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In this paper we introduce a piezoelectric composite medium. The composite shows a series of resonances
similar to the Stark-ladder resonances originally observed in the propagation of electrons through crystals in a
dc electric field. These resonances appear when shear horizontal and surface waves propagate through a special
piezoelectric composite medium consistingh\bpiezoelectric layers, each layer being a material of hexagonal
6mm symmetry. For periodic piezocomposites, we obtain a band structure as expected. However, when the
periodicity is broken by adding a linear term in the values of the piezoelectric parameters of the layers, the
band structure is destroyed and, in certain cases, resonances of Stark-ladder type appear instead. A 4
transfer matrix approach is used to calculate the response of the composite under electromechanical perturba-
tions. The response is studied as a function of the properties of the different materials, width of the layers, wave
frequency, and angle of incidence. Numerical results for the electric potential and for the displacement of the
surface of the last layer of the composite are presented showing the existence of Stark-ladder resonances.
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[. INTRODUCTION whose associated energigs, E,, ..., E,, ... are equally
spaced; the separation between adjacent endegiek; _, is
The study of new materials is one of the most active fieldgproportional to the electric field strength. In order to intro-
of science and technology; in particular, piezoelectric mateduce our notation and for future reference we reproduce
rials have a special place and have gained considerable dttiefly Wannier’'s arguments supporting the existence of the
tention. On the one hand, there are many applications, suchL. Let us analyze the properties of Sadirger’s equation
as ultrasonic transducers, hydrophone technologies, etc., far an electron of mass, and charge in the presence of a
which they play an important role. On the other hand, newpotential (x). This potential is due to an electric field of
piezocomposites appear frequently with novel properties angtrength plus a periodic potentia¥,(x) of periodp. Thus,
applications, which require an appropriate theoretical dey(X)=—&x+V,(X) and Schrdinger’s equation reads
scription. The most common arrangement of piezoelectric
material for transducer applications has been layered systems h? d*W(x)
such as the original steel-quartz sandwich conceived by C2me gy
Langevin® The layered configurations are easy to obtain ex-
perimentally and their response can be modified by a suitablehere ¥ (x) is the wave function and is the electronic
choice of material.Recently, such types of configurations energy(the =0 case corresponds to a periodic potential and
have been investigated by many authtrsin particular, the  the electronic spectrum shows the well-known band struc-
theory of propagation of waves through periodic systems isure). Let us make the change of variabté=x—mp, m
well established and the band structure in the dispersiorbeing an arbitrary integer. Sind4x) has the crucial prop-
relation characteristics for these systems has been measuredy
and calculated in the quantum, photonic, elastic, and piezo-
electric cases. However, when the periodicity is broken in- VX'+mp)=V(x")—mp&, VX' eR, 2
teresting effects arise, such as Anderson localization.
The purpose of this paper is to introduce a layered piez
composite whose transport properties show another interest-
ing effect consisting of a series of resonances similar to the

+eV(x)V(x)=EW¥(X), 1)

oWe obtain

hZ 2 ’
- MJre[V(x’)—mpg]\P(x’ +mp)

Stark laddergSL’s) first studied by Wanniérin connection 2mg dx2
with the energy spectrum of an electron traveling through a )
crystal in a dc electric field. This system could be used asa ~ =E¥(X'+mp). 3)

very selective filter. The new piezocomposite is studied usinqJ
a theoretical model and some of its properties are numeriE
cally calculated. The calculations become more difficult be-
cause the piezoelectric materials combine both the electro-
magnetic and the elastic case. _
The SL studied by Wannier are a series of electronic states 2me

efining ®(x)=¥(x' +mp) we get an equation similar to
g. (1) but with the energye + mpet, i.e.,

h? d2d(x)
— V+eV(x)CI>(X)=(E+ mpef)®(x). (4)
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By comparing Eqs(1) and (4) we conclude that if there X
exists a solution¥ (x) associated with the enerdy there
must exist a solutionb(x) associated with the enerdy piezo-

+mpef. Sincemis an arbitrary integer, we obtain a series e'elf’;:‘;te PP

of solutions whose energies are separated by a disfaete e i T —7

i.e., one Stark ladder. We observe, however, that the spec 5 ;

trum for this system is continuous and therefore a family of , : i 1% vacuum

such solutions could be indistinguishable from the con-______ . L : i
tinuum and the concept of SL would make no sense. How- }/ ' : '

ever, when the system has states with special characteristic
such as resonant states, they become distinguishable from tt R/

S S — -
% a » Z a y

continuum. These are the Stark-ladder resonan&esR).
Thus, we see that the electric field has a qualitatively dra--z

matic effect on the electronic spectrum. FIG. 1. The pi e is a | d struct hose int
It is interesting to mention that for many ye&r¥ the - -+ 1he piezocomposite 1S a layered structure whose inter-
faces are perpendicular to tl@Y axis and located at pointg,,

existence of the SLR in the electronic spectrum was contro- The widthsp. andp. are defined as.—v. and
versial until they were finally experimentally obsen@dve Y1+ YN P1 P2 Y1~ Yo andy,

. . . . _—Y, respectively. The width of the layers is periodic with period
should mention that they were first observed in T#Trf”ca =p;1+p,. To the left of the system we have a piezoelectric sub-

calculations Of_ unldlmenS|onaI simplified modé?_s._ strate where a piezoelectric SH wave impinges on the system with
these cases, since the numerical models are of finite extentave vectok. The substrate is taken as the layer numbdr.

