvar,v̄,Û#, ~A2!

where the last argument indicates that forN finite U(x)
should be replaced byÛ(x); in the infinite-N limit Û5U.
Restricting to a bare model with only a second cumulant o
finds ~omitting the bars onv):

Û~vv~x!,~Gv!xx!52
1

2T2 (
ab

B̂„vab~x!2,~G̃v!xx
ab
…,

B̂~v2,z!5E dNw

~2p!N/2
e2w2/2BS v212

v•w

AN
Az1

w2

N
zD ,

G̃ab5Gaa1Gbb2Gab2Gba. ~A3!

In general,B̂(s,z) is a function of two variables, which be
comes a function of the sumB̂(s,z)→B(s1z) only as N
→`, since in that limit ^vw&50 and ^w2&5N, without
fluctuations, in the Gaussian measure;e2w2/2.

APPENDIX B: EFFECTIVE ACTION IN NONUNIFORM
BACKGROUND: GENERAL FORMULATION

In some applications bilocal terms may already be pres
in the starting action. Let us thus give a more general a
compact result, which also includes that case. It is derived
a simple extension of the methods of Sec. III.

Let us consider aN-component fieldfx , with compo-
nentsfx

i , i 51, . . . ,N, which can carry other indices, coo
dinates, or be a set of fields, etc . . . .GeneralO(N)-invariant
forms for the action functional are
2-26
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S@f#5
1

2
f:C21:f1NSint@c#, ~B1!

cxy5
1

N
fx•fy , ~B2!

whereSint@c# is a functional of thebilocal field cxy ~which
is also a bi-index matrix if the fieldf carries other indices
etc.!. Then the effective action associated toS can be written
as

G@f#5
1

2
f:C21:f1NG0@c#1G1@c#1•••, ~B3!

whereG0@c# is a functional of the bilocal fieldcxy in Eq.
~B2! and satisfies the self-consistent equation

dG0

dcxy
@c#5

dSint@x#

dxxy
, ~B4!

xxy5cxy1G@c#xy , ~B5!

G@c#xy5S C2112
dG0@c#

dc D
xy

21

. ~B6!

xxy is another~set of! bilocal fields.

APPENDIX C: CALCULATION OF HIGHER CUMULANTS

In this Appendix we compute the third and fourth reno
malized cumulants of the disorder. One uses the param
zation

Ũ~vv !52
1

2T2 (
ab

B̃~vab
2 !2

1

6T3 (
abc

S̃~vab
2 ,vbc

2 ,vac
2 !

2
1

24T4 (
abcd

Q̃~vab
2 ,vbc

2 ,vcd
2 ,vad

2 ,vac
2 ,vbd

2 !1•••.

~C1!

We need the matrixMab5(22T]xŨ(x))abux5vv up to the
fourth cumulant:

Mab5
2

T S dab(
c

B̃ac8 2B̃ab8 D
1

2

T2 S dab(
cg

S̃1,acg8 2(
g

S̃1,abg8 D
1

1

T3 S dab(
cgh

Q̃1,acgh8 2(
gh

Q̃1,abgh8 D . ~C2!

The equality of Eq.~4.13! ~pushed to the fourth cumulan
i.e. the above formula! and of Eq.~4.14! using Eq.~4.20!,
implies:

B̃ab8 5B8~ x̃ab
(0)!, ~C3!
17420
ri-

1

T (
g

S̃1,abg8 5B9~ x̃ab
(0)!x̃ab

(1) , ~C4!

1

2T2 (
gh

Q̃1,abgh8 5B9~ x̃ab
(0)!x̃ab

(2)1
1

2
B-~x̃ab

(0)!~ x̃ab
(1)!2.

~C5!

Thus we need compute the terms with one and two f
replica sums,x̃ab

(1) and x̃ab
(2) . Because of Eq.~4.24! it means

that we needxab
(1) , xa

(1) , xab
(2) , andxa

(2) . To compute them
we use the definitions~4.12! and~4.18!. We thus need pow-
ers of the matrixM, but only terms with zero, one or two
replica sums. The expression of (M2)ab given in Eq.~4.25!
is thus sufficient, and we also need

~M3!ab5
8

T3 (
e f

@B̃ae8 B̃be8 ~B̃a f8 1B̃b f8 1B̃e f8 !2B̃ae8 B̃b f8 B̃e f8

2B̃ab8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 1B̃ae8 B̃b f8 !# ~C6!

dropping all terms with three or more sums. One then fin

xa
(1)52I 2(

c
B̃ac8 , ~C7!

xab
(1)52

2

T
I 2(

g
S̃1,abg8 1

4

T
I 3S 2B̃ab8 (

f
~B̃a f8 1B̃b f8 !

