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All-optical injection and control of spin and electrical currents in quantum wells
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We show that quantum interference between one- and two-photon absorption can be used to inject spin
currents, with or without an accompanying electrical current, in unbiased semiconductor quantum well struc-
tures. The directions in which the electrical and spin currents are injected can be coherently controlled, with a
relative phase parameter of the optical fields as the control parameter. We characterize the currents for an
unstrained quantum well and a quantum well under biaxial compressive strain using the Luttinger-Kohn model;
we work out particular examples. If compressive strain is used to appropriately rearrange the subbands, then a
degree of spin polarization of the spin currents higher than possible in bulk GaAs can be achieved and
maintained even for photon energies well above the band gap.
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[. INTRODUCTION We begin in Sec. Il with the model used to describe the
electronic states of a strained quantum well. In Sec. I, we
The control and manipulation of the spin degree of free-use Fermi’'s golden rule to describe and formulate suscepti-
dom of electrons in semiconductor structures has receivelllities describing the one, two, and interference components
much attention in recent years and may be an important con®f the optical excitations; we also introduce quantities that
ponent of the future data storage and processing protocolgre used to represent the degree of spin polarization of the
Since the 1970s it has been known that, due to spin-orb@pPin currents and the velocity of the injected carriers. In Sec.
interactions, spin-polarized carriers can be generated in semliV we present the results for different polarization configu-
conductors through optical excitation with circularly polar- rations, with the optical fields propagating along the growth
ized optical fields. Using a bias voltage, this spin population axis. In Sec. V we summarize our results and conclude.
can be dragged to produce a spin-polarized cufrémstich
spin currents always have a net electrical current accompa-
nying them. The degeneracy of the heavy- and light-hole Il. QUANTUM WELL STATES
bands at thd™ point in bulk semiconductors, such as GaAs, . . .
implies that any excitation across the band gap occurs from We consider an isolated GaAs quantum well grown in the

both the heavy- and light-hole bands; this leads to a reduc<-0m> direction, which we take as the quantization axiand

tion in the degree of spin polarization of the injected carriers S€t the boundaries of the quantum welkalt /2. We use two

This degeneracy is lifted in a quantum well semiconductorl—'am”tonians for the energy dispersion and eigenstates of the
structure due to confinement and, further, via strain, thuSuPPands, one for the valence subbands and another for the

leading to a higher degree of spin polarization of the injecte 0.”0'“0“0” subpands; t.hese We now desgrlbe. All the calcu-
carriers’ ations neglect interactions between carriers, except to the

Recently it has been shofH that quantum mechanical extent they are described in the effective single-electron
interference between one- and two-photon excitation in buII{mdel OTI the t?andsd In thehpresent V.V?]rk' we qonsgjelr a ql;]an—
semiconductors can be used to induce spin currents in senfiM Well subjected to photons with energies below that

conductors without the need of a bias voltage or magneti@eede,d to cquple the bound states tq the continuum states
field. In some configurationgure spin currents can be gen- associated with electrons or holes moving out of the well; the

erated, where noet electrical current is involved. Further- poherent control of spin currents due to this coupling is sub-

more, the direction of injection of the electrical and spinJect OT a futlre report. Indeed, we consider here excitation
currents can be controlled using a relative phase parameter Gf€9'€S Up tI(I) cf)nly ﬁbout 100 mev ﬁbove the band ga_lg of the
the optical fields. The experimental verification of injection quantum well; for these energies there are no contributions
and control of the pure spin current has been performed b om the barrier material and we approximate the barriers as

injecting carriers in the plane of a quantum well strucfure. nfinite.
In this paper we present a detailed account of coherent
injection of electrical and spirturrentsin the plane of a
GaAs quantum well and its control through quantum me-
chanical interference using a relative phase parameter of the We begin with the & 4 Luttinger-Kohn Hamiltoniaf®**
beams responsible for one- and two-photon excitations. Weo describe the valence subbands. The split-off subbands, ly-
further study the effects of biaxial compressive strain on théng about 350 meV below the top of the valence subband, are
injected currents. Our goal here is to study the effects ofieglected since we consider photons wiftu2<350 meV!?
these physical parameters on the injected currents in a gein the presence of (001) biaxial strdihthe Luttinger-Kohn
eral way. In a future publication we will apply this frame- Hamiltonian is modified by the appearance of Bir-Pikus
work to address particular experimental restitsdetail. strain term8 and takes the form

A. Valence subbands
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P+Q L M 0 Here thew; j,(r) are spinor functions of, the coordinate
e Lt P-Q O M RV representations of thEg Bloch functions{|3,3),|3,3).]3,
| mt 0 P-Q -L (2), —3)13,—3)} atk,=0, using the convention
0 Mt —LY P+Q
1
where the potentiaV/(z) describes the quantum well, with ,u[e 3](r): T[X(r)+iY(r)]a,
77 2
C h271“2
P(k)—z—mok +P., i
. #2 y(0= XD FIY(N]B-2Z(r)al,
QR = (K + =2k + Q.
1
) ‘ (r)=—={[X(r)—=iY(r)]a+2Z(r)B},
A —in23 A o M(371](r) {[
L(k)=¢(kx—iky)kz, 772 e
Mg
L \BhRy, L, o, \BhPys o wa 2 (0= —=[X(N)-iY(N)]B,
M (k)= o (ki—k3)—i - kyky | 123 2

and where we use the differential operafor —iV. The  Wwhere X(r), Y(r), and Z(r) are the functions associated
adjoint differential operators appearing here are defined itvith the representatiot;s of the zinc-blende point group

the usual way, T4, anda and B are the spinor basis functions:
| W@ amar= [ s sy, a:(é), ﬁ:(g)_
where of cours&'=k. The coefficienty y;,y2,y3} are the To solve for the eigenstates of the Hamiltonién we

Luttinger parameterijn this paper the dispersion of the va- must solve the eigenvalue problem

lence bands of the quantum well is assumed to be isotropic in

thek,k, plane, which is achieved by setting= y;=v. The

strain factors P.=2a,[(c;1;—Cy1p)/Ci1]e and Q.=b[(cqy HF(r)=EF(r), @)
+2c4,)/cqq]€ involve the stiffness tensor coefficients and

the deformation potential constaras and b of the crystal  with eigenvalueE, subject to the appropriate boundary con-
structure’ The strain parameter describes the change in the ditions. Consider first solutions of E¢) in the well (or in
lattice constant of the crystal; the ratio of the lattice constanprinciple in the barrierbulk material, wher&/(z) is a con-

in the strained crystag’, to that in the unstrained crysta,  stant. Then solutions of the forf(r) =F;exp(k-r) can be

is given bya'/a=(1+¢). Thus fore>0 the strain is tensile, sought, where we writek=k,+zk,, with k,=k,(X cos¢

an(\j/vf.?r:.€<tg itis colmpresisive. functi imati th +ysing). The determinant following from Eq2) in the
Iithin heé usual envelope function approximation, e, g, way leads to the dispersion equation