Eq. (2) is not satisfied exactly and the SLR are not perfect.

The same is true for real systems. . the dielectric permittivity tensosi(j”), and the mass density
The SLR are analogous to the Landau levels which appear(n) (see Fig. 2 The values of these quantities obey a very

in m of electrons in a magnetic field. Both phenomen . f . . . -
a system of electrons in a magnetic field. Both phenome articular relation as will be discussed in Sec. Il in connec-

(the SLR in the electronic spectrum and the Landau Ie)velstion with Eq.(17). We want to analyze the propagation of a

b‘?'°”9 to the field of q“a”t“m physics. '_I'he resonances Wep o ar horizontalSH) piezoelectric wave witlwave vectok
will study here belong to the field of classical physics. As we oo R

: ) . . that impinges at an angkefrom a left semi-infinite substrate
will see, they are resonances in the elastic properties of some

. . upon the layered heterogeneous piezoelectric medium. Let us
piezocomposites. . L
. : , .. _assume that the wave propagates in X¥ plane, and it is
In this paper we study layered piezocomposites with a . : .
. . -polarized along th€®Z axis. The system and scattering pro-
free surface at one end of the system with piezoelectri

waves impinging on the other side. The response of the sysC—ess are sketched in Figs. 1 and 2.

tem is described by the displacement of the free surface and
by the electric potential. As in the quantum-mechanical case, [ll. SOLUTION TO THE PROBLEM

there could be other nonequivalent configurations which . . .
could also show a structure of SLR and these could be de- The system described above can be studied using the con-

scribed in other form&® However, this paper is only devoted tinuum mechanics approach, in particular the dynamic equa-

to systems with the configuration mentioned above. In Secgi_o_ns of elastici_ty and Gaus; quation for electro_magnetism,
lIl and IV the method of solution and the appropriate bound-Using the quasistatic approximation for the electric potential.

ary conditions are discussed. Finally, the results and conclu-x

sions are presented in Secs. V and VI, respectively. "
n layer

II. THE MODEL e .
e‘,';’ <—1—— piezoelectric constant

Let us consider the piezoelectric composite shown in Fig.

1. It is embedded within two semi-infinite media; the one el o L Gelectric constant
. . . . "

located to the left is a piezoelectric and the other one is

vacuum. The system is composedNiezoelectric homo- cf,",,) <—+—— elastic constant

geneous layers withrEm symmetry. TheD'Y axis was cho- (n) ,

sen perpendicular to the interfaces. We define layas the ‘J\ P < density

layer between the boundaries locatedyatandy,, ;. The ¥n Y+t y

layer associated with the value=—1 is the left semi-

infinite substrate and the one associated with the value

=N-—1 is the last piezoelectric layer at the right end of the ~ --------------

composite. Thus-1sn<N-1.

The thickness of evefodd) layers is equal tq; (p-).
Thenth layer is characterized by its macroscopic properties FIG. 2. The (th) layer of the system is a homogeneous material
by means of the following tensor quantities: the tensor ofof hexagonal 6m symmetry characterized by the parametsEs,
elastic modulici(j“), the tensor of piezoelectric modui}j”), €, ¢, andp™ as defined in the figure.
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Since the composite consists of a set of homogeneous proportional to the mechanical displacements and the other
layers we will use the equations of piezoelectricity for eachis equal to a sum of two surface waves located at the ends of
layer (see Appendix Aand then we will match the different each layer, i.e.,
solutions at the boundary of the layers. ~ _ _

It can be shown that the equations of piezoelectricity ad- d(Y)=d1(Y)+ Po(y), (12
mit solutions where the shear vertical and SH waves are .
separated. The SH waves correspond to the nontrivial soILYylth
tion of the system of EqQ4A7)—(A10) of Appendix A with

u;=U,=0, uz#0, and¢+0, u; being the components of b1(y)= eL(y)ﬁg(y): e1s(y) (ARyO)Y+ Be Tk,
the displacement vectar=(uy,u,,us). Under the last con- €11(y) €11(Y) "
siderations the system involves thgand the electric poten- (12)
tial ¢ as follows[for simplicity, we will omit the superscript er(y)
(n) in these basic equatiohs <~152(Y)= %(Cekx(y_Yn)-F De X =n)), (13)
€1y
Jus  9%Ug ((92¢ P and
Cygl —5 +— | +e€s —+—5|=pus, 5
44( ﬁXZ é’yz 15 07X2 (9y2 Y 3 () .
2 ZP(Y)w _ 2= 2 _ 2
(&Zug &zug) <0Z¢ azqs) Ky (y) ) ke=k(y) — k. (14
€5l —+——= | — €11 —+—=|=0. (6)
15! 2 2 11 2 2
Ixeady Ixe ay Then Eq.(10) becomes
Since the piezocomposite is homogeneous inQkeand U Us
OZ directions we can consider only solutions of E@s.and d? e(y) d? (0 )+ p(Y) w? eurly)
5 15 ~ ol T — 15! ~
(6) of the form dy? )l dy2\ 2] Culy) )
_ i (KX — wt) uly 1ty
Us(X,y,t) =Ug(y)e™ Y, (7 5
3
~ , 0
B(XY.1) = B(y)el oot (8 =k els(y)a +k| ~ ) (15
€11(Y) 3 2

