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All-optical injection and control of spin and electrical currents in quantum wells

Ali Najmaie, R. D. R. Bhat, and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

~Received 16 April 2003; published 30 October 2003!

We show that quantum interference between one- and two-photon absorption can be used to inject spin
currents, with or without an accompanying electrical current, in unbiased semiconductor quantum well struc-
tures. The directions in which the electrical and spin currents are injected can be coherently controlled, with a
relative phase parameter of the optical fields as the control parameter. We characterize the currents for an
unstrained quantum well and a quantum well under biaxial compressive strain using the Luttinger-Kohn model;
we work out particular examples. If compressive strain is used to appropriately rearrange the subbands, then a
degree of spin polarization of the spin currents higher than possible in bulk GaAs can be achieved and
maintained even for photon energies well above the band gap.

DOI: 10.1103/PhysRevB.68.165348 PACS number~s!: 78.20.Ls, 42.65.2k, 72.25.Fe, 73.63.Hs
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I. INTRODUCTION

The control and manipulation of the spin degree of fre
dom of electrons in semiconductor structures has rece
much attention in recent years and may be an important c
ponent of the future data storage and processing protoc
Since the 1970s it has been known that, due to spin-o
interactions, spin-polarized carriers can be generated in s
conductors through optical excitation with circularly pola
ized optical fields.1 Using a bias voltage, this spin populatio
can be dragged to produce a spin-polarized current;2,3 such
spin currents always have a net electrical current accom
nying them. The degeneracy of the heavy- and light-h
bands at theG point in bulk semiconductors, such as GaA
implies that any excitation across the band gap occurs f
both the heavy- and light-hole bands; this leads to a red
tion in the degree of spin polarization of the injected carrie
This degeneracy is lifted in a quantum well semiconduc
structure due to confinement and, further, via strain, t
leading to a higher degree of spin polarization of the injec
carriers.4

Recently it has been shown5–7 that quantum mechanica
interference between one- and two-photon excitation in b
semiconductors can be used to induce spin currents in s
conductors without the need of a bias voltage or magn
field. In some configurationspure spin currents can be gen
erated, where nonet electrical current is involved. Further
more, the direction of injection of the electrical and sp
currents can be controlled using a relative phase paramet
the optical fields. The experimental verification of injectio
and control of the pure spin current has been performed
injecting carriers in the plane of a quantum well structure6

In this paper we present a detailed account of cohe
injection of electrical and spincurrents in the plane of a
GaAs quantum well and its control through quantum m
chanical interference using a relative phase parameter o
beams responsible for one- and two-photon excitations.
further study the effects of biaxial compressive strain on
injected currents. Our goal here is to study the effects
these physical parameters on the injected currents in a
eral way. In a future publication we will apply this frame
work to address particular experimental results6 in detail.
0163-1829/2003/68~16!/165348~15!/$20.00 68 1653
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We begin in Sec. II with the model used to describe t
electronic states of a strained quantum well. In Sec. III,
use Fermi’s golden rule to describe and formulate susce
bilities describing the one, two, and interference compone
of the optical excitations; we also introduce quantities t
are used to represent the degree of spin polarization of
spin currents and the velocity of the injected carriers. In S
IV we present the results for different polarization config
rations, with the optical fields propagating along the grow
axis. In Sec. V we summarize our results and conclude.

II. QUANTUM WELL STATES

We consider an isolated GaAs quantum well grown in
^001& direction, which we take as the quantization axisz, and
set the boundaries of the quantum well at6L/2. We use two
Hamiltonians for the energy dispersion and eigenstates of
subbands, one for the valence subbands and another fo
conduction subbands; these we now describe. All the ca
lations neglect interactions between carriers, except to
extent they are described in the effective single-elect
model of the bands. In the present work, we consider a qu
tum well subjected to photons with energies below th
needed to couple the bound states to the continuum s
associated with electrons or holes moving out of the well;
coherent control of spin currents due to this coupling is s
ject of a future report. Indeed, we consider here excitat
energies up to only about 100 meV above the band gap of
quantum well; for these energies there are no contributi
from the barrier material and we approximate the barriers
infinite.

A. Valence subbands

We begin with the 434 Luttinger-Kohn Hamiltonian8,9,11

to describe the valence subbands. The split-off subbands
ing about 350 meV below the top of the valence subband,
neglected since we consider photons with 2\v!350 meV.12

In the presence of (001) biaxial strain,10 the Luttinger-Kohn
Hamiltonian is modified by the appearance of Bir-Pik
strain terms9 and takes the form
©2003 The American Physical Society48-1
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H52F P1Q L M 0

L† P2Q 0 M

M† 0 P2Q 2L

0 M† 2L† P1Q

G1V~z!, ~1!

where the potentialV(z) describes the quantum well, with

P~ k̂!5
\2g1

2m0
k̂21Pe ,

Q~ k̂!5
\2g2

2m0
~ k̂x

21 k̂y
222k̂z

2!1Qe ,

L~ k̂!5
2 i\2A3g3

m0
~ k̂x2 i k̂y!k̂z ,

M ~ k̂!5
A3\2g2

2m0
~ k̂x

22 k̂y
2!2 i

A3\2g3

m0
k̂xk̂y ,

and where we use the differential operatork̂[2 i ,. The
adjoint differential operators appearing here are defined
the usual way,

E @L†~ k̂!f2~r !#* f1~r !dr5 E f2* ~r !@L~ k̂!f1~r !#dr ,

where of coursek̂†5 k̂. The coefficients$g1 ,g2 ,g3% are the
Luttinger parameters;8 in this paper the dispersion of the va
lence bands of the quantum well is assumed to be isotrop
thekxky plane, which is achieved by settingg25g3[g. The
strain factors Pe52av@(c112c12)/c11#e and Qe5b@(c11
12c12)/c11#e involve the stiffness tensor coefficientsci j and
the deformation potential constantsav and b of the crystal
structure.9 The strain parametere describes the change in th
lattice constant of the crystal; the ratio of the lattice const
in the strained crystal,a8, to that in the unstrained crystal,a,
is given bya8/a5(11e). Thus fore.0 the strain is tensile
and fore,0 it is compressive.

Within the usual envelope function approximation, t
Hamiltonian~1! acts on the space of envelope function ve
tors F(r ),

F~r !5F F1~r !

F2~r !

F3~r !

F4~r !
G ,

where theFi(r ) are complex functions, in terms of which th
full spinor wave functionc(r ) can be written as

c~r !5F1~r !m (3/2,3/2)~r !1F2~r !m (3/2,1/2)~r !

1F3~r !m (3/2,21/2)~r !1F4~r !m (3/2,23/2)~r !.
16534
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Here them ( i , j )(r ) are spinor functions ofr , the coordinate

representations of theG8 Bloch functions$u 3
2 , 3

2 &,u 3
2 , 1

2 &,u 3
2 ,

2 1
2 &,u 3

2 ,2 3
2 &% at kt50, using the convention

m S 3
2 ,

3
2D~r !5

1

A2
@X~r !1 iY~r !#a,

m S 3
2 ,

1
2D~r !5

i

A6
$@X~r !1 iY~r !#b22Z~r !a%,

m S 3
2 ,2

1
2D~r !5

1

A6
$@X~r !2 iY~r !#a12Z~r !b%,

m S 3
2 ,2

3
2D~r !5

i

A2
@X~r !2 iY~r !#b,

where X(r ), Y(r ), and Z(r ) are the functions associate
with the representationG15 of the zinc-blende point group
Td , anda andb are the spinor basis functions:

a5S 1
0D , b5S 0

1D .

