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Scaling behavior of the metal-insulator transition in one-dimensional disordered systems
with long-range hopping
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We present a quantitative description on the scaling behavior of metal-insulator transition in a one-
dimensional disordered model with nonrandom hopping integrals falling off as a power law of the distance
Jnm51/un2mum with m andn being site indices in the lattice, proposed by Rodrı´guezet al. @Phys. Rev. Lett.
90, 027404~2003!#. Using the finite size scaling analysis combined with the transfer matrix method, the
conductance of a finite system with varying lengthM is investigated. There exists a metal-insulator transition
at critical valuemc for energies within a range near the band top. By varying the energy from the top towards
the bottom of this range,mc monotonically increases from the lower limit (;1) towards the upper limit
(;1.7), and the localization-length exponent on the insulator side decreases from;2.0 towards 0, implying
the variation of the effective dimensionality of the system. On the metallic side there exists an upper bound of
conductance in the order ofe2/h, different from the behavior of usual multidimensional systems.

DOI: 10.1103/PhysRevB.68.174201 PACS number~s!: 71.30.1h, 78.30.Ly, 36.20.Kd, 71.35.Aa
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I. INTRODUCTION

Since Anderson published his famous paper1 about disor-
der induced localization, extensive investigations have
cused on the metal-insulator transition~MIT !. From scale
theory2 it is commonly believed that in systems of dime
sions not greater than 2 all states are localized and there
not exist MIT. In several low-dimensional disordered mod
with short-range and long-range correlations, however, s
cific extended states have been found.3–8 Especially, in one-
dimensional~1D! systems with long-range correlated diso
der, there exists disorder-induced metal-insulator transit
Usually only the nearest-neighbor hoppings are considere
these models. The long-range hoppings can have esse
effect on properties of electron states in low-dimensio
systems, as illustrated from the level statistics and multifr
tal analysis on a small-world-like network.9 By using a su-
persymmetric method combined with a renormalizat
group analysis, Rodrı´guezet al. have shown the existence o
extended states near the top of band in 1D and 2D Ande
models with long-range hoppings which fall off as a pow
law of the site distance,Jm2n5J/um2num with m and n
being site coordinates. They found that the MIT occurs o
within the range ofd,m,3d/2, with d being the geometric
dimensionality of the system. By introducing the long-ran
hoppings, the effective dimensionality of the system is d
ferent fromd, owing to the possibility of the long-distanc
motion of electrons with one hopping. So it is interesting
investigate the scaling behavior of the MIT in systems w
varying effective dimensionality.

In this paper we investigate the scaling behavior of
MIT in model proposed by Rodrı´guezet al. in Ref. 10. Using
the standard finite size scaling analysis combined with
transfer matrix method, the conductance of a finite sys
with varying lengthM is investigated. It is found that ther
exists MIT at critical valuemc for energies within a range
near the band top. The position of this energy range depe
on the strength of disorder. By varying the energy from
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-

es
s
e-

n.
in
tial
l
-

on
r

y

e
-

e

e
m

ds
e

top towards the bottom of this range,mc monotonically in-
creases from the lower limit (;1) towards the upper limit
(;1.7), and the localization-length exponent on the insu
tor side decreases from;2.0 towards 0, implying the varia
tion of the effective dimensionality. On the metallic sid
there exists an upper bound in the order ofe2/h for the
conductance.

This paper is organized as follows. In the next section
method of applying the finite-size scaling on this system
described. In Sec. III we present the numerical results of
scaling analysis. Section IV is devoted to a brief summar

II. METHOD OF CALCULATIONS

The Hamiltonian of the 1D tight-binding model is ex
pressed as10

H5(
n

enun&^nu1 (
nÞm

Jnmun&^mu, ~1!

whereen is energy level at siten, uniformly distributed in
interval @2W/2,W/2#, and Jnm5J/un2mum is the long-
range hopping amplitude. We will adoptJ as energy units. If
W50, the dispersion relation is

E~k!52J(
n51

`
cos~nk!

nm
, ~2!

whereE is the energy andk is the wave vector. It can be see
that for a given energyE within the band, there may exis
more than onek’s satisfying Eq.~2!. Everyk corresponds to
a channel for the transmission of electrons. Thus, there
exist many channels depending on the value ofE, in spite of
the 1D lattice structure. In this sense the effective dimensi
ality may become larger than 1.