wherels;(y) and:ﬁ(y) satisfy the matrix equation
Since d?¢,/dy?=k2¢,, Eq. (15) is then converted into a

d?U, unique ordinary differential equation valid within the layers
d_yz pw? 1 0 Us T (the matching properties at the interphases will be analyzed
~ | t= € ( )=k§(~ ) (9) in Sec. IV):
d?¢ Cas 6_11 0/10 &
2 27 2
dy A N (16)
dy Caq(y)

with ?445c44+(e55/511). The above equation is satisfied in
each layer but with different values of the paramefers;s, Now the structure of Eq16) is already similar to Schiro
C44, @ndey, from layer to layer. Howevek, is the same in - ginger equatioril) used by Wanniérto predict the existence
all layers due to the Snell law. Therefore the equation govyf RS in the energy spectrum of an electron. Therefore, if a
eming the whole system can be written as piezoelectric multilayer is constructed in such a way that
1 0 p(y)w?ic,(y) satisfied a relation of the form as E(R),
d2 [Us p(y) w2 Us , Us Ref. 20: one could suspect the gxistence of similar reso-
—|~ — e1s(y) ~ |=kil ~ |, nances in our system although not in the energy spectrum but
dy“\ ¢/ cay) ¢ ¢ in the values ok?. In order to see this clearly, before con-
(10) tinuing with the solution of the problem, it is convenient to
reproduce Wannier’s arguments adapted to our piezocompos-
ites.
We recall that the piezocomposite consists in a series of
k Al pairs of layers whose widths am@, and p,, respectively.
for y,<y<Yn.1. Thus, the magnitude of the incidenve  £yrthermore, the width of the layers is periodic with period
vector k of Fig. 1 is equal tok(—1). Furthermorek,=k p=p,+p, (see Figs. 1 and)2Now let us suppose that the

(—1)siné. In general, due to the column of zeros in they,)yes of the material parameters obey a linear relation of the
matrix of the second term, this equation cannot be handled &g [analogous to Eq2)]

it was done with Eq(1) in order to obtain Eq(4). Therefore,
we cannot conclude from EL0) that the system must have ( wz) (n+2m) ( w2

€11(y)

where p(y)=p™ for y,<y<y,.; and similar relations
for the other parameters. The quantityk(y)
=[p(y)w?/c,(y)]"? is thewave numbeat the fith) layer

(n)
resonances of the SL type. However, the electric potential in +mpF, VnmeN, (17

each layer is a linear combination of two paisine of them

Caq Caa
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pw?/C,,

1 ! 1 |
Yo Ya Ye Yiz Yis

FIG. 3. (a) Plot of p(y)w?/c.(y) and (b) plot of c,, which

satisfy Eqs(17) and(28), respectively. The slope of the dashed line
in (a) is equal toF. WhenF =0 the plots become periodic functions

with period p. We use arbitrary units in both figures.

which is represented graphically in Fig.(a® Here

PHYSICAL REVIEW B 68, 174109 (2003

sirfg instead ofk? and the structure of the curve will repeat
with period AS=pF/k?(—1)=pFcu(—1)/[p(—1)w?].

Similar arguments have been used in order to predict the
existence of SLR in elastic and electromagnetic syst&ms.
However, we must mention that this formulation is not a
formal proof for the existence of the SLR; it is only an indi-
cation that the SLR could exist. As a matter of fact, these
arguments have the same weak points as the ones pointed out
by ZaK in connection with predictions of Wannfefor the
SLR in quantum systems. For example, since there are no
restrictions in the values &, in the interval[ 0,k], there is
no reason to conclude that the only possible valudsfafre
(ko)> —mpF for a fixed k,. Furthermore, any numerical
model or any possible experimental setup has finite length,
and it is well known that for such systems the boundary
conditions may change the eigenvalues and eigenfunctions
giving rise to instabilities in the spectrum for quantum sys-
tems.

For the piezoelectric case things are worse. In fact, a more
detailed analysis shows that any function of the form
A% Y+ B e kY for ye[y,,Yns1] With arbitrary sets of
coefficients{A,}, {B,}, is a solution to Eq(18) associated
to ki. However, only the function satisfying also the bound-
ary conditions given by Eq$29)—(35) is the correct solution
to the problem. If we denotéki(y) and fki_mpp(y) as

(pw?/cy)Wrepresents the values of the magnitudethe correct solutions associated & and k2—mpF,

p(y)w?/c,(y) at the layerj, F an arbitrary constant, and
an arbitrary integer. The particular caSe-0 corresponds to
a periodic system.

