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Stark-ladder resonances in piezoelectric composites
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In this paper we introduce a piezoelectric composite medium. The composite shows a series of resonances
similar to the Stark-ladder resonances originally observed in the propagation of electrons through crystals in a
dc electric field. These resonances appear when shear horizontal and surface waves propagate through a special
piezoelectric composite medium consisting ofN piezoelectric layers, each layer being a material of hexagonal
6mm symmetry. For periodic piezocomposites, we obtain a band structure as expected. However, when the
periodicity is broken by adding a linear term in the values of the piezoelectric parameters of the layers, the
band structure is destroyed and, in certain cases, resonances of Stark-ladder type appear instead. A 434
transfer matrix approach is used to calculate the response of the composite under electromechanical perturba-
tions. The response is studied as a function of the properties of the different materials, width of the layers, wave
frequency, and angle of incidence. Numerical results for the electric potential and for the displacement of the
surface of the last layer of the composite are presented showing the existence of Stark-ladder resonances.
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I. INTRODUCTION

The study of new materials is one of the most active fie
of science and technology; in particular, piezoelectric ma
rials have a special place and have gained considerabl
tention. On the one hand, there are many applications, s
as ultrasonic transducers, hydrophone technologies, etc
which they play an important role. On the other hand, n
piezocomposites appear frequently with novel properties
applications, which require an appropriate theoretical
scription. The most common arrangement of piezoelec
material for transducer applications has been layered sys
such as the original steel-quartz sandwich conceived
Langevin.1 The layered configurations are easy to obtain
perimentally and their response can be modified by a suit
choice of materials.2 Recently, such types of configuration
have been investigated by many authors.3–5 In particular, the
theory of propagation of waves through periodic system
well established and the band structure in the dispers
relation characteristics for these systems has been mea
and calculated in the quantum, photonic, elastic, and pie
electric cases. However, when the periodicity is broken
teresting effects arise, such as Anderson localization.

The purpose of this paper is to introduce a layered pie
composite whose transport properties show another inte
ing effect consisting of a series of resonances similar to
Stark ladders~SL’s! first studied by Wannier6 in connection
with the energy spectrum of an electron traveling throug
crystal in a dc electric field. This system could be used a
very selective filter. The new piezocomposite is studied us
a theoretical model and some of its properties are num
cally calculated. The calculations become more difficult b
cause the piezoelectric materials combine both the elec
magnetic and the elastic case.

The SL studied by Wannier are a series of electronic st
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whose associated energiesE1 , E2 , . . . , En , . . . are equally
spaced; the separation between adjacent energiesEi2Ei 21 is
proportional to the electric field strength. In order to intr
duce our notation and for future reference we reprod
briefly Wannier’s arguments supporting the existence of
SL. Let us analyze the properties of Schro¨dinger’s equation
for an electron of massme and chargee in the presence of a
potentialV(x). This potential is due to an electric field o
strengthE plus a periodic potentialVp(x) of periodp. Thus,
V(x)52Ex1Vp(x) and Schro¨dinger’s equation reads

2
\2

2me

d2C~x!

dx2
1eV~x!C~x!5EC~x!, ~1!

where C(x) is the wave function andE is the electronic
energy~theE50 case corresponds to a periodic potential a
the electronic spectrum shows the well-known band str
ture!. Let us make the change of variablex85x2mp, m
being an arbitrary integer. SinceV(x) has the crucial prop-
erty

V~x81mp!5V~x8!2mpE, ;x8PR, ~2!

we obtain

2
\2

2me

d2C~x81mp!

dx2
1e@V~x8!2mpE#C~x81mp!

5EC~x81mp!. ~3!

Defining F(x)5C(x81mp) we get an equation similar to
Eq. ~1! but with the energyE1mpeE, i.e.,

2
\2

2me

d2F~x!

dx2
1eV~x!F~x!5~E1mpeE!F~x!. ~4!
©2003 The American Physical Society09-1
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By comparing Eqs.~1! and ~4! we conclude that if there
exists a solutionC(x) associated with the energyE there
must exist a solutionF(x) associated with the energyE
1mpeE. Sincem is an arbitrary integer, we obtain a seri
of solutions whose energies are separated by a distancepeE,
i.e., one Stark ladder. We observe, however, that the s
trum for this system is continuous and therefore a family
such solutions could be indistinguishable from the co
tinuum and the concept of SL would make no sense. Ho
ever, when the system has states with special characteri
such as resonant states, they become distinguishable from
continuum. These are the Stark-ladder resonances~SLR!.
Thus, we see that the electric field has a qualitatively d
matic effect on the electronic spectrum.

It is interesting to mention that for many years7–11 the
existence of the SLR in the electronic spectrum was con
versial until they were finally experimentally observed.12 We
should mention that they were first observed in numer
calculations of unidimensional simplified models.13–17 In
these cases, since the numerical models are of finite ex
Eq. ~2! is not satisfied exactly and the SLR are not perfe
The same is true for real systems.

The SLR are analogous to the Landau levels which app
in a system of electrons in a magnetic field. Both phenom
~the SLR in the electronic spectrum and the Landau lev!
belong to the field of quantum physics. The resonances
will study here belong to the field of classical physics. As
will see, they are resonances in the elastic properties of s
piezocomposites.

