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Quantum phase transitions in dissipative tunnel junctions
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The Ueda-Guinea model of a dissipative tunnel junction is investigated. This model accounts for final-state
effects associated with single-electron tunneling. A quantum phase transition emerges, marking a boundary
between insulatingCoulomb blockadeand conducting phases. The system is analyzed by Mrgehniques,
self-consistent harmonic approximation, and Monte Carlo methods.
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I. INTRODUCTION 10 (a6
S[¢(S)]=ZJ ds(g

2 L L
+af dsf ds'K(s—¢s')
0 0 0

2—¢€

()

Over 30 years ago, Mahanand Nozieres and
_deDominici§ p_redicted the existence of_power-law behavio_r X {1—cog¢(s)— ¢(s'))}. 2)
in the absorption edges for x-ray transitions in metals. This
phenomenon is due to the influence of a suddenlyrhe kernelk(s—s') is given by
switched-on potential, due to tliscreenejlcore hole, on the
electrons. There are two aspects to this physics. One is the - 78|
orthogonality catastropRedue to the change of electronic K(s)= —csc(—)
wave functions in the presence of the core hole. The other is L L
formation of an excitonic resonance between the liberated i ) ) )
electron and the core holé. Recently, several authors Here,LzEc/szT is the dimensionless inverse temperature
have noted the relevance of such nonequilibrium effect@nd @=g-/4m*, whereg.. is the h2|gh-temperature conduc-
to mesoscopic systems such as tunnel junclibnand tance of the junctioff in units of e2/h. The BMS model is
quantum dot<:8 recovered fore=0. The parametes is a sum over contribu-
: _ Pe ¢ > 5
The model we will study has been described in the recentions from the two bankg=L,R, with €;= —(5;/m) duze to
work of Basconest al.,? based on the original work of Ueda the orthogonality catastrophe awg=(246/)—(6;/m)° if
and Guined. Briefly, we consider a junction consisting of €xcitonic effects are relevant. _ o _
two banks, left(L) and right(R), each described by a non- When.the tunneljunct|on is placed in series with a capaci-
interacting Hamiltonian of the form,,=3e (k) Cl Cr tor, forming a single-electron bdx,the external charge en-
where =L,R. The tunneling between these banks is de.vironment is accounted for by a topological term in the ac-
scribed by Hyme —t €4Sy 1 Clrcir +H.c. The phase fO" 0(2)/’2 A.S“’ﬁ: _'27dT'I VWM]B wr;e;]e V\é[d)] :f.[¢(|‘)
variable ¢ is a collective coordinate conjugate to the charge (;'Sl'(he)]mozg its Z\\;\g?si:)nngo?l:rqqe Slgiou:tois d?;; ;E'][[iy\?e uan-
transferQ between left and right bankgQ, e *1=e'?. As- tum rotor** The e=0 case has bgen studiedpb se?/eral
sociated with this charge transfer is a Coulomb enéry 515_'19 ) " y
—(Q— Quee) 2/2C, WhereC is the capacitance an@ gy authors. P_hysmal quantities are smoothly (_jggendent on
= e accounts for the charge environment of the junction.” gng there is no ph?seTtr_agsmﬁn at tany ft'mt . For e ¢
Finally, the interaction between electrons and the gIobaF » Nowever, a quantum (._ ) phase transi |on_t|£ presen
charge is written &80 at a_crltlca}l valuec_zc(e), as first n_o_ted by_ Kosterlitz: Here,
we investigate this phase transition using a laxgexpan-
sion, the self-consistent harmonic approximation, and finally
Monte Carlo simulations.

Hint=(Q— Quttsed > U/ ChaCicra - (1)
k.k", «
II. LARGE- N THEORY

The fermionic degrees of freedom are quadratic in the The largeN generalization of this problem was first dis-
Hamiltonian H=H, + Hr+ Hunner Ho+ Hint, and can be cussed in an unpublished work by RefrConsider the ac-
integrated out! leaving an effective model whose only dy- tion
namical degree of freedom is the phase fiedd When
Uy =0, the resultant effective action is that obtained by L (1/4n\?