To solve for the eigenstates of the Hamiltonian~1! we
must solve the eigenvalue problem

HF~r !5EF~r !, ~2!

with eigenvalueE, subject to the appropriate boundary co
ditions. Consider first solutions of Eq.~2! in the well ~or in
principle in the barrier! bulk material, whereV(z) is a con-
stant. Then solutions of the formFi(r )5Fiexp(ik•r ) can be
sought, where we writek5kt1 ẑkz , with kt5kt( x̂ cosf

1ŷ sinf). The determinant following from Eq.~2! in the
usual way leads to the dispersion equation

E52P~k!6@Q2~k!1L~k!L†~k!1M ~k!M†~k!#1/2,
~3!

where, for example, to construct the functionL†(k) we take
the differential operatorL†( k̂) introduced above and replac
the differential operatork̂ by the vectork. Fixing E andkt at
real values, we solve Eq.~3! for kz , which may be complex.
In general there are four solutionskz56kL , 6kH . Taking
linear combinations of these in different regions of const
V(z), in general we seek solutions that satisfy the appro
ate boundary conditions at the interfaces at6L/2 and at
infinity; for these the envelope function components take
form F(r )5ei (kxx1kyy) f (z),
8-2
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f ~z!5B1F 0

M ~kt! sin~kLz!

iL ~kt1 ẑkL! cos~kLz!

R1~kt1 ẑkL! sin~kLz!

G
1B2F 0

M ~kt! sin~kHz!

iL ~kt1 ẑkH! cos~kHz!

R1~kt1 ẑkH! sin~kHz!

G
1B3F M ~kt! cos~kHz!

0

2R2~kt1 ẑkH! cos~kHz!

2 iL †~kt1 ẑkH! sin~kHz!

G
1B4F M ~kt! cos~kLz!

0

2R2~kt1 ẑkL! cos~kLz!

2 iL †~kt1 ẑkL! sin~kLz!

G ,

for R1(k)5Q(k)2P(kt1 ẑkz)2E and R2(k)5Q„k)
1P(k)1E. The constantsBi for i 51 –4 are also evaluate
from application of the boundary conditions. The bounda
conditions yield a determinant with zeros corresponding
valence subband energiesE(kt). Parameters used in the ou
calculations are shown in Table I.9 In Fig. 1, we show the
valence states used in our calculations.

To identify the eigenvectors in a convenient form, it
useful to exploit other symmetries of the Hamiltonian. T
Hamiltonian ~1! is invariant under time reversal symmetr
and since terms linear in the components ofkt are ignored,
reflection with respect to thexy plane is a good symmetr
operation;11 the operator associated with this iss5exp
(2ipJz)I ~not to be confused with the Pauli spin matrice!,
whereJz is the generator of rotation around thez axis andI
is the space inversion operator. Following Andreaniet al.11

we shall denote the eigenvalues ofs by parity, not to be

TABLE I.

Quantum well width L(nm) 10
Lattice constant a0(Å) 5.6533
Energy gap at 0 K Eg (eV) 1.519
Matrix element parameter 2me

\2 uP0u2 (eV)
25.7

Deformation potential ac (eV) 27.17
Deformation potential av (eV) 1.16
Deformation potential b(eV) 21.7
Stiffness coefficient c11(1011 dyn/cm2) 11.879
Stiffness coefficient c12(1011 dyn/cm2) 5.376
Effective mass mc /me 0.067
Luttinger parameter g1 6.85
Luttinger parameter g5(g21g3)/2 2.5
16534
y
o

confused with the eigenvalue under space inversion; the
erations is more useful here than space inversion becaus
keeps the value ofkt unchanged. Since the time reversal a
reflection operators anticommute— i.e., the time reversal
erator changes the parity eigenvalue of a state—there e
an operator that changes the parity of the eigenfu
tion.11 For anykt the system is at least doubly degenera
and if one of the eigenfunction of a certain parity
found to be @ f 1(z), f 2(z), f 3(z), f 4(z)#Tei (kxx1kyy), the
other ~parity! degenerate eigenstate is given
@ f 4* (z), f 3* (z), f 2* (z), f 1* (z)#Tei (kxx1kyy).

B. Conduction subband

The conduction states in the quantum well are descri
by spinor wave functions of the form

c~r !5m (S,61/2)~r !G~r !, ~4!

where

m (S,1/2)~r !5S~r !a,

m (S,21/2)~r !5S~r !b,

and S(r ) is the conduction band-edge Bloch function. T
energy eigenstates are determined by seeking solutions o
form G(r )5g(kt ,z)ei (kxx1kyy) and solving the Schro¨dinger
equation10 for the envelope functiongn(z):

F2
\2

2mc

d2

dz2
1

\2kt
2

2mc
1ReGgn~kt ,z!5En~kt!gn~kt ,z!,

~5!

wheremc is the effective mass of the conduction electrons
the bulk structure. The effect of biaxial strain on the disp
sion relation of the conduction subbands is described by
parameterRe52ac@(c112c12)/c11#e. Since the quantum
well is symmetric with respect to the center of the quant
well, the bound-state solutions of Eq.~5! are nondegenerat

FIG. 1. The valence subbands used in the calculations:~a! Un-
strained quantum well.~b! Quantum well under 2% compressiv
strain.
8-3
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~other than spin degeneracy! and alternate between even a
odd ~underz→2z transformation! states, always beginnin
with an even state.9 In the following calculations, we con
sider the optical properties of the 10-nm quantum well
photon energies up to 100 meV above the band edge; in
regime, only the first conduction subband needs to be c
sidered.

C. Parameters and matrix elements

For both the valence and conduction subbands, then
have at least a double degeneracy at eachkt , and we label
our spinor wave functions ascnskt

(r …, wheren is a subband
index ands a degeneracy index. Typically we usen or m if
we refer to an arbitrary subband, withs or p as degeneracy
indices; we retainc andv, respectively, to refer specificall
to conduction and valence subbands. We discretize thekt ,
associated with an areaA in the xy plane; the wave func-
tions are normalized when integrated over that area and
all z. Only at the very end of the calculation do we consid
A→` by takingA 21 (kt

→ * dkt /(2p)2 in the usual way.
Using the wave functions described above, we calcu

the velocity matrix elementsvn,s;m,p
a (kt)5^nsktuvaumpkt&,

spin matrix elements Sn,s;m,p
a (kt)5^nsktuSaumpkt&,

and spin-velocity matrix elements Kn,s;m,p
ab (kt)

5^nsktuvaSbumpkt& between different valence and condu
tion states of the quantum well; superscripts denote Carte
components. Sometimes we use a single capital letter to
note both a band and degeneracy index, writing, e
vNM

a (kt) for vn,s;m,p
a (kt); we reserveC andV for conduction

and valence bands, respectively. The first conduction s
band and first four valence subbands shown in Fig. 1
used as intermediate states in our calculations.

In the independent particle approximation adop
here, time reversal invariance leads to the followi
property of the matrix elements:14

vn,s;m,p
a* ~2kt!52exp~ ilnm!vn,s;m,p

a ~kt!,

Sc,s,c,p
a* ~2kt!52exp~ ilnm8 !Sc,s;c,p

a ~kt!,

and

Kc,s,c,p
ab* ~kt!5exp~ilnm9 !Kc,s,c,p

ab
~2kt!

wheres designates the opposite degeneracy index ofs and
lnm , lnm8 , andlnm9 are arbitrary phases.