1(
c

B̃ac8 B̃cb8 D , ~C8!

xa
(2)5

2

T
I 2(

cg
S̃1,acg8 1

4

T
I 3(

e f
B̃ae8 B̃a f8 , ~C9!

xab
(2)52

1

T2
I 2(

gh
Q̃1,abgh8 1

4

T2
I 3F2B̃ab8 (

gh
~S̃1,bgh8 1S̃1,agh8 !

2(
eh

~B̃ae8 S̃1,abh8 1B̃be8 S̃1,abh8 !1(
hc

~B̃ac8 S̃1,cbh8

1B̃bc8 S̃1,cah8 !G1
8

T2
I 4(

e f
@B̃ae8 B̃be8 ~B̃a f8 1B̃b f8 1B̃e f8 !

FIG. 9. Graphical representation of the fourth cumulant. T
notation is explained in Ref. 47. Each diagram corresponds
square bracket in Eq.~C21!, in the same order.
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2B̃ae8 B̃b f8 B̃e f8 2B̃ab8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 1B̃ae8 B̃b f8 !#,

~C10!

which yieldsx̃ab
(1) and x̃ab

(2) using Eq.~4.24!.

1. Third cumulant

To obtain the third cumulant we now insertx̃ab
(1) in Eq.

~C5! ~see Fig. 1!. One can rewriteB9(x̃ab
0 ), indeed taking the

derivative of Eq.~4.29! with respect tovab
2 shows that

B9~ x̃ab
0 !5

B̃ab9

114I 2B̃ab9
. ~C11!

This becomes, regrouping the terms inS̃1,abg8 and dividing by

the common denominator 1/(114I 2B̃ab9 ) we obtain

(
g

S̃1,abg8 14I 2B̃ab9 S 1

2
S̃1,aag8 1

1

2
S̃1,bbg8 D

52TI2B̃ab9 (
c

~B̃ac8 1B̃bc8 !18I 3B̃ab9 (
g

F B̃ab8 ~B̃ag8 1B̃bg8 !

2B̃aa8 B̃ag8 2B̃bb8 B̃bg8 2B̃ag8 B̃gb8 1
1

2
B̃ag8 B̃ga8 1

1

2
B̃bg8 B̃gb8 G .

~C12!

This first yields

S̃1,aab8 5
4TI2B̃9~0!

114I 2B̃9~0!
B̃ab8 . ~C13!

Inserting this back yields

S̃1,abc8 5
2TI2B̃ab9

114I 2B̃9~0!
~B̃ac8 1B̃bc8 !18I 3B̃ab9 F ~B̃ab8 2B̃8~0!!

3~B̃ac8 1B̃bc8 !2B̃ac8 B̃bc8 1
1

2
~B̃ac8 !21

1

2
~B̃bc8 !2G .

~C14!

In terms of functions it gives
17420
S̃18~x,y,z!5
2TI2

114I 2B̃9~0!
B̃9~x!@B̃8~y!1B̃8~z!#18I 3B̃9~x!

3H [ ~B̃8~x!2B̃8~0!#@B̃8~y!1B̃8~z!#

2B̃8~y!B̃8~z!1
1

2
@B̃8~y!#21

1

2
@B̃8~z!#2J .

~C15!

Integrating once, this yields the simple expression~4.31! for
the third cumulant given in the main text~see Fig. 1!. Note
that, up to terms which vanish atn50, it can be expressed in
terms of the functionB̃8(x)2B̃8(0) only.

2. Fourth cumulant

From Eq.~C5! one has

(
e

S̃1,abe8 5(
e

B̃ab9

114I 2B̃ab9
Yabe, ~C16!

1

2 (
e f

Q1abe f8 5(
e f

F B̃ab9

114I 2B̃ab9
Zabe f

1
B̃ab-

2~114I 2B̃ab9 !3
YabeYab fG , ~C17!

where we have usedB-(x̃ab
(0))5B̃ab- /((114I 2B̃ab9 )3 obtained

by further differentiation of Eq.~4.29! with respect tovab
2 .

We also define

Yabe5Tx̃ab
(1)54I 2F2

1

2
~S̃1,aae8 1S̃1,bbe8 !1S̃1,abe8 G

12I 2T~B̃ae8 1B̃be8 !18I 3F2
1

2
~B̃aa8 1B̃bb8 !~B̃ae8 1B̃be8 !

1
1

2
~B̃ae8 B̃ae8 1B̃be8 B̃be8 !1B̃ab8 ~B̃ae8 1B̃be8 !2B̃ae8 B̃be8 G ,

~C18.1!

and
Zabe f5T2x̃ab
(2)52I 2F Q̃1,abe f8 2

1

2
Q̃1,aae f8 2

1

2
Q̃1,bbe f8 G12I 2T~S̃1,ae f8 1S̃1,be f8 !14I 3T~B̃ae8 B̃a f8 1B̃be8 B̃b f8 !

18I 3F 2~B̃aa8 S̃1,ae f8 1B̃bb8 S̃1,be f8 !2~B̃ae8 S̃1,aa f8 1B̃be8 S̃1,bb f8 !1~B̃a f8 S̃1,f ae8 1B̃b f8 S̃1,f be8 !