If WÞ0, k is no longer a good quantum number. To stu
properties of electron states of the above model, we perf
a scaling analysis on the conductance of system with fi
size. For a system of sizeM11, Jnm makes sense only fo
©2003 The American Physical Society01-1
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um2nu<M . To determine the Lyapunov exponents of th
system we embed it between two leads, as shown in Fig
each of which is a long 1D chain with the same strength
disorder and the same long-range hoppings as those in
finite system (Jnm for um2nu<M ). The whole length of the
system is extended toL. Then the Lyapunov exponents ca
be calculated by the use of the transfer matrix method
this long chain.11 In the present case the transfer matrix is
2M32M one. A wave functionc at energyE can be ex-
pressed as a linear combination of site orbitals

FIG. 1. Illustration of extending a finite system with lengthM to
a very long chain. The black circles denote the original system
the shaded circles stand for the attached leads.
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where coefficientsan obey the Schro¨dinger equation

enan1(
j 51

M

~Jn,n1 jan1 j1Jn,n2 jan2 j !5Ean . ~4!

Equation~4! can be rewritten in a transfer matrix form

S an1M

an1M21

A

an2M11

D 5TnS an1M21

an1M22

A

an2M

D , ~5!

where transfer matrixTn is

d

S 2
Jn,n1M21

Jn,n1M
2

Jn,n1M22

Jn,n1M
•••

E2en

Jn,n1M
••• 2

Jn,n2M

Jn,n1M

1 0 ••• ••• ••• •••

0 1 0 ••• ••• •••

A A A A A A

0 ••• ••• ••• 1 0

D . ~6!
s
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The propagation along this wire is described by the prod
of the transfer matrices

T5 )
n51

L

Tn . ~7!

The eigenvalues ofT can be calculated by the standard alg
rithm of the power method with reorthogonalizatio
procedures.11 There areM pairs of eigenvalues, in each o
which logarithms of two eigenvalues are opposite, cor
sponding to the forward and backward motions of electro
Lyapunov exponents, denoted byl i , i 51, . . . ,M , are the
positive logarithms of eigenvalues divided byL. Thus, the
conductance of the finite system with lengthM can be cal-
culated as

G~M !5
e2

h (
i 51

M
2

cosh2l iM
. ~8!

The scaling behavior of the conductance can be investig
from its size dependence.

III. NUMERICAL RESULTS AND DISCUSSIONS

We calculate the conductance for systems with vari
sizes and different parameter values. In Fig. 2 we show
dependence of the conductance onm for E56.0 and W
ct

-

-
s.

ed

s
e

55.0 in units ofJ and different system sizes. It clearly show
that there exists a critical value ofm, mc;1.46, at which the
curves intersect. Form,mc , the conductance increases wi
the system size, corresponding to the metallic behav
while m.mc is the insulator regime. The decrease ofm leads
to longer hoppings in the system and results in the incre
of the effective dimensionality and the delocalization
wave functions. However,m should be larger than 1, sinc
m<1 corresponds to unphysical situations where the b

FIG. 2. Conductance as a function ofm for different system
size.E andW are in units ofJ.
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top is at the infinity. In Fig. 3 we plotmc as a function of
energyE for different values ofW. It can be seen thatmc
increases when the energy is varied from the band top
wards to the band center. This implies that the states nea
band center are more delocalized than the states nea
band edge, coinciding with the general behavior in 3D d
ordered systems. In the present model, however, if the en
goes too far from the band top, the critical point can not
found from this scaling analysis and the MIT disappea
This is shown by the dashed line atmc;1.7, where all the
curves stop. In fact, if the energy goes farther towards
band center,mc is too large and, as a consequence, the s
tem has too low an effective dimensionality that cannot s
port the MIT. For a given energy,mc is increased upon in
creasing the strength of disorderW. It implies a
delocalization effect ofW. Such an unusual behavior is du
to the fact that by increasingW the band top is raised and th
energyE becomes more distant from the top. These res
provide a quantitative description of conclusions in Ref.