In this paper we study layered piezocomposites with
free surface at one end of the system with piezoelec
waves impinging on the other side. The response of the
tem is described by the displacement of the free surface
by the electric potential. As in the quantum-mechanical ca
there could be other nonequivalent configurations wh
could also show a structure of SLR and these could be
scribed in other forms.18 However, this paper is only devote
to systems with the configuration mentioned above. In S
III and IV the method of solution and the appropriate boun
ary conditions are discussed. Finally, the results and con
sions are presented in Secs. V and VI, respectively.

II. THE MODEL

Let us consider the piezoelectric composite shown in F
1. It is embedded within two semi-infinite media; the o
located to the left is a piezoelectric and the other one
vacuum. The system is composed ofN piezoelectric homo-
geneous layers with 6mm symmetry. TheOY axis was cho-
sen perpendicular to the interfaces. We define layern as the
layer between the boundaries located atyn and yn11. The
layer associated with the valuen521 is the left semi-
infinite substrate and the one associated with the valun
5N21 is the last piezoelectric layer at the right end of t
composite. Thus21<n<N21.

The thickness of even~odd! layers is equal top1 (p2).
The nth layer is characterized by its macroscopic proper
by means of the following tensor quantities: the tensor
elastic modulici j

(n) , the tensor of piezoelectric moduliei j
(n) ,
17410
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the dielectric permittivity tensore i j
(n) , and the mass densit

r (n) ~see Fig. 2!. The values of these quantities obey a ve
particular relation as will be discussed in Sec. III in conne
tion with Eq. ~17!. We want to analyze the propagation of
shear horizontal~SH! piezoelectric wave withwave vectork
that impinges at an angleu from a left semi-infinite substrate
upon the layered heterogeneous piezoelectric medium. Le
assume that the wave propagates in theXY plane, and it is
polarized along theOZ axis. The system and scattering pr
cess are sketched in Figs. 1 and 2.

III. SOLUTION TO THE PROBLEM

The system described above can be studied using the
tinuum mechanics approach, in particular the dynamic eq
tions of elasticity and Gauss equation for electromagneti
using the quasistatic approximation for the electric potent

FIG. 1. The piezocomposite is a layered structure whose in
faces are perpendicular to theOY axis and located at pointsy0 ,
y1 , . . . ,yN . The widthsp1 and p2 are defined asy12y0 and y2

2y1, respectively. The width of the layers is periodic with perio
p5p11p2. To the left of the system we have a piezoelectric su
strate where a piezoelectric SH wave impinges on the system
wave vectork. The substrate is taken as the layer number21.

FIG. 2. The (nth) layer of the system is a homogeneous mate
of hexagonal 6mm symmetry characterized by the parameterse15

(n) ,
e11

(n) , c44
(n) , andr (n) as defined in the figure.
9-2
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Since the composite consists of a set of homogene
layers we will use the equations of piezoelectricity for ea
layer ~see Appendix A! and then we will match the differen
solutions at the boundary of the layers.

It can be shown that the equations of piezoelectricity
mit solutions where the shear vertical and SH waves
separated. The SH waves correspond to the nontrivial s
tion of the system of Eqs.~A7!–~A10! of Appendix A with
u15u250, u3Þ0, andfÞ0, ui being the components o
the displacement vectoruW 5(u1 ,u2 ,u3). Under the last con-
siderations the system involves theu3 and the electric poten
tial f as follows@for simplicity, we will omit the superscript
~n! in these basic equations#:

c44S ]2u3

]x2
1

]2u3

]y2 D 1e15S ]2f

]x2
1

]2f

]y2 D 5ru3
•• , ~5!

e15S ]2u3

]x2
1

]2u3

]y2 D 2e11S ]2f

]x2
1

]2f

]y2 D 50. ~6!

Since the piezocomposite is homogeneous in theOX and
OZ directions we can consider only solutions of Eqs.~5! and
~6! of the form

u3~x,y,t !5ũ3~y!ei (kxx2vt), ~7!

f~x,y,t !5f̃~y!ei (kxx2vt), ~8!

whereũ3(y) and f̃(y) satisfy the matrix equation

S d2ũ3

dy2

d2f̃

dy2

D 1
rv2

c̄44
S 1 0

e15

e11
0D S ũ3

0 D 5kx
2S ũ3

f̃
D , ~9!

with c̄44[c441(e15
2 /e11). The above equation is satisfied

each layer but with different values of the parametersr, e15,
c44, ande11 from layer to layer. However,kx is the same in
all layers due to the Snell law. Therefore the equation g
erning the whole system can be written as

d2

dy2 S ũ3

f̃
D 1

r~y!v2

c̄44~y! S 1 0

e15~y!

e11~y!
0D S ũ3

f̃
D 5kx

2S ũ3

f̃
D ,

~10!

where r(y)5r (n) for yn,y,yn11 and similar relations
for the other parameters. The quantityk(y)
[@r(y)v2/ c̄44(y)#1/2 is thewave numberat the (nth) layer
for yn,y,yn11. Thus, the magnitude of the incidentwave
vector k of Fig. 1 is equal tok(21). Furthermore,kx5k
(21)sinu. In general, due to the column of zeros in t
matrix of the second term, this equation cannot be handle
it was done with Eq.~1! in order to obtain Eq.~4!. Therefore,
we cannot conclude from Eq.~10! that the system must hav
resonances of the SL type. However, the electric potentia
each layer is a linear combination of two parts:19 one of them
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is proportional to the mechanical displacements and the o
is equal to a sum of two surface waves located at the end
each layer, i.e.,

f̃~y!5f̃1~y!1f̃2~y!, ~11!

with

f̃1~y!5
e15~y!

e11~y!
ũ3~y!5

e15~y!

e11~y!
~Aeiky(y)y1Be2 iky(y)y!,

~12!

f̃2~y!5
e15~y!

e11~y!
~Cekx(y2yn)1De2kx(y2yn)!, ~13!

and

ky
2~y!5

r~y!v2

c̄44~y!
2kx

25k2~y!2kx
2 . ~14!