The matrix elements between the valence states were
culated using the general formalism proposed by Chang
James15 and Szmulowicz.16 The accuracy of the velocity ma
trix elements obtained was verified by calculating the dia
nal ~intrasubband! velocity matrix element, which was di
rectly compared to the energy subband gradients. The m
elements between conduction states were calculated u
the envelope function.9 The material parameters used in o
GaAs quantum well calculations are given in Table I.9
16534
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III. COHERENT CONTROL

Our calculations here follow earlier theoretical and e
perimental studies of the interference of quantum mechan
processes to control the direction of propagation of inject
carriers in bulk semiconductors,5–7,17–22and we refer to the
literature for details of the experimental geometries and
general theoretical description. In contrast to coherent c
trol of ionization from doped quantum wells,23 we restrict
ourselves here to injection within the plane of the quant
well and across the band gap. Recently Bhat and Sipe5 have
shown that it is possible to coherently control spin curre
injected in bulk semiconductors. For some experimental c
figurations the injected spin currents have an accompan
electrical current;22 one measure of the degree of spin pola
ization of the spin current in bulk indicates a polarization
57%. One can also generatepurespin currents where a sort
ing of optically injected spins gives rise to electrons prop
gating in two opposite spatial directions with opposite av
age spins.6,7 The direction of the propagation of the injecte
currents can be controlled via the relative phase of the opt
fields.22 While the underlying physics of the injection pro
cess in quantum well structures is the same as in bulk,
qualitative nature of these processes is significantly modi
by the heterostructure geometry, as our calculations be
demonstrate.

A. Injection process

Here we consider the scenario where a quantum we
subjected to two monochromatic optical fields of frequenc
v and 2v. The unperturbed Hamiltonian in the independe
particle, second-quantized form is given by

Ho5 (
Ckt

\vC~kt!aCkt

† aCkt
2 (

Vkt

\vV~kt!bVkt

† bVkt
,

and in the presence of an applied vector potentialA(t) the
interaction Hamiltonian is

Hint~ t !52
e

c
A~ t !•V~ t !,

where

V~ t !5 (
CC8kt

aCkt

† aC8kt
vCC8~kt!e

ivCC8(kt)t

2 (
VV8kt

bV8kt

† bVkt
vVV8~kt!e

ivVV8(kt)t

1 (
CVkt

aCkt

† bVkt

† vCV~kt!e
ivCV(kt)t

1 (
CVkt

bVkt
aCkt

vVC~kt!e
ivVC(kt)t.

HereaCkt

† (aCkt
) is the creation~annihilation! operator for an

electron with conduction subband and spin indices deno
by C andbVkt

† (bVkt
) is the corresponding creation~annihila-
8-4
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tion! operator for a hole;\vC/V(kt) is the energy of the
conduction and valence subbandsC/V at kt ; we have put
vNM(kt)5vN(kt)2vM(kt). The vector potential describin
the field is given by

A~ t !5A~v!e2 i (v1 i t)t1A~2v!ei (v2 i t)t

1A~2v!e2 i (2v1 i t)t1A~22v!ei (2v2 i t)t,

wheret is a small positive number that describes the turn
on of the fields att52`; we sett to zero at the end of the
calculation. The electric field is related to the vector poten
via E(v)5( iv/c)A(v). Our treatment of the optical field
approximates it as classical and assumes the lo
wavelength~dipole approximation! limit. The optical field
causes transitions from the ground state of the systemu0& to
the two-particle stateuCVkt&[aCkt

† bVkt

† u0&, where an elec-

tron from the valence subband and spin stateV has been
excited to the conduction subband and spin stateC; in the
dipole approximation the two-dimensional crystal mome
tum vector is unchanged by the optical excitation. Adopt
a perturbative approach, we write the state of the system
time t as

uc&5Co~ t !u0&1 (
CVkt

CCVkt
~ t !uCVkt&

and determine the time evolution of the coefficientCCVkt
(t).

Solving for CCVkt
(t) to second order in an electric field a

lows us to calculate the rate of change of the expecta
value of any single-particle operatorû using Fermi’s golden
rule:

d^û&
dt

5
d^û&1

dt
1

d^û&2

dt
1

d^û& I

dt
, ~6!

whered^û&1 /dt describes the time evolution of the operat
û due to one-photon (2v) processes,d^û&2 /dt that due to
two-photon (v) processes, andd^û& I /dt that due to the in-
terference between excitations at frequenciesv and 2v.

There are many interesting aspects of the subsequen
laxation of momentum24 and spin1 of the injected carriers
The spin relaxation time for a@001# GaAs quantum well is
known to be a few picoseconds.25 The momentum relaxation
is expected to occur on a much shorter time scale and is
to many processes, such as phonon-carriers and ca
carrier scattering. In the regime of high carrier density co
sidered here, the latter is expected to dominate and b
major influence on the relaxation of both electrical and s
currents. As well, if an electrical current is present, the se
ration of the electrons and holes will lead to a space cha
field that will also affect the transport of the injected carrie
This paper deals with the generation of electrical and s
currents in a quantum well; we defer the issue of relaxat
to a later communication.

Each component ofd^û&/dt ~6! will include contributions
from the conduction subbandsd^û&e/dt and valence sub
bandsd^û&h/dt:
16534
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d^û&
dt

5
d^û&e

dt
1

d^û&h

dt
,

d^û&e

dt
52p (

C(C8),V,kt

VC8V
* ~kt!^C8ktuûuCkt&

3VCV~kt!d„2v2vCV~kt!…,

d^û&h

dt
522p (

V(V8),C,kt

VCV~kt!^VktuûuV8kt&

3VCV8
* ~kt!d„2v2vCV~kt!…. ~7!

In the second of these equations our convention isC
5cs, C85cs8, etc.; that is, the statesC andC8 differ only
by their spin index and hencevCV(kt)5vC8V(kt). The no-
tationC(C8),V,kt indicates that the common subband ind
c and the two spin indicess ands8 are to be summed over, a
well as the valence bands their spin indices and transv
crystal momentum vectorskt . A similar convention is
adopted in the third equation. Further,

VCV~kt!5VCV
I ~kt!1VCV

II ~kt!,

VCV
I ~kt!5

ie

\

vCV~kt!•E~2v!

2v
,

VCV
II ~kt!52S e

\v D 2

(
N

@vCN~kt!•E~v!#@vNV~kt!•E~v!#

vCV~kt!/21vVN~kt!
,

~8!

whereVCV
I (kt) andVCV

II (kt) correspond to the one-and two
photon transitions. Expanding these terms out, we have

d^û&e

dt
5

d^û&1
e

dt
1

d^û&2
e

dt
1

d^û& I
e

dt
,

d^û&1
e

dt
52p (

C(C8),V,kt

^C8ktuûuCkt&

3@VCV
I ~kt!VC8V

I* ~kt!#d„2v2vCV~kt!…,

d^û&2
e

dt
52p (

C(C8),V,kt

^C8ktuûuCkt&

3@VCV
II ~kt!VC8V

II * ~kt!#d„2v2vCV~kt!…,

d^û& I
e

dt
52p (

C(C8),V,kt

^C8ktuûuCkt&

3@VCV
I ~kt!VC8V

II * ~kt!1c.c.#d„2v2vCV~kt!…,

~9!
8-5
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and similarly for the hole terms; the subscripts 1, 2, anI
refer, respectively, to the one-photon contributions, tw
photon contributions, and contribution due to the interf
ence of amplitudes associated with those two processes.
quantitiesû of interest include the electrical and spin cu
rents, and since the hole subbands generally have highe
fective masses than the conduction subbands, the cont
tions made to the currents are dominated by the electr
contributionsd^û&e/dt. In the numerical calculations of thi
paper we focus on the contributions made by the conduc
electrons, although the contributions from the holes can
similarly found.

