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Molecular dynamics study of melting of the bcc metal vanadium. |. Mechanical melting
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We present molecular dynamics simulations of the homogengneshanical melting transition of a bcc
metal, vanadium. We study both the nominally perfect crystal and one that includes point defects. According to
the Born criterion, a solid cannot be expanded above a critical volume, at which a “rigidity catastrophe”
occurs. This catastrophe is caused by the vanishing of the elastic shear modulus. We found that this critical
volume is independent of the route by which it is reached, whether by heating the crystal or by adding
interstitials at a constant temperature which expand the lattice. Overall, these results are similar to what was
found previously for an fcc metal, copper. The simulations establish a phase diagram of the mechanical melting
temperature as a function of the concentration of interstitials. Our results show that the Born model of melting
applies to bcc metals in both the nominally perfect state and the case where point defects are present.
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[. INTRODUCTION temperaturel ,, by some 20%, depending on the details of
the potential.

Over the years, several theories explaining the mechanism Given the considerable degree of understanding of the
of melting have been proposéd’ This research has by now melting process of fcc crystals, it is of substantial interest to
evolved to a state where a clear distinction exists betweef€e if the scenario of mechanical melting also applies to sol-
two possible scenarios for the melting transition: a first sceids having a different lattice structure. We therefore decided
nario of homogeneousr mechanical meltingesulting from  to study mechanical melting of a bcc metal, vanadium, by
lattice instability ~° and/or a spontaneous generation of ther-means of computer simulations. We present details of the
mal defect§ ! and a second scenario b&terogeneousr calculations in Sec. Il. In Sec. Il we describe the results of
thermodynamic meltingvhich begins at extrinsic defects the simulation of some physical properties of vanadium with
such as a free surface or an internal interfégmin bound- ~and without point defects. In Sec. IV we present molecular
aries, voids, et¢.*?~*®Throughout this paper we will use the dynamics simulation results for mechanical melting in the
term “mechanical melting” to describe the former case, Presence of point defects. Finally, in Sec. 1V, we discuss the
which we consider here. In particular, we take the view proimplication of our results for the question of the microscopic
posed by Born that at the melting pointigidity catastrophe ~ mechanism of melting.
is caused by the vanishing of one of the elastic shear
modul*® C44 or C'=(Cy;—C1)/2. In other words, the
crystal melts once it loses its ability to resist shear. This
condition determines the mechanical melting temperatyre We model the bulk melting transition of vanadium using
of a perfectly homogeneous bulk crystal and was confirmedhe molecular dynamics simulatithtechnique. The choice
in extensive studies of fcc metaf§l7-19 of vanadium has no special significance as we are only in-

Tallor® pointed out that a mechanical instability arisesterested in the generic features of metallic solids with a bcc
when the solid expands up ta critical specific volume lattice symmetry. While various many-body potentials for fcc
which is close to that of the liquid phageel. In the study metal$?~* have been developed and thoroughly tested in
by Wanget al"!8of the mechanical melting transition of an numerous simulations, the situation with such potentials for
fce solid under external stress, it was found that volume exbcc metals is not as good. This can be explained by the more
pansion is the underlying cause of lattice instability. Kanigelcomplicated nature of the bcc metals in comparison with fcc
et al! confirmed this scenario in a simulation of fcc copperones which manifests itself in the wide range of elastic con-
in the presence of point defects. They showed that the criticadtants. The packing density of atoms in a bcc lattice is
volume at which a crystal of copper melts is independent obmaller than in a fcc lattic&here are 8 nearest neighbors in
the path through phase space by which it is reached, whetherbcc lattice and 12 nearest neighbors in a.fElowever, the
by heating of the perfect crystal or by adding point defects tasecond nearest-neighbor distance in the bcc structure is
expand the solid at a constant temperattire. larger than the first nearest-neighbor distance by only about

Solids can undergo mechanical melting only if they havel5%. Therefore, the interaction between the second-order
no extended defecfsa situation which is conveniently real- and first-order nearest neighbors in bcc metals is not negli-
ized in three-dimensional computer simulations by means ofjible, even with screening.
periodic boundary conditions which eliminate the surface. In addition, band structure effects are crucial for bcc met-
Simulations of atomic dynamics for solids with an als. A simple approximation which assumes that the electron
fccl®1117-19 or diamond® structures show, among other density can be considered as a superposition of atomic orbit-
things, the onset of a shear instability of the solid at a temals is successful for fcc metals, but less appropriate for bcc
peratureTg, which can exceed the thermodynamic meltingmetals. Therefore, for metals with the bcc structure, the elec-