Equation(16) applied to the Kith) layer can be written as

d%ls,
dy?
Using the change of variablg—y+mp [which in term of

the layers means—n+2m, see Fig. 8)] Eq. (18) be-
comes

pwz (n)

Cas

Us(y+mp)=kZUs(y+mp).
(19

d?Us(y+mp) N ( pwz)wzm)

d y2 Csa

Defining
v(y)=Us(y+mp) (20)

and using Egs(17), (19), and(20) we obtain

d2 2 (n)
:;3)+(p_i) v(y)=(Ki—mpFu(y). (21

Csa

From Egs(18) and(21) we conclude that if there exists a

solutionts(y) for Eq. (18) for a given value ok)z( then there

exists a solutiorv(y) of Eq. (21) associated to the value

(k2—mpF). Therefore, we expect that in a plog(y) vs kZ

the structure of the curve will repeat periodically with period

respectively, it is not necessarily true thami(y+ mp)
=fk§,mp,:(y). This is so because the boundary conditions

establish relations among the sets of coefficigitg, {B,}
and the setdC,}, {D,} associated to the functiow,(y)
which does not satisfy an equation of the form of Etf).
So we do not know in advance if the interference pattern
associated to the waves describedfbg/,mpp(y) in the in-

terval [y,,yn] is of the same pattern as the one fQE(y

+mp). For example, if the pattern associated with
fiz_mpe(y) is a resonance, the pattern associated with
X

fkf(y+mp) could not be one. Therefore, it is necessary to

solve the equations explicitly and to analyze the solutions.
Our numerical calculations will show that, in spite of the
above weak points in the theoretical arguments, the piezo-
electric SLR indeed exist, although, as expected, they are
more unstable than in other cagég®17.26:30

In order to solve the equations, we continue now with the
general discussion. Equati¢h7) can be satisfied in different
ways. In this work, for simplicity in further algebra, only the
following case is considered as an example: let us assume the
material constant&ensity, elastic, piezoelectric, and dielec-
tric) obey the following rules:

elV=cPq, vn, (22)
ePV=el/T, Vvn, (23)
p(n+m)=p(n), vn,m, (29

pF, i.e., we expect a Stark ladder. Indeed, in order to use

normalized quantities we will sketal(y) as a function of

which imply
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M
€11} 7 _ 4%
(—) T (9
cp=cfl(1+ar), (26)
and
F(1+QT) B
ASZPWCEMl):ijEMl), (27)
p o

wherel’, () are two constants independent of the indax
and J=F(1+QTI)/p"Yw? Therefore, from Eqgs.(17),

(22)—(26),
( 1 ) (2m+n) (n)

+mp3J. (28)

1

Caas Caa

The characteristic form of a functiooy,(y) satisfying Eq.
(28) is shown in Fig. 8). The form of 1€,4(y) is, of course,
similar to the one of T,,(y) [see Fig. 83)] but with a slope
equal to7J.

IV. BOUNDARY CONDITIONS

PHYSICAL REVIEW B8, 174109 (2003

TABLE |. Parameters used in the calculations. The values of

c) forn=1,2, ... areobtained from Eq(28).
Periodic Nonperiodic
m
J=0 J= 14X 107"
ey V=411 100°% o D= ax 100>
44 N m2 44 m2 .
c{%) = 1/4x 100— c{9)=(121/80) 1x 10—
m m

(including the normalization conditionn order to determine
the same number of unknown coefficiems:;, B_;, C_1,
D_4, Ay_1, Bno1, Cno1y Dno1. In the following section
we will analyze the numerical solution to these equations.

V. RESULTS

There are different ways to define a resonatceot all
giving exactly the same quantitative results. One of these
definitions is given in terms of the maximum response of the
system under the action of external perturbations. Here we

. The boundary conditions used can be summarized intésed this definition. We have calculated the displacement

two groups:(a) the conditions acting between layers &bl

amplitude |U5(y)| at the free surfaceyE=yy) when an

those acting at the edge of the composite. For the first one§lectromechanical wave travels from the substrate to the

we consider the continuity of displacemany, stress tensor

To3, electric displacemerd,, and the electric potentigh at

piezocomposite of Fig. 1. This quantity was calculated as a
function of sirfé. The values for the parameters used in the

the interfaces of the piezocomposite. These conditions can Belculations are N=99, p;=5.0<10 °m, p,=15.0

written in the following form:

u§(yn) =uf" Yy, (29)
TSy =TS Yy, (30)
D (y) =D Yy, (3D)

M (y) =" D(y,), with 0<n<=N-1. (32

The boundary conditions at the edges of the composite
(y=yo and y=y,) are the free mechanical action at the

boundaryy=yy (right end of the composijeand electric
potential ¢ equal to zero at the ends of the composite:

TS D(yn) =0, (33)
¢ (yo)=0, (39
dMN"N(yy) =0. (35)

The other condition comes from the normalization of the

incident wave, i.e., the value &f_;.
Using the boundary condition®9)—(32) we obtain the

total transfer matrixM of order (4x4), which relates the

coefficientsA_;, B_;, C_;, D_; of the left semi-infinite
medium = —1) with the coefficient®\y_1, By_1, Cn_1+

D\_; of the last piezoelectric layen&EN—1) (see Appen-

x10°°m, p("Y=2500 kg/ni,  €l;1)=64.63x101°

F/m, ®,=0 V, and®y=0 V. FurthermoreJ andc{) are

given in Table 1. In this way the structure is 0.985 cm long.

