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Scaling behavior of the metal-insulator transition in one-dimensional disordered systems
with long-range hopping
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We present a quantitative description on the scaling behavior of metal-insulator transition in a one-
dimensional disordered model with nonrandom hopping integrals falling off as a power law of the distance
Jnm=1/n—m|* with m andn being site indices in the lattice, proposed by Rgdezet al.[Phys. Rev. Lett.

90, 027404(2003)]. Using the finite size scaling analysis combined with the transfer matrix method, the
conductance of a finite system with varying lengths investigated. There exists a metal-insulator transition

at critical valueu for energies within a range near the band top. By varying the energy from the top towards
the bottom of this rangew. monotonically increases from the lower limit-(L) towards the upper limit
(~1.7), and the localization-length exponent on the insulator side decreases-f2dintowards 0, implying

the variation of the effective dimensionality of the system. On the metallic side there exists an upper bound of
conductance in the order ef/h, different from the behavior of usual multidimensional systems.
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[. INTRODUCTION top towards the bottom of this range. monotonically in-
creases from the lower limit~1) towards the upper limit
Since Anderson published his famous pagpyout disor-  (~1.7), and the localization-length exponent on the insula-
der induced localization, extensive investigations have fotor side decreases from 2.0 towards 0, implying the varia-
cused on the metal-insulator transitiohlT). From scale tion of the effective dimensionality. On the metallic side
theony it is commonly believed that in systems of dimen- there exists an upper bound in the orderesth for the
sions not greater than 2 all states are localized and there doggnductance.
not exist MIT. In several low-dimensional disordered models This paper is organized as follows. In the next section the
with short-range and long-range correlations, however, spghethod of applying the finite-size scaling on this system is
cific extended states have been fodn@iEspecially, in one- desc_:nbed. In Sec. 1] we pregent the numenca] results of the
dimensional(1D) systems with long-range correlated disor- scaling analysis. Section IV is devoted to a brief summary.
der, there exists disorder-induced metal-insulator transition.
Usually only the nearest-neighbor hoppings are considered in Il. METHOD OF CALCULATIONS
these models. The long-range hoppings can have essential The Hamiltonian of the 1D tight-binding model is ex-
effect on properties of electron states in Iow-dmensmnabressed 44
systems, as illustrated from the level statistics and multifrac-
tal analysis on a small-world-like netwofkBy using a su-
persymmetric method combined with a renormalization szn: En|”><”|+n§m JnmM{m, @)
group analysis, Rodyuezet al. have shown the existence of
extended states near the top of band in 1D and 2D Andersofthere e, is energy level at sit@, uniformly distributed in
models with long-range hoppings which fall off as a powerinterval [ —W/2W/2], and J,n=J/[n—m|* is the long-
law of the site distance),,_,=J/|m—n|* with m andn  range hopping amplitude. We will adoptas energy units. If
being site coordinates. They found that the MIT occurs onlyV=0, the dispersion relation is
within the range ofl< x<3d/2, with d being the geometric "
dimensionality of the system. By introducing the long-range B cognk)
hoppings, the effective dimensionality of the system is dif- E(k)‘ZJn; Nk
ferent fromd, owing to the possibility of the long-distance
motion of electrons with one hopping. So it is interesting towhereE is the energy an#lis the wave vector. It can be seen
investigate the scaling behavior of the MIT in systems withthat for a given energ¥ within the band, there may exist
varying effective dimensionality. more than ond’s satisfying Eq.(2). Everyk corresponds to
In this paper we investigate the scaling behavior of thea channel for the transmission of electrons. Thus, there can
MIT in model proposed by Rodyuezet al.in Ref. 10. Using  exist many channels depending on the valu&ih spite of
the standard finite size scaling analysis combined with thé¢he 1D lattice structure. In this sense the effective dimension-
transfer matrix method, the conductance of a finite systenality may become larger than 1.
with varying lengthM is investigated. It is found that there If W=0, kis no longer a good quantum number. To study
exists MIT at critical valuew. for energies within a range properties of electron states of the above model, we perform
near the band top. The position of this energy range depends scaling analysis on the conductance of system with finite
on the strength of disorder. By varying the energy from thesize. For a system of sizd + 1, J,,,, makes sense only for

: 2

0163-1829/2003/687)/1742014)/$20.00 68174201-1 ©2003 The American Physical Society



