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Molecular dynamics study of melting of the bcc metal vanadium. I. Mechanical melting

V. Sorkin,* E. Polturak, and Joan Adler
Physics Department, Technion—Israel Institute of Technology, Haifa 32000, Israel

~Received 8 May 2003; published 3 November 2003!

We present molecular dynamics simulations of the homogeneous~mechanical! melting transition of a bcc
metal, vanadium. We study both the nominally perfect crystal and one that includes point defects. According to
the Born criterion, a solid cannot be expanded above a critical volume, at which a ‘‘rigidity catastrophe’’
occurs. This catastrophe is caused by the vanishing of the elastic shear modulus. We found that this critical
volume is independent of the route by which it is reached, whether by heating the crystal or by adding
interstitials at a constant temperature which expand the lattice. Overall, these results are similar to what was
found previously for an fcc metal, copper. The simulations establish a phase diagram of the mechanical melting
temperature as a function of the concentration of interstitials. Our results show that the Born model of melting
applies to bcc metals in both the nominally perfect state and the case where point defects are present.
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I. INTRODUCTION

Over the years, several theories explaining the mechan
of melting have been proposed.1–3 This research has by now
evolved to a state where a clear distinction exists betw
two possible scenarios for the melting transition: a first s
nario of homogeneousor mechanical meltingresulting from
lattice instability4–6 and/or a spontaneous generation of th
mal defects7–11 and a second scenario ofheterogeneousor
thermodynamic meltingwhich begins at extrinsic defect
such as a free surface or an internal interface~grain bound-
aries, voids, etc.!.12–16Throughout this paper we will use th
term ‘‘mechanical melting’’ to describe the former cas
which we consider here. In particular, we take the view p
posed by Born that at the melting point arigidity catastrophe
is caused by the vanishing of one of the elastic sh
moduli4,5 C44 or C85(C112C12)/2. In other words, the
crystal melts once it loses its ability to resist shear. T
condition determines the mechanical melting temperatureTs
of a perfectly homogeneous bulk crystal and was confirm
in extensive studies of fcc metals.10,11,17–19

Tallon5 pointed out that a mechanical instability aris
when the solid expands up toa critical specific volume
which is close to that of the liquid phase~melt!. In the study
by Wanget al.17,18of the mechanical melting transition of a
fcc solid under external stress, it was found that volume
pansion is the underlying cause of lattice instability. Kanig
et al.11 confirmed this scenario in a simulation of fcc copp
in the presence of point defects. They showed that the crit
volume at which a crystal of copper melts is independen
the path through phase space by which it is reached, whe
by heating of the perfect crystal or by adding point defects
expand the solid at a constant temperature.11

Solids can undergo mechanical melting only if they ha
no extended defects,6 a situation which is conveniently rea
ized in three-dimensional computer simulations by mean
periodic boundary conditions which eliminate the surfa
Simulations of atomic dynamics for solids with a
fcc10,11,17–19 or diamond20 structures show, among othe
things, the onset of a shear instability of the solid at a te
peratureTs , which can exceed the thermodynamic melti
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temperatureTm by some 20%, depending on the details
the potential.

Given the considerable degree of understanding of
melting process of fcc crystals, it is of substantial interes
see if the scenario of mechanical melting also applies to
ids having a different lattice structure. We therefore decid
to study mechanical melting of a bcc metal, vanadium,
means of computer simulations. We present details of
calculations in Sec. II. In Sec. III we describe the results
the simulation of some physical properties of vanadium w
and without point defects. In Sec. IV we present molecu
dynamics simulation results for mechanical melting in t
presence of point defects. Finally, in Sec. IV, we discuss
implication of our results for the question of the microscop
mechanism of melting.

II. SIMULATION DETAILS

We model the bulk melting transition of vanadium usin
the molecular dynamics simulation21 technique. The choice
of vanadium has no special significance as we are only
terested in the generic features of metallic solids with a
lattice symmetry. While various many-body potentials for f
metals22–24 have been developed and thoroughly tested
numerous simulations, the situation with such potentials
bcc metals is not as good. This can be explained by the m
complicated nature of the bcc metals in comparison with
ones which manifests itself in the wide range of elastic c
stants. The packing density of atoms in a bcc lattice
smaller than in a fcc lattice~there are 8 nearest neighbors
a bcc lattice and 12 nearest neighbors in a fcc!. However, the
second nearest-neighbor distance in the bcc structur
larger than the first nearest-neighbor distance by only ab
15%. Therefore, the interaction between the second-o
and first-order nearest neighbors in bcc metals is not ne
gible, even with screening.