The values of the other variables are indicated in each figure.
To understand the response of the laminated system, we

analyze the periodic case fifgf =0 in Eqg.(17), or 3=0 in

Eqg. (28)]. This is depicted in Fig. 4 where we show the

3.5

3.0t

1.0

’i" R ]

[(Me)4]l

0.5

0.0 0.5

sin2(6)

FIG. 4. The solid lingdashed lingis the plot of|Us(yN)/A_4|

dix B). The matrixM gives four relations between these (|(M,),,] %) as a function of sif¥ for the piezocomposite of Fig.

coefficients and with the help of Eq&33)—(35) we derive

1 for the periodic caseH=0). Both plots show the band structure.

three other conditions. Therefore, we have eight conditionghe parameters are=4x 10" s™%, ande{; =1 C/n?.
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values of the displacement amplificatipny(yy)/A_4| (solid

line). From Eq.(12) we observe thai,(yy)/A_; is a dimen- lug/A-1l

sionless quantity. It is almost equal to zero in some regions8p ———— piezoelectric i
and it is near 2 in the remainder, i.e., it has a band structure

as it should. The curve shows a central complete band ancf | ————=- elastic

two incomplete bands as well. The number and width of the
bands can be modified by changing the values of the param4
eters.

It is well known that for the case of homogeneous elastic }
half space the amplitude of the displacement must be
doubled due to the presence of the free surface. The curve|
shows that for the analyzed piezocomposiig(yn)/A_4|,
is, in fact, close to 2 in the bands. Sinces6irfd<1 the
structure of bands exists only in the intery@J1]. This is an M
important difference with respect to the quantum case whereyihe?ty
the role ofk?=k?(—1)sirfd is played byE [compare Egs. 90 0.5 5 1.0
(1) and (14)] which can take any real value for an infinite sin=(6)
system in a dc electric field. TR ;

yA more detailed analysis of this curve shows that the FIG. 5. The sold line is the plot di;(yn)/A 4| as a function

A i "%t sirfe for the piezocomposite of Fig. 1 for the caBe-0. The
number of maxima(resonancesin the complete band is plot shows the SLR. The parametessande{z? are as in Fig. 4.

equal to 49. This is so because the curve corresponds o th@e gashed line is also a plot @fis(yn)/A_,| but for the pure
caseN =299 (49 complete perioggnd therefore the number gjastic case. The curve also shows the SLR.
of complete cells able to catch resonant states is 49. We see
also that the curve inside the gap has a resonance neexistence of SLR. As a matter fact, for the piezoelectric case
sinf#=0.18 which is not a part of the central band. Indeed there are more parameters than in the other cases, and the
this resonance is associated with a surface state due to ti$# R are more unstable. It is also more difficult to find a set
fact that the system has a free surface. of parameters in order to have clear SLR as the ones shown
In order to verify this, we have analyzed only the behav-in Fig. 5. Instead, the band structure is always easily found.
ior of the transfer matrixVl of Eq. (B4). This matrix de-  Since 0O<sir¢<1, one has a very restrictive interval where
scribes the properties of the piezocomposite without takinghe SLR could exist. In this sense, the numerical calculations
into account the matching gt=yy . Notice that the function  will be very useful in order to observe SLR in the laboratory.
us(yn) is calculated using EqB6) which in turn comes In general, the effect of an arbitrary variation of the param-
from boundary conditions, Eq&33)—(35), at the free surface eters on the SLR is complicated. In some cases the SLR are
(the interface between the last layer and the vaguifow-  destroyed, in others they are modified and in others they
ever, the calculation o does not involve Eqs33)—(35).  survive without changes. For example, a simultaneous varia-
As a matter of fact, the block, of M (see Appendix Bis  tion of the quantitiesF, p, and » in such a way that the
related with the _transport properties of the system in a scaialues ofAS=p jcggl) and p/\ =2xp/k remain invariant,
tering problem"** So, in Fig. 4 we have also plotted has no effect on the form of the curves. This is becaliSe
|(Mg)14 ™" as a function of sifY (dashed ling (M¢)11is of  gives the separation between resonances\dpdgives the
course a dimensionless quantity. We see that this curve hagimber of waves inside the peripdThe quotient/p regu-

the same structure as the continuous cusa#id line) except  |ates the possibility that a resonance can be pregerin the
that the resonance around 4ir-0.18 is absent, a confirma- Fabry-Perot interferometer

When the periodicity is brokefiF#0 in Eq.(17), or 3 cyssed in connection with Figs. 6 and 7. Since our formula-
#0 in Eq.(28)], the structure ofts(yn)/A_,| changes, asis {jon permits to describe the pure elastic case as Viels
shown in Fig. 5. A series of resonances is evident: the SLRgfficient to take the limite{)—0 carefully in the corre-
with a separation around the valueS=pc,(3)x10"7  sponding equationsve have also analyzed this case which
=0.2 as predicted by Eq27). Indeed, there exist intervals was first discussed by Mate65The dashed line in Fig. 5
of values for the parameters where the curves evolve from ahows the corresponding results fag(yy)/A_4|. The pres-
band structure to a SLR structure. However, in this paper wence of the SLR in the pure elastic case is evident as well.
do not show such an evolution. See, for example, Refs. 25, In the Schrdinger equation case it has been established
26 for the case of SLR in the electronic spectrum. The curvehat each band gives rise to a Stark laddend in some
for [(Mg)14 "1 is not shown in Fig. 5 because it is almost intervals of energy more than one SL can coexist. In general
equal to the curve fofus(yn)/A_4|. In this case the pres- the widths of the resonances belonging to a given SL are
ence of the surface states is not evident. different to the ones associated with other SE'$> Further-