B. Carrier and spin population

The operators for the areal carrier densityn̂ and thea

componentŜa of the spin areal density are given by

n̂5
1

A (
kt

n̂~kt!,

Ŝa5
1

A (
kt

Ŝa~kt!,

where

n̂~kt!5 (
C

aCkt

† aCkt
,

Ŝa~kt!5 (
C(C8)

SC8C
a

~kt!aC8kt

† aCkt
.

The population and spin injection rate into the quantum w
then follow from the general form~6!,

d^n̂&
dt

5
d^n̂&1

dt
1

d^n̂&2

dt
1

d^n̂& I

dt
,

d^Ŝa&
dt

5
d^Ŝa&1

dt
1

d^Ŝa&2

dt
1

d^Ŝa& I

dt
.

We begin with the one-photon contributions. Using t
term arising fromVCV

I (kt) alone in the second equation o
Eqs.~7! @see the second equation of Eqs.~9!#, the one-photon
contribution to the carrier and spin population injection c
be written as
16534
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d^n̂&1

dt
5j1

bc~2v!Eb* ~2v!Ec~2v!,

d^Ŝa&1

dt
5z1

abc~2v!Eb* ~2v!Ec~2v!, ~10!

where the second-rank tensor j1
bc(2v)

5A 21 (kt
j1

bc(2v;kt) and the third-rank pseudotenso

z1
abc(2v)5A 21 (kt

z1
abc(2v;kt) are determined by

j1
bc~2v;kt!5

2pe2

\2 (
C,V

vCV
b* ~kt!vCV

c ~kt!

~2v!2
d„2v2vCV~kt!…,

z1
abc~2v;kt!5

2pe2

\2 (
C(C8),V

SC8C
a

~kt!vC8V
b* ~kt!vCV

c ~kt!

~2v!2

3d„2v2vCV~kt!….

In all expressions involving tensors in this paper, summat
over repeated indices is assumed. From the time reve
properties of the matrix elements~see discussion in Sec. I
C! it can be shown that Re@j1

bc(2v;kt)#
„Im@j1

bc(2v;kt)#… and Im@z1
abc(2v;kt)# „Re@z1

abc(2v;kt)#…
are even~odd! under inversion inkt space (kt→2kt). It
follows from these properties thatj1

bc(2v) is purely real and
z1

abc(2v) is purely imaginary, and thatj1
bc(2v)5j1

cb(2v)
and z1

abc(2v)52z1
acb(2v), the latter holding necessaril

since^ ṅ̂&1 and ^ Ṡ̂a&1 are real.
Turning now to the two photon contributions, using th

term arising fromVCV
II (kt) alone in the second equation o

Eqs.~7! @see the third equation of Eqs.~9!#, we find that the
two-photon contribution to the carrier and spin populati
injection can be written as

d^n̂&2

dt
5j2

bcd f~v!Eb* ~v!Ec* ~v!Ed~v!Ef~v!,

d^Ŝa&2

dt
5z2

abcd f~v!Eb* ~v!Ec* ~v!Ed~v!Ef~v!, ~11!

where the fourth-rank tensor j2
bcd f(v)

5A 21 (kt
j2

bcd f(v;kt) and the fifth-rank pseudotenso

z2
abcd f(v)5A 21 (kt

z2
abcd f(v;kt) are determined by
j2
bcd f~v;kt!5

2pe4

\4 (
C,V,N,M

vCM
b* ~kt!vMV

c* ~kt!vCN
d ~kt!vNV

f ~kt!

v4@vCV~kt!/21vVN~kt!#@vC8V~kt!/21vVM~kt!#
d„2v2vCV~kt!…,

z2
abcd f~v;kt!5

2pe4

\4 (
C(C8),V,N,M

SC8C
a

~kt!vC8M
b* ~kt!vMV

c* ~kt!vCN
d ~kt!vNV

f ~kt!

v4@vCV~kt!/21vVN~kt!#@vC8V~kt!/21vVM~kt!#
d„2v2vCV~kt!….
8-6
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Since repeated Cartesian components in Eqs.~11! are to be
summed over, with impunity we can symmetrize the expr
sions forj2

bcd f(v) andz2
abcd f(v) with respect to interchang

ing b and c and with respect to interchangingd and f; this
we do, although we do not write out those expressio
explicitly. Again, using the time reversal properties of t
matrix elements, we find that the susceptibility distributio
Re@j2

bcd f(v,kt)# „Im@j2
bcd f(v,kt)#… and Im@z2

bcd f(v,kt)#
„Re@z2

bcd f(v,kt)#… are even~odd! under inversion inkt space
(kt→2kt). It also follows thatj2

bcd f(v) is purely real and
z2

bcd f(v) is purely imaginary, and thatj2
bcd f(v)5j2

d f bc(v)
and z2

abcd f(v)52z2
ad f bc(v); the latter are required by th

reality of ^ ṅ̂&2 and ^ Ṡ̂a&2.
Finally, we turn to the terms in the carrier and spin inje

tion resulting from the interference of one- and two-phot
absorption processes. These correspond to the last ter
Eqs.~9!. We find
a

al

is
t

ce
a

th
d

16534
-

s

s

-

in

d^n̂& I

dt
5j I

bcd~v!Eb* ~v!Ec* ~v!Ed~2v!1c.c.,

d^Ŝa& I

dt
5z I

abcd~v!Eb* ~v!Ec* ~v!Ed~2v!1c.c., ~12!

where the third-rank tensorj I
abc(v)5A 21 (kt

j I
abc(v;kt)

and the fourth-rank pseudotensor z I
abcd(v)

5A 21 (kt
z I

abcd(v;kt) are determined by

j I
bcd~v;kt!52 i

pe3

\3 (
C,V,N

vCN
b* ~kt!vNV

c* ~kt!vCV
d ~kt!

v3@vCV~kt!/21vVN~kt!#

3d„2v2vCV~kt!…,
z I
abcd~v;kt!52 i

pe3

\3 (
C(C8),V,N

SC8C
a

~kt!vCN
b* ~kt!vNV

c* ~kt!vC8V
d

~kt!

v3@vCV~kt!/21vVN~kt!#
d„2v2vCV~kt!….
ym-
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sts
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t

Using time reversal symmetry, it can be shown th
Re@j I

bcd(v;kt)# „Im@j I
bcd(v;kt)#… and Im@z I

abcd(v;kt)#
(Re@z I

abcd(v;kt)#… are even~odd!, under inversion inkt

space (kt→2kt). These properties lead to purely re
~imaginary! j I

bcd(v) (z I
abcd(v)) tensors.

If the inversion asymmetry in the underlying crystal
neglected, as we do here, then there is no contribution to
net carrier and spin injection rates, due to interferen
j I

bcd(v)5z I
abcd(v)50 ~Ref. 26!. Nonetheless, because at

given kt neitherj I
bcd(v;kt) nor z I

abcd(v;kt) will in general
vanish, there will be interference contributions to bo
d^n̂(kt)&/dt andd^Ŝa(kt)&/dt. Following the approach use
above for the global expressionsd^n̂&/dt andd^Ŝa&/dt, we
find immediately that

d^n̂~kt!&
dt

5j1
bc~2v,kt!E

b* ~2v!Ec~2v!