In addition, band structure effects are crucial for bcc m
als. A simple approximation which assumes that the elect
density can be considered as a superposition of atomic o
als is successful for fcc metals, but less appropriate for
metals. Therefore, for metals with the bcc structure, the e
©2003 The American Physical Society02-1
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tron density is chosen to be an adjustable function, ra
than a superposition of atomic orbitals. Furthermore, an
dependent interactions could be very important in bcc sol

For our simulations, we chose the many-body interact
potential developed by Finnis and Sinclair25 ~FS! and modi-
fied by Rebonatoet al.26 FS proposed a way to incorpora
the delocalized physical nature of the metallic bonding a
the essential band character of bcc metals in a simple mo
The FS potential involves two short-ranged potentials:V
5V11V2. The first potentialV1 corresponds to an ion-ion
interaction:

V15
1

2 (
i : iÞ j

N

F~r i j !, ~1!

whereF(r ) is the two-body part~ion-ion repulsion! andN is
the number of atoms. The second potentialV2 incorporates
the complex nature of metallic cohesion:

V25(
i 51

N

U~ni !. ~2!

The functionU(ni) is taken to mimic the results of th
tight-binding theory.25 It depends on the electronic charg
densityni around the atomi:

ni5 (
j : iÞ j

Ng

r~r i j !, ~3!

whereNg is the number of nearest neighbors of the atomi
and the functionr(r i j ) is given by

r~r i j !5H ~r i j 2d!2, r i j <d,

0, r i j .d, ~4!

wherer j i is the distance between the atomsi and j, andd is
a fitting parameter. Explicitly, the many-body partU(ni) is
given by

U~ni !52AAni , ~5!

whereA is a fitting parameter.
Our molecular dynamics~MD! simulations with the FS

potential were performed using the Parinello-Rahma27

method, which allows simulation of fluctuations in the sha
and volume of the sample. The Nose-Hoover thermostat
used to set the temperature.28,29

The equilibrium average shape and volume of the sam
obtained at a given temperature were used for calculatio
the shear modulus in a canonical (N-V-T)
ensemble30,31—i.e. at the fixed number of atoms,N, volume
V, and temperatureT.

The samples used for the simulations contained 2000
oms, initially arranged as a perfect bcc crystal of size
310320 unit cells. Periodic boundary conditions were a
plied in all three directions. Point defects were introduc
either by the insertion of extra atoms between the lattice s
~self-interstitials! or by the removal of atoms from the lattic
~vacancies!. Newton’s equations of motion were solved u
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ing a predictor-corrector algorithm.21,32 Throughout this
study, interactive visualization with theAVIZ program33 was
implemented.

III. VALIDATION OF THE POTENTIAL AND ORDER
PARAMETER

To learn about the capability of the potential, we exa
ined some physical properties of a perfect crystal. First,
calculated the thermal expansion at zero external press
We found the thermal expansion coefficient at low tempe
tures to beac5(1866)31026 K21, in reasonable agree
ment with the experimental value measured at room te
perature,aexpt58.631026 K21. Next, the thermodynamic
melting temperature for our potential was calculated, us
the method of Lutshkoet al.,34 to beTm52220610 K. This
value is close to the experimental valueTm52183 K, despite
the fact that the FS potential was constructed by fitting
parameters to room-temperature values of various phys
properties of vanadium~lattice constant, cohesion energ
shear elastic moduli, vacancy formation energy, etc.!.

In order to test the algorithm we calculated the sh
moduli as a function of temperature. The shear elastic co
ficients decrease with temperature as shown in Fig. 1.
accuracy of the simulations was estimated by monitoring
convergence of the shear elastic moduli calculated al
symmetrically equivalent directions. We found the differen
to be approximately 10%.

Following the validation that our potential can indeed r
produce the physical properties of a perfect crystal with
ceptable accuracy, point defects were introduced. Th
point defects are distributed homogeneously throughout
bulk of the solid. Only one type of point defects—e.g., v
cancies or self-interstitials—were used in each run to av
their mutual annihilation.