We have not observed SLR in all cases whiehO. This  more, the relative position of the SL's changes as the param-
occurs also in quantum, electromagnetic, and elastieters of the system change and some of the peaks disappear
SLR317:26:30yhere there are several factors that affect theand others appear as discussed by AWoii.For the piezo-
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1 FIG. 8. (a,0 Plots of Réus(y)/A_;} as a function ofy for
201 1 angles of incidenc® such that sif¥=0.023 and sif¥=0.09, re-
I M MM spectively. The first angle corresponds to the first resonance of Fig.
80 0'5 10 5(a). Note the different scales on the vertical axesbnand(d) we

sin(0) have plots of Ré¢(y)/A_1} in units of N/Cm as a function of
for the same values A, respectively.
FIG. 6. The same as in Fig. 5 for three different values{gf" .

For clarity, we have omitted the superscript 1) of e;5 in the vzed in Eia. 7. In the | te clearlv that
figures. The values of the parameters are those of Fig. 5 except analyzed, as In Fig. /. In the lower curve we note clearly tha

=2x10P s}, and e{; V=1, 11, 14 C/rf. the structure repeats itself with a peridd5~0.2 as pre-

dicted by Eg.(27) and it does not have the three surface
electric case we have a similar behavior. For example, in FigStates. One can identify four SL's in the curi@ne of them
5 we have just only one SL. However, if we change thelabeled by the arrowseven though in some of the groupings
frequency tow=2x10® s~ we obtain the lower curve of We observe more than four peaks. When the piezoelectric
Fig. 6, and when the piezoelectric modugfg® is increased Moduluse{s*) is increasedsee the upper curvesome of
the upper curves of Fig. 6 are obtained. In the lower curvéhe peaks disappear and fef; =7 and 11 only two SLs
there are at least four SL's and three surface states, althougiie apparentsee also Fig. 6 where the surface states are not
they are not easily observed in this figure. However, morgset observeyl For higher values af{5 ) the identification of
information can be obtained if the behavior|ef¢) 15| * is  the resonances is more difficult in both figures.

In Figs. 8a) and 8c) we have the values of the normal-

' ized displacement Rfl;(y)/A_,} inside the piezocompos-
W ite, i.e., Re{Us(y)/A_4} vsy. Figure §a) corresponds to an
i angle of incidence for which the system has a resonance
W [the resonance at if=0.023 of Fig. %a)]. Figure &c) cor-
= _ responds to a value df for which the system does not have

= A AR resonance sirf=0.09 in Fig. %a)]. We observe that the

2 M mechanical displacement is appreciably different from zero

= 1 inside the piezocomposite when the system has a resonance.
M Instead, for a nonresonant wave propagation the mechanical

1of .1 perturbation remains located near the left end of the system.

This effect can be also observed in the potential. Figutes 8
and 8d) show plots of the normalized potential REA_,}
0o 05 sin2(@) 10 as a function ofy. The values of sif9 are again 0.023 and
0.09, respectively. As before, we observe that the potential is
FIG. 7. The same as in Fig. 6 except that now the vertical axiPPreciably different from zero inside the systems only in a
indicates the values €M), ~* for five different values o&{;)): ~ resonant configuration. In a nonresonant configuration the
1,5, 7, 11, and 14 C/fn For clarity the curves have been vertically high values of the potential remain located near the left end
shifted except the curvel; V= 1. The range of vertical variation of Of the system.
the unshifted curves if0,1]. In the third curve, we have indicated =~ Some considerations can be made from the experimental
two Stark ladders labeled 1 and 2, and in the bottom curve thgoint of view. The experimentalist can have a certain range
arrows indicate one of the Stark ladders. of the parameters where the SLR and the bands should be

174109-7



G. MONSIVAIS et al. PHYSICAL REVIEW B 68, 174109 (2003

observed, although for the SLR case it is not easy to estaliieterogeneous piezoelectric medium. We have obtained a
lish the conditions for the experiments accurately. The samband structure in the plots; vs sirfé according to the
situation can be found in other fields where SLR have beemloch theorem for periodic composites under the in-
observed®!*'* Some statistical studies on the stability of cidence of electromechanical SH plane waves. However, for
the SLR have been carried out in the quantum-mechanicgjiezocomposites with a special monotonic variation of
case,” however, exact conditions under which the SLR canthe material parameters we have observed the presence of
be measured are not yet stablished. In spite of this, somg| g

conditions for the existence of the SLR can be stated. For \ye have mentioned that the predictions of Wannier on the

instance, since the SL appears as resonances in thelRlots gyistence of SLR in the spectrum of electrons traveling
vs sirfé with 0<sin6<1, the distance between resonanceshrough crystals in a dc electric field were correct, in spite of

the fact that their reasoning had some weak arguments as

o(—1)
AS= ﬂ:pjcﬂl), (36)  Pointed out by ZaK. For the piezoelectric case we have a
w?p similar situation; i.e., the extension of the reasoning of Wan-

must be appreciably less than one in order to have some (ﬂler in order to predict S_LR in the piezocomposites analyzed
them in the interval 0,1] and to be able to identify a Stark ere also has weak points. Indeed, we now r_lave_ an extra
ladder. Furthermore, since the presence of a resonance of tHf{§ficulty due to the fact that the complete solution involves
type is a phenomenon of interference—as in the case of e coupled functions; and ¢, where¢ does not satisfy an