1B̃ab8 ~S̃1,be f8 1S̃1,ae f8 !1~B̃ae8 S̃1,ab f8 1B̃be8 S̃1,ab f8 !2~B̃a f8 S̃1,f be8 1B̃b f8 S̃1,f ae8 !G
18I 4F B̃ae8 B̃ae8 ~2B̃a f8 1B̃e f8 !1B̃be8 B̃be8 ~2B̃b f8 1B̃e f8 !2~B̃ae8 B̃a f8 1B̃be8 B̃b f8 !B̃e f8 23B̃aa8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 !

22B̃ae8 B̃be8 ~B̃a f8 1B̃b f8 1B̃e f8 !12B̃ae8 B̃b f8 B̃e f8 12B̃ab8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 1B̃ae8 B̃b f8 !G , ~C18.2!
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which should be further symmetrized overe and f for later use~indicated by Syme f below!.
The fourth cumulant equation yields, regrouping and simplifying the denominators~and using also the third cumulan

equation!:

1

2
Q̃1,abe f8 12I 2B̃ab9 S 1

2
Q̃1,aae f8 1

1

2
Q̃1,bbe f8 D5

1

2
B̃ab-

S̃1,abe8

B̃ab9

S̃1,ab f8

B̃ab9
12I 2TSyme f@B̃ab9 ~S̃1,ae f8 1S̃1,be f8 !#

14I 3TB̃ab9 ~B̃ae8 B̃a f8 1B̃be8 B̃b f8 !18I 3B̃ab9 Syme fF 2~B̃aa8 S̃1,ae f8 1B̃bb8 S̃1,be f8 !

2~B̃ae8 S̃1,aa f8 1B̃be8 S̃1,bb f8 !1~B̃a f8 S̃1,f ae8 1B̃b f8 S̃1,f be8 !1B̃ab8 ~S̃1,be f8 1S̃1,ae f8 !

1~B̃ae8 S̃1,ab f8 1B̃be8 S̃1,ab f8 !2~B̃a f8 S̃1,f be8 1B̃b f8 S̃1,f ae8 !G
18I 4B̃ab9 Syme fF B̃ae8 B̃ae8 ~2B̃a f8 1B̃e f8 !1B̃be8 B̃be8 ~2B̃b f8 1B̃e f8 !2~B̃ae8 B̃a f8

1B̃be8 B̃b f8 !B̃e f8 23B̃aa8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 !22B̃ae8 B̃be8 ~B̃a f8 1B̃b f8 1B̃e f8 !12B̃ae8 B̃b f8 B̃e f8

12B̃ab8 ~B̃a f8 B̃ae8 1B̃b f8 B̃be8 1B̃ae8 B̃b f8 !G . ~C19!

Settinga5b and solving, one finds

1

2
Q̃1,aae f8 5

4I 2TB̃9~0!

114I 2B̃9~0!
Syme fS̃1,ae f8 1F 8T2I 2

2B̃-~0!

@114I 2B̃9~0!#3
1

8I 3B̃9~0!T

114I 2B̃9~0!
G B̃ae8 B̃a f8 . ~C20!

This gives the final result for the fourth cumulant:

Qabcd5SymabcdH
48F 24B̃08B̃ab8 B̃ac8 B̃ad8 14~B̃ab8 !2B̃ac8 B̃ad8 12~B̃ab8 !2B̃ad8 B̃bc8 24B̃ab8 B̃ac8 B̃ad8 B̃bc8 1B̃ab8 B̃ad8 B̃bc8 B̃cd8 G I 4

1192F 4~B̃08!2B̃ab8 B̃cd8 B̃ac9 24B̃08~B̃ab8 !2B̃cd8 B̃ac9 28B̃08B̃ab8 B̃ac8 B̃cd8 B̃ac9 14~B̃ab8 !2B̃ac8 B̃cd8 B̃ac9 14B̃ab8 ~B̃ac8 !2B̃cd8 B̃ac9

18B̃08B̃ab8 B̃bc8 B̃cd8 B̃ac9 28B̃08B̃ac8 B̃bc8 B̃cd8 B̃ac9 28B̃ab8 B̃ac8 B̃bc8 B̃cd8 B̃ac9 14~B̃ac8 !2B̃bc8 B̃cd8 B̃ac9 14~B̃ab8 !2B̃ac8 B̃ad8 B̃ad9

24~B̃ab8 !2B̃ac8 B̃cd8 B̃ad9 12B̃ab8 B̃ac8 B̃bd8 B̃cd8 B̃ad9 1~B̃ab8 !2~B̃cd8 !2B̃ad9 14~B̃08!2B̃ac8 B̃cd8 B̃bc9 24B̃08~B̃ac8 !2B̃cd8 B̃bc9