1j2
bcd f~v,kt!E

b* ~v!Ec* ~v!Ed~v!Ef~v!

12Re@j I
bcd~v,kt!E

b* ~v!Ec* ~v!Ed~2v!#,

d^Ŝa~kt!&
dt

5z1
abc~2v,kt!E

b* ~2v!Ec~2v!

1z2
abcd f~v,kt!E

b* ~v!Ec* ~v!Ed~v!Ef~v!

12Re@z I
abcd~v,kt!E

b* ~v!Ec* ~v!Ed~2v!#.

~13!
t

he
,

The third term in the above expression leads to a polar as
metry in the kt-space distribution of the carrier and sp
population. The asymmetry in the carrier population sugge
a net electric current and that in the spin population a
spin current. These currents are the subject of the n
section.

C. Electrical and spin currents

To calculate the currents injected in the quantum well
directly employ the areal electrical current density (Ĵa) and
areal spin current density (K̂ab5 v̂aŜb) operators

Ĵa5
1

A (
kt

Ĵa~kt!, K̂ab5
1

A (
kt

K̂ab~kt!,

where

Ĵa~kt!5e (
C(C8)

vCC8
a

~kt!aC8kt

† aCkt
,

K̂ab~kt!5 (
C(C8)

KCC8
ab

~kt!aC8kt

† aCkt
,

to find from ~6!, using the approach employed above, tha

d^ Ĵa&
dt

5
d^Ĵa&1

dt
1

d^ Ĵa&2

dt
1

d^Ĵa& I

dt
,

d^K̂ab&
dt

5
d^K̂ab&1

dt
1

d^K̂ab&2

dt
1

d^K̂ab& I

dt
,

where the one-photon terms are given by
8-7
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d^Ĵa&1

dt
5h1

acd~2v!Ec* ~2v!Ed~2v!,

d^K̂ab&1

dt
5m1

abcd~2v!Ec* ~2v!Ed~2v!,

with h1
acd(2v)5A 21 (kt

h1
acd(2v;kt), m1

abcd(2v)5A 21

(kt
m1

abcd(2v;kt), and

h1
acd~2v;kt!5

2pe3

\2 (
C(C8),V

vC8C
a

~kt!vC8V
c* ~kt!vCV

d ~kt!

~2v!2

3d„2v2vCV~kt!…,
r

n
le

an

pi

16534
m1
abcd~2v;kt!5

2pe2

\2 (
C(C8),V

KC8C
ab

~kt!vC8V
c* ~kt!vCV

d ~kt!

~2v!2

3d„2v2vCV~kt!…,

and the two-photon terms are given by

d^ Ĵa&2

dt
5h2

acd f g~2v!Ec* ~v!E* d~v!Ef~v!Eg~v!,

d^K̂ab&2

dt
5m2

abcd f g~2v!E* c~v!E* d~v!Ef~v!Eg~v!,

with h2
acd f g(v)5A 21 (kt

h2
acd f g(v;kt), m2

abcd f g(v)

5A 21 (kt
m2

abcd f g(v;kt), and
ver
lack of

rence
h2
acd f g~v;kt!5

2pe5

\4 (
C(C8),V,N,M

vC8C
a

~kt!vC8M
c* ~kt!vMV

d* ~kt!vCN
f ~kt!vNV

g ~kt!

v4@vCV~kt!/21vVN~kt!#@vC8V~kt!/21vVM~kt!#
d„2v2vCV~kt!…,

m2
abcd f g~v;kt!5

2pe4

\4 (
C(C8),V,N,M ,kt

KC8C
ab

~kt!vC8M
c* ~kt!vMV

d* ~kt!vCN
f ~kt!vNV

g ~kt!

v4@vCV~kt!/21vVN~kt!#@vC8V~kt!/21vVM~kt!#
d„2v2vCV~kt!…,

which can be symmetrized under the exchange ofc with d andf with g. These one- and two-photon terms, when summed o
the Brillouin zone to yield the net electrical current and spin current, vanish for models such as ours which neglect the
inversion symmetry of the crystal.27 Thus the only currents that survive are due to the quantum mechanical interfe
between the one- and two-photon absorption processes; they take the form

d^Ĵa& I

dt
5h I

acd f~v!Ec* ~v!Ed* ~v!Ef~2v!1c.c.,

d^K̂ab& I

dt
5m I

abcd f~v!Ec* ~v!Ed* ~v!Ef~2v!1c.c., ~14!

with h I
acd f(v)5A 21 (kt

h I
acd f(v;kt), m I

abcd f(v)5A 21 (kt
m I

abcd f(v;kt), and

h I
acd f~v;kt!52 i

pe4

\3 (
C(C8),V,N

vCC8
a

~kt!vC8N
c* ~kt!vNV

d* ~kt!vCV
f ~kt!

vCV
3 ~kt!@vCV~kt!/21vVN~kt!#

d„2v2vCV~kt!…,

m I
abcd f~v;kt!52 i

pe3

\3 (
C(C8),V,N

KCC8
ab

~kt!vC8N
c* ~kt!vNV

d* ~kt!vCV
f ~kt!

vCV
3 ~kt!@vCV~kt!/21vVN~kt!#

d„2v2vCV~kt!….
re-
The fourth-rank tensorh I
acd f(v) and fifth-rank pseudotenso

m I
abcd f(v) can be symmetrized under the exchange ofc and

d, although we do not explicitly write out those expressio
here. From the time reversal properties of the matrix e
ments it follows thath I

acd f(v) is purely imaginary and
m I

abcd f(v) is purely real.
In the same way that we could characterize the carrier

spin injection in the last section byd^n̂(kt)&/dt and
d^Ŝa(kt)&/dt, we can here study the current density and s
s
-

d

n

current density throughout the Brillouin zone by the cor

sponding quantitiesd^Jâ(kt)&/dt andd^Kab̂(kt)&/dt,

d^Jâ~kt!&
dt

5h1
acd~2v,kt!E

c* ~2v!Ed~2v!

1h2
acd f g~v,kt!E

c* ~v!Ed* ~v!Ef~v!Eg~v!

12Re@h I
acd f~v,kt!E

c* ~v!Ed* ~v!Ef~2v!#,
8-8
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d^Kab̂~kt!&
dt

5m1
abcd~2v,kt!E

c* ~2v!Ed~2v!

1m2
abcd f g~v,kt!E

c* ~v!Ed* ~v!Ef~v!Eg~v!

12Re@m I
abcd f~v,kt!E

c* ~v!Ed* ~v!Ef~2v!#.

Injection of spin-polarized currents due to one-photon
sorption in semiconductor wells has been reported.28 The
currents discussed here are different, because, among
reasons, the effects presented here do not rely on a lac
inversion symmetry of the crystal and the presence ofv and
2v optical fields here allows the use of the phases of
fields as control parameters.

D. Consequences of symmetry

A @001# GaAs ~zinc-blende! quantum well under~001!
biaxial strain is invariant under theD2d point group.29 The
point group symmetries can be used to reduce the numb
independent and nonzero elements of all the tensor
pseudotensors discussed above. Some of the nonzero t
and pseudotensor components allowed by symmetry des
currents and spin currents associated with carrier mo
along the growth axis of the quantum well. In the infini
barrier model for the quantum well we adopt here these c
rents and spin currents vanish, and so we do not men
them further below; we plan to turn to them in future com
munication that will report calculations of these terms with
a finite barrier model.