The configurations of atoms in the vicinity of a point d
fect inside the bulk at low temperatures were investigated
means of the simulated tempering method.35,36The most en-
ergetically favored configuration of an interstitial was fou
to be the^011& dumbbell split interstitialwith a formation

FIG. 1. Variation ofC8 ~triangles! andC44 ~squares! with tem-
perature. The error bars represent the statistical uncertainty.
2-2
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energy ofEf54.1860.02 eV. This formation energy is in
agreement with that of previous simulations.37

To investigate the temperature dependence of the cry
line order, we define the structure order parameterh:

h5K 1

N2U(i 51

N

cos~kW rW i !U21
1

N2U(i 51

N

sin~kW rW i !u2&, ~6!

wherekW5$0,0,2p/a% is a vector of the reciprocal lattice,rW i
is the position of atomi, N is the number of the atoms in th
sample, and the angular brackets stand for ensemble ave
For an ideal-crystal lattice at zero temperature,h equals
unity, while in the liquid state,h fluctuates near zero.

We calculateddh/dC, the change of the order paramet
upon the introduction of point defects. Here,C is the con-
centration of point defects, given in % of the number
atoms. Figure 2 shows the result of this calculation for sm
C (C<1%) and at different temperatures. The introducti
of self-interstitials results in a noticeable decrease of
structure order parameter~from h;0.6 toh;0.4), while the
influence of vacancies is relatively weaker. With increas
temperature, the order parameter becomes increasingly
sitive to the introduction of point defects, as evidenced
the increase of the absolute value ofudh/dCu with tempera-
ture. We believe that this increased sensitivity results fr
the increase of the amplitude of the thermal vibration of
atoms in the immediate vicinity of the point defect.

The introduction of point defects results in a decrease
atomic density, as shown in Figs. 3 and 4. The specific v
ume of point defects at various temperatures was estim
using the linear dependence of the atomic density on
number of defects, apparent in Figs. 3 and 4. The volum
the sample at a small number of self-interstitials can be w
ten as

V5Nv1Nsivsi , ~7!

FIG. 2. Influence of point defects: vacancies~diamonds! and
self-interstitials~squares! on the structure order parameterh as a
function of temperature. The concentration of point defects,C, is
given as a percent of the total number of atoms. The error b
represent the statistical uncertainty.
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where N is the number of atoms in the sample,v is the
volume per atom in a perfect crystal of vanadium,Nsi is the
number of self-interstitials, andvsi is the volume per inter-
stitial. Therefore the atomic densityn is given by

n5
N1Nsi

V
'

1

v F12S vsi

v
21D Nsi

N G , ~8!

where the small concentration of point defects,Nsi /N!1,
and approximate equality of the specific volumes,vsi;v,
are taken into account.

A similar relation for the volume of vacancies can b
written as

V5~N2Nva!v1Nvavva ; ~9!

here,Nva is the number of vacancies andvva is the volume
per vacancy. The atomic density thus can be written as

rs

FIG. 3. Atomic density as a function of concentration of inte
stitials at several temperatures:T52300 K ~diamonds!, T
52200 K~squares!, andT52000 K~crosses!. The concentration of
point defects is given as a percent of the total number of atoms.
error bars represent the statistical uncertainty.

FIG. 4. Atomic density as a function of concentration of vaca
cies at several temperatures:T52300 K ~diamonds!, T52200 K
~squares!, andT52000 K ~crosses!. The concentration of point de
fects is given as a percent of the total number of atoms. The e
bars represent the statistical uncertainty.
2-3
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n5
N2Nva

V
'

1

v S 12
Nvavva

Nv D . ~10!

It is interesting to point out that the linear dependen
appears to hold even at temperatures close toTs . This may
indicate that the concept of a point defect remains mean
ful even under these conditions. The specific volume o
point defect~in atomic volume units! is shown as a function
of temperature in Fig. 5. It is seen that at temperatures ab
2000 K these specific volumes change rapidly. To a la
degree, this change can be accounted for by the rapid
crease of the elastic coefficients of the crystal in this te
perature range.