Ben-Jacob, Mottola, and SchéBMS).* This approach im- S[n(S).)\(S)]=f dS[z(g +N()(n*(s)—gN)
plicitly assumes that the energy-level spacing in each of the

banks is small on the scale of the charging eneky 1 L L
=e?/2C and temperatur&gT. When the effects ot are + Eaf dsf ds'K(s—s")n(s)—n(s')|?,
accounted for, one obtains a modified Euclidean BMS action 0 0
of the forn® (4)
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where n(s) is a realN-component vector. The field(s)
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serves as a Lagrange multiplier, which enforces the con-

straintn?(s)=qN for all s; typically we takeg=1/N, so the

n field is of unit length. WherN=2, one can eliminate the

constraint with the parametrizatior= (cose,sin ¢), whence
one recovers the action of E).

In the N—oo limit, the action becomes dominated by the

saddle poinf(s)=N\, a constant function. Then one has

S=>, %wﬁﬂwa[k(m—mwn)] IN(w,)|2—gNL\,
' 5

wherew,=2mn/L is a bosonic Matsubara frequency and

1

n(s)= ﬁ% N(w,)eons, (6)
- L )
K(wn)zf ds K(s)e'“nS, (7)
0

The saddle point theory is thus a Gaussian theory, with cor-

relation functions
(ni(s) nj(s"))=G(s) g

1 e*iwns

G(S)Z Z

1 . (8
Zw§+x+a[K(0)—K(wn)]
Extremizing the free energly = —L‘lTrﬁexp(—S{ﬁ]) with
respect to\ yields the equatiorG(0)=q, which is to be
solved forh(a,L).

In the zero-temperaturd.(— =) limit, o,— » becomes a

continuous quantity anl(0)—K(w)=C_|w|*"¢, with

v

1 .
r- E)CO{E’ITE)

Ce= 9

Straightforward analysis of the integral shows thavan-
ishes fora>a(€), where

1 2Ae 1+e€
ac(G)ZE poreps (10
A _fw at (11

< Jo 14tre

From lim_ A.=1 and C._o=m, we find, restoringq
=1/N, that for smalle the critical point occurs atry(e)

with
A_/B v
De: 21—5CE € 2/1+€ € € ) '
[ ad(€)] (1+e)ade)
Bez fo W if 0$E<§

€ fw dt )
- 2¢e—1]9 (1+t1+5/2€71)2 2
wherev=max(1e¢ 1—1).

A. Kubo Formula

WhenN=2 the symmetry group O(2) has a single gen-
erator, hence there is one vector potential. For the
O(N)-symmetric case, a local gauge is effected rig)
—R(s) n(s), whereR(s) e O(N) is given by

R(s)=exdiA,(s)T?], (14

where the T generate the Lie algebra N]. ThesesN(N
—1) generators arbl X N Hermitian antisymmetric tensors;
they may be chosen to satisfy the normalization i)
=N 6*". (ForN=2, the sole generator isT¢”.) There are
therefores N(N—1) vector potentialsh,(s), variation with
respect to which defines the ) currents

OSind A(s)n(s) ]

5Aa(S) |A:O

l(s)=

=2iank(s)T‘,;‘|J0Lds K(u—s)n(s) (15

and the noise current-current correlation function

] Sk
(TISMON= 5A (516A00) |, .

=2Nas?? 5(s) foLdu K(u)G(u)—K(5)G(9)|.