Fabri-Perot interferometer—we must have a period greate®duation such as the one used by Wannier. However, our

than a quarter wavelength, i.e., numerical results show that the SLR indeed exist in piezo-
composites, although they are more unstable as compared
N 7 mv T ngl) with the case of SLR studied in other types of systems.
P = k" 20 2oV N (7
The size of the structure in thedirection should be ap- ACKNOWLEDGMENTS
preciably greater than in order to avoid edge effects. As an
example we have used the following set of paramefses The work was supported by the CONACyYT Grant Nos.

Table ), pw=27x10°, AS= pci,V(})x1077=0.2,0  275020-Aand J27710-T and the DGAPA-UNAM Grant Nos.

=1x10719 T'=(1/64.63)<10" and we have obtained N114999, IN100197, and IN107599.
SLR. However, as was mentioned, the same structure of the
SLR curves is obtained for simultaneous variation of the
quantitiesJ, p, and w in such a way thatAS and p/\

: APPENDIX A: FUNDAMENTAL EQUATIONS
=2mp/k remain constant.

OF THE PIEZOELECTRICITY
VI. CONCLUSIONS I . . . . .
The constitutive relations for piezoelectric materials with

In this work, we have calculated the displacement anddmm crystal class, for each layer of the composite using the
electric potential amplifications at the free surface of aabbreviated vectorial notation, are giverth

FT,7 [cyy Cp»p Ci3 O O O 0 0 —e3] [ S
Tz Ciz2 €y €3 0O 0 O 0 0 —ey S
T3 Ci3 C3 €3 0 0 O 0 0 —eg S
T, 0 0O O cygy O O 0 -—es O S,
Ts|=| 0 0 O O cyg O —e55 O 0 x| Ss (AL)
Ts 0 0 O O 0 c O 0 Se
D, 0 0 O O es O e; O 0 E,
D, 0 0 0O e5 O 0 0 €11 0 E,
| D3] Les €3 €3 0 0 O 0 0 €33 | L Es]

For simplicity, we omitted the superscrifr) for each layer in these basic equations. Ehdrection is the axis of six-order

symmetry,D=(D,,D,,D3) is the electric displacemert; (i=1,...,6) are theomponents of the strain tens8r which is
defined in terms of the components of the displacement veatqug,us) as
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. a n
— 0 O
X
J
F e 0O — O
S ay
J
> 0O 0 —||lwu
- | S3 iz
= = u
s, P 2 (A2)
0 — —|lus
Ss Jz ay
d
[Se] |2 o 2
0z X
J
— — 0
Ly  IX .

E=(E4,E,,E5) is the electric field, which in the quasistatic
approximation is related with the electrostatic potengiddy
the formula

E=-Vd. (A3)

T is the stress tensor that in matrix notation is written as

Ty Te Ts
T=[Te To T4f. (Ad)
Ts T, Ts
We are using the reduced notatiofig=Tyy, To=Tyy, T3

=T,, for the diagonal components add=T,,, Ts=T,,,

PHYSICAL REVIEW B8, 174109 (2003

Puz Uy 9%Ug Pu; U,
c +c +(C1at+Caa)| oo + 2
44 (9X2 &yz 33 (922 ( 13 44) Xz o"y&z
PP P P o
+ €5 ﬁ + (9_y2 633§ =pUsz, (A9)
9®u;  JPu, d*uz  9%ug Ju;  9%u,
615 + + + e31 . +
Ixoz Yoz gx?>  gy? oxXdz  dydz
d%u PP PP P
tey—— — €| — + — | —€e33—=0. (A10)
ria 11( ax?  gy? v

APPENDIX B: TRANSFER MATRIX

Using conditiong(29)—(32) we obtain the partial transfer
matrix denoted byM 1), which relates the coefficients
A, B,, C,, D, associated to the solution at thdayer, as
indicated in Eqs(12) and (13), with the coefficientsA,,_ 1,
B,_1, C,_1, Dy_1 associated to the solution at the (
—1) layer by means of the expression

An An-1

B | _y Bn-1 (B1)
Cn (n—1,n) Cn—l )

Dn Dn_l

with 0s=n<N-—1. The transfer matriM,_, ) has the fol-
lowing form:

andTg=T,, for the off-diagonal components. The same no-Mn-1n)

tation is used for the strair§ (i=1,...,6).