Then Eq.~10! becomes

d2

dy2 S ũ3

e15~y!

e11~y!
ũ3
D 1

d2

dy2 S 0

f̃2
D 1

r~y!v2

c̄44~y! S ũ3

e15~y!

e11~y!
ũ3
D

5kx
2S ũ3

e15~y!

e11~y!
ũ3
D 1kx

2S 0

f̃2
D . ~15!

Since d2f̃2 /dy25kx
2f̃2, Eq. ~15! is then converted into a

unique ordinary differential equation valid within the laye
~the matching properties at the interphases will be analy
in Sec. IV!:

d2ũ3

dy2
1

r~y!v2

c̄44~y!
ũ35kx

2ũ3 . ~16!

Now the structure of Eq.~16! is already similar to Schro¨-
dinger equation~1! used by Wannier6 to predict the existence
of RSL in the energy spectrum of an electron. Therefore,
piezoelectric multilayer is constructed in such a way th
r(y)v2/ c̄44(y) satisfied a relation of the form as Eq.~2!,
Ref. 20, one could suspect the existence of similar re
nances in our system although not in the energy spectrum
in the values ofkx

2 . In order to see this clearly, before con
tinuing with the solution of the problem, it is convenient
reproduce Wannier’s arguments adapted to our piezocom
ites.

We recall that the piezocomposite consists in a series
pairs of layers whose widths arep1 and p2, respectively.
Furthermore, the width of the layers is periodic with peri
p5p11p2 ~see Figs. 1 and 2!. Now let us suppose that th
values of the material parameters obey a linear relation of
form @analogous to Eq.~2!#

S rv2

c̄44
D (n12m)

5S rv2

c̄44
D (n)

1mpF, ;n,mPN, ~17!
9-3
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which is represented graphically in Fig. 3~a!. Here
(rv2/ c̄44)

( j )represents the values of the magnitu
r(y)v2/ c̄44(y) at the layerj, F an arbitrary constant, andm
an arbitrary integer. The particular caseF50 corresponds to
a periodic system.

Equation~16! applied to the (nth) layer can be written as

d2ũ3

dy2
1S rv2

c̄44
D (n)

ũ35kx
2ũ3 . ~18!

Using the change of variabley→y1mp @which in term of
the layers meansn→n12m, see Fig. 3~a!# Eq. ~18! be-
comes

d2ũ3~y1mp!

dy2
1S rv2

c̄44
D (n12m)

ũ3~y1mp!5kx
2ũ3~y1mp!.

~19!

Defining

v~y!5ũ3~y1mp! ~20!

and using Eqs.~17!, ~19!, and~20! we obtain

d2v~y!

dy2
1S rv2

c̄44
D (n)

v~y!5~kx
22mpF!v~y!. ~21!

From Eqs.~18! and~21! we conclude that if there exists
solutionũ3(y) for Eq. ~18! for a given value ofkx

2 then there
exists a solutionv(y) of Eq. ~21! associated to the valu
(kx

22mpF). Therefore, we expect that in a plotu3(y) vs kx
2

the structure of the curve will repeat periodically with peri
pF, i.e., we expect a Stark ladder. Indeed, in order to
normalized quantities we will sketchu3(y) as a function of

FIG. 3. ~a! Plot of r(y)v2/ c̄44(y) and ~b! plot of c44 which
satisfy Eqs.~17! and~28!, respectively. The slope of the dashed li
in ~a! is equal toF. WhenF50 the plots become periodic function
with period p. We use arbitrary units in both figures.
17410
e

sin2u instead ofkx
2 and the structure of the curve will repe

with periodDS[pF/k2(21)5pFc̄44(21)/@r(21)v2#.
Similar arguments have been used in order to predict

existence of SLR in elastic and electromagnetic systems.26–30

However, we must mention that this formulation is not
formal proof for the existence of the SLR; it is only an ind
cation that the SLR could exist. As a matter of fact, the
arguments have the same weak points as the ones pointe
by Zak7 in connection with predictions of Wannier6 for the
SLR in quantum systems. For example, since there are
restrictions in the values ofkx in the interval@0,k#, there is
no reason to conclude that the only possible values ofkx

2 are
(ko)x

2 2mpF for a fixed ko . Furthermore, any numerica
model or any possible experimental setup has finite len
and it is well known that for such systems the bounda
conditions may change the eigenvalues and eigenfunct
giving rise to instabilities in the spectrum for quantum sy
tems.