The fourth-rank tensorsh I
acd f that describe electrical cur

rents~14! have 21 nonzero and 8 independent tensor com
nents. The tensor components contributing to the injection
electrical current in the plane of the quantum well are

hxxxx5hyyyy,
hxyyx5hyxxy,
hxxyy5hyyxx5hxyxy5hyxyx,
hxzzx5hyzzy,
hxxzz5hyyzz5hxzxz5hyzyz.

The fifth-rank pseudotensors that describe spin curre
~14! have 58 nonzero and 19 independent tensor com
nents. The tensor components that contribute to the spin
rents in the plane of the quantum well are

mxzxxy52myzyyx,
mxzxyx5mxzyxx52myzyxy52myzxyy,
mxzyyy52myzxxx,
mxzzzy52myzzzx,
mxzzyz5mxzyzz52myzzxz52myzxzz,
mxxxyz5mxxyxz52myyyxz52myyxyz,
mxxxzy5mxxzxy52myyyzx52myyzyx,
mxxzyx5mxxyzx52myyzxy52myyxzy,
mxyxxz52myxyyz,
mxyxzx5mxyzxx52myxyzy52myxzyy,
mxyyyz52myxxxz,
mxyyzy5mxyzyy52myxxzx52myxzxx,
mxyzzz52myxzzz.
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IV. RESULTS: COHERENT CONTROL OF ELECTRICAL
AND SPIN CURRENTS

We now look at the currents and spin currents that can
injected in the plane of the quantum well in a number
different experimental geometries. Throughout this sect
we takeE(v) and E(2v) to be the real amplitudes of th
beams atv and 2v, respectively, explicitly indicating the
phase through unit polarization vectorsêv and ê2v such that
êk•êk* 51 for k5v or 2v. Thus we generally writeEk

5Ekêk .

A. Two circularly polarized fields

As shown in Fig. 2, in this configuration thev and 2v
optical fields are circularly polarized and are propagat
along the quantum well growth axis. The electric fields of t
propagating light beams are given by

E~v!5E~v!eifv
~ x̂1avi ŷ!

A2
,

E~2v!5E~2v!eif2v
~ x̂1a2vi ŷ!

A2
,

whereav/2v561. The currents injected into the quantu
well are due to interference of thev and 2v photon excita-
tions. The electrical current density arising from the interf
ence of thev and 2v fields is expressed using the pure
imaginary tensorh I

acd f, Eqs.~14!, and is given by

d^J&
dt

5@ Im~h I
xxxx!2Im~h I

xyyx!

12ava2vIm~h I
xyxy!#

E~v!2E~2v!

A2
m̂. ~15!

FIG. 2. Schematic illustration of cocircularly polarized optic
fields propagating along the growth axis of the quantum well. A
spin-polarized electrical current is injected in the plane of the qu
tum well with average spin pointing along the growth axis of t
quantum well.
8-9
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The imaginary parts of the tensor componentsh I
acd f in-

volved in the electrical current injection~15! are plotted in
Fig. 3. The direction of injectionm̂5 sin (2fv2f2v)x̂
1a2v cos (2fv2f2v)ŷ in the plane of the quantum well ca
be coherently controlled using the relative phase of the o
cal beams 2fv2f2v . The injected electrical current is spi
polarized with average spin pointing along thez direction
and is described by the following nonzero components of
expectation value of the spin current density~14!:

d^Kxz&
dt

52a2v@2m I
xzxxy1m I

xzyyy12a2vavm I
xzxyx#

3
E~v!2E~2v!

A2
sin~2fv2f2v!,

d^Kyz&
dt

5@2m I
xzxxy1m I

xzyyy12a2vavm I
xzxyx#

3
E~v!2E~2v!

A2
cos~2fv2f2v!. ~16!

The relevant real pseudotensor componentsm I
abcd f are

shown in Fig. 4.
Many of the parameters that characterize the injec

quantities we study depend on the field intensities o
through their dependence on a relative intensity param
J[I v

2 /I 2v , where the intensity of the beams are specifi
by I v/2v5cE(v/2v)2/(2p). For example, consider the av
erage, orswarm, velocity of the injected carriers,

vswarm[
d^J&/dt

ed̂ n&/dt
.

FIG. 3. The imaginary tensorsh I
acd f that relate to the electrica

current, ~a! unstrained quantum well,~b! quantum well with 2%
biaxial compressive strain as a function of the photon energy of
2v beam relative to the band gap energyEqw (Eqw is about 1.58
~1.7! eV for the unstrained~strained! quantum wells!. The tensors
shown, satisfy the conditionh I

xxxx52h I
xyxy1h I

xyyx, which holds
for the isotropic case.
16534
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For given polarization vectorsev and e2v this quantity has
components

vswarm
a 5

AAJ

B1CJ
,

where

A52A2p

c
ih I

abcd~2v!Im~ev
b* ev

c* e2v
d !,

B5j1
ab~v!e2v

a* e2v
b ,

C5
2p

c
j2

abcd~v!ev
a* ev

b* ev
c ev

d .

The swarm velocity has a maximum value ofA/(2ABC) at
J5(B/C), when the one- and two-photon carrier populati
injections are equal. We consider cocircularly polarized o
tical fields—i.e., av5a2v51—and choose the relativ
phase of the optical fields such that a spin-polarized cur
is injected in thex direction; in Fig. 5, we plot the relative
intensity parameterJ at which the swarm velocity is maxi
mized and that maximum value. To characterize the spin
larization of the current we define a quantityS̄z(f) in the
following way. At a given 2v the termsd^Jâ(kt)&/dt and
d^K̂ab(kt)&/dt will survive at a set ofkt

0 identified by the
Dirac delta functiond„2v2vCV(kt

0)…. For eachkt
0 so de-

fined that makes an anglef from the 1x axis, increasing
towards the1y axis we evaluate30

e

FIG. 4. The real pseudotensorsm I
abcd f that relate to the spin

currents,~a! unstrained quantum well,~b! quantum well with 2%
biaxial compressive strain as a function of the photon energy 2\v
relative to the band gap energyEqw . The pseudotensors show
satisfy the conditionm I

xzxxy522m I
xzxyx1m I

xzyyy, which holds in
the isotropic limit.
8-10
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S̄z~f![

e (
kt

0 at f

@d^Kxzˆ ~kt
0!&/dt#

(
kt

0 at f

@d^Jẑ~kt
0!&/dt#

. ~17!

A measure of the average spin polarization of the curren
then given by

Mavg5
1

2p E
0

2p

dfS̄z~f!.

We plot this in Fig. 6 as a function of the photon energy
the 2v optical field, at each photon energy for the relati
intensity parameterJ that maximizes the swarm velocity.

FIG. 5. ~a! The relative intensity parameterJ[I v
2 /I 2v as func-

tion of photon energy~relative to the band edgeEqw), which leads
to the swarm velocity for the unstrained and 2% biaxially co
pressed quantum wells.~b! Swarm velocity of the injected carrier
for the unstrained and 2% biaxially compressed quantum well.