(16)

The conductancén units ofe?/h) is computed according to
the Kubo formule?®

i 2m (L {wnS n n
gab(lwn)=w— 0dsé nS(T10(s)15(0)). a7
n
We defineg(iw,) by g.,(iw,)=Ng(iw,) 54, We have no
expression for the analytic continuation of the conductance
to real frequencies. As a diagnostic of any phase transition,

group result of KosterlitZ! «X%(e)=(N—1)/2m%¢. Note
that these results agree to leading order .1/

Further analysis reveals the critical behavior\diw) in
the vicinity of the critical point:

Ma)=D Jade)—al”, 12

4720 (L

€ rL
Oa=—T (;) fodssinf(ws/L)(COS(qS(S)—¢(0))>-
(18)

A similar expression was proposed by Bascoeeal.®
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S

At the quantum critical point, we can evaluate do (
—0) limit of g(i 0,2, T=0). We obtain

gc=m(1— G)Ctn(%’ﬂf . (20

Note that while the critical coupling, is q dependent, the
critical conductanceg(€) is universal and independent @f
The approximationg/, andgg also take on universal values

at criticality:
1fwd0 sinég
7)o 6

=

Ill. SELF-CONSISTENT HARMONIC APPROXIMATION

9a= Xgc(e), (21)

1+e

Jg= Xgc(€). (22

The fully nonlinear theory with action

d

Js

2 L L
+aJ' dsJ’ ds’' K(s—s')
0 0

X[1—cog¢(s)— p(s))] (23

is replaced with a trial Gaussian theory described by th
guadratic action

L 1
Sto(s)1- [ ds;

1L L
Sol #(s)]1= EJO dsfo ds’ V(s—s")[(s)— ¢(s')]?

1 A -
5 2 G o)l d(wn)]? (24

where

_r
2[V(0)—V(wy)]

Glw,)= (25

V(s), or equivalentlyG(w,), is treated variationally, so we
extremize by setting

1
{Fo+ E<S—so>o] (26)

&é(‘”n)

whereFy= — L‘lTr¢exp(—S)[¢]). This leads to the follow-
ing self-consistent equation:

1
é(“)n) -

1 L
2w§+2af dg1—coq w,s)]K(s)['(s),
0
(27)

where
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FIG. 1. Solution to the largdt model at finiteL with €e=0.25
(top) and €=0.75 (bottom). \ versusa for L=8, 32, 128, 512
(thin lineg andL =00 (thick line). a(e=0.25)=0.5619, andx.(e
=0.75)=0.1226.

1
F(S)EeXp( —5{[d(8) - ¢(O)]2>o>
2 o .
=ex —EnZl[l—coSwns)]G(wn)). (28)

We iterate these equations to self-consistency.
The dimensionless conductangg(a,L) is plotted fore
=0.1 and 0.2 in Fig. 1. As the dimensionless inverse tem-

FberatureL is increased fromL=16 to L=256, the curves

apparently cross at a critical poiat,(e). For > «,, the
conductance increases as the temperature is lowered, indicat-
ing a conducting phase. Fer<ea., the conductance van-
ishes as the temperature is lowered, i.e., the Coulomb gap
survives. For larger values af, however, a spurious first-
order transition preempts this critical behavior, as shown in
Fig. 2. The solution to the SCHA is hysteretic, and discon-
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FIG. 2. LargeN results foraye) (solid) compared with the

Kosterlitz RG valueaX®=1/27%¢ (dashedl Inset: critical conduc-
tanceg.(e) within the largeN approximation, withN=2.
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tinuous, provided. is large enough. Foe<0.6, however, 1
this discontinuity becomes apparent only at relatively low o(s)=— 2’ o(wy)ens, (37)
temperatures 1< &. JL &

IV. COULOMB GAS REPRESENTATION where 7 is a constant andV is the winding number. The
prime on the sum denotes exclusion of tire 0 term, which
AND MONTE CARLO : .
is accounted for byy. The bare action is then
Including the offset charge, the Euclidean action for our

system isS= Sy+ Sjpi+ Sip, Where SOZWZWZ N % 2 ’wﬁ|fp(wn)|2. (39)
L (a2 “on
Soldl=7 f (as) ’ (29 Thus,(|@(wp)|?)o=2/w?, and
L L 1
sm[¢]=—af dsf ds’ K(s—s')cod ¢(s)— 4(s)], C(s)=5([#(s)=e(0)])o
0 0
(30 é 1- cos{Zvrns/L)
Siop= —i1V[p(L) — ¢(0)]=—27ivW[ ¢], (31) =

whereW[ ¢]=[ ¢(L) — ¢(0)]/27 is the winding humber of S
the phase field. In the phase representation, the topological = 5( 1- [>
term represents a purely imaginary contribution to the action.