IV. BULK MELTING TRANSITION

The prime goal of our simulations is the investigation
the role of point defects in mechanical melting. In the sim
lations of mechanical melting of fcc metals6,11,17it was found
that the key parameter controlling melting is the volume
the crystal. It is well established that the mechanism of m
ing is a thermal elastic instability~the Born mechanism!
which occurs when the shear elastic modulus vanishes
we show below, the shear elastic modulus has a one-to
correspondence with the molar volume. The latter is a m
convenient parameter to describe the approach to meltin
terms of critical volume, which does not depend on the p
in phase space. When the Born criterion is applied to a
perheated crystal lattice it establishes the existence of a c
cal volume above which the crystal becomes mechanic
unstable and therefore undergoes a phase transformatio
the liquid state or some other crystal structure. The criti
volume is coupled with a maximum superheating tempe
ture Ts . Simulations with fcc metals6,11,17 showed that this
critical volumevs can be attained by expansion caused eit
by heating the crystal or by doping it with point defects a
constant temperature which expands the crystal,11 or by pure
mechanical dilatation at zero temperature.6,18 In this sense

FIG. 5. The ratio of specific volume of point defects to t
specific volume of an atom as a function of temperature: s
interstitials~squares! and vacancies~triangles!. The error bars rep-
resent the statistical uncertainty.
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the mechanical melting process appears to be universal;
it is determined only by the sample expansion up to
critical volume.

In order to verify whether the same scenario holds in
case of a bcc metal we carried out simulations using sam
with various concentrations of self-interstitials, or, altern
tively, vacancies. The initial temperature of each sample w
chosen far below the melting point of a perfect sampleT
.0.7Ts . As the samples were heated by gradually increas
the temperature, at some point we observed an abrupt
crease of the structure order parameter~see Fig. 6!, together
with a simultaneous increase of the total energy and volu
~see Fig. 7!. This event determines the mechanical melti
temperature. The melting temperature of a sample with
point defects is found to beTs52500620 K. Since MD
simulations are plagued by statistical fluctuations in the te
perature and volume, in practice it is very difficult to rea
the maximum superheating temperatureTs . Therefore, the
accuracy in the determination ofTs in this way is about
;1%.

f-
FIG. 6. Typical time dependence of the order parameter du

mechanical melting. This particular sample contained 0.25% in
stitials at temperatureT52475 K.

FIG. 7. Typical jump of the sample volume during the mecha
cal melting transition. This particular sample contained 0.25%
terstitials at temperatureT52475 K.
2-4
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The same temperatureTs52500612 K was also found
from a least-squares fit to the temperature dependence oC8
as shown in Fig. 1. It is the temperature whereC8 goes to
zero. This indicates that as is the case for fcc metals, ho
geneous melting of the bcc metal results from a shear ela
instability. This particular value ofTs applies to a crystal of
vanadium containing no defects and is about 280 K hig
than the thermodynamic melting pointTm52220615 K ob-
tained for our model using the method proposed by Luth
et al.34

Once point defects are introduced, it is found thatTs be-
comes a function of their concentration. Results of simu
tions performed at different temperatures and defect con
trations are summarized in our phase diagram~see Fig. 8!.
The fact that point defects lower the melting temperature
been confirmed experimentally (g irradiation lowers the
melting point of pure metals by an amount proportional
the dose and thus to the number of generated p
defects9,38!. The lowering ofTs can be explained as follows
The introduction of self-interstitials leads to a significant
cal distortion of the bcc lattice and expands the volume
the solid ~see Fig. 9!. Therefore, a solid containing sel
interstitials reaches its critical volume already at a low
temperature~the melting temperature is lower!. In contrast,
the effect of vacancies is rather minor, at least if their co
centration is small enough. The same effect of lowering
the bulk melting temperature induced by interstitials was
tained by Kanigelet al.11 for copper~fcc lattice!. However,
at higher concentrations of point defects the decrease oTs
cannot be explained simply by volume expansion. This
especially notable in the case of vacancies which hav
smaller specific volume than the specific volume of an at
in a perfect crystal~see Fig. 5!, but at high enough concen
trations also lower the melting temperature~see Fig. 8!. We
refer here to the region in Fig. 8 where the concentration
point defects approaches 1%. These values are unrealisti
large in comparison with the typical laboratory values
.0.001%. At these high concentrations, the concept o
single point defect is unclear and one should perhaps c

FIG. 8. The influence of interstitials~squares! and vacancies
~diamonds! on the melting temperature of vanadium under perio
boundary conditions.
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sider clusters or extended defects. According to Jinet al.19

extended defects can act as nucleation centers for mel
Taking this point of view, the lowering ofTs with defect
concentration may result from the combined effect of~a!
volume expansion and~b! the introduction of nucleation cen
ters for melting. Finally, it should be noted that the calcula
phase diagram is qualitative, because of the finite sam
size and limited simulation time.