II. SIMULATION DETAILS
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tron density is chosen to be an adjustable function, rather 50 M
than a superposition of atomic orbitals. Furthermore, angle- . .
dependent interactions could be very important in bcc solids.
For our simulations, we chose the many-body interaction & 40 > + s
potential developed by Finnis and SincfaiFS) and modi- = .
fied by Rebonatet al?® FS proposed a way to incorporate § 3o} b .
the delocalized physical nature of the metallic bonding and E b .
the essential band character of bcc metals in a simple model.
The FS potential involves two short-ranged potentia/s: S 20} {' r "
=V,;+V,. The first potentiaM, corresponds to an ion-ion § >
interaction: 5 b
10}
n t
Vi=3 2 @(ry), @ | , , _ ¢t
e 800 2000 2200 2400

where®(r) is the two-body partion-ion repulsion andN is Temperature (K)

the number of atoms. The second potentialincorporates

the complex nature of metallic cohesion: FIG. 1. Variation ofC’ (triangles and C,, (squareswith tem-

perature. The error bars represent the statistical uncertainty.

N
Vo= U(ny). (2) ing a predictor-corrector algorithft:>? Throughout this
i=1 study, interactive visualization with the/z prograni® was
implemented.

The functionU(n;) is taken to mimic the results of the
tight-binding theory?” It depends on the electronic charge

) X Il. VALIDATION OF THE POTENTIAL AND ORDER
densityn; around the aton:

PARAMETER
Ng To learn about the capability of the potential, we exam-
ni= 2 p(riy), ©) ined some physical properties of a perfect crystal. First, we

IBES! .
calculated the thermal expansion at zero external pressure.

whereNy is the number of nearest neighbors of the atom We found the thermal expansion coefficient at low tempera-

and the functiorp(r;;) is given by tures to bea,=(18+6)x10 6 K1, in reasonable agree-
ment with the experimental value measured at room tem-

(rij—d)? ry=d, perature, aex,= 8.6 107% K~1. Next, the thermodynamic
p(rij)= 0, r;>d, 4 melting temperature for our potential was calculated, using

the method of Lutshket al,>* to beT,,,=2220+ 10 K. This
value is close to the experimental vallig= 2183 K, despite
the fact that the FS potential was constructed by fitting its
parameters to room-temperature values of various physical

wherer ; is the distance between the atomandj, andd is
a fitting parameter. Explicitly, the many-body pd&i(n;) is

given by properties of vanadiunglattice constant, cohesion energy,
_ hear elastic moduli, vacancy formation energy,)etc.
U(n;)=-—Ayn;, 5 S ' . ’
() \/—' ©) In order to test the algorithm we calculated the shear
whereA is a fitting parameter. moduli as a function of temperature. The shear elastic coef-

Our molecular dynamic$MD) simulations with the FS ficients decrease with temperature as shown in Fig. 1. The
potential were performed using the Parinello-Rahfhan accuracy of the simulations was estimated by monitoring the
method, which allows simulation of fluctuations in the shapeconvergence of the shear elastic moduli calculated along
and volume of the sample. The Nose-Hoover thermostat wasymmetrically equivalent directions. We found the difference
used to set the temperatuffe?® to be approximately 10%.

The equilibrium average shape and volume of the sample Following the validation that our potential can indeed re-
obtained at a given temperature were used for calculation gfroduce the physical properties of a perfect crystal with ac-
the shear modulus in a canonical N4-T) ceptable accuracy, point defects were introduced. These
ensembl&3L—j.e. at the fixed number of atomi, volume  point defects are distributed homogeneously throughout the
V, and temperaturé@. bulk of the solid. Only one type of point defects—e.g., va-

The samples used for the simulations contained 2000 atancies or self-interstitials—were used in each run to avoid
oms, initially arranged as a perfect bcc crystal of size 1Gheir mutual annihilation.