However, in the Coulomb gas representation, the action reyhere the subscript indicates that the expression is to be

mains purely real. periodically extended from its value on the interval
We have discarded a formally divergent constant from ourc[0,L.]. Summing over the winding numb&Y and averag-

, (39

per

action ing over ¢(s), we obtain theN-dipole pair Boltzmann
. weight,
AS:LJ ds K(s), (32 N
0 N B aN .
, N , on(st . - su) =Ll K(sf =s))
which may be rendered finite through an ultraviolet regular- =l
ization ofK(s), viz.
_ e Xex{ 2 oo C(s —s )]
b(s) [—CS(< )[1 e -L SIn(wSl/L)/ﬂ'b]] , (33) ;iy
50 that ,(0)=b~ (-9, 193(77P/L‘ij’7TV|I7T/L) | 40
The partition function for our problem is given by ¥3(0i /L)
w whereP is the total dipole moment,
E(V)=Eo< eiu[¢(L)’¢(0)]E Nl( Sint) > (34) N
=0 _
0 Pzgl(sj*—sj ), (41)
_:OE N0 f dSNH K(s' —s]) and 95(z| 7) is the Jacobi‘)_fun_ction_.26
We now use thaj-function identity
x| gL g=ive(0)gi = [¢<s;>—¢<s;>]> i\v2 zl 1
<e T e o (39 Oa(z)=|=| e Pyl —=|-= (42)
i . : i T T T
where the average is with respect to the bare a@jprirhis
allows us to transform the complex acti¢iue to the topo- to obtain
logical tern) in the phase representation to a purely real ac-
tion in a dipole gas representatiGhThe coordinategs, } n o, @ IT K(s s
are interpreted as locations of positive and negative charges. On(Sy, .- SN = mjzl (sy —sp)
Each factor of ¢S,) introduces another pair of such
charges, i.e., a dipole. We now write the fiekds) as a sum H(P+vl) 6 1,
of winding plus a periodic pieces: H_(0) €
27Ws 36 (43
= +n+
¢(s) L 7t Es), (36) whereU is given by
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LRI I AL BN L is neither integer nor half-odd integer. Furthermore, the Cou-

6 o 7 lomb interaction is effectively cancelled whet 3.
g 4 [ 7 The XY phase correlation function
~ F ]
ook - G(s)=(¢' #(s) e—l¢(0)> 47
0 ] is simply related to the dipole separation correlation function
0 0.2 0.4 0.6 0.8 1
10 T T T I T T T | T T T | T T T

N
h(s):<21 5(sr—s;—s)>. (48)

To see this, define the quantity

g,/
o ™A O @

(S ninnnm

QN(T+,77)=(N+1)fOLdSIfoLdsl’. . fOLdS'GJOLdS'Q

X ON+1(S] ,S1 » + - - Sy SN T T ). (49
FIG. 3. Results of the self-consistent harmonic approximation TR NN

for e=0.10 ande=0.20, with dimensionless inverse temperature Then one has
L=16, 32, 64, 128, and 256. The crossing of the curves at a single-

point indicates a second order phase transition. 1 & L
aK(8)G(s)= = > f d7Qn(7+s,7)=h(s).
L= =0 Jo

(50

What is computed in the Coulomb gas Monte Carlo calcula-
tion is the dipole separation correlation functidr(s),
and from which the XY phase correlator is obtained via
G(s)=h(s)/aK(s). The conductance is then obtained
using Eq.(18).