Substituting the above relations in the dynamic equation
of elasticity and in the Gauss equation for electromagnetism:

Tij j=pU;, (A5)

(AB)

we finally obtain the complete system of dynamic equations

for a piezoelectric medium

J%u, . d%u, . d%u, et J%u,

c c c Cest Cro)——

11 aXZ 66 ayz 44 0_'22 ( 66 12) (7X07y

9%ug 9? -

+(CagtCas) = + (€31 €15) - - =pUy (A7)

5u, du, &u, 5%uy

Ces 2 +Cup a2 +Cas e +(Ceet Clz)m
ot 0 2 e L s (A8

Ci3t Cug)—— + (€3;,+ €19 —— =pus ,
(C13tCaa) Yoz (€311 €15 ayiz puy , (A8)

—ae¥rd  —pe V5= -5 ©
1| —BeY®  —aeVnt - 5e Se E
Y yeiynk;*1 ye—iynk;*l — el ek |
,yeiynk;71 ,ye—iynk;fl — geka —ne” kxY
(B2)
where
2 _(n)
w’p
(kg)zzw—k%ki(y) for  yn<y<Vn:1,
a4
-1 -1 T -1
LA el R e
T e | P ke )
yCa4 yCa4

=k
.

e‘fl—f”f&”ﬁ) k(e )? (

- =i
efdely kycky ety

(n—1)
e

* 1FZn) ) 5:(
€is

ea@eaq-”)

efy Vel

ey ”)

efpel; ¥ efd

efs Vef? efs Vef?

effel;
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_ (N1 _ 1 o
A=k =ky), S=(kj+k)Th, Av| [ CEPEY 1
Byy |- D o™ eV
E=(kY —iyk)),  O=(kY +iynk]), N-1 (=D
1 cihi (o
Y=Yn—Yn-1- % Ll 5
n~ Yn-1 ‘l’o—l) —ngl) Mt (B6)

The total transfer matri¥ of order (4<4) defined as the
product where

M=Mmn-2n-1)"Mn-3n-2) " "M@n-1n)" "M@y M(—19)
(B3)

relates the coefficienté_,, B_;, C_;, D_; of the left

semi-infinite medium if=—1) with the coefficientAy_4, - h 5 c-1) -1 '
Bn_1, Cn—1, Dy Of the last layer (=N—1) by means —| M8+ Mgz( 11) 4N4_1ekxyll 0
of the expression hs/  ha ClY,
An-1 Ay 1 )
Bn-1 " B_; - X= Ee—ka (m;ze_kxy—l—mglekXY—l)
Cn-1 Ca|
1 K Y (S akyY S A=Ky
Dn-1 D, +§e (Mg e -t—mpe 1) Wy,
According to our model and the considerations given in
Egs.(22)—(24), it can be shown thay= =0 in each layer 6(111) e(ﬁ—l)
and therefore the transfer matri ,_,,) becomes a block ‘I’o=ﬁ¢o, ‘1’N=m¢N-
diagonal matrix, i.e., €is5 €is5
—ik(N-1) ey ' —
M = M11(2X2) O(ZXZ) hi=e ™ IN(rpe ™ —rpe’’),  hy=hyy,
(n—1,n) 0 M
(2x2) 225 2)
k(N*l) 1 .
forall n=0,1,...N—1. (B5) r1:1+iyk— 1+m , To=ry,
X

ConsequentlyM of Eq. (50) is also a diagonal matrix by
blocks of order (X2), where its first block different from p1=MSe 2-1-M3;, py=M$e 2v-1—MS$,,
zero will be denoted b€ and the second one by®. The
block Mljmz) of each matrixM , 1, has the same form as gng

in the pure elastic cagé?*3!Furthermore, it can be shown

that in our model the quotierk] ‘¢, "/ (kjcy), appear- 1 ciN-D

ing in the quantitiesy and 8, has exactly the same value as det=1— = —2 e -1(M$h+ MShyy),

i : ; —1=tn—1)/1,M<(N) 2 c=1)

in the pure elastic -case, |.e.,k§ Cas 1(kyCas) 44

=) el Vi)l , wherex) " is the value ofk) " for

the elastic case. Howevey Lz is still a function of the Y'=yN—Yn_1- (B7)
piezoelectric parameters since they are present in the expres-

sion for kg which is contained in the factorsYn®, e~ Vn*, The coefficients«Cy_; andDy_; can be calculated from

Therefore, the product matrid ® depends on the piezoelec- the following expression:

tric parameters as well. It was possible to observe this feature

in the numerical result. =/ 0o’ —KY!
Since the matricial equatiof4) together the three equa- ( N_l) — _( R (AN‘l) i E( € )‘I’N

tions (33)—(35) imply seven linear relations between the co- | Dn-1 r,e® reE ) \Byo1) 21| e ’

efficients A_;, B_;, C_4, D_4, Ay_1, Bno1, Cno1s (B8)

Dy 1 We have eight condition@ncluding the normalization

condition given by the value oh_,) in order to determine Where

the same number of unknown coefficients and the problem is

solved, as we show below. . B =(ynk) Ttk YY), 0 = (kY Hiygk) .
Using the boundary condition83)—(35) we obtain the (B9)

following system of algebraic equations for determining the

coefficientsAy_1, By_1, by means of which we obtain the The remaining coefficientd_,, B_;, C_;, andD_, can be

displacementi; at the right end of the composite, obtained from Eq(B4).
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