For the piezoelectric case things are worse. In fact, a m
detailed analysis shows that any function of the fo

Aneiky
n y1Bne2 iky

n y for yP@yn ,yn11# with arbitrary sets of
coefficients$An%, $Bn%, is a solution to Eq.~18! associated
to kx

2 . However, only the function satisfying also the boun
ary conditions given by Eqs.~29!–~35! is the correct solution
to the problem. If we denotef k

x
2(y) and f k

x
22mpF(y) as

the correct solutions associated tokx
2 and kx

22mpF,
respectively, it is not necessarily true thatf k

x
2(y1mp)

5 f k
x
22mpF(y). This is so because the boundary conditio

establish relations among the sets of coefficients$An%, $Bn%
and the sets$Cn%, $Dn% associated to the functionf̃2(y)
which does not satisfy an equation of the form of Eq.~16!.
So we do not know in advance if the interference patt
associated to the waves described byf k

x
22mpF(y) in the in-

terval @yo ,yN# is of the same pattern as the one forf k
x
2(y

1mp). For example, if the pattern associated w
f k

x
22mpF(y) is a resonance, the pattern associated w

f k
x
2(y1mp) could not be one. Therefore, it is necessary

solve the equations explicitly and to analyze the solutio
Our numerical calculations will show that, in spite of th
above weak points in the theoretical arguments, the pie
electric SLR indeed exist, although, as expected, they
more unstable than in other cases.13,16,17,26,30

In order to solve the equations, we continue now with t
general discussion. Equation~17! can be satisfied in differen
ways. In this work, for simplicity in further algebra, only th
following case is considered as an example: let us assume
material constants~density, elastic, piezoelectric, and diele
tric! obey the following rules:

e15
(n)5c44

(n)V, ;n, ~22!

e11
(n)5e15

(n)/G, ;n, ~23!

r (n1m)5r (n), ;n,m, ~24!

which imply
9-4
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S e11

c44
D (n)

5
V

G
, ~25!

c̄44
(n)[c44

(n)~11VG!, ~26!

and

DS5p
F~11VG!

r (21)v2
c44

(21)5p Ic44
(21) , ~27!

whereG, V are two constants independent of the index~n!
and I[F(11VG)/r (21)v2. Therefore, from Eqs.~17!,
~22!–~26!,

S 1

c44
D (2m1n)

5S 1

c44
D (n)

1mpI. ~28!

The characteristic form of a functionc44(y) satisfying Eq.
~28! is shown in Fig. 3~b!. The form of 1/c44(y) is, of course,
similar to the one of 1/c̄44(y) @see Fig. 3~a!# but with a slope
equal toI.

IV. BOUNDARY CONDITIONS

. The boundary conditions used can be summarized
two groups:~a! the conditions acting between layers and~b!
those acting at the edge of the composite. For the first o
we consider the continuity of displacementu3, stress tensor
T23, electric displacementD2 , and the electric potentialf at
the interfaces of the piezocomposite. These conditions ca
written in the following form:

u3
(n)~yn!5u3

(n21)~yn!, ~29!

T23
(n)~yn!5T23

(n21)~yn!, ~30!

D2
(n)~yn!5D2

(n21)~yn!, ~31!

f (n)~yn!5f (n21)~yn!, with 0<n<N21. ~32!

The boundary conditions at the edges of the compo
(y5y0 and y5yN) are the free mechanical action at th
boundaryy5yN ~right end of the composite! and electric
potentialf equal to zero at the ends of the composite:

T23
(N21)~yN!50, ~33!

f (21)~y0!50, ~34!

f (N21)~yN!50. ~35!

The other condition comes from the normalization of t
incident wave, i.e., the value ofA21.

Using the boundary conditions~29!–~32! we obtain the
total transfer matrixM of order (434), which relates the
coefficientsA21 , B21 , C21 , D21 of the left semi-infinite
medium (n521) with the coefficientsAN21 , BN21 , CN21 ,
DN21 of the last piezoelectric layer (n5N21) ~see Appen-
dix B!. The matrix M gives four relations between thes
coefficients and with the help of Eqs.~33!–~35! we derive
three other conditions. Therefore, we have eight conditi
17410
to

s,

be

te

s

~including the normalization condition! in order to determine
the same number of unknown coefficients:A21 , B21 , C21 ,
D21 , AN21 , BN21 , CN21 , DN21. In the following section
we will analyze the numerical solution to these equations

V. RESULTS

There are different ways to define a resonance,17 not all
giving exactly the same quantitative results. One of th
definitions is given in terms of the maximum response of
system under the action of external perturbations. Here
used this definition. We have calculated the displacem
amplitude uũ3(y)u at the free surface (y5yN) when an
electromechanical wave travels from the substrate to
piezocomposite of Fig. 1. This quantity was calculated a
function of sin2u. The values for the parameters used in t
calculations are N599, p155.031025 m, p2515.0
31025 m, r (21)52500 kg/m3, e11

(21)564.63310210

F/m, F050 V, andFN50 V. Furthermore,I andc44
(n) are

given in Table I. In this way the structure is 0.985 cm lon
The values of the other variables are indicated in each fig

To understand the response of the laminated system
analyze the periodic case first@F50 in Eq. ~17!, or I50 in
Eq. ~28!#. This is depicted in Fig. 4 where we show th

TABLE I. Parameters used in the calculations. The values
c44

(n) for n51,2, . . . areobtained from Eq.~28!.