Our results are broadly consistent with models of defe
induced melting proposed by Fecht39 and Granato.7 Accord-
ing to Fecht39 melting is driven by the incorporation of poin
defects into the lattice. Point defects increase the probab
of heterophase fluctuations of liquidlike clusters in the def
tive crystal and lower the Gibbs energy of the crystalli
state. Therefore, the melting temperature decreases as
concentration of point defects increases.

The configuration of point defects~self-interstitials! in a
fcc metals was exploited by Granato7 to construct a mode
giving the thermodynamic properties of the crystalline a
liquid states in a unified way. He found a large softening
the shear modulus with increasing defect concentration. T
softening of the shear modulus caused by a change of la
structure about point defects is called the diaelastic effe7

The restoring forces become weaker along certain direct
in the presence of interstitials. This is reflected in the appe
ance of new low-frequency resonance modes and h
frequency local modes. The diaelastic softening of the sh
modulus leads to a lowering of the formation energy
additional interstitials, which, together with the large entro
contribution from the new modes, lowers the melting te
perature. In the above discussion, we have emphasized
role of lattice instability in establishing a maximum supe
heating temperature at zero external pressure. However,
to thermal expansion, any temperature change is accom
nied by a simultaneous change of the volume. To decou
these two effects, we plot the dependence of the shear m
lus C8 on the specific volume in Fig. 9. As this figure show
the dependence ofC8 on the specific volume appears to b

c FIG. 9. Plot of the shear modulusC8 against specific volume a
various concentrations of interstitials: Squares: crystal without
purities ~only thermal expansion!. Diamonds: 0.05% concentratio
of interstitials. Circles: 0.1%. Triangles: 0.15%. crosses: 0.2%.
2-5
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universal, in the sense that the value ofC8 is the same
whether the volume at which it is calculated was reache
by thermal expansion or by insertion of point defects.
other words the main effect of interstitials is to expand
lattice. Using the data plotted in Fig. 9 one can extract
value of the critical volumevs(Ts) at which the system melt
homogeneously under the conditions of zero external str

Using this method we findvs514.8760.06 Å3/atom and
the melting temperatureTs for various concentrations o
point defects. The critical volume is close to the spec
volume of liquid vanadium at the thermodynamic melti
temperaturev l iq515.360.05 Å3 and to the experimenta
value40 of v l iq515.2 Å3.

Similar results were obtained for copper in MD simul
tions by Wanget al.17,18and by Kanigelet al.11 It was found
that the shear modulus vanishes at a lattice strain ofa/a0
51.024, wherea is the lattice parameter atTm51350 K and
a0 is the lattice parameter of copper atT05300 K. The spe-
cific volume ratio of copper is (a/a0)351.07 which is quite
close to the value obtained for vanadium,v(Tm)/v(T0)
51.0660.01. It is natural to ask whether the ratioa/a0 is
universal, independent of lattice structure. To answer
question in a definitive manner, it would be useful to ma
similar simulations on other bcc metals.

V. SUMMARY AND CONCLUSIONS

In our simulations we observed that each shear ela
modulus is a continuous and apparently universal function
the specific volume. The solid lattice can be expanded ei
by thermal expansion or by the presence of self-interstiti
The value ofC8 at any particular volume is independent
the way by which this volume was reached, either by therm
expansion alone or by any combination of thermal expans
and of expansion due to interstitials introduced into
sample at a constant temperature. The elastic energy o
lattice increases until a critical specific volumevs ~close to

*Electronic address: phsorkin@techunix.technion.ac.il; UR
http://phycomp.technion.ac.il/ phsorkin/index.html
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