1~B̃ad8 !2~B̃cd8 !2B̃bd9 G I 3
2

1192TF 2B̃ab8 B̃ac8 B̃ad8 B̃ab9 12B̃ab8 B̃ad8 B̃bc8 B̃ab9 22B̃08B̃ab8 B̃ad8 B̃ac9 1~B̃ab8 !2B̃ad8 B̃ac9

22B̃ab8 B̃ad8 B̃bc8 B̃ac9 22B̃08B̃ab8 B̃cd8 B̃ac9 1~B̃ab8 !2B̃cd8 B̃ac9 22B̃ab8 B̃ac8 B̃ad8 B̃09G I 2I 3

114I 2B̃09

132TF B̃ab8 B̃ac8 B̃ad8 G I 3

114I 2B̃09

148T2F B̃ab8 B̃ad8 B̃ac9 1B̃ab8 B̃cd8 B̃ac9 G I 2
2

~114I 2B̃09!2

2128T2F B̃ac8 B̃bc8 B̃cd8 B̃0-G I 2
3

~114I 2B̃09!3J , ~C21!
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FIG. 10. The functionf (m) defined in Eq.~E2!.
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where Symabcd denotes 1/24 times the sum of all 24 perm
tations of the indicesa,b,c,d, and we noteB̃085B̃8(0),

B̃09B̃˜095B̃9(0) andB̃0-5B̃-(0). Note that all terms contain

ing B̃8(0) can be eliminated by the redefinitionB̃new8 (x)

5B̃8(x)2B̃8(0). Graphically this is presented on Fig.
with each rectangular bracket corresponding to one diagr
in the same order.

APPENDIX D: CUMULANT EXPANSION
FOR NONLOCAL EFFECTIVE ACTION

The cumulant expansion can be generalized to study
effective action for non-uniform configurations. The fun
tional Ũ@v•v# is a functional of the fieldvab

2 (x) and can be
expanded as

Ũ@vv#5
21

2T2 (
ab

B̃@vab
2 #2

1

3!T3 (
abc

S̃@vab
2 ,vbc

2 ,vca
2 #1•••.

~D1!

The self-consistent equation~3.31! then yields, by a similar
expansion in numbers of sums:

dB̃@v•v#

d~va~x!•vb~x!!

5B8S vab
2 ~x!12TI114E

y
Cxy

2 F dB̃@v•v#

d~va~y!•vb~y!!

2
dB̃@v•v#

d~va~y!•va~y!!
G D . ~D2!

APPENDIX E: ANALYSIS FOR ALL m
AND SHORT-RANGE CASE

To refine the analysis and study the behavior for all val
of m, let us rewrite from Eq.~6.10! the condition thatB̃
remains analytic for allm. It reads

T. f ~m! for all m ~E1!
17420
-

m,

e

s

f ~m!5

~B9!21S 1

4I 2
D

2I 1
5

~4ggI 2!1/~11g!2a2

2I 1
, ~E2!

where we have also inserted the value of the inverse fu
tion, with B9„(B9)21(x)…5x, for the power law models
This condition is equivalent to the vanishing of the replico
i.e. it is the line where the RS solution of the GVM becom
unstable to RSB.

One can then plot~see Fig. 10! the functionf (m) for the
three cases defined in the text, LRu(g).0, marginalu(g)
50 and SRu(g),0 whereu(g)5d221(42d)/(11g).
The LR and marginal cases, which correspond to continu
and one step marginal RSB solutions, have been discuss
the text and there the FRG gives back exactlysm(0) of the
MP solution. We defer the detailed study of the SR case
further work, and give here a few general remarks.

First one notices in Fig. 10 that solving the FRG equat
decreasing the mass from infinity one first has the anal
solution which coincides with the RS one. ForT.T*
5maxmf(m) it remains analytic down tom50. ForT,T* a
cusp arises when the left branch of the line is reached. T
despite the reentrance of the analytic solution at smallm, a
freezing of the FRG solution has already occurred and i
clearly important to understand how to extend the FRG
the shaded region. On the other hand, a one-step solutio
the MP saddle-point equations exists, obtained by vary
the free energy with respect touc . Its precise boundary de
pends on the model, but it is generally contained within
shaded region~for details, see Refs. 24,26,29 and 76!. An
intriguing property of the GVM is the simultaneous exi
tence, within the rightmost portion of the shaded region n
the axism50, of two locally stable solutions, one RS an
the other one-step RSB. Thus, although the line in Fig. 1
the locus of a continuous transition from RS to RSB, in th
rightmost portion of them-T diagram, the one-step nonma
ginal RSB solution appears discontinuously, before the l
is reached asT is lowered. Work is in progress to mak
contact between FRG and RSB in this SR case, and in
ticular to understand whether there are also two branche
solutions of the FRG equation in that region.
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APPENDIX F: FINITE-TEMPERATURE FIXED POINTS

From the RG point of view it is interesting to search f
finite temperature fixed points~FP! of the FRG equation,
especially in view of future extensions to finiteN ~since we
know at least in some cases, that these persist at finiteN). It
is convenient to use Eq.~7.8!. These FPs exist only in th
marginal caseu50, i.e. z5(22d)/2 for d,2 or z50 for
d52, so thatTm54AdT/e does not flow. This is the cas
studied here.