Periodic Nonperiodic

I50 I5 1/431027 m

N

c44
(21)54/1131010 N

m2
c44

(21)5431010 N

m2

c44
(0)51/431010 N

m2
c44

(0)5(121/80)2131010 N

m2

FIG. 4. The solid line~dashed line! is the plot ofuũ3(yN)/A21u
(u(Me)11u21) as a function of sin2u for the piezocomposite of Fig
1 for the periodic case (F50). Both plots show the band structur
The parameters arev543107 s21, ande15

(21)51 C/m2.
9-5
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values of the displacement amplificationuũ3(yN)/A21u ~solid
line!. From Eq.~12! we observe thatũ3(yN)/A21 is a dimen-
sionless quantity. It is almost equal to zero in some regi
and it is near 2 in the remainder, i.e., it has a band struc
as it should. The curve shows a central complete band
two incomplete bands as well. The number and width of
bands can be modified by changing the values of the par
eters.

It is well known that for the case of homogeneous elas
half space the amplitude of the displacement must
doubled due to the presence of the free surface. The c
shows that for the analyzed piezocompositeuũ3(yN)/A21u,
is, in fact, close to 2 in the bands. Since 0<sin2u<1 the
structure of bands exists only in the interval@0,1#. This is an
important difference with respect to the quantum case wh
the role ofkx

25k2(21)sin2u is played byE @compare Eqs.
~1! and ~14!# which can take any real value for an infini
system in a dc electric field.

A more detailed analysis of this curve shows that
number of maxima~resonances! in the complete band is
equal to 49. This is so because the curve corresponds to
caseN599 (49 complete periods! and therefore the numbe
of complete cells able to catch resonant states is 49. We
also that the curve inside the gap has a resonance
sin2u50.18 which is not a part of the central band. Indee
this resonance is associated with a surface state due to
fact that the system has a free surface.

In order to verify this, we have analyzed only the beha
ior of the transfer matrixM of Eq. ~B4!. This matrix de-
scribes the properties of the piezocomposite without tak
into account the matching aty5yN . Notice that the function
ũ3(yN) is calculated using Eq.~B6! which in turn comes
from boundary conditions, Eqs.~33!–~35!, at the free surface
~the interface between the last layer and the vacuum!. How-
ever, the calculation ofM does not involve Eqs.~33!–~35!.
As a matter of fact, the blockMe of M ~see Appendix B! is
related with the transport properties of the system in a s
tering problem.17,24 So, in Fig. 4 we have also plotte
u(Me)11u21 as a function of sin2u ~dashed line!. (Me)11 is of
course a dimensionless quantity. We see that this curve
the same structure as the continuous curve~solid line! except
that the resonance around sin2u50.18 is absent, a confirma
tion that this resonance is due to the surface states.

When the periodicity is broken@FÞ0 in Eq. ~17!, or I
Þ0 in Eq.~28!#, the structure ofuũ3(yN)/A21u changes, as is
shown in Fig. 5. A series of resonances is evident: the S

with a separation around the valueDS5pc44
(21)( 1

4 )31027

50.2 as predicted by Eq.~27!. Indeed, there exist interval
of values for the parameters where the curves evolve fro
band structure to a SLR structure. However, in this paper
do not show such an evolution. See, for example, Refs.
26 for the case of SLR in the electronic spectrum. The cu
for u(Me)11u21 is not shown in Fig. 5 because it is almo
equal to the curve foruũ3(yN)/A21u. In this case the pres
ence of the surface states is not evident.

We have not observed SLR in all cases whenIÞ0. This
occurs also in quantum, electromagnetic, and ela
SLR,13,17,26,30where there are several factors that affect
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existence of SLR. As a matter fact, for the piezoelectric c
there are more parameters than in the other cases, an
SLR are more unstable. It is also more difficult to find a s
of parameters in order to have clear SLR as the ones sh
in Fig. 5. Instead, the band structure is always easily fou
Since 0<sin2u<1, one has a very restrictive interval whe
the SLR could exist. In this sense, the numerical calculati
will be very useful in order to observe SLR in the laborato
In general, the effect of an arbitrary variation of the para
eters on the SLR is complicated. In some cases the SLR
destroyed, in others they are modified and in others t
survive without changes. For example, a simultaneous va
tion of the quantitiesF, p, and v in such a way that the
values ofDS5p Ic44

(21) and p/l52pp/k remain invariant,
has no effect on the form of the curves. This is becauseDS
gives the separation between resonances andl/p gives the
number of waves inside the periodp. The quotientl/p regu-
lates the possibility that a resonance can be present~as in the
Fabry-Perot interferometer!.

The effect of the piezoelectric modulie15
(n) will be dis-

cussed in connection with Figs. 6 and 7. Since our formu
tion permits to describe the pure elastic case as well~it is
sufficient to take the limite15

(n)→0 carefully in the corre-
sponding equations! we have also analyzed this case whi
was first discussed by Mateos.29 The dashed line in Fig. 5
shows the corresponding results foruũ3(yN)/A21u. The pres-
ence of the SLR in the pure elastic case is evident as w

In the Schro¨dinger equation case it has been establish
that each band gives rise to a Stark ladder31 and in some
intervals of energy more than one SL can coexist. In gen
the widths of the resonances belonging to a given SL
different to the ones associated with other SL’s.14,15 Further-
more, the relative position of the SL’s changes as the par
eters of the system change and some of the peaks disap
and others appear as discussed by Avron.32,33 For the piezo-