1 '
U=-— > > a'a"|SJ‘T—S]-U, (44)
i’

’
oo

HL(Y)=15‘3(iY|iL/7T):m;x e ™Mle 2™, (45 The renormalized charging energ is given by
and where the location of each charge is restricted to the EX 10°F
interval sy e[0,L], so thatP e[ —NL,NL]. E_szﬁbzo
Interpreting Eq.(43) for v=0, we have that the system
consists of a gas dfl dipole pairs. Each of theX charges L/H/(P) H{(P) 2,
interacts with every other charge according to a one- =12\\P P H.(P)| ™ (P9 (51

dimensional Coulomb potentiat oo’|s—s’|. In addition,
each charge is logarithmically attracted to its unique mate—Note that when the dipole fugacity vanishes, there are no
the other member of its dipole pair—via a potentigf(s) pairs at all and one obtains

—InK(s)=(2—¢€)In|g. For »+#0, there is an additional
electric field of strength 2 presenta is the dipole fugacity; E¢ L H{(0)
a—0 will suppress the appearance of dipoles. Hence, in the E_C"’:O:l_ 2 H(0)’ (52)
absence of any short-time cutoff, short-distance dipole
pairs will proliferate without limit. A simple estimation of Which also follows from an analysis of the noninteracting
the dipole density, ignoring the Coulomb interactions, isHamiltonian,_,=E,(n+ »)2. In this case, the renormal-
ndip~b*(1*5)/(l—e). In our Monte Carlo simulations, we ized charging energyE} interpolates between its low-
have used=1; the essential physics is rather weakly de-temperature value ¥ =E, and its high-temperature limit
pendent orb, though. Grand canonical averages are to begy EX=0.
computed in the usual way, i.g.A)=Tr(¢A)/Tro, where
the trace entails a sum over all possible numidécs dipole
pairs and integration over theiM\2charge coordinates.

In Fig. 3, we plot the Coulomb energy for a single-dipole ~ Typical raw data forga(e,L) are shown in Fig. 4. Two

A. Results

pair, phases are identified for every positive valuesof smalla
insulating phase in which the Coulomb gap persists gnd
Hi (s+vlL) decreases ab—0 (L—), and a largex conducting phase

Ve(s)=|s|+In H—(())+2VS (480  in which g, diverges asT—0, indicating a nonlineat-V

relation atT=0. The boundary between these phases is
as well as the total dipole energy-(s)+Vqy(s) for »=0, marked by a critical valuer(€), at which there is a quantum
v=%, andv=1% for L=5 andL=25. Note how the interac- phase transition. Atr= ., the conductance becomes tem-
tion becomes asymmetriget still properly perioditwhenwv perature independefyprovidedT is low enough that the sys-
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FIG. 4. Results of the self-consistent harmonic approximation
for e=0.30 ande=0.40, with dimensionless inverse temperature
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8

0.3 035 04

o o

L=16,32,64,128,256. For high temperatures, the curves seem 10 f|G. 6. Coulomb gas Monte Carlo results for conductance
cross at a single point. However, a spurious first-order transitiorbA(a) at L=10 (filled triangleg, L=20 (open squargs and L

intervenes at a low (largel).

=40 (filled circles for €=0.30 (left pane) and e=0.50 (right

pane). A critical point marks the boundary between a higlcon-

tem is in the scaling regimeMonte Carlo results foe(€)
andg;(e€) are presented in Fig. 5, along with comparisons to
SCHA and largeN results.

Our results fora(e) differ significantly from those of
Basconeset al.,® who obtaineda, through analysis of the
renormalized charging energy, assuming’ (a)~(a.