Hamiltonian(1) acts on the space of envelope function vec-
tors F(r),
E=—P(k)=[Q*(k)+L(k)L'(k)+M(k)MT(k)]*,
Fi(r) )

Fa(r)

E(r)= where, for example, to construct the functibh(k) we take
(=] Fy(n) |

the differential operatok T(k) introduced above and replace

Fa(r) the differential operatdi by the vectok. Fixing E andk, at
real values, we solve E@3) for k,, which may be complex.

where the=(r) are complex functions, in terms of which the In general there are four solutiohs=*k_, *k;. Taking

full spinor wave functiony(r) can be written as linear combinations of these in different regions of constant
V(2z), in general we seek solutions that satisfy the appropri-
N=FE.(r )+ Eo(r r ate boundary conditions at the |nt_erfacesjal./2 and at
P =Fa(0) r@r.anf )+ Fall) iia i) infinity; for these the envelope function components take the
+Fa(r) w(az-12)(N +Falr) sziz-32)(r). form F(r)=e'( "k f(2),
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0 a) b) 40
HH
Quantum well width L(nm) 10
Lattice constant ag(A) 5.6533 204
Energy gap at 0 K Eq (eV) 1.519
Matrix element parameter 2m, 25.7 —
S IPol2 (ev) 31 L,
Deformation potential a. (ev) -7.17 E
Deformation potential a, (eV) 1.16 § 50 4
Deformation potential b(eV) -1.7 :«:j HH
Stiffness coefficient ¢14(10' dyn/cnt) 11.879
Stiffness coefficient ¢1,(10' dyn/cnt) 5.376 -804
Effective mass m./mg 0.067 1100
Luttinger parameter V1 6.85 -100 h . ,
Luttinger parameter v= v+ v3)/2 25 0.00 0.02 0.00 0.02
k. (17a,) k, (17a,)

0

f(Z):Bl

M (k) sin(k_z)
iL (k,+ 2k, ) cos(k, z)

Ry (k+zk, ) sin(k,z)

0
M (k;) sin(kyz)

FIG. 1. The valence subbands used in the calculati@dJn-
strained quantum well(b) Quantum well under 2% compressive
strain.

confused with the eigenvalue under space inversion; the op-
erationo is more useful here than space inversion because it
keeps the value df; unchanged. Since the time reversal and
reflection operators anticommute— i.e., the time reversal op-
erator changes the parity eigenvalue of a state—there exists

+B,| . A an operator that changes the parity of the eigenfunc-
1L (ke+ zky) cos(kyz) tion.X! For anyk, the system is at least doubly degenerate,
Rl(kt+2kH)5in(kHz) and if one of the eigenfunction of a certain parity is
) found to be [f1(2),fx(2),f3(2),f4(2)]Te' Rk the
[ M (k) cos(kyz) other (parityy degenerate eigenstate is given by
0 [15(2).15(2).15(2), 7 (2) 1Tk om),

—Ry(k¢+ Zky) cos(kyz)
| —iLT(k+ Zkyy) sin(ky2)
" M(k;) cos(k,z)

0 W(r) = s =172)(1)G(r), (4)
—R,(ki+2zk, ) cos(k 2) |’
| —iLT(ke+2k,) sin(k 2)

B. Conduction subband

The conduction states in the quantum well are described
by spinor wave functions of the form

+B

N

where

sy =S(r e,
for Ry(k)=Q(k)—P(k+2zk,)—E and Ry(k)=Q(K) _
+ P(k)+E. The constant$; for i=1-4 are also evaluated s -12)(1) =SB,
from application of the boundary conditions. The boundaryand S(r) is the conduction band-edge Bloch function. The
conditions yield a determinant with zeros corresponding taenergy eigenstates are determined by seeking solutions of the
valence subband energiggk,). Parameters used in the our form G(r)=g(k,z)e'®**%Y) and solving the Schrbinger
calculations are shown in Tabl€ IIn Fig. 1, we show the equation’ for the envelope functio,,(z):
valence states used in our calculations.

To identify the eigenvectors in a convenient form, it is
useful to exploit other symmetries of the Hamiltonian. The
Hamiltonian (1) is invariant under time reversal symmetry, 5
and since terms linear in the componentskpfre ignored, ©)
reflection with respect to they plane is a good symmetry wherem; is the effective mass of the conduction electrons in
operationt! the operator associated with this is=exp the bulk structure. The effect of biaxial strain on the disper-
(=imJ3)!l (not to be confused with the Pauli spin matrices sion relation of the conduction subbands is described by the
whereJ, is the generator of rotation around thexis andl parameterR,=2a.[(C11—C12)/Cq1]€. Since the quantum
is the space inversion operator. Following Andreanal*  well is symmetric with respect to the center of the quantum
we shall denote the eigenvalues @fby parity, not to be  well, the bound-state solutions of E(p) are nondegenerate

n? d* h2k?

T omo gz T 2m, T Re|Onki2) =En(k)gn(ki,2),
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(other than spin degenergagnd alternate between even and [ll. COHERENT CONTROL
odd (underz— — z transformatioh states, always beginning
with an even stat@.In the following calculations, we con-
sider the optical properties of the 10-nm quantum well a
photon energies up to 100 meV above the band edge; in th
regime, only the first conduction subband needs to be co
sidered.

Our calculations here follow earlier theoretical and ex-
lperimental studies of the interference of quantum mechanical
Rprocesses to control the direction of propagation of injection
Carriers in bulk semiconductors/*’~2?and we refer to the
Titerature for details of the experimental geometries and the

general theoretical description. In contrast to coherent con-
trol of ionization from doped quantum weft,we restrict
C. Parameters and matrix elements ourselves here to injection within the plane of the quantum