1. dË2

Following the same steps as in Section VII B, the gene
solution of the fixed-point conditionm]mx(y)50 in Eq.
~7.8! for a fixed value ofz.0, imposingx(y0)50 is

x* ~y!5
y

e
2

y0

2z
1

e22z

2ze
y0S y0

y D 2z/~e22z!

1
Tmex08

2z~ex0821!
F S y0

y D 2z/(e22z)

21G . ~F1!

Taking a derivative aty5y0, we obtain a self-consistenc
condition for x08 . One solution is x0850, the ‘‘zero-
temperature’’ fixed point discussed in Sec. VII B. The oth
one is

2ex085
eTm

y0~e22z!
21, ~F2!

with the condition that it must be positive. Reinserting E
~F1! we obtain the final form for the finite-temperature fixe
point:

x* ~y!5
y

e
2

y0

2z
1

e22z

2ze
y0S y0

y D 2z/(e22z)

1
1

2z FTm2
y0~e22z!

e GF S y0

y D 2z/(e22z)

21G
5

y2y0

e
1

Tm

2z F S y0

y D 2z/(e22z)

21G . ~F3!

The term in the second line of Eq.~F3! was not present in the
‘‘zero-temperature’’ fixed-point solution~7.15!. Note that it
does not vanish atT50 but at the higher temperatureT
5Tc such thatTm5y0(e22z)/e. At this point,x08 also van-
ishes and the solutionb8(x)52y(x) becomes nonanalytic
The fixed-point analysis alone does neither fix the value
y0, nor Tc .

However we can now explicitly check that this fixed-poi
solution identifies with the analytic solutions~7.27! and
~7.28! when settingm→0, using T̃m5Tm /(22d) and z
51/g5(22d)/2. This identification works only forT
.Tc , and sincey0 is now fixed by Eq.~7.28!, we can com-
puteTc and find that it is given by Eq.~7.39!. Below Tc the
solution freezes atm5mc at the zero temperature fixe
point.
17420
l

r
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2. dÄ2

Let us now solve the fixed point conditionm]mx(y)50
in Eq. ~7.8! for z50, imposingx(y0)50. One finds

x* ~y!5
y2y0

e
2S y0

e
1

Tmx08

ex0821
D ln~y/y0!. ~F4!

Determiningx08 again one finds, in addition to the solutio
x0850:

2ex085
Tm

y0
21. ~F5!

Reinserting, one finds finally the finite-temperature fix
points

x* ~y!5
y2y0

e
2

T

ep
ln~y/y0!, ~F6!

with e52 andTm5T/p. There is thus a line of fixed point
with z50 in d52, parametrized by temperature,y0 being
again undetermined.

To compare with the solution of the flow equation, w
obviously need to consider a broader class of SR mod
with B8(z)52g exp(2z/a2). The solution is then

x5a2ln~y0 /y!1e21~y2y0!, ~F7!

y05g̃mT/(pa2)2eL2T/(pa2), ~F8!

with e52. For small disorder g̃, and T.Tc5epa2

52pa2, y0(m) flows to zero asm→0 and the solution re-
mains analytic. ForT,Tc the solution develops a cusp whe
y0 reachesy05y0(mc)5ea2, i.e., at the Larkin mass:

mc5S g̃

a2e
D 1/@2(12T/Tc)]

LT/(Tc2T). ~F9!

Thus only forT5Tc the solution reaches form→0 an ana-
lytic finite-T fixed point associated withz50, of the form
Eq. ~F6!. Thus in d52 the line of finite-temperature fixed
points with z50 corresponds to the line of critical fixe
points as the parametera is varied.

APPENDIX G: RG FORMULATION
OF THE RSB SOLUTION

In this appendix, we derive simple RG equations for t
MP solution in the full RSB case. This gives a more dire
derivation of the key equations~8.51! and ~8.52!. We start
from @see Eqs.~8.4! and ~8.5!, equivalent to Eq.~5.4! of
MP#:

s~u!52
2

T
B8S 2TE

k
@G̃~k!2G~k,u!# D . ~G1!

Taking a derivative with respect tou yields
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154B9S 2TE
k
G̃~k!2G~k,u! D E

k

1

$k21m1@s#~u!%2

~G2!

for all u such thats8(u)Þ0. Using that due to@see Eq.~8.5!,
equivalent to Eq.~5.2! of MP#:

G̃~k!2G~k,u!5
1

u$k21m21@s#~u!%

2E
u

1 dv

v2

1

k21m21@s#~v !
, ~G3!

we have

]u@G̃~k!2G~k,u!#52
s8~u!