FIG. 6. Degree of spin polarization~in units of \/2) of the
injected carriers in the plane of an unstrained and 2% biaxi
compressed quantum well as a function of the photon energy 2\v
relative to the band gap energyEqw .
16534
is

f

For photon energies close to the band gap, the injec
electrons are nearly 100% spin polarized, and as the lig
hole-like subbands start to contribute to the injection,
degree of spin polarization drops to about 60%~Fig. 6!. If
the quantum well is compressively strained, the strain re
ranges the valence subbands~Fig. 1! such that the light-hole
subband starts contributing to the injection at a much hig
photon energy; therefore a high degree of spin polariza
of the injected current is maintained for excitations w
above the band gap. The structure and trends that are pre
in Figs. 5~a! and 5~b! can be understood by looking at con
tributions made to the calculated quantities from the differ
subbands of Fig. 1. The relative intensityJ @Fig. 5~a!# that
maximizes the swarm velocity diverges for photon energ
at the band gap; this corresponds to injecting carriers at
bottom of the parabolic conduction subband, which wou
produce no average velocity.31 For the strained quantum
well, from Figs. 5~b! and 6, it is clear that one can injec
highly spin-polarized electrons with average velocity of
few hundreds of km/s.

B. Cross-linearly polarized optical fields

Figure 7 shows a configuration where thev and 2v
beams are cross-linearly polarized, with thev field polarized
along the x and the 2v beam polarized along they direction,
Eqs. ~18!. An electrical current can be injected along they
direction Eq.~19!, and is proportional to a sinusoidal func
tion of the relative phase of the two fields 2fv2f2v :

E~v!5E~v!eifvx̂,

E~2v!5E~2v!eif2vŷ, ~18!

d^J&
dt

52Im~h I
xyxy!E~v!2E~2v! sin~2fv2f2v!ŷ.

~19!

There is also apurespin current in the plane of the quantu
well,

-

y

FIG. 7. Schematic illustration of cross-linearly polarized optic
fields propagating along the growth axis of the quantum well
pure spin current is injected in the plane of the quantum well wh
cos (2fv2f2v)Þ0.
8-11
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d^Kxz&
dt

52m I
xzxyxE~v!2E~2v! cos~f2v22fv!, ~20!

a spin current injected along thex direction with average
spin pointing along the growth axis. No net electrical curre
exists in thex direction, but instead the translational motio
of the injected electrons is correlated with their spin, el
trons with a positivez component of spin going in one of th
6x directions, and those with a negativez component of
spin in the other. This pure spin current has been experim
tally observed.6,7 We focus on the pure spin current (K̇xz by
choosing the relative phase of the fields such thatJ̇50, Eq.
~19!, andK̇xz, Eq. ~20!, is maximized. Since there is no sp
population injection due to one- and two-photon absorptio
the interference between thev and 2v excitations gives rise
to an odd ~underkt→2kt) spin population injection distri-
bution in kt space, which clearly corresponds to oppos
average spin of the oppositely injected carriers. The sus
tibilities h I

xyxy andm I
xzxyxthat describe the electrical and sp

currents are presented in Figs. 3 and 4.
The integral overf of S̄z(f), Eq.~17!, vanishes here, bu

we can characterize the spin polarization of the pure s
current by the parameter

M pol
z 5

1

p E
2p/2

p/2

@S̄z~f!2S̄z~f2p!#df. ~21!

The relative intensity parameterJ that leads to maximum
degree of spin polarizationM pol

z , Eq. ~21!, is shown in Fig.
8. The degrees of spin polarizationM pol

z , Eq. ~21!, of the
injected spin current for the unstrained and 2% compr
sively strained quantum wells are shown in Fig. 9 at
value of the relative intensity parameter that maximizes

FIG. 8. ~a! The relative intensity parameterJ[I v
2 /I 2v as func-

tion of photon energy~relative to the band edgeEqw), which leads
to the maximum spin polarization of the injected carriers in
unstrained and 2% biaxially compressed quantum wells.~b! Aver-
age velocity of the injected carriers for the unstrained and 2%
axially compressed quantum well.
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To characterize the velocity of the injected carriers
introduce a characteristic velocityv̄x(f) along the lines used
above for spin,

v̄x~f![

(
kt

0 at f

d^Jx̂~kt
0!&/dt

e (
kt

0 at f

@d^n̂~kt!&/dt#

.

For this excitation geometry the integral ofv̄x(f) over allf
vanishes, but we can get a measure of the characterisx
component of the velocity of injected electrons by evaluat

vchar
x 5

1

p E
2p/2

p/2

v̄x~f!df. ~22!

Figure 8 shows this characteristic velocity~22! of the in-
jected electrons.

From Fig. 9, it is clear that for photon energies close
the band gap, the injected pure spin current is highly s
polarized with a degree of spin polarization of about 85%;
the light-hole-like subbands start to contribute to the inje
tion, the degree of spin polarization of the pure spin curre
reduces to about 35%. If the quantum well is compressiv
strained, a high degree of spin polarization of the injec
pure spin current is maintained for excitations well above
gap. Once again, from Fig. 8~b! it is clear that the injected
ballistic electrons can have an average velocity of a few h
dreds of km/s, and this velocity decreases as photon en
reaches the band gap value. The absolute values of ave
velocity ~22! and spin polarization~21! of the right- and
left-moving electrons~along the direction of injection! are
calculated to be identical.

i-

FIG. 9. Degree of spin polarization~in units of\/2) of the pure
spin current injected in the plane of an unstrained and 2% biaxi
compressed quantum well as a function of the photon energy 2\v
relative to the band gap energyEqw .
8-12
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C. 2v is circularly polarized and v is linearly polarized

In this section the configuration shown in Fig. 10 will b
discussed. The 2v beam which induces one-photon tran
tions is circularly polarized and thev beam which is respon
sible for two-photon transitions is linearly polarized alo
the x direction Eqs.~23!:

E~v!5E~v!eifvx̂,

E~2v!5E~2v!eif2v
~ x̂1a2vi ŷ!

A2
, ~23!

where a2v561. A spin-polarized electrical current is in
jected in the plane of the quantum well. It is important
note that since thev field is polarized along thex direction,
there is an asymmetry in the plane of the quantum well w
respect to thex andy axes. That is, the injected currents ha
different characteristics depending on whether the rela
phase parameter 2fv2f2v is chosen such that the current
injected in thex or y direction. The injected electrical curren
density is described by

d^Jx&
dt

5A2Im~h I
xxxx!E~v!2E~2v! sin~2fv2f2v!,

d^Jy&
dt

52a2vA2Im~h I
xyxy!E~v!2E~2v! cos~2fv2f2v!,

while the injected spin current density is described by

d^Kxz&
dt

5A2a2vm I
xzxyxE~v!2E~2v! sin~2fv2f2v!,

d^Kyz&
dt

52A2m I
xzyyyE~v!2E~2v! cos~2fv2f2v!.

From Figs. 3 and 4, it is clear that for both the unstrain
and strained quantum wells,uh I

xxxx(v)u@uh I
xyxy(v)u and

um I
xzxyx(v)u@um I

xzyyy(v)u. Therefore the net electrical an

FIG. 10. Schematic illustration of circularly polarizedE(2v)
and linearly polarizedE(v) optical fields propagating along th
growth axis of the quantum well. A spin-polarized electrical curre
is injected in the plane of the quantum well.
16534
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spin currents are larger when the spin-polarized electrons
injected in thex direction; this current is maximized whe
the relative phase parameter satisfies cos (2fv2f2v)50. In
our calculations we usea2v51.