SHI-JIE XIONG AND GUI-PING ZHANG PHYSICAL REVIEW B68, 174201 (2003

|¢>=§ a/n), &)

FIG. 1. lllustration of extending a finite system with lengtito ~ Where coefficients,, obey the Schidinger equation
a very long chain. The black circles denote the original system and

the shaded circles stand for the attached leads. M

enan+j§_:1 (‘Jn,n+jan+j+Jn,nfjanfj)=Ean- (4)

[m—n|<M. To determine the Lyapunov exponents of this _ _ _ _
system we embed it between two leads, as shown in Fig. Equation(4) can be rewritten in a transfer matrix form
each of which is a long 1D chain with the same strength of

disorder and the same long-range hoppings as those in the anim aniM-1
finite system {,,, for [/m—n|<M). The whole length of the
: antmM-1 antmM-2
system is extended tb. Then the Lyapunov exponents can ] =T (5)

n . ’
be calculated by the use of the transfer matrix method for :
this long chain'! In the present case the transfer matrix is a

. An-M+1 an-m
2M X 2M one. A wave functiony at energyE can be ex-
pressed as a linear combination of site orbitals where transfer matriX, is
|
_Jn,n+M—1 _Jn,n+M—2 E—e, _Jn,n—M
'Jn,n+M ‘Jn,n+M ‘Jn,n+M ‘]n,n+M
1 0
0 1 0 .. - - . (6)
0 1 0

The propagation along this wire is described by the product5.0 in units ofJ and different system sizes. It clearly shows

of the transfer matrices that there exists a critical value pf, u.~1.46, at which the
L curves intersect. Foe<pu., the conductance increases with
T= H T,. 7) the system size, corresponding to the metallic behavior,
n=1 while u> u. is the insulator regime. The decreaseuoeads

. to longer hoppings in the system and results in the increase
;I;tr;ﬁnag;nvtilges STWZ;‘” %ifh%gm?:/iﬂ b¥ggﬁhsga2ﬁg{i§§:%ﬁ'°f the effective dimensionality and the delocalization of
P 9 wave functions. Howeverp should be larger than 1, since

prolcedureé..There areM paurs of eigenvalues, m_each of u=<1 corresponds to unphysical situations where the band
which logarithms of two eigenvalues are opposite, corre’

sponding to the forward and backward motions of electrons.
Lyapunov exponents, denoted hy, i=1,... M, are the
positive logarithms of eigenvalues divided by Thus, the
conductance of the finite system with lendthcan be cal-
culated as

s 2

G(M)= .
(M) =1 costf\;M

8

=-| @,

The scaling behavior of the conductance can be investigated
from its size dependence.

IIl. NUMERICAL RESULTS AND DISCUSSIONS

We calculate the conductance for systems with various
sizes and different parameter values. In Fig. 2 we show the FIG. 2. Conductance as a function pf for different system
dependence of the conductance gnfor E=6.0 andW  size.E andW are in units ofJ.
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FIG. 3. u. as a function oft for different values ofW. Esti- M/e

mated errors are less than the size of symbols. The dashed line on
the top indicates the upper limit fqQr.. . FIG. 4. Conductance as a function of rescaled $iz&. The

curves include data for various values Bfand W that give the

top is at the infinity. In Fig. 3 we plog. as a function of  sameu.. u runs over a range of values in vicinity of. .
energyE for different values ofW. It can be seen that,

increases when the energy is varied from the band top tosis becaus6, is usually smaller thag?/h, but it reminds us

wards to the band center. This implies that the states near thgat the “metallic phase” is an unusual one with a limited

band center are more delocalized than the states near tignductance.

band edge, coinciding with the general behavior in 3D dis-  On basis of the scaling analysis we can calculate the

ordered systems. In the present model, however, if the energycalization-length exponent on the insulator side

goes too far from the band top, the critical point can not be

found from this scaling analysis and the MIT disappears. E=A(p—pe) Y (9)

This is shown by the dashed line at~1.7, where all the

curves stop. In fact, if the energy goes farther towards thevhereA is a constant. It is found thatis alsou. dependent.

band centeru, is too large and, as a consequence, the sysh Fig. 5 we plot theu, dependence of exponent One can

tem has too low an effective dimensionality that cannot supsee that is decreased from- 2 towards 0 by increasing

port the MIT. For a given energy;. is increased upon in- from the lower limit 1 to the upper limit 1.7. Since the criti-

creasing the strength of disordeW. It implies a cal exponent crucially depends on the dimensionality, the

delocalization effect ofN. Such an unusual behavior is due variation of v provides further evidence that the effective

to the fact that by increasingy the band top is raised and the dimensionality of the system varies upon changiag.