X 10X 20 unit cells. Periodic boundary conditions were ap- The configurations of atoms in the vicinity of a point de-
plied in all three directions. Point defects were introducedfect inside the bulk at low temperatures were investigated by
either by the insertion of extra atoms between the lattice sitegieans of the simulated tempering metfiocf The most en-
(self-interstitial$ or by the removal of atoms from the lattice ergetically favored configuration of an interstitial was found
(vacancies Newton's equations of motion were solved us-to be the(011) dumbbell split interstitialwith a formation
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Tk FIG. 3. Atomic density as a function of concentration of inter-

FIG. 2. Influence of point defects: vacanci@iamonds and  Stitials at several temperaturesT=2300 K (diamond$, T
self-interstitials(squares on the structure order parametgras a  =2200 K(squareg andT=2000 K(crossek The concentration of
function of temperature. The concentration of point defeCisis point defects is given as a percent of the total number of atoms. The
given as a percent of the total number of atoms. The error bar§rror bars represent the statistical uncertainty.
represent the statistical uncertainty.

where N is the number of atoms in the sample,is the

energy ofE;=4.18+0.02 eV. This formation energy is in Volume per atom in a perfect crystal of vanadiuiy is the
agreement with that of previous simulatiofs. nqmber of self—lnterstltlalsl, andg; is _the_volume per inter-

To investigate the temperature dependence of the crystafiitial. Therefore the atomic densityis given by
line order, we define the structure order parameter

N+Ng; 1 Ui Nq;
n= si__ = 1— 3'_1)3" (8)
1| N 1| N Vv v v N
77_< N2 21 cog(krj) | *+ N2 21 sinkr)|?), () where the small concentration of point defedts;/N<1,

and approximate equality of the specific volumeg,~v,

wherek={0,0,2r/a} is a vector of the reciprocal lattice, ~ 2'€ faken into account. .
is the position of atoni, N is the number of the atoms in the  /* Similar relation for the volume of vacancies can be
sample, and the angular brackets stand for ensemble averad¥!tten as
For an ideal-crystal lattice at zero temperature,equals

unity, while in the liquid statey fluctuates near zero.

We calculatedS#/ 8C, the change of the order parameter here,N,, is the number of vacancies ang, is the volume
upon the introduction of point defects. Hel@,is the con-  per vacancy. The atomic density thus can be written as
centration of point defects, given in % of the number of
atoms. Figure 2 shows the result of this calculation for small | ’

C (C=1%) and at different temperatures. The introduction  __ *
of self-interstitials results in a noticeable decrease of the g 6.84f * * { {

V:(N_Nua)v+Nvavva; (9)

6.86

structure order parametérom »~0.6 to »~0.4), while the v 6.82 *
influence of vacancies is relatively weaker. With increasing '$_> ) }
temperature, the order parameter becomes increasingly sen- 6.8‘-'%| '11 :I; {
sitive to the introduction of point defects, as evidenced by & ‘ .%.
the increase of the absolute value| 6f;/ 5C| with tempera- g 6-78
ture. We believe that this increased sensitivity results from E 6.76} ’[‘
the increase of the amplitude of the thermal vibration of the €
atoms in the immediate vicinity of the point defect. § 6.74

The introduction of point defects results in a decrease of 6.72}
atomic density, as shown in Figs. 3 and 4. The specific vol-
ume of point defects at various temperatures was estimated
using the linear dependence of the atomic density on the
number of defects, apparent in Figs. 3 and 4. The volume of ¢ 4 Atomic density as a function of concentration of vacan-
the sample at a small number of self-interstitials can be Writgjes at several temperatureg=2300 K (diamond3, T=2200 K
ten as (squarey andT=2000 K (crosses The concentration of point de-

fects is given as a percent of the total number of atoms. The error
V=Nv+Ngjvg;, (7) bars represent the statistical uncertainty.

m
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FIG. 5. The ratio of specific volume of point defects to the  FIG. 6. Typical time dependence of the order parameter during
specific volume of an atom as a function of temperature: selfnechanical melting. This particular sample contained 0.25% inter-
interstitials (squarels and vacanciegtriangles. The error bars rep- stitials at temperaturg=2475 K.

resent the statistical uncertainty. ) ) ) )
the mechanical melting process appears to be universal; i.e.,