. well and across the band gap. Recently Bhat and°Sipee
For both the valence and conduction subbands, then, wegnown that it is possible to coherently control spin currents

have at least a double degeneracy at dqchand we label jnjected in bulk semiconductors. For some experimental con-
our spinor wave functions ag, (r), wherenis a subband  figurations the injected spin currents have an accompanying
index ands a degeneracy index. Typically we useor m if electrical current? one measure of the degree of spin polar-
we refer to an arbitrary subband, wighor p as degeneracy ization of the spin current in bulk indicates a polarization of
indices; we retairc andv, respectively, to refer specifically 57%. One can also genergiare spin currents where a sort-
to conduction and valence subbands. We discretizekthe ing of optically injected spins gives rise to electrons propa-
associated with an ared in the xy plane; the wave func- gating in two opposite spatial directions with opposite aver-
tions are normalized when integrated over that area and ovelge spind:” The direction of the propagation of the injected
all z. Only at the very end of the calculation do we considercurrents can be controlled via the relative phase of the optical
A0 by taking A "' 3, — [ dk /(27)? in the usual way. fields** While the underlying physics of the injection pro-
Using the wave functions described above, we calculat€€ss in quantum well structures is the same as in bulk, the
the velocity matrix elements? .- o(ky) = (nsk v mpk,), qualitative nature of these processes is S|gn|f|cant!y modified
spin  matrix  elements Sﬁ,s;m,p(kt)=<nSkt|Sa|mpkt), by the heterostructure geometry, as our calculations below

and  spin-velocity — matrix  elements K3% . (ko) demonstrate.
=(nsk,|v3S’|mpk;) between different valence and conduc- o
tion states of the quantum well; superscripts denote Cartesian A. Injection process
components. Sometimes we use a single capital letter to de- Here we consider the scenario where a quantum well is
note both a band and degeneracy index, writing, e.g.subjected to two monochromatic optical fields of frequencies
vam(ky) for vﬁys;myp(kt); we reserveC andV for conduction  w and 2w. The unperturbed Hamiltonian in the independent-
and valence bands, respectively. The first conduction sulparticle, second-quantized form is given by
band and first four valence subbands shown in Fig. 1 are
used as intermediate states in our calculations. _ + +
In the independent particle approximation adopted Ho= CEkt hwc(k)ackack, VEKt frwy(K) Dy by,
here, time reversal invariance leads to the following
property of the matrix elementé: and in the presence of an applied vector poterfig) the
interaction Hamiltonian is

Ungmp( k)=~ eXRIN U] g (ko). Hin(1)=— CA(D- 1),

where
ST oK) = — OXBIN ) SE i (K0,

c,s,c,p
V= 2 adyac Ve (ke wee kit
and CC’ky '

K% (k)= expliNK2 ~(—k,)
,S,CpVTM n c,S.Cp t + oo
- 2 bV’kthktVVV’(kt)el v (kt

wheres designates the opposite degeneracy index afd WV k,
Nnms Mym» @nd\p ., are arbitrary phases.

The matrix elements between the valence states were cal-
culated using the general formalism proposed by Chang and
Jame® and SzmulowicZ® The accuracy of the velocity ma-
trix elements obtained was verified by calculating the diago-
nal (intrasubbang velocity matrix element, which was di-
rectly compared to the energy subband gradients. The matrix + ) . o
elements between conduction states were calculated usifidEr®2@ck,(8ck,) is the creatiortannihilatior) operator for an
the envelope functiod The material parameters used in our electron with conduction subband and spin indices denoted
GaAs quantum well calculations are given in Tabfe I. by C and b\T/kl(kal) is the corresponding creatigannihila-

Tt fwey(k)t
+ > aly bly vey(ky) el ek
CVk, o

+ > by ack Vvc(ky)e “vetkot,
CVk, v
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tion) operator for a holefiwc)(k;) is the energy of the
conduction and valence subban@sV at k;; we have put

onm(ky) = on(ky) —op (k). The vector potential describing
the field is given by

d(o) d(6)° d(o)"
dt ~ dt  dt

d()°

— * ’ y:
A()=A(w)e CHNL A(— m)ei 17t dt _ZWC(C%/ . Qe (k)(C'ki| 0]Cke)
+A(2w)e—i(2w+ir)t+A( _ Zw)ei(Zw—iT)t, XQCV(kt)é(zw— wcv(kt))’
wherer is a small positive number that describes the turning R
on of the fields at=—o; we setr to zero at the end of the d(e)" 3

=2 2

V(V'),C .k,

calculation. The electric field is related to the vector potential dt Qeuk)(Vki|0]V'ky)
via E(w)=(iw/c)A(w). Our treatment of the optical field

approximates it as classical and assumes the long-
wavelength(dipole approximation limit. The optical field
causes transitions from the ground state of the sy$@nto

the two-particle statéCVk;)=af, bl |0), where an elec-

tron from the valence subband and spin stetéias been by their spin index and henagcy(ky) = wcrv(ky). The no-
excited to the conduction subband and spin s@tén the  tationC(C’),V,k, indicates that the common subband index
dipole approximation the two-dimensional crystal momen-C and the two spin indicesands’ are to be summed over, as
tum vector is unchanged by the optical excitation. AdoptingVell as the valence bands their spin indices and transverse
a perturbative approach, we write the state of the system &fystal momentum vectork;. A similar convention is

X Q& (k) 52w — wey(ky). @

In the second of these equations our conventionCis
=cs, C'=c¢g', etc.; that is, the stateS andC’ differ only

timet as

[y =Co(|0)+ X, Cow (DCVKy)
CVk;

and determine the time evolution of the coefficié@t,kl(t).
Solving forCCth(t) to second order in an electric field al-
lows us to calculate the rate of change of the expectation

value of any single-particle operatérusing Fermi's golden
rule:

d(6) d(8); d(6), d(o),
dt _ dt | dt | dt

(6)

whered( ), /dt describes the time evolution of the operator
6 due to one-photon (@) processesd(#),/dt that due to

two-photon @) processes, and( #), /dt that due to the in-
terference between excitations at frequeneieand 2w.

There are many interesting aspects of the subsequent re-
laxation of momentur?f and spirt of the injected carriers.
The spin relaxation time for p001] GaAs quantum well is
known to be a few picosecond$The momentum relaxation
is expected to occur on a much shorter time scale and is due
to many processes, such as phonon-carriers and carrier-
carrier scattering. In the regime of high carrier density con-
sidered here, the latter is expected to dominate and be a
major influence on the relaxation of both electrical and spin
currents. As well, if an electrical current is present, the sepa-
ration of the electrons and holes will lead to a space charge
field that will also affect the transport of the injected carriers.
This paper deals with the generation of electrical and spin
currents in a quantum well; we defer the issue of relaxation
to a later communication.

Each component af( §)/dt (6) will include contributions
from the conduction subband¥ #)¢/dt and valence sub-
bandsd(6)"/dt:

165348-5

Qdyk)=—

adopted in the third equation. Further,

Qev(k) = Qey(ky) + QL (ky),

ie vey(ky) -E(2w)
Qlcv(kt)Zg%,

(i)zg [Ven(ko) - E(@) [vi(ky) - E(w)]
o] | wcv(ky)/2+ oyn(ky) ’
®

whereQpb, (k;) andQ¢,(k,) correspond to the one-and two-
photon transitions. Expanding these terms out, we have

dB)y_ KBS  dDS db)
dt ~ dt dt dt

d(6)$
at 27 2

C(C'),V,k;

X[Qey(k) Qe (k) 18Rw— wcy(ky),

(C'kq 6ICky)

d(6)5
T =2 E

C(C').V.k

X[QLUk) QLR (k)]18Qw— wcy(ky),

(C'kq| 8]Cky)

d( )¢ .