From examination of the injection of spin and carriers
kt space, Eqs.~13!, it is found that the injected electrons i
opposite directions have opposite average spin~pointing
along the growth axis!. We use Eqs.~21! and~22! to charac-
terize the degree of spin polarization,M pol

z , and average
velocity vchar

x of the injected carriers. Figure 11 shows th
relative intensity parameterJ[I v

2 /I 2v that maximizes the
spin polarization of the carriers. The corresponding aver
velocity of the injected carriers for the unstrained and 2
biaxially compressed quantum well is shown in Fig. 11. T
maximized degree of spin polarization of the carriers
shown in Fig. 12.

Once again, for photon energies close to the band gap
injected electrons are spin polarized. But the degree of s
polarization is only about 55%, and it falls to about 30%
the photon energy is increased. In the case of compressi
strained quantum well the degree of spin polarization of
injected current is maintained for excitation energies w
above the gap. For both the unstrained and strained quan
wells, the injected ballistic electrons can have an aver
velocity of a few hundreds of km/s@Fig. 11~b!#.

D. Other possible experimental configurations

There are numerous other experimental configurati
that can be used to inject electrical or spin currents w
different properties. Here we only mention a few.

In the configuration where thev field is circularly polar-
izedE(v)5E(v)eifv( x̂1avi ŷ)/A2 and the 2v field is lin-
early polarizedE(2v)5E(2v)eif2vx̂, a spin-polarized elec-
trical current is injected in the plane of the quantum we

t FIG. 11. ~a!The relative intensity parameterJ[I v
2 /I 2v as func-

tion of photon energy~relative to the band edgeEqw), which leads
to the maximum spin polarization of the injected carriers in t
unstrained and 2% biaxially compressed quantum wells.~b! Aver-
age velocity of the injected carriers for the unstrained and 2%
axially compressed quantum well.
8-13
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The current injected alongx is describedJẋ5$Im(h I
xxxx)

2Im(h I
xyyx)%E(v)2E(2v) sin (2fv2f2v) with its spin po-

larization described byK̇xz52A2avm I
xzxyxE(v)2E(2v)

sin (2fv2f2v), the spin-polarized electrical current in they

direction is described byJ̇y522avIm(h I
xyxy)E(v)2E(2v)

cos (2fv2f2v), and K̇yz52$m I
xzxxy2m I

xzyyy%E(v)2E(2v)
cos (2fv2f2v).

In the configuration where two colinearly polarized fie
E(v/2v)5E(v/2v)eifv/2vx̂ is incident on the quantum
well, the electrical current due to interference of thev and
2v beams is in thex direction, J̇522Im@h I

xxxx(v)#
E(v)2E(2v) sin (2fv2f2v)x̂, while there is a pure spin cur
rent with average spin pointing along the growth axis a
injected alongy; this pure spin current is represented
K̇yz52m I

xzyyyE(v)2E(2v) cos (2fv2f2v).

V. CONCLUSIONS

We have shown that quantum interference between o
and two-photon excitations in a quantum well semiconduc
structure can be used to optically inject electrical and s
currents in the plane of an unbiased quantum well. The

FIG. 12. Degree of spin polarization~in units of \/2) of the
injected carriers in the plane of an unstrained and 2% biaxi
compressed quantum well as a function of the photon energy 2\v
relative to the band gap energyEqw .
-
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rection of injection can be coherently controlled via the re
tive phase of the optical fields. The spin currents can
injected with or without an accompanying electrical curre
Different polarization and direction of propagation of one
both optical fields allow many different possibilities of inje
tion characteristics such as direction and spin properties

The properties of the injected electrons in the plane o
GaAs quantum well were characterized. The average ve
ity with which electrons are injected can be a few hundre
of km/s, comparable to the swarm velocities with whi
electrons can be injected in bulk GaAs as well.21

The degree of spin polarization of the injected spin c
rents in a quantum well is significantly higher than in bu
GaAs and can be close to 100%. This is due to the splitt
of the heavy- and light-hole subbands by dimensional c
finement of the quantum well. This splitting can be ma
tained for energies well above the band gap in the prese
of strain, which can result from lattice mismatch across
boundaries of the quantum well. The effects of a 2% biax
compressive strain on the injected electrical and spin curr
were detailed. The rearrangement of the quantum well s
bands due to strain results in a high-spin polarization of
injected spin currents for photon energies well above
band gap. For an unstrained quantum well and photon e
gies close to the band gap, the velocity of the injected e
trons is low, but the degree of spin polarization is highest;
the photon excitation energy increases, the velocity of
injected electrons increases, but the degree of spin pola
tion decreases. We found that in the case of a biaxially co
pressed quantum well one can have both high injection
locities, of the order of a few hundreds of km/s, and a h
degree of spin polarization as well. This provides a uniq
opportunity for studying charge and spin transport in un
ased semiconductor nanostructures. The issues addre
here can be extended to other nanostructures, such as q
tum wires.
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7J. Hübner, W. W. Ru¨hle, M. Klude, D. Hommel, R. D. R. Bhat, J
E. Sipe, and H. M. van Driel, Phys. Rev. Lett.90, 216601
~2003!.

8J. M. Luttinger and W. Kohn, Phys. Rev.97, 869 ~1955!.
9J. P. Leohr,Physics of Strained Quantum Well Lasers~Kluwer

Academic, Dordrecht, 1998!, Chap. 3.
10For a cube of sizea, the ~001! biaxial strain corresponds to th
8-14



e

dia

f
be
ctl
in

nis
d
A
n
di
th
in

re
nd
o

t o
a

s-

o,

.

ts

on-

ALL-OPTICAL INJECTION AND CONTROL OF SPIN . . . PHYSICAL REVIEW B68, 165348 ~2003!
application of a stress across thexz andyz faces. Thexy plane
is a new square of lengtha8 on each side. For an in-plan
compression~stretch! of the cube, the cube expands~shrinks!
vertically, thus producing a rectangular prism.

11Lucio Claudio Andreaniet al., Phys. Rev. B36, 5887~1987!.
12The split-off subbands could nevertheless serve as interme

states in multiphoton transitions. Using the 434 Luttinger-Kohn
model for light and heavy holes and uncoupled sets of states
the conduction and split-off states, velocity matrix elements
tween heavy- or light-hole states and the split-off states stri
vanish. Therefore the contributions of split-off subbands as
termediate states to the quantities calculated in this paper va
Those elements do survive, however, in a more realistic mo
of the valence subbands. Using such a model for bulk Ga
calculations show that contributions to injected electrical a
spin currents from terms involving split-off bands as interme
ate states only become important when, in the absence of
inclusion, a near-cancellation arises between terms involv
heavy- and light-hole bands as initial states~Ref. 13!. In the case
of quantum wells subject to photons of the energies conside
here electrons are optically injected into conduction subba
predominantly from heavy hole subbands. Hence, for the kind
initial study we present in this paper, we expect the neglec
split-off subbands as intermediate states should be a good
proximation.

13R. D. R. Bhat and J. E. Sipe~unpublished!.
16534
te

or
-
y
-
h.

el
s,
d
-
eir
g

d
s
f
f
p-

14 M. Lax, Symmetry Principles in Solid State and Molecular Phy
ics ~Wiley, New York, 1974!, Chap. 10.

15Y-C. Chang and R. B. James, Phys. Rev. B39, 12 672~1989!.
16F. Szmulowicz, Phys. Rev. B51, 1613~1995!; JETP Lett.60, 751

~1994!.
17R. Atanasovet al., Phys. Rev. Lett.76, 1703~1996!.
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