_ it is determined only by the sample expansion up to the
N—N, 1 Nyalya "
n= ~—|1— (10 critical volume.
v v Nv In order to verify whether the same scenario holds in the

o . . ] case of a bcc metal we carried out simulations using samples
It is interesting to point out that the linear dependenceyith various concentrations of self-interstitials, or, alterna-
appears to hold even at temperatures closéstoThis may tjvely, vacancies. The initial temperature of each sample was
indicate that the concept of a point defect remains meaningshosen far below the melting point of a perfect samle,
ful even under these conditions. The specific volume of a~ 71_. As the samples were heated by gradually increasing
point defect(in atomic volume unitsis shown as a function  {he temperature, at some point we observed an abrupt de-
of temperature in Fig. 5. It is seen that at temperatures abovigease of the structure order paramésare Fig. 6, together
2000 K these specific volumes change rapidly. To a largith a simultaneous increase of the total energy and volume
degree, this change can be accounted for by the rapid dgsee Fig. 7. This event determines the mechanical melting
crease of the elastic coefficients of the crystal in this temyemperature. The melting temperature of a sample without

perature range. point defects is found to b&(=2500+20 K. Since MD
simulations are plagued by statistical fluctuations in the tem-
IV. BULK MELTING TRANSITION perature and volume, in practice it is very difficult to reach

he ori | of imulati is the | L fthe maximum superheating temperatdie Therefore, the
The prime goal of our simulations is the investigation o accuracy in the determination df, in this way is about
the role of point defects in mechanical melting. In the simu-_ 1 o4

lations of mechanical melting of fcc met&fs+it was found

that the key parameter controlling melting is the volume of T -
the crystal. It is well established that the mechanism of melt- 15.61
ing is a thermal elastic instabilitythe Born mechanisin
which occurs when the shear elastic modulus vanishes. As
we show below, the shear elastic modulus has a one-to-one
correspondence with the molar volume. The latter is a more
convenient parameter to describe the approach to melting in
terms of critical volume, which does not depend on the path
in phase space. When the Born criterion is applied to a su-
perheated crystal lattice it establishes the existence of a criti-
cal volume above which the crystal becomes mechanically
unstable and therefore undergoes a phase transformation to
the liquid state or some other crystal structure. The critical
volume is coupled with a maximum superheating tempera- 0 1 > 3 4 5
ture Ts. Simulations with fcc metafs!’ showed that this
critical volumeuv ¢ can be attained by expansion caused either
by heating the crystal or by doping it with point defects at a  FIG. 7. Typical jump of the sample volume during the mechani-
constant temperature which expands the crystat,by pure  cal melting transition. This particular sample contained 0.25% in-
mechanical dilatation at zero temperatbité.In this sense terstitials at temperaturé= 2475 K.

23
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FIG. 8. The influence of interstitialssquares and vacancies

(diamonds on the melting temperature of vanadium under periodic  FIG. 9. Plot of the shear modul@@' against specific volume at
boundary conditions. various concentrations of interstitials: Squares: crystal without im-
purities (only thermal expansign Diamonds: 0.05% concentration

i itials. Circles: 0.1%. Triangles: 0.15%. 1 0.2%.
The same temperatufg,= 2500+ 12 K was also found of interstitials. Circles: 0.1%. Triangles: 0.15%. crosses: 0.2%