FIG. 5. The solid line is the plot ofuũ3(yN)/A21u as a function
of sin2u for the piezocomposite of Fig. 1 for the caseFÞ0. The
plot shows the SLR. The parametersv ande15

(21) are as in Fig. 4.
The dashed line is also a plot ofuũ3(yN)/A21u but for the pure
elastic case. The curve also shows the SLR.
9-6
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electric case we have a similar behavior. For example, in
5 we have just only one SL. However, if we change t
frequency tov523108 s21 we obtain the lower curve o
Fig. 6, and when the piezoelectric moduluse15

(21) is increased
the upper curves of Fig. 6 are obtained. In the lower cu
there are at least four SL’s and three surface states, altho
they are not easily observed in this figure. However, m
information can be obtained if the behavior ofu(Me)11u21 is

FIG. 6. The same as in Fig. 5 for three different values ofe15
(21) .

For clarity, we have omitted the superscript (21) of e15 in the
figures. The values of the parameters are those of Fig. 5 excev
523108 s21, and e15

(21)51, 11, 14 C/m2.

FIG. 7. The same as in Fig. 6 except that now the vertical a
indicates the values ofu(Me)11u21 for five different values ofe15

(21) :
1, 5, 7, 11, and 14 C/m2. For clarity the curves have been vertical
shifted except the curvee15

(21)51. The range of vertical variation o
the unshifted curves is@0,1#. In the third curve, we have indicate
two Stark ladders labeled 1 and 2, and in the bottom curve
arrows indicate one of the Stark ladders.
17410
g.

e
gh
e

analyzed, as in Fig. 7. In the lower curve we note clearly t
the structure repeats itself with a periodDS'0.2 as pre-
dicted by Eq.~27! and it does not have the three surfa
states. One can identify four SL’s in the curve~one of them
labeled by the arrows! even though in some of the grouping
we observe more than four peaks. When the piezoelec
moduluse15

(21) is increased~see the upper curves! some of
the peaks disappear and fore15

(21)57 and 11 only two SL’s
are apparent~see also Fig. 6 where the surface states are
yet observed!. For higher values ofe15

(21) the identification of
the resonances is more difficult in both figures.

In Figs. 8~a! and 8~c! we have the values of the norma
ized displacement Re$ũ3(y)/A21% inside the piezocompos
ite, i.e., Re$ũ3(y)/A21% vs y. Figure 8~a! corresponds to an
angle of incidenceu for which the system has a resonan
@the resonance at sin2u50.023 of Fig. 5~a!#. Figure 8~c! cor-
responds to a value ofu for which the system does not hav
resonance@sin2u50.09 in Fig. 5~a!#. We observe that the
mechanical displacement is appreciably different from z
inside the piezocomposite when the system has a resona
Instead, for a nonresonant wave propagation the mechan
perturbation remains located near the left end of the syst
This effect can be also observed in the potential. Figures 8~b!
and 8~d! show plots of the normalized potential Re$f̃/A21%
as a function ofy. The values of sin2u are again 0.023 and
0.09, respectively. As before, we observe that the potentia
appreciably different from zero inside the systems only in
resonant configuration. In a nonresonant configuration
high values of the potential remain located near the left e
of the system.

Some considerations can be made from the experime
point of view. The experimentalist can have a certain ran
of the parameters where the SLR and the bands shoul

is

e

FIG. 8. ~a,c! Plots of Re$ũ3(y)/A21% as a function ofy for
angles of incidenceu such that sin2u50.023 and sin2u50.09, re-
spectively. The first angle corresponds to the first resonance of
5~a!. Note the different scales on the vertical axes. In~b! and~d! we
have plots of Re$f̃(y)/A21% in units of N/C m as a function ofy
for the same values ofu, respectively.
9-7
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G. MONSIVAIS et al. PHYSICAL REVIEW B 68, 174109 ~2003!
observed, although for the SLR case it is not easy to es
lish the conditions for the experiments accurately. The sa
situation can be found in other fields where SLR have b
observed.10,14,15 Some statistical studies on the stability
the SLR have been carried out in the quantum-mechan
case,16 however, exact conditions under which the SLR c
be measured are not yet stablished. In spite of this, s
conditions for the existence of the SLR can be stated.
instance, since the SL appears as resonances in the ploũ3
vs sin2u with 0<sin2u<1, the distance between resonanc

DS5
pFc̄44

(21)

v2r (21)
5pIc44

(21) , ~36!

must be appreciably less than one in order to have som
them in the interval@0,1# and to be able to identify a Star
ladder. Furthermore, since the presence of a resonance o
type is a phenomenon of interference—as in the case
Fabri-Perot interferometer—we must have a period gre
than a quarter wavelength, i.e.,

p>
l

4
5

p

2k
5

pv
2v

5
p

2v
A~11VG!Ac44

(21)

r (21)
. ~37!

The size of the structure in thex direction should be ap
preciably greater thanl in order to avoid edge effects. As a
example we have used the following set of parameters~see

Table I!, pv>2p3103, DS5 pc44
(21)( 1

4 )3102750.2, V
5 11

4 310210, G5(1/64.63)31010 and we have obtained
SLR. However, as was mentioned, the same structure of
SLR curves is obtained for simultaneous variation of
quantitiesI, p, and v in such a way thatDS and p/l
52pp/k remain constant.