KON or S (koK)

dt C(C"),V.k;
X[Qey(k) QR (k) +€.c]62w— wey(ky)),

9
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and similarly for the hole terms; the subscripts 1, 2, &nd <ﬁ>1

refer, respectively, to the one-photon contributions, two- =§?°(2w)Eb*(2w)E°(2w),

photon contributions, and contribution due to the interfer- dt
ence of amplitudes associated with those two processes. The R

. ~ . . . . a
quantitiesé of interest include the electrical and spin cur- d(S%)1 _ rabc bx c
rents, and since the hole subbands generally have higher ef- dt 1 (20)E7 (20)E (20), (10
fective masses than the conduction subbands, the contribu- be
tions made to the currents are dominated by the electroni¢here the second-rank tensor  §7°(2w)

- — 41 b . ;
contributionsd( #)¢/dt. In the numerical calculations of this =AT 2y £1°(2wiky) ) and the third-rank - pseudotensor
anc

paper we focus on the contributions made by the conductiog;"(2w)=.A "1 2y {1 (2w:k,) are determined by
electrons, although the contributions from the holes can be

similarly found. 2me? o v (k)vey(ky)

bc .
1 (2wiky) = 02w — wcy(ky)),
B. Carrier and spin population h? Cv (2w)?
The opeAr;ators for the areal carr.|er dens.ltwnd thea ) 262 S?;,c(kt)v?;v(kt)vf;v(kt)
componentS? of the spin areal density are given by 52wk = 5 2 5
h* cichv (2w)
.01 -
n=—=2 n(ky), X 82w = wcy(ky).
Kt

In all expressions involving tensors in this paper, summation
éa:iE S(k,) over repeated indices is assumed. From the time reversal
A% v properties of the matrix elementsee discussion in Sec. Il
N C) it can be shown that Re&™(2w;ky)]
where (IM[£2°2w;ky)]) and If £3°(20:k)] (RE(3°(2w:k)])
R are even(odd under inversion ink; space k;— —k,). It
n(ky) = E aékt ack,» follows from these properties th§f°(2w) is purely real and
¢ 2°%2w) is purely imaginary, and tha>°(2w) = £5°(2w)
and £3°Y2w) = — 2°®(2w), the latter holding necessarily
Sk)= X Stclkoag,ack: since(R); and(S?), are real
t t 1 1 .

Turning now to the two photon contributions, using the
term arising fromQ'éV(kt) alone in the second equation of
The population and spin injection rate into the quantum wellggs. (7) [see the third equation of Eq®)], we find that the
then follow from the general forrt), two-photon contribution to the carrier and spin population

- - - . injection can be written as
d(n) _ d(n), d<n>z+ d{n),

dt  dt dt T dt

. - . . %= 59 0) EP* () E* () E%(w)E'(w),
i(E)  d(S), . d(5?), . d(S?),
dt ~ dt dt dt - 4,

__ sabcdf bx C* d f
= E E E E , (11
We begin with the one-photon contributions. Using the dt 2 (@) (@)E™ (@)E(w)E (@), (11)

term arising fromQ{.(k,) alone in the second equation of

cv : where the fourth-rank tensor  £5°%7(w)
Eqgs.(7) [see the second equation of E(®.], the one-photon o bed? ] 2
contribution to the carrier and spin population injection can=A "2k €2 (w;k) and the fifth-rank pseudotensor
be written as 5N w)=A"12y 5°°(w;k,) are determined by

me v&i(k)vir (kv (kv vk

At cVRM o wey(k)/2+ oyn(k) Locv(k) 2+ oym(ko)]

2
559 w;ky) = 8w—wcy(ky),

276’ S2, (ko (ko ss (kv (ko (k)

abcdf, . _
§2 (w’kt) 4 4
7% ceyvinm @ [ocv(K)/2+ oyn(K) J[werv(K) 2+ oyp(Ky) ]

02w —wcy(ky)).

165348-6



ALL-OPTICAL INJECTION AND CONTROL OF SPIN . .. PHYSICAL REVIEW B58, 165348 (2003

Since repeated Cartesian components in Ebb. are to be d<A>,
summed over, with impunity we can symmetrize the expres-
sions forggc‘”(w) and 73°°(w) with respect to interchang-
ing b and ¢ and with respect to interchangirdgand f; this

we do, although we do not write out those expressions (&)
explicitly. Again, using the time reversal properties of the !
matrix elements, we find that the susceptibility distributions dt
R &% (w,k)] (IM[&°(w,k)]) and Inf£5*(w,k))]

(R £5°%(w,k,)]) are ever(odd) l;néjfer inversion irk, space  where the third-rank tensoff*(w)=A 13, £ w;k,)
(ky— —ky). It also follows thaté;°“(w) is purely real and  gng  the  fourth-rank pseudotensor 209 )

3°"() is purely imaginary, and thai;*"(0) =£3""(w) = 4 13, £°Ywik,) are determined by
and {3 w) = — (39" w); the latter are required by the

reality of(ﬁ)z and<§a>2.

= Ped( ) EP* (w)E®* (w)EY(20) +c.C.,

= (3¢ ) EP* (w)E®* (w)E%(2w) +c.C., (12)

Finally, we turn to the terms in the carrier and spin injec- 0 4y1k) = — i ﬁ vk (kv dyky)
tion res_ultlng from the interference of one- and two—photon' 73 CUN 0 wey(k)/2+ oyn(Ko)]
absorption processes. These correspond to the last term in
Egs.(9). We find X 8w — wcy(ky)),

|
me? Serc(kou (kv kv ey (ke)
o wk)=—i— > O 500 — wcy(k).
1> ccy.v.N o [ wcy(K)/2+ wyn(Ky) ]

Using time reversal symmetry, it can be shown thatThe third term in the above expression leads to a polar asym-
Re &Y w;k)] (MY w;ky)]) and  Infi3°°Yw;k,)]  metry in thek-space distribution of the carrier and spin
(RE £3°Y w;k,)]) are even(odd), under inversion ink,  population. The asymmetry in the carrier population suggests
space k.— —k;). These properties lead to purely real @ net electric current and that in the spin population a net
(imaginary £2°%w) (£2°°Yw)) tensors. spin current. These currents are the subject of the next