from a least-squares fit to the temperature dependen€Ce of sider clusters or extended defects. According toetial1°
as shown in Fig. 1. It is the temperature wh€€ goes to  extended defects can act as nucleation centers for melting.
zero. This indicates that as is the case for fcc metals, homadraking this point of view, the lowering of ¢ with defect
geneous melting of the bcc metal results from a shear elastigoncentration may result from the combined effect(af
instability. This particular value oT s applies to a crystal of volume expansion an@) the introduction of nucleation cen-
vanadium containing no defects and is about 280 K higheters for melting. Finally, it should be noted that the calculated
than the thermodynamic melting poifif,=2220+ 15 K ob-  phase diagram is qualitative, because of the finite sample
tained for our model using the method proposed by Luthskaize and limited simulation time.
etal® Our results are broadly consistent with models of defect-
Once point defects are introduced, it is found thabe-  induced melting proposed by Fethand Granatd.Accord-
comes a function of their concentration. Results of simulaing to Fecht® melting is driven by the incorporation of point
tions performed at different temperatures and defect concentefects into the lattice. Point defects increase the probability
trations are summarized in our phase diagrfaee Fig. 8  of heterophase fluctuations of liquidlike clusters in the defec-
The fact that point defects lower the melting temperature hagive crystal and lower the Gibbs energy of the crystalline
been confirmed experimentallyy(irradiation lowers the state. Therefore, the melting temperature decreases as the
melting point of pure metals by an amount proportional toconcentration of point defects increases.
the dose and thus to the number of generated point The configuration of point defectself-interstitialg in a
defect€39). The lowering ofT can be explained as follows: fcc metals was exploited by Granatw construct a model
The introduction of self-interstitials leads to a significant lo- giving the thermodynamic properties of the crystalline and
cal distortion of the bcc lattice and expands the volume ofiquid states in a unified way. He found a large softening of
the solid (see Fig. 9. Therefore, a solid containing self- the shear modulus with increasing defect concentration. This
interstitials reaches its critical volume already at a lowersoftening of the shear modulus caused by a change of lattice
temperaturethe melting temperature is lowern contrast,  structure about point defects is called the diaelastic effect.
the effect of vacancies is rather minor, at least if their con-The restoring forces become weaker along certain directions
centration is small enough. The same effect of lowering ofin the presence of interstitials. This is reflected in the appear-
the bulk melting temperature induced by interstitials was obance of new low-frequency resonance modes and high-
tained by Kanigekt al** for copper(fcc lattice). However, frequency local modes. The diaelastic softening of the shear
at higher concentrations of point defects the decreask;of modulus leads to a lowering of the formation energy for
cannot be explained simply by volume expansion. This isadditional interstitials, which, together with the large entropy
especially notable in the case of vacancies which have sontribution from the new modes, lowers the melting tem-
smaller specific volume than the specific volume of an atonperature. In the above discussion, we have emphasized the
in a perfect crysta(see Fig. 3, but at high enough concen- role of lattice instability in establishing a maximum super-
trations also lower the melting temperatsee Fig. 8 We  heating temperature at zero external pressure. However, due
refer here to the region in Fig. 8 where the concentration ofo thermal expansion, any temperature change is accompa-
point defects approaches 1%. These values are unrealisticallyed by a simultaneous change of the volume. To decouple
large in comparison with the typical laboratory values ofthese two effects, we plot the dependence of the shear modu-
=0.001%. At these high concentrations, the concept of dusC’ on the specific volume in Fig. 9. As this figure shows,
single point defect is unclear and one should perhaps corthe dependence &' on the specific volume appears to be
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universal, in the sense that the value ®f is the same the specific volume of the melis reached where the shear
whether the volume at which it is calculated was reached atnodulusC’ vanishes, triggering mechanical melting. Upon
by thermal expansion or by insertion of point defects. Inmelting, the solid transforms isothermally and discontinu-
other words the main effect of interstitials is to expand thepusly (see Figs. 6 and)7
lattice. Using the data plotted in Fig. 9 one can extract the The process that triggers mechanical melting could be
value of the critical volume 4(T) at which the system melts similar to the one observed by Jat al® in simulations of
homogeneously under the conditions of zero external stresthe melting of a surface-free Lennard-Jones crystal. There,
Using this method we find = 14.87+0.06 A%/atom and  melting occurs when the superheated crystal spontaneously
the melting temperaturds for various concentrations of generates a sufficiently large number of extended defects
point defects. The critical volume is close to the specific(clusters of spatially correlated destabilized particles which
volume of liquid vanadium at the thermodynamic melting satisfy the Born criterion Those extended defects play the
temperaturev i =15.3+ 0.05 A and to the experimental role of surfaces in initiating the melting. In our simulations,
value'® of Vjig=15.2 R. point defects, especially in large concentrations where clus-
Similar results were obtained for copper in MD simula- ters of defects should be formed, could actragleation
tions by Wanget al'"*8and by Kanigekt al!* It was found  centersfor these extended defedtsolten regionsinside the

that the shear modulus vanishes at a lattice straia/ef,
=1.024, whera is the lattice parameter at,= 1350 K and
a, is the lattice parameter of copper®g=300 K. The spe-
cific volume ratio of copper isg/ay)®=1.07 which is quite
close to the value obtained for vanadium(T.)/v(Tg)
=1.06+0.01. It is natural to ask whether the rafida, is

solid.

This paper was devoted to a simulation of the melting
process of a homogeneous bcc metal and its comparison with
a similar process in fcc metals. It is of great interest to extend
these simulations to heterogeneous melting which involves
nucleation of the liquid phase at some preferred sites of the

universal, independent of lattice structure. To answer thisolid—for example, at the free surface. This study is the
question in a definitive manner, it would be useful to makesubject of a forthcoming paper.
similar simulations on other bcc metals.
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