— &)Y, [Our values fora(€) are approximately four times
smaller throughout the range<Ge<1.] In fact, we find that

our raw data folE} /E. versusa are in good agreement with
those of Basconegt al?’ This agreement is noteworthy

ducting phase and a low insulating(Coulomb blockadephase.

relatively low temperatures of L~ 1/32, extrapolation o#
based on the zero-temperature critiGeé., power-law be-
havior is problemati¢Fig. 8). Indeed, for a fixed 1/, vary-
ing « takes the system through renormalized classical, quan-
tum critical, and quantum disordered regim®sand the
single parametet = behavior of\(«) is insufficient to
extracta,.?®
Finally, we plot conductanceersuscharge offsetv for

since their Monte Carlo was carried out in the phase repree=0.2 ande=0.8 in Figs. 9 and 10, respectively. Two values
sentation, whereas our is in the Coulomb gas representatioff a on either side ot are chosen, corresponding to oppo-

However, it is very difficult to reliably extrack. from the
charging energy data, as our results shown in Fig. 6 show. At
a temperature correspondinglie- 50 (Ref. 9 or L =40 (this
work), there is no detectable signature of the phase transition
at = a.. A similar behavior is found in the largs-results

of Fig. 7. In the largeN theory, A («) plays the role of an
energy gap, similar t&} . As is evident from Fig. 1, even at
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FIG. 7. Critical couplinga(€) (top) and critical conductance
gx(€e) (bottom), comparing data from Monte Carl@pen squares,
with error bar, self-consistent Harmonic approximati¢filled tri-
angle$, and largeN (smooth curve calculations. As discussed in

the text, the SCHA yields a discontinuous transition at the lowest

FIG. 5. Single pair potential¥/(s) and V(s)+Vq(s) for v
=0 (solid), v=0.25(dasheg, andv=0.5 (dot-dashe Upper pan-
els havel =5; lower panels have=25. In all case©=0.2.
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temperatures; the SCHA results shown are obtained from crossings
of conductance foL. <64. The dashed line in the top figure is the
Kosterlitz RG resultaR®=1/272%€.
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0 C Il 1 1 | 1 $ - >t v
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o FIG. 10. Conductancg, versuscharge offsetv at e=0.8 for

a=0.025(top panel and = 0.10 (bottom panelat dimensionless
inverse temperaturds= 10 (filled triangleg, L =20 (open squargs
and L=40 (filled circles. The critical coupling for »=0
is a=0.07.

FIG. 8. Dimensionless renormalized charging eneEfy/E.
versusa at L=10 (filled triangleg, L =20 (open squargsandL
=40 (filled circleg for €=0.50 (top panel and €=0.80 (bottom
pane). Arrows indicate the location of the phase transition as ob-

tained from crossing of conductance curves. 1 . . . .
=3, the inverse charging energy is known to diverge very

_ _ . weakly® While the experiments of Joyest al3! seem to be
site temperature dependencesat0. We find a curious perfectly consistent with the more familiar=0 behavior,
double peak structure in the vicinity of=3 at higher tem-  anomalous temperature dependence in the troughs has been
peratures, but it disappears Bs-0. Forv=3 ande=0.8,  gpserved in the conductance of quantum ddethough it is
the conducting state prevails even at small values.othis  hardly clear that the nonequilibrium effects which we con-

feature is emphasized in Fig. 11, wheyg(a,v=3) is con-  sider are uniquely responsible for this phenomenon.
trasted fore=0.8 ande=0.1. Fore=0.8, a conducting state

is observed down to values afas small as 0.01, well below
the v=0 critical value ofa.=0.07. Hence, it is possible for
the junction to exhibit opposite temperature dependences in Nonequilibrium shakeup processes have the potential to
the troughs ¢~0) and peaks §~ 3) of the conductance as drastically affect the physics of tunnel junction behavior, by
the gate voltage is varied. This result is to be contrasted witlallowing for a conducting phase in which the Coulomb
the behavior ak=0.1, where the conductance &= 0.5 is  blockade is completely suppressed. The phase transition is
very weakly temperature dependent. IndeedsaD andv ~ made manifest within a largs- approach, although it was
first predicted over 25 years ago by Kostefttn his renor-