$k21m21@s#~u!%2
. ~G4!

On the other hand, we can take a derivative of Eq.~G1! with
respect tom2:

]m2s~u!524B9S 2TE
k
@G̃~k!2G~k,u!# D

3E
k
]m2@G̃~k!2G~k,u!#. ~G5!

Eliminating B9(•••) using ~G2! one finds

]m2s~u!E
k

1

$k21m21@s#~u!%2

52E
k
]m2@G̃~k!2G~k,u!#. ~G6!

Taking another derivative with respect tou after using Eq.
~G4! gives

]uE
k

]m2s~u!

$k21m21@s#~u!%2
5]m2E

k

s8~u!

$k21m21@s#~u!%2
.

~G7!

Noting that the derivatives of the numerator cancel, we g

FIG. 11. Function~H5!, describing the approach to the fixe
point in presence of an additional bare power law tail.
17420
t

E
k

us8~u!]m2s~u!

$k21m21@s#~u!%3
5E

k

s8~u!$11]m2@s#~u!%

$k21m21@s#~u!%3
.

~G8!

Since for allu, *k„k
21m21@s#(u)…23Þ0 and by assump-

tion s8(u)Þ0, RSB reveals its universality in the simp
relation

u]m2s~u!511]m2@s#~u!, ~G9!

which, upon another derivation, yields the two ‘‘RG equ
tions’’

m2
d

dm2
$m21@s#~u!%50, ~G10!

m2
d

dm2
s~u!50. ~G11!

APPENDIX H: CONVERGENCE TO THE FIXED POINT

Since we have found the solution of the FRG equation
arbitrary disorder correlations, it is instructive to study t
convergence to the FRG fixed point in the case where
initial disorder is not of the simple form~2.10! on an explicit
example. We start from a disorder correlator which is t
superposition of two power laws

2B8~z!5
g

~a21z!g
1C8

g

~a21z!a
, ~H1!

with a.g, s.t. for largez the first term dominates and fixe
the exponentz5e/@2(11g)#. We will determine the inverse
function F(x) only for C8 small. One finds

2
e

4Ad
F8S y

4AdD5y2(1/g)211Cy2(1/d)21, ~H2!

with C8;C, and we have defined

1

d
5

12a1g

g
. ~H3!

We have choseng̃5(g/e)g to simplify all prefactors.
Inserting into Eq.~8.42!, we obtain:

~y0me22z!2121/g 1C~y0me22z!2121/d5m2e. ~H4!

By multiplying with me andy0
(d11)/d , we obtain the equiva-

lent formula

F~y0!ªy0
(g2d)/~gd!2y0

(d11)/d52Cm(d2g)/[(11g)d] e.
~H5!

The left-hand side is plotted in Fig. 11; note that always
first exponent is negative, and the second and third are p
tive. Thus the solution form50 or C50 is simply y051.
For non-vanishingC and m, the solution can be obtaine
graphically as the intersection of F(y0) with
2Cm(d2g)/[(11g)d] e. Note that there is a solution for anyC.
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For m→0, the approach toy051 is obtained by lineariz-
ing F(y0), with the result

y021'
gC

11g
m(d2g)/[(11g)d] e. ~H6!

APPENDIX I: PURE O„N… MODELS, NONANALYTIC
EFFECTIVE ACTION

In this section we recall the corresponding result for
effective action of the generic pureO(N) model at largeN.
One mechanism by which the effective action may beco
non-analytic is given on the standard example off4 theory.

1. Self-consistent equation

The genericO(N) model in dimensiond is defined by the
action

S5
1

TEx

1

2
@¹u~x!#21

1

2
m2u~x!21NVS u~x!2

N D . ~I1!

Here m is used as a parameter, the bare mass beingmb
2

5m212V8(0). For a uniform mode one hasG@u#

5LdG̃@v# in terms of the rescaled fieldv5u/AN. One de-
fines

G̃@v#5
1

2
m2v21Ṽ~v2!5W̃~v2!. ~I2!

Similarly, one defines

W~z!5
1

2
m2z1V~z!, ~I3!

whether absorbing or not the mass into the~bare or renor-
malized! potential. Again, form5`, one hasṼ5V. The
same method as in Sec. III yields the saddle point equat
for infinite N:

Ṽ8~v2!5V8„v21G~v !…, ~I4!

G~v !5E
q

T

q21m212V8„v21G~v !…
. ~I5!

More details, a graphical derivation, and the 1/N expansion
are given in Ref. 47. A condition for the stability of th
theory is that

2W̃8~v2!ªm212Ṽ8~v2!>0 for all v2. ~I6!

2. Solution and FRG equation

Let us start from the form

W̃8~x!5W8S x1TE
q

L 1

q212W̃8~x!
D . ~I7!