Then we carry out a scaling analysis in the vicinity ofmc .
By the use of the scaling transformationM 85M /j, with j
being an appropriate factor for each lnG2ln M curve, all the
ln G-ln M8 curves for parametersE andW that give the same
mc can merge together. Here,j is the correlation length on
the metallic side and is referred as the localization length
the insulator side. This procedure is illustrated in Fig.
where all lnG-ln(M/j) curves for valuesE and W giving
mc51.4 in the vicinity ofmc are shown. The value ofG at
the limit M /j→0 corresponds the critical conductanceGc at
mc . The curves with values ofE andW giving differentmc
can not merge together becauseGc varies withmc . In fact,
the effective dimensionality of the system at the critical po
depends on the value ofmc , so the critical behavior can b
tuned by changingE andW to adjustmc . Another notewor-
thy point of Fig. 4 is the saturation ofG on the metallic side
at the largeM /j limit, different from the situation of real 3D
systems where the conductance on the metallic side is un
ited obeying the Ohm’s law. The saturation value is in t
order of quantum conductancee2/h, suggesting that the
number of available channels is still limited by the one ge
metric dimension, although the effective dimensionality m
be larger. This saturation has less effect on the scaling an

FIG. 3. mc as a function ofE for different values ofW. Esti-
mated errors are less than the size of symbols. The dashed lin
the top indicates the upper limit formc .
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sis becauseGc is usually smaller thane2/h, but it reminds us
that the ‘‘metallic phase’’ is an unusual one with a limite
conductance.

On basis of the scaling analysis we can calculate
localization-length exponentn on the insulator side

j5A~m2mc!
2n, ~9!

whereA is a constant. It is found thatn is alsomc dependent.
In Fig. 5 we plot themc dependence of exponentn. One can
see thatn is decreased from;2 towards 0 by increasingmc
from the lower limit 1 to the upper limit 1.7. Since the crit
cal exponent crucially depends on the dimensionality,
variation of n provides further evidence that the effectiv
dimensionality of the system varies upon changingmc .
When mc goes towards the upper limit, the localizatio
length exponent approaches zero, leading to the disapp
ance of the MIT. To illustrate the change of the effecti
dimensionality further, in the inset we plot the scaling fun
tion b, defined as the logarithmic derivatives of the condu
tance with respect to the size,2 as a function of the logarith-

on
FIG. 4. Conductance as a function of rescaled sizeM /j. The

curves include data for various values ofE and W that give the
samemc . m runs over a range of values in vicinity ofmc .

FIG. 5. Dependence of localization-length exponent onmc . In-
set: Scaling functionb as a function of the logarithmic conductanc
~in units of e2/h) for different values ofm.
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mic conductance. In spite of fluctuations in the curves due
numerical errors in calculation of the derivatives for differe
E andW, under the limitG,e2/h they still exhibit the basic
features predicted by the scaling theory for mu
dimensional systems.2 The slope of the curves at the critic
point (b50) is about 0.58, approximately coinciding wit
the inverse ofn shown in the main panel. From the satur
tion value of b on the metallic side one can estimate t
effective dimensionality,deff;bsat12 ~see Ref. 2!. From this
we can see that the effective dimensionality approxima
increases from 3.4 to 5 asm decreases from 1.5 to 1.3. How
ever, it should be emphasized that this effective dimens
ality can make sense only below the upper bound of
conductance.

The error bars forn shown in Fig. 5 are estimated from
the statistics of the data in the fitting procedure. Gener
speaking, the numerical errors are controllable for quanti
at the critical points due to the good scaling behavior of
system in the investigated parameter ranges. Owing to
upper bound of conductance shown in Fig. 4, for a system
the metallic side with large side the calculated value ofG
may be saturated by this bound and deviate from the feat
expected with the standard scaling theory, but the results
obey the scaling behavior shown in Fig. 4, independen
the size. This guarantees the applicability of the pres
analysis.
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IV. SUMMARY

In conclusion, a finite-size scaling analysis together w
the use of the transfer-matrix method shows that there ex
a metal-insulator transition in varying exponentm of a 1D
disordered model with long-range hoppings in a power-l
form Jn,n1m5J/un2mum. Since lower and upper limits exis
for m, 1&m&1.7, the MIT occurs only in an energy rang
near the band top. The critical point,mc , monotonically in-
creases from the lower limit towards the upper limit, and t
localization-length exponent decreases from 2 towards
when the energy is shifted from the band top towards
band center within the allowed range. This behavior is ori
nated from the change of the effective dimensionality of
system in changingm. The results provide a quantitativ
description of critical properties in systems which are ge
metrically one dimensional but effectively multidimensiona
Since the conductance on the metallic side has an up
bound in the order ofe2/h, the model is still essentially
different from usual multidimensional systems in the scal
behavior.
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