VI. CONCLUSIONS

In this work, we have calculated the displacement a
electric potential amplifications at the free surface of
17410
b-
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of
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heterogeneous piezoelectric medium. We have obtaine
band structure in the plotsũ3 vs sin2u according to the
Bloch theorem for periodic composites under the
cidence of electromechanical SH plane waves. However,
piezocomposites with a special monotonic variation
the material parameters we have observed the presenc
SLR.

We have mentioned that the predictions of Wannier on
existence of SLR in the spectrum of electrons travel
through crystals in a dc electric field were correct, in spite
the fact that their reasoning had some weak argument
pointed out by Zak.7 For the piezoelectric case we have
similar situation; i.e., the extension of the reasoning of Wa
nier in order to predict SLR in the piezocomposites analyz
here also has weak points. Indeed, we now have an e
difficulty due to the fact that the complete solution involv
the coupled functionsu3 andf, wheref does not satisfy an
equation such as the one used by Wannier. However,
numerical results show that the SLR indeed exist in pie
composites, although they are more unstable as comp
with the case of SLR studied in other types of systems.
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APPENDIX A: FUNDAMENTAL EQUATIONS
OF THE PIEZOELECTRICITY

The constitutive relations for piezoelectric materials w
6mm crystal class, for each layer of the composite using
abbreviated vectorial notation, are given by34,35
r

3
T1

T2

T3

T4

T5

T6

D1

D2

D3

4 53
c11 c12 c13 0 0 0 0 0 2e31

c12 c11 c13 0 0 0 0 0 2e31

c13 c13 c33 0 0 0 0 0 2e33

0 0 0 c44 0 0 0 2e15 0

0 0 0 0 c44 0 2e15 0 0

0 0 0 0 0 c66 0 0 0

0 0 0 0 e15 0 e11 0 0

0 0 0 e15 0 0 0 e11 0

e31 e31 e33 0 0 0 0 0 e33

4 33
S1

S2

S3

S4

S5

S6

E1

E2

E3

4 . ~A1!

For simplicity, we omitted the superscript~n! for each layer in these basic equations. Thez direction is the axis of six-orde

symmetry,D5(D1 ,D2 ,D3) is the electric displacement.Si ( i 51, . . . ,6) are thecomponents of the strain tensorSJ, which is
defined in terms of the components of the displacement vector (u1 ,u2 ,u3) as
9-8
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SJ[3
S1

S2

S3

S4

S5

S6

4 5

l

]

]x
0 0

0
]

]y
0

0 0
]

]z

0
]

]z

]

]y

]

]z
0

]

]x

]

]y

]

]x
0

m
F u1

u2

u3

G . ~A2!

E5(E1 ,E2 ,E3… is the electric field, which in the quasistat
approximation is related with the electrostatic potentialf by
the formula

E52“f. ~A3!

TJ is the stress tensor that in matrix notation is written as

TJ[F T1 T6 T5

T6 T2 T4

T5 T4 T3

G . ~A4!

We are using the reduced notationsT15Txx , T25Tyy , T3
5Tzz for the diagonal components andT45Tyz , T55Txz ,
andT65Txy for the off-diagonal components. The same n
tation is used for the strainsSi ( i 51, . . . ,6).

Substituting the above relations in the dynamic equat
of elasticity and in the Gauss equation for electromagneti

Ti j , j5rüi , ~A5!

Di ,i50, ~A6!

we finally obtain the complete system of dynamic equatio
for a piezoelectric medium

c11

]2u1

]x2
1c66

]2u1

]y2
1c44

]2u1

]z2
1~c661c12!

]2u2

]x]y

1~c131c44!
]2u3

]x]z
1~e311e15!

]2f

]x]z
5ru1

•• , ~A7!

c66

]2u2

]x2
1c11

]2u2

]y2
1c44

]2u2

]z2
1~c661c12!

]2u1

]x]y

1~c131c44!
]2u3

]y]z
1~e311e15!

]2f

]y]z
5ru2

•• , ~A8!
17410
-

n
:

s

c44S ]2u3

]x2
1

]2u3

]y2 D 1c33

]2u3

]z2
1~c131c44!S ]2u1

]x]z
1

]2u2

]y]zD
1e15S ]2f

]x2
1

]2f

]y2 D 1e33

]2f

]z2
5ru3

•• , ~A9!

e15S ]2u1

]x]z
1

]2u2

]y]z
1

]2u3

]x2
1

]2u3

]y2 D 1e31S ]2u1

]x]z
1

]2u2

]y]zD
1e33

]2u3

]z2
2e11S ]2f

]x2
1

]2f

]y2 D 2e33

]2f

]z2
50. ~A10!