The self-consistent solutions of this equation are formally
17420
e

e

ns

x5~W8!21~y!2TE
q

L 1

q212y
, ~I8!

y5W̃8~x!, ~I9!

andy>0.
Let us write the associated FRG equation. One has

2m]mW̃8~x!52m222TW9S x1TE
q

L 1

q212W̃8~x!
D

3@2m]mW̃8~x!#E
q

L 1

@q212W̃8~x!#2
,

~I10!

W̃9~x!5W9S x1TE
q

L 1

q212W̃8~x!
D

3F122TW̃9~x!E
q

L 1

@q212W̃8~x!#2G . ~I11!

Thus:

2m]mW̃8~x!52Tm2W̃9~x!E
q

L 1

@q212W̃8~x!#2
2m2.

~I12!

For d,4 takingL to infinity, this becomes

2m]mW̃8~x!52T
Ad

e
m2W̃9~x!@2W̃8~x!#2e/22m2.

~I13!

FIG. 12. Relation betweenx andy in scalar field theory: above
at, and below the critical temperature.
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3. f4 theory and nonanalytic behavior

For thef4 theoryV(x)5
g

4
(x21)2 this reads

W̃8~x!5
1

2
m21

g

2
~x21!1

gT

2 E
q

L 1

q212W̃8~x!
,

~I14!

x~y!5
2

g
y112

m2

g
2TE

q

L 1

q212y
~I15!

for y>y0 with x(y0)50. At T50, asm is decreased, ther
is a transition in anyd when mb

25m22g vanishes. Ford
.2, the transition persists forT,Tc , and occurs whenm2

2g1gT*q
L1/q2 vanishes, with the standard result:

TcE
q

L 1

q2
51, ~I16!

which depends strongly on the UV-cutoffL. y0 vanishes at
the transition, and in the ordered phase the effective ac
has a non-analytic form. In addition of branch~I15! for y
>0, x.xc512m2/g2T*q

L1/q2, the functionx(y) has a
branchy50 for 0,x,xc , wherexc is the order paramete
~see Fig. 12!.

Exactly atT5Tc we should recover that the effective a
tion exhibits the standard power-law nonanalyticityG@M #
5M11d. Indeed, from the self-consistent solution~I15!, sub-
tracting the same withx5xc andy50 one gets

x~y!5
2

g
y1~2y!(d22)/2TcE

k

L/2y 1

k2

1

k211
~I17!

for 2,d,4. This corresponds tod5(21d)/(22d). It can
be recovered by solving the FRG equation. One can look
fixed-point solutions of the form

W̃8~x!5ma f ~mbx!. ~I18!
P.

d

17420
n

r

If one wants the two first terms to dominate and to scale
the same way, one needsa<2 and b5ae/222. For all
three terms to scale the same way one needsa52, b52
2d. Inserting Eq.~I18! into Eq. ~I13! yields

12a f ~z!2bz f8~z!52T
Ad

e
f 8~z!@2 f ~z!#2e/2. ~I19!

Again this can be transformed into a linear RG equation
z( f ):

~12a f !z8~ f !2bz~ f !52T
Ad

e
~2 f !2e/2. ~I20!

The solution of the above equation witha52, b522d is

z~ f !522T
Ad

e
~2 f 21!(d22)/2E

g

f

t2e/2~2t21!2d/2.

~I21!

A particular solution is

z~ f !5~2 f 21!(d22)/2, ~I22!

W̃8~x!5
m2

2
1x2/(d22). ~I23!

In the limit of zero mass this yieldsṼ8(x)5x2/(d22). One
can also pursue the RG approach in the ordered phase,
done usually in the form of a nonlinear sigma model, a
deal with a nonanalytic effective action.

Although the mechanism for the disordered systems s
ied in the main text seems to be different fromf4 models, it
raises the question of the meaning of the nonanalyticity
the disordered problem. Is it the signature that we are dea
with a glass phase, where a symmetry has been broken?
know that for infiniteN, this is also accompanied by RSB
but this does not have to be so in general, i.e. the cusp
arise without RSB, just from localization~single ground state
dominance!.
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22M. Lässig and H. Kinzelbach, Phys. Rev. Lett.78, 903 ~1997!.
23E. Marinari, A. Pagnani, and G. Parisi, J. Phys. A33, 8181

~2000!.
2-34



et

,

n

io

s,

614,

G.

form

ni-

ion

FUNCTIONAL RENORMALIZATION GROUP AT LARGEN . . . PHYSICAL REVIEW B68, 174202 ~2003!
24M. Mézard and G. Parisi, J. Phys. I1, 809 ~1991!.
25L. Cugliandolo, J. Kurchan, and P. Le Doussal, Phys. Rev. L

76, 2390~1996!.
26L. Cugliandolo and P. Le Doussal, Phys. Rev. E53, 1525~1996!.
27D.M. Carlucci, C. De Dominicis, and T. Temesvari, J. Phys. I6,