V. CONCLUSIONS
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FIG. 9. Conductancg, versuscharge offsetv at e=0.2 for FIG. 11. Conductanceversus coupling « at charge offset

=0.2 (top panel and «=0.5 (bottom panel at dimensionless in- V:% for €=0.80(top) ande=0.1 (bottom), for L=5 (open down-
verse temperatures= 10 (filled triangleg, L=20 (open squargs  pointing triangley L=10 (filled triangle3, and L=20
and L=40 (filled circles. The critical coupling forv=0 is (open squargs For reference, atv=0, ae=0.8)=0.07 and
a.~=0.44. a(€=0.1)=0.66.
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malization group studies of ) classical spin chains with The Poisson bracket ¢t andB is defined by
long-rangedpower-law interactions. We have applied three

methods in studying the phase transition: lakg@pproach, L 6A 6B A

self-consistent harmonic approximation, and Coulomb gas {A'B}EL ds( SP(s) 8¢p(s) Sp(s) oP(s))’ (A2)
Monte Carlo. The results from all three methods are in good

qualitative agreement with each othsee Fig. 7, and the  and the average of a function8[ P(s), #(s)] is
agreement between SCHA and Monte Carlo is unexpectedly

good, given the crudeness of the SCHA and its neglect of the

proper topology of the phase field. f Dpf DPA[P, ple SIP9

The phase transition has two principal signals. First, the (A)= _ (A3)
renormalized charging energ@y} vanishes fora=a.. Sec- f DPJ D e~ SIP¢)
ond, while the conductance vanishes éox «; and diverges

for > a., precisely at the transitiog.= g(«,) is finite and . .

universal (although e dependent Extracting the critical Note that whenA is a functional of¢(s) alone, the func-
value @, from numerical data at finite temperature can belional integral over the momentum fielé(s) cancels be-
tricky, we have found. In particular, the renormalized charg-tween numerator and denominator, i.e., we recover the modi-

ing energy shows little signal at. even at dimensionless f1€d BMS model.

inverse temperatures of the order lof= E./kgT~40; this The Bogoliubov inequality guarantéés
behavior is borne out explicitly in our larde-studies. It is
more reliable to obtairy, from the crossing of the conduc- [({C,A*})|?
(A*Ayz ———— (A4)

tance curveg(a,L). {c.ic*,s)

An extension of the model investigated here to the case of ' '
granular systems has been recently considéted. for an arbitrary functionaC[ P, ¢]. Following Smanek, we

take
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L _
APPENDIX: ABSENCE OF LONG-RANGED ORDER C[P,¢]= f ds P(s)e '“n®, (A5)
0
FOR €=0

Applying _Mermin’s classic Bogoliubov inequality wherew,=2an/L is a Matsubara frequency. ln—oe limit,
arguments* Simanek® has proven the absence of long- the Bogoliubov inequality then establishes the following
ranged order in the &f XY chain. Here, wetrivially) ex-  identity:
tend Smanek’s work to the continuum, and show how the

e€=0 case is marginal, i.e., absence of order cannot be so * dw m?2
proven for;>0_. _ o bt 07t 2aC.) ll_ésl, (AB)
We begin with an action 2 W @l @

where m=(cos¢(0)) is the average magnetization density.
When e=0, the integral diverges as m?In(hm), hence the
inequality demandsn=0 whenh=0, i.e., no long-ranged

L [1 1
S[P(S),¢(S)]=fo dS[EPZ(SHZ(&ssé)Z—h005¢(s)

L L ) order. However, the case=0 is marginal, and for ang
+af0 dsfo ds' K(s—s') >0 the integral is convergent whén=0. While this does
not rigorously prove the existence of an ordered phase for
X{1—cog ¢(s)— &(s')]}. (A1) €>0, itis at least consistent with our findings.
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