APPENDIX B: TRANSFER MATRIX

Using conditions~29!–~32! we obtain the partial transfe
matrix denoted byM (n21,n) , which relates the coefficient
An , Bn , Cn , Dn associated to the solution at then layer, as
indicated in Eqs.~12! and ~13!, with the coefficientsAn21 ,
Bn21 , Cn21 , Dn21 associated to the solution at the (n
21) layer by means of the expression

S An

Bn

Cn

Dn

D 5M (n21,n)S An21

Bn21

Cn21

Dn21

D , ~B1!

with 0<n<N21. The transfer matrixM (n21,n) has the fol-
lowing form:

M (n21,n)

52
1

2 S 2aeiynD 2be2 iynS deJ 2de2Q

2beiynS 2ae2 iynD 2deQ de2J

geiynky
n21

ge2 iynky
n21

2hekxY 2je2kxY

geiynky
n21

ge2 iynky
n21

2jekxY 2he2kxY

D ,

~B2!

where

~ky
n!2[

v2r (n)

c̄44
(n)

2kx
25ky

2~y! for yn,y,yn11 ,

a5S 11
ky

n21c̄44
(n21)

ky
nc̄44

(n) D , b5S 12
ky

n21c̄44
(n21)

ky
nc̄44

(n) D ,

g5S 12
e15

(n21)e11
(n)

e15
(n)e11

(n21)D , d5 i
kx~e15

(n21)!2

ky
nc̄44

(n)e11
(n21) S 12

e15
(n)e11

(n21)

e15
(n21)e11

(n)D ,

h5S e15
(n21)e11

(n)

e15
(n)e11

(n21)
1

e15
(n21)

e15
(n) D , j5S e15

(n21)e11
(n)

e15
(n)e11

(n21)
2

e15
(n21)

e15
(n) D ,
9-9
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D5~ky
n212ky

n!, S5~ky
n1ky

n21!,

J5~kxY2 iynky
n!, Q5~kxY1 iynky

n!,

Y5yn2yn21 .

The total transfer matrixM of order (434) defined as the
product

M5M (N22,N21)•M (N23,N22)•••M (n21,n)•••M (0,1)•M (21,0)
~B3!

relates the coefficientsA21 , B21 , C21 , D21 of the left
semi-infinite medium (n521) with the coefficientsAN21 ,
BN21 , CN21 , DN21 of the last layer (n5N21) by means
of the expression

S AN21

BN21

CN21

DN21

D 5MS A21

B21

C21

D21

D . ~B4!

According to our model and the considerations given
Eqs.~22!–~24!, it can be shown thatg5d50 in each layer
and therefore the transfer matrixM (n21,n) becomes a block
diagonal matrix, i.e.,

M (n21,n)5S M11(232)
0

(232)

0
(232)

M22(232)

D
for all n50,1, . . . ,N21. ~B5!

Consequently,M of Eq. ~50! is also a diagonal matrix by
blocks of order (232), where its first block different from
zero will be denoted byMe and the second one byMs. The
block M11(232)

of each matrixM (n21,n) has the same form a
in the pure elastic case.23,24,31Furthermore, it can be show
that in our model the quotientky

n21c̄44
(n21)/(ky

nc̄44
(n)), appear-

ing in the quantitiesa andb, has exactly the same value a
in the pure elastic case, i.e.,ky

n21c̄44
(n21)/(ky

nc̄44
(n))

5ky
n21c44

(n21)/ky
nc44

(n) , whereky
n21 is the value ofky

n21 for
the elastic case. However,M11(232)

is still a function of the
piezoelectric parameters since they are present in the ex
sion for ky

n which is contained in the factorseiynD, e2 iynS.
Therefore, the product matrixMe depends on the piezoelec
tric parameters as well. It was possible to observe this fea
in the numerical result.

Since the matricial equation~B4! together the three equa
tions ~33!–~35! imply seven linear relations between the c
efficients A21 , B21 , C21 , D21 , AN21 , BN21 , CN21 ,
DN21 we have eight conditions~including the normalization
condition given by the value ofA21) in order to determine
the same number of unknown coefficients and the problem
solved, as we show below.

Using the boundary conditions~33!–~35! we obtain the
following system of algebraic equations for determining t
coefficientsAN21 , BN21, by means of which we obtain th
displacementu3 at the right end of the composite,
17410
es-

re

is

S AN21

BN21
D 5S C44

(21)ky
(21)

C44
(N21)ky

(N21)
M f1

1

det
MeD

3F S 1

Co21D 2
C44

(N21)

C44
(21) S 0

x
D G , ~B6!

where

M f5S FM12
e S h22

h11
D1M22

e 2
2

h11

C44
(21)

C44
N21

e2kxy21G21

0

2FM12
e 1M22

e S h11

h22
D2

2

h22

C44
(21)

C44
N21

e2kxy21G21

0
D ,

x5S 1

2
e2kxY8~m22

s e2kxy212m21
s ekxy21!

1
1

2
ekxY8~m11

s ekxy212m12
s e2kxy21! DCN ,

C05
e11

(21)

e15
(21)

f0 , CN5
e11

(N21)

e15
(N21)

fN ,

h115e2 iky
(N21)yN~r 2p1e2kxY82r 1p2ekxY8!, h225h̄11,

r 1511 i
ky

(N21)

kx
S 11

1

dV D , r 25 r̄ 1 ,

p15M22
s e22kxy212M21

s , p25M12
s e22kxy212M11

s ,

and

det512
1

2

C44
(N21)

C44
(21)

ekxy21~M12
e h221M22

e h11!,

Y85yN2yN21 . ~B7!

The coefficientsCN21 andDN21 can be calculated from
the following expression:

S CN21

DN21
D 52S r 1eJ8 r 2e2Q8

r 2eQ8 r 1e2J8D S AN21

BN21
D 1

1

2 S e2kxY8

ekxY8 D CN ,

~B8!

where

J85~ iyNky
N212kxY8!, Q85~kxY81 iyNky

N21!.
~B9!

The remaining coefficientsA21 , B21 , C21, andD21 can be
obtained from Eq.~B4!.
9-10
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