1031 ~1996!.
28C. De Dominicis, inSpin Glasses and Random Fields~Ref. 1!.
29Y.Y. Goldschmidt, Nucl. Phys. B393, 507 ~1993!.
30D. Carpentier and P. Le Doussal, Phys. Rev. E63, 026110~2001!.
31B. Derrida and H. Spohn, J. Stat. Phys.51, 817 ~1988!.
32J. Cook and B. Derrida, J. Stat. Phys.57, 89 ~1989!.
33J. Cook and B. Derrida, Europhys. Lett.10, 195 ~1989!.
34D.S. Fisher, Phys. Rev. B31, 7233~1985!.
35D.S. Fisher, Phys. Rev. Lett.56, 1964~1986!.
36L. Balents and D.S. Fisher, Phys. Rev. B48, 5949~1993!.
37T. Nattermann, S. Stepanow, L.H. Tang, and H. Leschhorn

Phys. II2, 1483~1992!.
38H. Leschhorn, T. Nattermann, S. Stepanow, and L.H. Tang, A

Phys.~Leipzig! 6, 1 ~1997!.
39O. Narayan and D.S. Fisher, Phys. Rev. Lett.68, 3615~1992!.
40O. Narayan and D.S. Fisher, Phys. Rev. B46, 11 520~1992!.
41P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev. B62,

6241 ~2000!.
42L. Balents, J.P. Bouchaud, and M. Me´zard, J. Phys. I6, 1007

~1996!.
43P. Chauve, P. Le Doussal, and K.J. Wiese, Phys. Rev. Lett.86,

1785 ~2001!; cond-mat/0006056~unpublished!.
44P. Le Doussal, K.J. Wiese, and P. Chauve, Phys. Rev. B66,

174201~2002!; cond-mat/0205108~unpublished!.
45P. Chauve and P. Le Doussal, Phys. Rev. E64, 051102~2001!;

cond-mat/9602023~unpublished!.
46P. Le Doussal and K.J. Wiese, Phys. Rev. Lett.89, 125702

~2002!; cond-mat/0109204v1~unpublished!.
47P. Le Doussal and K.J. Wiese, The functional renormalizat

group approach to a manifold in disorder: 1/N expansion~un-
published!.

48M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56, 889
~1986!.

49P. Le Doussal and C. Monthus, Physica A317, 140 ~2003!;
17420
t.

J.

n.

n

cond-mat/0204168~unpublished!.
50D.A. Gorokhov and G. Blatter, Phys. Rev. Lett.82, 2705~1999!.
51U. Schulz, J. Villain, E. Brezin, and H. Orland, J. Stat. Phys.51,

1 ~1988!.
52T. Hwa and D.S. Fisher, Phys. Rev. B49, 3136~1994!.
53See, e.g., Appendix IV in Ref. 77.
54Although xab andxba may be considered as independent field

they are equal at the saddle point considered here.
55P. Le Doussal, K.J. Wiese, and P. Chauve, cond-mat/0304

Phys. Rev. E~to be published!.
56H. Bucheli, O.S. Wagner, V.B. Geshkenbein, A.I. Larkin, and

Blatter, Phys. Rev. B57, 7642~1998!.
57L. Balents, Europhys. Lett.24, 489 ~1993!.
58P. Chauve, T. Giamarchi, and P. Le Doussal, Europhys. Lett.44,

110 ~1998!.
59M. Müller, D.A. Gorokhov, and G. Blatter, Phys. Rev. B64,

134523~2001!.
60L. Balents and P. Le Doussal, cond-mat/0205358~unpublished!.
61Note the misprint in formula~11! of Ref. 46 corrected here.
62G. Parisi and G. Toulouse, J. Phys.~Paris! 41, L361 ~1980!.
63A. Crisanti, T. Rizzo, and T. Temesvar, cond-mat/0302538~un-

published!.
64We thank J. Kurchan for pointing this out to us.
65For a uniform mode one easily sees that upon Legendre trans

the superposition~3.14! yields Eq.~8.68!.
66J. Polchinski, Nucl. Phys. B231, 269 ~1984!.
67G. Schehr and P. Le Doussal, cond-mat/0304486~unpublished!.
68We thank Leon Balents for help in clarifying these issues.
69F. Guerra, Commun. Math. Phys.233, 1–12~2003!.
70C.M. Newman and D.L. Stein, J. Stat. Phys.106, 213 ~2002!.
71K.J. Wiese and P. Le Doussal, 3-loop FRG study of pinned ma

folds ~unpublished!.
72E. Brezin and C. De Dominicis, Europhys. Lett.44, 13 ~1998!.
73E. Brezin and C. De Dominicis, Eur. Phys. J. B19, 467 ~2001!.
74P. Le Doussal and K.J. Wiese, 2-loop functional renormalizat

group treatment of random field models~unpublished!.
75L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett.71, 173~1993!.
76A. Engel, Nucl. Phys. B410, 617 ~1993!.
77D. Carpentier and P. Le Doussal, Phys. Rev. B55, 12 128~1997!.
2-35