If the inversion asymmetry in the underlying crystal is Section.
neglected, as we do here, then there is no contribution to the
net carrier and spin injection rates, due to interference, C. Electrical and spin currents

bcd bcd
&°Y(w)={77*(w) =0 (Ref. 26. Nonetheless, because at a 14 calculate the currents injected in the quantum well we

bed bed,, . o
given k; neltherg,_C (wik,) nor £7*(w;k,) will in general directly employ the areal electrical current densifi#)(and
vanish, there will be interference contributions to both )  sab " ach

areal spin current densityK@°=v?2S") operators

d(n(k,))/dt andd(S*(k,))/dt. Following the approach used

above for the global expressiodgn)/dt and d(S?)/dt, we ra 1 - o Lo o
find immediately that Ja—z% J(ky),  K® —/—4% K®(ky),
where
d(n(ky)
dtl — ?C(Zw,kt)Eb*(Zw)Ec(Zw) a(k) e E Uccr(k)ac/kack,
c(ch

+ €59 @, ko) EP* (0) E™* (0) E%(w)E'(w)

ab —
+2RE &)Y 0, k) E™ () E™ (0) E%(20) ], Kol = & Keo (kg e,

to find from (6), using the approach employed above, that

(& (k) d(3%) _d(3?);  d@3%, &%

%:gibc(zw'k‘)Eb*(z“’)Ec(z“’) T T T
+¢3°°Yw,k) E™* (0)E** (0)EY(w)E'(w) d(R3D)  d(RaDY,  d(RaDy, d(RaD),
+ 2R £ 0,k EP* (0)E* () E%(20)]. dt  dt | dt = dt

(13  where the one-photon terms are given by
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d(32 2 K22 (kv (kv (k
<d >1 aCd(Z )EC*(Zw)Ed(Za)), ade(Zw k)= 2me crel t)UC Wl Dvcu(ky)
t cchv (2w)?
d(Ka> X 5Qw— wey(ky)),
e Lrei20)E™ (20)E%20), e
dt and the two-photon terms are given by
with  73°%2w)=A" lEk 7% 2w;ky), u3**2w)=A"1 d<ja>2_ acdf cx *d f g
E Mabcd(zw kt) and dt =12 g(zw)E ((!))E ((,!))E ((,!))E ((1)),
3 a Cx d d<kab>2_ adefg(z E*¢ E*d Ef EY
acd 27Te UC’C(kt)UC’V(kt)UCV(kt) dt _1u’2 (1)) ((,()) (w) ((,!)) (w)v
Cok)=—F X 5
c(c’),v (2w) with acdfg(w) A~ 12 77 cdfg(w kt) ws bcdfg(w)
X 8Qw—wey(ky), =A71S, 13" wiky), and
|
2me® vé’C(kt)vg*’M(kt)vﬁll*v(kt)vfCN(kt)vRIV(kt)

acdf .
75 A w;ky) = 02w — wcy(ky)),
2 ‘ 1t cehvinm o[ ocu(k)/2+ oyn(k) J[ocv(K) 2+ oyp(ky) ] e

abcdfg( k) 2me’ E C’C(k )UC’M(k )U v( t)UCN(kt)UNv( ki)
w;Ki)=
H2 TR o M o' Twev(k)i2+ oyn(k) T ocy(k) 2+ yy(ky)]

02w — wcy(ky)),

which can be symmetrized under the exchangewith d andf with g. These one- and two-photon terms, when summed over

the Brillouin zone to yield the net electrical current and spin current, vanish for models such as ours which neglect the lack of
inversion symmetry of the crystal. Thus the only currents that survive are due to the quantum mechanical interference
between the one- and two-photon absorption processes; they take the form

d<(;]t>| _ 77iacdf(w)E(}k(w)Ed*(w)Ef(Za))-‘rC.C.,
d(Kar
= dt - = uf**(w)E®* (0)E™ (0)E'(20) +c.c., "

with ﬂacdf(w) A~ IEk nacdf(w kt) ,LLadef(w) A~ 12 /.Ladef(w;kt), and

acdf, . e’ vae (K)o gy (kv (kv Ey(ky)
k)= —i— 5Qw— wey(ky)),
ek Iﬁ cChvN okl wev(k)/2+ wyn(k)] (20— wcvky)

e K& (ko &y (koo fi (koo by(ky)

Mabcdf(w k)__|_ 3
cch VN ocy(K)[ocy(K)/2+ oyn(ky) ]

0Q2w— wcy(ky)).

The fourth-rank tensor;ac‘”(w) and fifth-rank pseudotensor current density throughout the Brillouin zone by the corre-

#;°°%(w) can be symmetrized under the exchange ahd  sponding quantitiesl(32(k,))/dt and d(K20(k,))/dt,
d, although we do not explicitly write out those expressions

here. From the time reversal properties of the matrix ele- y
ments it follows that7?°%(w) is purely imaginary and A (ko)
1% w) is purely real. dt
In the same way that we could characterize the carrier and + 73999 9 k) ES* () E® () Ef(w)EY(w)
spin injection in the last section by(n(k,))/dt and

d(&(k,))/dt, we can here study the current density and spin +2Rg 7],k )E™* (0)E™* (0)E'(20)],

= 73°% 2w,k E®* (20)EY(20)
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N (0 (0
ARk e . N
T a2 ) E* (20)E¥(20) .S DE

+ 15" Y @, k) E* (0)E* (0)E'(0)EY (o)
+2Rd 122w, k) ES* (0)E® (w)Ef(20)]. 20 Q)

Injection of spin-polarized currents due to one-photon ab- S
sorption in semiconductor wells has been repofted@he @_ﬂ#
currents discussed here are different, because, among other
reasons, the effects presented here do not rely on a lack of
inversion symmetry of the crystal and the presence @ind 1y

2w optical fields here allows the use of the phases of the VA VAR
fields as control parameters. X

FIG. 2. Schematic illustration of cocircularly polarized optical
D. Consequences of symmetry fields propagating along the growth axis of the quantum well. A net

A [001] GaAs (zinc-blendé quantum well under(0021) spin-polarized electrical current is injected in the plane of the quan-
biaxial strain is invariant under thB 4 point group2.9 The tum well with average spin pointing along the growth axis of the

. . t Il.
point group symmetries can be used to reduce the number grantum we
independent anq nonzero elements of all the tensor anlq/_ RESULTS: COHERENT CONTROL OF ELECTRICAL
pseudotensors discussed above. Some of the nonzero tensor

. AND SPIN CURRENTS

and pseudotensor components allowed by symmetry describe
currents and spin currents associated with carrier motion We now look at the currents and spin currents that can be
ann.g the growth axis of the quantum well. In the infinite injected in the plane of the quantum well in a number of
barrier model for the quantum well we adopt here these curdifferent experimental geometries. Throughout this section
rents and spin currents vanish, and so we _do not mentiowe takeE(w) and E(2w) to be the real amplitudes of the
them further below; we plan to turn to them in future com-peams atw and 2w, respectively, explicitly indicating the
munication that will report calculations of these terms within phase through unit polarization vectds ande,,, such that

a finite barrier model. e.-e =1 for k=w or 2w. Thus we generally writeE
The fourth-rank tensorg2°?" that describe electrical cur- ~* "« Ko @ 9 y «

rents(14) have 21 nonzero and 8 independent tensor compo= E -
nents. The tensor components contributing to the injection of

electrical current in the plane of the quantum well are A. Two circularly polarized fields
7= YV