energyE becomes more distant from the top. These resultyvhen . goes towards the upper limit, the localization-

provide a quantitative description of conclusions in Ref. 10Jength exponent approaches zero, leading to the disappear-
Then we carry out a scaling analysis in the vicinityuqf.  ance of the MIT. To illustrate the change of the effective

By the use of the scaling transformatidf’=M/¢, with ¢  dimensionality further, in the inset we plot the scaling func-

being an appropriate factor for eachGnin M curve, all the  tion B8, defined as the logarithmic derivatives of the conduc-

InG-In M’ curves for parametei andW that give the same tance with respect to the siZes a function of the logarith-

Mc can merge together. Heré,is the correlation length on

the metallic side and is referred as the localization length on

the insulator side. This procedure is illustrated in Fig. 4

where all InG-In(M/£) curves for valuesE and W giving

ue=1.4 in the vicinity of u. are shown. The value db at

the limit M/¢—0 corresponds the critical conductar@g at

Me- The curves with values dE andW giving different u

can not merge together becauSg varies withu.. In fact, >

the effective dimensionality of the system at the critical point

depends on the value @f;, so the critical behavior can be

tuned by changing andW to adjustu.. Another notewor-

thy point of Fig. 4 is the saturation @ on the metallic side

at the largeM/¢ limit, different from the situation of real 3D

systems where the conductance on the metallic side is unlim-

ited obeying the Ohm’s law. The saturation value is in the

order of quantum conductance?/h, suggesting that the

number of available channels is still limited by the one geo- FIG. 5. Dependence of localization-length exponeniugn In-

metric dimension, although the effective dimensionality mayset: Scaling functior8 as a function of the logarithmic conductance

be larger. This saturation has less effect on the scaling analyin units ofe?/h) for different values ofu.
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mic conductance. In spite of fluctuations in the curves due to IV. SUMMARY
numerical errors in calculation of the derivatives for different

E andW, under the limitG<e“/h they still exhibit the basic the use of the transfer-matrix method shows that there exists

features predicted by the scaling theory for multi- 5 oia) insylator transition in varying exponentof a 1D
dimensional systenfsThe slope of the curves at the critical disordered model with long-range hoppings in a power-law

poin_t (B=0) is about (_).58, appr_oximately coinciding with ¢4, Jnnim=1J/[n—m|*. Since lower and upper limits exist
the inverse ofv shown in the main panel. From the satura-for ,, i<, =<1.7, the MIT occurs only in an energy range
tion value of 8 on the metallic side one can estimate thenear the band top. The critical point., monotonically in-
effective dimensionalitydeq~ Bsart-2 (see Ref. 2 From this  creases from the lower limit towards the upper limit, and the
we can see that the effective dimensionality approximatelyocalization-length exponent decreases from 2 towards O,
increases from 3.4 to 5 as decreases from 1.5 to 1.3. How- when the energy is shifted from the band top towards the
ever, it should be emphasized that this effective dimensionband center within the allowed range. This behavior is origi-
ality can make sense only below the upper bound of thenated from the change of the effective dimensionality of the
conductance. system in changings. The results provide a quantitative
The error bars for shown in Fig. 5 are estimated from description of critical properties in systems which are geo-
the statistics of the data in the fitting procedure. Generallynetrically one dimensional but effectively multidimensional.
speaking, the numerical errors are controllable for quantitieince the conductance on the metallic side has an upper
at the critical points due to the good scaling behavior of thd2ound in the order ok“/h, the model is still essentially
system in the investigated parameter ranges. Owing to th@lﬁere_nt from usual multidimensional systems in the scaling
upper bound of conductance shown in Fig. 4, for a system oR€havior.
the metallic side with large side the calculated valueGof
may be saturated by this bound and deviate from the features
expected with the standard scaling theory, but the results still This work was supported by the National Foundation of
obey the scaling behavior shown in Fig. 4, independent oNatural Science in China Grant Nos. 10074029 and
the size. This guarantees the applicability of the presen60276005, and by the China State Key Projects of Basic

In conclusion, a finite-size scaling analysis together with
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