X X XX
7 YYyX— 7])’ y,
XX - XX XYXY__ XyX
7 YY_,,]yy _7])’}’_7])/)/,
XZZX__ zZ
s gl

As shown in Fig. 2, in this configuration the and 2w
optical fields are circularly polarized and are propagating
along the quantum well growth axis. The electric fields of the
propagating light beams are given by

nxxze nyyze nxzxe ,r]yzyz.
The fifth-rank pseudotensors that describe spin currents E(w)zE(w)e‘¢w(X+ a,ly)
(14) have 58 nonzero and 19 independent tensor compo- 2
nents. The tensor components that contribute to the spin cur-
rents in the plane of the quantum well are - -
(Xt ag,ly)
szxxy: _ Iuyzyyx, E(2w)= E(zw)el ¢2mT,
szxyx: #xzyxx: _MyZyXy: _Myzxyy,
XZYYY— _ ,, YZXXX .. .
'“me_ '“ymx’ where a,,,,= +1. The currents injected into the quantum
I - M ' well are due to interference of the and 2w photon excita-
prER s Y — YR —  YEXES tions. The electrical current density arising from the interfer-
WO = OV = — VYV 2 — YYYZ ence of thew and 2w fields is expressed using the purely
W= XY= — VYWV — | VY ZYX imaginary tensomf‘c‘”, Egs.(14), and is given by
Mxxzy)& Mxxyzx: _Myyzxy: _Myyxzy’
XYXX X z
Mxyxze _XM:X s vz Xz ﬂ =[Im( 77XXXX) —Im( nxyyx)
WYXDXS  XYTO | YXYZY— ) yXayy dt | |
pYYYis — XXXz (o) E(20)
XYYZY— , XYZYY_— _ , YXXZX_ __ ,,YXZXX [ W)
MXVZZL o yXxzzz K # , +2a‘”a2“’|m( ni(yxy)]— (15)
[ [ V2

165348-9
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—=— Im{n xxxx)
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xyxy)
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electrical current tensors (10" cm%g

o)
e
4 4 »".
2]
E ..’f
oo*
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B LYYWV
L2 T T T

0 25 50 75 100 0 25 50 75 100
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FIG. 3. The imaginary tensorg?“%’ that relate to the electrical

current, (@) unstrained quantum wellp) quantum well with 2%
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FIG. 4. The real pseudotensorg*®" that relate to the spin

currents,(a@ unstrained quantum wel(b) quantum well with 2%

biaxial compressive strain as a function of the photon energy of théiaxial compressive strain as a function of the photon energy 2

2w beam relative to the band gap enefgy, (Eqw is about 1.58
(1.7) eV for the unstrainedstrained quantum wells The tensors
shown, satisfy the conditiony**=2%Y*Y+ %Y¥*, which holds
for the isotropic case.

The imaginary parts of the tensor componenfsCdf in-
volved in the electrical current injectiofi5) are plotted in

Fig. 3. The direction of injectionm= sin (2¢,— ¢,)X

+ a5, COS (2¢w—¢>2w)§/ in the plane of the quantum well can

relative to the band gap enerdy,,. The pseudotensors shown
satisfy the conditionu|***= —2u ¥+ u{*"¥Y, which holds in
the isotropic limit.

For given polarization vectors, and e, this quantity has
components

AVE

. - . Ugwarm: B+CZ'
be coherently controlled using the relative phase of the opti- =

cal beams @ ,— ¢,,. The injected electrical current is spin
polarized with average spin pointing along thedirection ~ where
and is described by the following nonzero components of the

expectation value of the spin current dengity):

d<sz>
dt == a’Zw[_MTZXXm— Mi(zyyy+2a2wawlurzxy
><E(w)2E(2w) (2 ba)
—F——SIn 0 P20),
\/z 2
d<Kyz> _ XZXXY XZyyy. XZXy
dt —[_,L,L| +/'LI +2a2wawlu’| )j

XE(w)ZE(Zw)
2

The relevant real pseudotensor componepf® " are
shown in Fig. 4.

COS(2¢w_ ¢2w)' (16)

Many of the parameters that characterize the injecte
guantities we study depend on the field intensities onlym
through their dependence on a relative intensity paramet
E=12/l,,, where the intensity of the beams are specifie

by I ,/2,=CE(w/2w)?/(27). For example, consider the av-
erage, orswarm velocity of the injected carriers,

~d(Jy/dt
Vowarm™ g qmyidt”

2m
A=2\[—i 7" 20)Im(elF efr e, ),

b b
B=¢1(w)egs e,

2
C=— £ w)elf et eles.

The swarm velocity has a maximum value Af(2/BC) at

E =(B/C), when the one- and two-photon carrier population
injections are equal. We consider cocircularly polarized op-
tical fields—i.e., @,=a,,=1—and choose the relative
phase of the optical fields such that a spin-polarized current
is injected in thex direction; in Fig. 5, we plot the relative
tensity parameteg at which the swarm velocity is maxi-
ized and that maximum value. To characterize the spin po-

r —
(jarization of the current we define a quant®§(¢) in the

following way. At a given 2o the termsd(J?(k,))/dt and
d(K2P(k,))/dt will survive at a set ofk? identified by the
Dirac delta functiond(2w— wcy(k?)). For eachk? so de-

fined that makes an angk from the +x axis, increasing
towards the+y axis we evaluaf®
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1.2 a) b)
- J 400
o o
§1 . —— unstrained i+
z’ [ 2% biaxial ‘,f/ 1
P compressive strain o 1300 g
Tos4\ }«" =

2 \+ f", >
NS \ :/f/ 3

3 * o
206 -\K \+\+ JA 3
£ \ Y 4200 >
g ] \\ﬁ:\\ g
044 e, s
o " |—— unstrained @
2 —— 2% biaxial il 100
©0.2]
-% compressive strain
°

0.0 T T T T T T T T T T T

20 40 60 80 100 0 20 40 60 80 100 L . . . .
2ho - E,, (meV) 2ho - E,, (meV) FIG. 7. Schematic illustration of cross-linearly polarized optical

FIG. 5. (a) The relative intensity parametélef)/lzl,, as func-
tion of photon energyrelative to the band eddg,,,), which leads

fields propagating along the growth axis of the quantum well. A
pure spin current is injected in the plane of the quantum well when

Cos (%w_ d)Zw) #0.

to the swarm velocity for the unstrained and 2% biaxially com-

pressed quantum wellgh) Swarm velocity of the injected carriers
for the unstrained and 2% biaxially compressed quantum well.

e X [d(K¥(k{)/dt]

SH(¢p)=

ki at ¢

> [d(IAKD))/dt]

0
ki at ¢

For photon energies close to the band gap, the injected
electrons are nearly 100% spin polarized, and as the light-
hole-like subbands start to contribute to the injection, the
degree of spin polarization drops to about 6QPtg. 6). If
the quantum well is compressively strained, the strain rear-
ranges the valence subbar(@g. 1) such that the light-hole
subband starts contributing to the injection at a much higher
photon energy; therefore a high degree of spin polarization
of the injected current is maintained for excitations well

17

A measure of the average spin polarization of the current igbove the band gap. The structure and trends that are present

then given by

1
Mavg:_

2w

or |, 46540,

in Figs. 5a) and b) can be understood by looking at con-
tributions made to the calculated quantities from the different
subbands of Fig. 1. The relative intensiy [Fig. 5a)] that
maximizes the swarm velocity diverges for photon energies
at the band gap; this corresponds to injecting carriers at the

We plot this in Fig. 6 as a function of the photon energy obett(;)m of the parabolic Ic:onductionhsubband, (;NhiCh would
the 20 optical field, at each photon energy for the relative PFO0UCE N0 average ve ocity. For the strained quantum

intensity parameteE that maximizes the swarm velocity.

well, from Figs. 8b) and 6, it is clear that one can inject
highly spin-polarized electrons with average velocity of a

—
—

\\

@44 ] [ unstrained

few hundreds of km/s.

B. Cross-linearly polarized optical fields

Figure 7 shows a configuration where the and 2w
beams are cross-linearly polarized, with thdield polarized
along the x and the @ beam polarized along thedirection,
Egs. (18). An electrical current can be injected along the
direction Eqg.(19), and is proportional to a sinusoidal func-
tion of the relative phase of the two field$/2— ¢,,, :

® 0.3 ] |——2% biaxial compressive strain o
S0.2 - E(w)=E(w)e' %X,
© 01
— i) w"
0.0 4 . ' . . : : E(2w)=E(2w)e' %20y, (18
0 20 40 60 80 100
- d(J -
oo (e ét>:2'm(77uxyxy)E(w)2E(2w) sin(2¢,— ¢2,)y.
FIG. 6. Degree of spin polarizatiofin units of #/2) of the (19

injected carriers in the plane of an unstrained and 2% biaxially

compressed quantum well as a function of the photon enetigy 2 There is also @ure spin current in the plane of the quantum
relative to the band gap energy,, .

well,

165348-11
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- ¥ o c 1

2z 254 || / o S 04

@ > o Y

g 2.0 \ & q200 o ¢ J

< 1] O 0.3
- 154 \* @ ;
° \+\ —e— unstrained 150 % o 02 ] —— unstrained
o 1.0 \\+ |+ 29 biaxi o 221 L ) .
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T 0.5 \’\‘\N:: 1l compressive strain T 914
K 100 :

0.0 T 1 T T T T T T 0.0
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o] 20 40 60 80 100

2he - E,, (MeV) 2he - E,, (meV) 2ho - E,, (meV)
FIG. 8. (a) The relative intensity paramet&=12/1,,, as func- ) o ]
tion of photon energyrelative to the band edgg,,), which leads FIG. 9. Degree of spin polarizatiaiin units of#:/2) of the pure.
to the maximum spin polarization of the injected carriers in theSPIN current injected in the plane of an unstrained and 2% biaxially
unstrained and 2% biaxially compressed quantum wésAver- compressed quantum well as a function of the photon enefigy 2
age velocity of the injected carriers for the unstrained and 2% bi'€lative to the band gap energ,, .
axially compressed quantum well.
To characterize the velocity of the injected carriers we

d(K*?) introduce a characteristic veloc@(gb) along the lines used
m =2uPVE(w)?E(20) coS(¢y,—2¢,,), (200  above for spin,

a spin current injected along thedirection with average (1,0

spin cu . : > d(IKD))/dt
spin pointing along the growth axis. No net electrical current K ats
exists in thex direction, but instead the translational motion ?((ﬁ)z ! ]
of the injected electrons is correlated with their spin, elec- Z A (K
trons with a positivee component of spin going in one of the e ; [d{n(k,))/dt]
+x directions, and those with a negatizecomponent of kpatd

spin in the other. This pure spin current has been experimen-

tally observed:” We focus on the pure spin curreri’? by  For this excitation geometry the integral wf( ¢) over all ¢
choosing the relative phase of the fields such fhab, Eq.  Vvanishes, but we can get a measure of the charactexistic
(19), andkxz, Eq. (20), is maximized. Since there is no spin component of the velocity of injected electrons by evaluating
population injection due to one- and two-photon absorptions,

the interference between theand 2 excitations gives rise 1 (=2 _
to anodd (underk,— —k;) spin population injection distri- U)éhar:;f lzvx(¢)d¢- (22
bution in k; space, which clearly corresponds to opposite i
average spin of the oppositely injected carriers. The suscep- ) o . )
tibilities 7Y and u*Y*that describe the electrical and spin _F|gure 8 shows this characteristic velocif®2) of the in-
currents are presented in Figs. 3 and 4. jected electrons.

. = . From Fig. 9, it is clear that for photon energies close to
The integral ovexp of S°(¢), Eq. (17), vanishes here, but .the band gap, the injected pure spin current is highly spin

\évl?rrgﬁ? bc;/h?hrzcgz::riet?eer spin polarization of the pure SIOIrE)olarized with a degree of spin polarization of about 85%; as
the light-hole-like subbands start to contribute to the injec-
tion, the degree of spin polarization of the pure spin currents
, 1 (=2 — = redl_Jces to apout 35%. If the quantum wgll is comprggsively
polzgf_wlz[s (¢)—S(p—m)]de. (21)  strained, a high degree of spin polarization of the injected
pure spin current is maintained for excitations well above the
gap. Once again, from Fig.(I® it is clear that the injected
The relative intensity paramet& that leads to maximum pallistic electrons can have an average velocity of a few hun-
degree of spin polarizatio,,, Eq.(21), is shown in Fig.  dreds of km/s, and this velocity decreases as photon energy
8. The degrees of spin polarizatidnfm,, Eg. (21), of the  reaches the band gap value. The absolute values of average
injected spin current for the unstrained and 2% compresvelocity (22) and spin polarization(21) of the right- and
sively strained quantum wells are shown in Fig. 9 at theleft-moving electrongalong the direction of injectionare
value of the relative intensity parameter that maximizes it. calculated to be identical.
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FIG. 10. Schematic illustration of circularly polarizéf{2w) 2% - E , (meV) 2he - E_, (meV)

and linearly polarizedE(w) optical fields propagating along the
growth axis of the quantum well. A spin-polarized electrical current  FIG. 11. (a)The relative intensity parametErEIf,/I », @s func-

is injected in the plane of the quantum well. tion of photon energyrelative to the band edgg,,), which leads
o _ o _ to the maximum spin polarization of the injected carriers in the
C. 2w is circularly polarized and e is linearly polarized unstrained and 2% biaxially compressed quantum wéslsAver-

In this section the configuration shown in Fig. 10 will be age velocity of the injected carriers for the unstrained and 2% bi-
discussed. The @ beam which induces one-photon transi- 2Xially compressed quantum well.
tions is circularly polarized and the beam which is respon-
sible for two-photon transitions is linearly polarized along spin currents are larger when the spin-polarized electrons are

the x direction Eqs.(23): injected in thex direction; this current is maximized when
the relative phase parameter satisfies cdsg {2¢,,)=0. In
E(w)=E(w)e'?oX, our calculations we use,,=1.
From examination of the injection of spin and carriers in
(X+ @pyiy) k; space, Egs(13), it is found that the injected electrons in
E(2w)=E(2w)e'%20 T (23 opposite directions have opposite average sgainting

along the growth axjs We use Eqgs(21) and(22) to charac-

where a,,=+1. A spin-polarized electrical current is in- (€rize the degree of spin p°|ar'zat'°Mpo|: and average
jected in the plane of the quantum well. It is important to Velocity vgy,, of the injected carrlers Figure 11 shows the
note that since the field is polarized along the direction, ~ relative intensity parametéE=12/1,, that maximizes the
there is an asymmetry in the plane of the quantum well withspin polarization of the carriers. The corresponding average
respect to thet andy axes. That is, the injected currents havevelocity of the injected carriers for the unstrained and 2%
different characteristics depending on whether the relativdiaxially compressed quantum well is shown in Fig. 11. The
phase parameter?, — ¢,,, is chosen such that the current is maximized degree of spin polarization of the carriers is
injected in thex or y direction. The injected electrical current shown in Fig. 12.
density is described by Once again, for photon energies close to the band gap, the
injected electrons are spin polarized. But the degree of spin
polarization is only about 55%, and it falls to about 30% as
the photon energy is increased. In the case of compressively
strained quantum well the degree of spin polarization of the
d(J%) » , injected current is maintained for excitation energies well
ac azw\/ilm( 7V NE(0)°E(2w) coS(2¢,,— ¢oe,), above the gap. For both the unstrained and strained quantum
wells, the injected ballistic electrons can have an average
while the injected spin current density is described by velocity of a few hundreds of km/fg=ig. 11(b)].

d< ) \/—Im xxxx w)ZE(Zw)Sln(2¢w ¢2w)

d<KXZ> )
ST V20, S PVE(0)?E(20) SiN(2¢,— ¢).,), D. Other possible experimental configurations

There are numerous other experimental configurations
d(KY?% that can be used to inject electrical or spin currents with

BT —\2ufYVE(0)%E(20) cOS(2¢,— ba,).- different properties. Here we only mention a few.
In the configuration where the field is circularly polar-

From Figs. 3 and 4, it is clear that for both the unstrainedzed E(w)=E(w)e'?o(x+ a,iy)/\2 and the 2 field is lin-

and strained quantum wellg " w)[>| 7" (w)| and  early polarizedE(2w) = E(2w)e'#20x, a spin-polarized elec-
[P w)|=> | 1f? )| Therefore the net electrical and trical current is injected in the plane of the quantum well.
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0.6 rection of injection can be coherently controlled via the rela-
: \‘\ M tive phase of the optical fields. The spin currents can be
0.5 injected with or without an accompanying electrical current.
\ Different polarization and direction of propagation of one or
044 ‘\ b_oth optical figld_s allow many_diffe_rent possit_)ilities of ir_1jec-
. tion characteristics such as direction and spin properties.
] \ The properties of the injected electrons in the plane of a
0-34 GaAs quantum well were characterized. The average veloc-
T ity with which electrons are injected can be a few hundreds
0.2 | of km/s, comparable to the swarm velocities with which

—— unstrained electrons can be injected in bulk GaAs as ¢éll.
The degree of spin polarization of the injected spin cur-
rents in a quantum well is significantly higher than in bulk
oodp - OO OO GaAs and can be close to 100%. This is due to the splitting
0 20 40 60 80 100 of the heavy- and light-hole subbands by dimensional con-
2ho - E, (meV) finement of the quantum well. This splitting can be main-
tained for energies well above the band gap in the presence
FIG. 12. Degree of spin polarizatiofin units of #/2) of the  of strain, which can result from lattice mismatch across the
injected carriers in the plane of an unstrained and 2% biaxiallypoundaries of the quantum well. The effects of a 2% biaxial
compressed quantum well as a function of the photon enetgy 2 compressive strain on the injected electrical and spin currents
relative to the band gap energ, - were detailed. The rearrangement of the quantum well sub-
. bands due to strain results in a high-spin polarization of the
The current injected along is described)*={Im(#7"**)  injected spin currents for photon energies well above the
—Im(7"Y)}E(w)2E(2w) sin (24, — ¢,,) With its spin po-  band gap. For an unstrained quantum well and photon ener-
larization described byK*?=—\2a,u”YVE(w)?E(2w)  9ies close to the band gap, the velocity of the injected elec-
sin (2¢,,— ¢,,), the spin-polarized electrical current in tje  trons is low, but the degree of spin polarization is highest; as

T : W Xyx 2 the photon excitation energy increases, the velocity of the
direction is described by 2a,Im(77;") E(w) "E(20) injected electrons increases, but the degree of spin polariza-

€OS (2b,— #2,), and K¥*= —{* = "E(w)?E(20)  tion decreases. We found that in the case of a biaxially com-
COS (2b,— $2.,)- pressed quantum well one can have both high injection ve-
In the configuration where two colinearly polarized field |ocities, of the order of a few hundreds of km/s, and a high
E(w/20)=E(w/2w)e'-2:x is incident on the quantum degree of spin polarization as well. This provides a unique
well, the electrical current due to interference of theand  opportunity for studying charge and spin transport in unbi-
2w beams is in thex direction, J=—2Im[7""(w)]  ased semiconductor nanostructures. The issues addressed
E(w)%E(2w) sin (26, — ¢»,,)X, While there is a pure spin cur- here can be extended to other nanostructures, such as quan-
rent with average spin pointing along the growth axis andum wires.
injected alongy; this pure spin current is represented by

KY?=2u[*VE(w)?E(2w) cOS (2b,— ¢2.). ACKNOWLEDGMENTS
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