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Quantum phase transitions in dissipative tunnel junctions

Scott Drewes,* Daniel P. Arovas,† and Scot Renn‡

Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
~Received 21 January 2003; published 29 October 2003!

The Ueda-Guinea model of a dissipative tunnel junction is investigated. This model accounts for final-state
effects associated with single-electron tunneling. A quantum phase transition emerges, marking a boundary
between insulating~Coulomb blockade! and conducting phases. The system is analyzed by large-N techniques,
self-consistent harmonic approximation, and Monte Carlo methods.
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I. INTRODUCTION

Over 30 years ago, Mahan1 and Nozieres and
deDominicis2 predicted the existence of power-law behav
in the absorption edges for x-ray transitions in metals. T
phenomenon is due to the influence of a sudde
switched-on potential, due to the~screened! core hole, on the
electrons. There are two aspects to this physics. One is
orthogonality catastrophe3 due to the change of electron
wave functions in the presence of the core hole. The othe
formation of an excitonic resonance between the libera
electron and the core hole.1,2 Recently, several author
have noted the relevance of such nonequilibrium effe
to mesoscopic systems such as tunnel junctions5,4 and
quantum dots.7,6,8

The model we will study has been described in the rec
work of Basconeset al.,9 based on the original work of Ued
and Guinea.5 Briefly, we consider a junction consisting o
two banks, left~L! and right~R!, each described by a non
interacting Hamiltonian of the formHa5(k«a(k) cka

† cka ,
where a5L,R. The tunneling between these banks is d
scribed by Htunnel52t eif(k,k8ckR

† ck8L1H.c. The phase
variablef is a collective coordinate conjugate to the char
transferQ between left and right banks:@Q,eif#5eif. As-
sociated with this charge transfer is a Coulomb energyHQ
5(Q2Qoffset)

2/2C, whereC is the capacitance andQoffset
[ne accounts for the charge environment of the junctio
Finally, the interaction between electrons and the glo
charge is written as5,9,10

Hint5~Q2Qoffset! (
k,k8,a

Ukk8
a cka

† ck8a . ~1!

The fermionic degrees of freedom are quadratic in
Hamiltonian H5HL1HR1Htunnel1HQ1Hint , and can be
integrated out,11 leaving an effective model whose only dy
namical degree of freedom is the phase fieldf. When
Ukk8

a
50, the resultant effective action is that obtained

Ben-Jacob, Mottola, and Scho¨n ~BMS!.11 This approach im-
plicitly assumes that the energy-level spacing in each of
banks is small on the scale of the charging energyEc
[e2/2C and temperaturekBT. When the effects ofHint are
accounted for, one obtains a modified Euclidean BMS ac
of the form5,9
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S@f~s!#5
1

4E0

L

dsS ]f

]s D 2

1aE
0

L

dsE
0

L

ds8K~s2s8!

3$12cos„f~s!2f~s8!…%. ~2!

The kernelK(s2s8) is given by

K~s!5FpLcscS pusu
L D G22e

. ~3!

Here, L5Ec /kBT is the dimensionless inverse temperatu
and a5g`/4p2, whereg` is the high-temperature conduc
tance of the junction12 in units of e2/h. The BMS model is
recovered fore50. The parametere is a sum over contribu-
tions from the two banksj 5L,R, with e j52(d j /p)2 due to
the orthogonality catastrophe ande j5(2d/p)2(d j /p)2 if
excitonic effects are relevant.

When the tunnel junction is placed in series with a capa
tor, forming a single-electron box,13 the external charge en
vironment is accounted for by a topological term in the a
tion ~2!, DStop522p in W@f#, where W@f#5@f(L)
2f(0)#/2p is the winding number of the phase fieldf.

The model is a version of the ubiquitous dissipative qu
tum rotor.14 The e50 case has been studied by seve
authors.15–19 Physical quantities are smoothly dependent
a and there is no phase transition at any finitea.20 For e
.0, however, a quantum (T50) phase transition is presen
at a critical valueac(e), as first noted by Kosterlitz.21 Here,
we investigate this phase transition using a large-N expan-
sion, the self-consistent harmonic approximation, and fina
Monte Carlo simulations.

II. LARGE- N THEORY

The large-N generalization of this problem was first dis
cussed in an unpublished work by Renn.22 Consider the ac-
tion

S@n~s!,l~s!#5E
0

L

dsH 1

4S ]n

]sD
2

1l~s!~n2~s!2qN!J
1

1

2
aE

0

L

dsE
0

L

ds8K~s2s8!un~s!2n~s8!u2,

~4!
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where n(s) is a real N-component vector. The fieldl(s)
serves as a Lagrange multiplier, which enforces the c
straintn2(s)5qN for all s; typically we takeq51/N, so the
n field is of unit length. WhenN52, one can eliminate the
constraint with the parametrizationn5(cosf,sinf), whence
one recovers the action of Eq.~2!.

In the N→` limit, the action becomes dominated by th
saddle pointl(s)5l, a constant function. Then one has

S5(
vn

F1

4
vn

21l1a@K̂~0!2K̂~vn!#G un̂~vn!u22qNLl,

~5!

wherevn52pn/L is a bosonic Matsubara frequency and

n~s![
1

AL
(
vn

n̂~vn!e2 ivns, ~6!

K̂~vn!5E
0

L

ds K~s!eivns. ~7!

The saddle point theory is thus a Gaussian theory, with
relation functions

^ni~s! nj~s8!&5G~s!d i j

G~s!5
1

2L (
vn

e2 ivns

1

4
vn

21l1a@K̂~0!2K̂~vn!#

. ~8!

Extremizing the free energyF52L21Trn̂exp(2S@n̂#) with
respect tol yields the equationG(0)5q, which is to be
solved forl(a,L).

In the zero-temperature (L→`) limit, vn→v becomes a
continuous quantity andK̂(0)2K̂(v)5Ceuvu12e, with

Ce5
p

G~22e!cosS 1

2
pe D . ~9!

Straightforward analysis of the integral shows thatl van-
ishes fora.ac(e), where

ac~e!5
1

4Ce
S 2Ae

pqe D 11e

~10!

Ae[E
0

` dt

11t11e21 . ~11!

From lim
e→0

Ae51 and Ce505p, we find, restoringq

51/N, that for smalle the critical point occurs atac(e)
5N/2p2e. This is to be contrasted with the renormalizati
group result of Kosterlitz,21 ac

RG(e)5(N21)/2p2e. Note
that these results agree to leading order in 1/N.

Further analysis reveals the critical behavior ofl(a) in
the vicinity of the critical point:

l~a!.De@ac~e!2a#n, ~12!
16534
n-

r-

with

De5@212eCeac~e!#2/11eS Ae /Be

~11e!ac~e! D
n

,

Be5E
0

` dt

11te2121
if 0<e,

1

2

5
e

2e21E0

` dt

~11t11e/2e21!2
if

1

2
<e, ~13!

wheren5max(1,e2121).

A. Kubo Formula

WhenN52 the symmetry group O(2) has a single ge
erator, hence there is one vector potential. For
O(N)-symmetric case, a local gauge is effected byn(s)
→R(s) n(s), whereR(s)PO(N) is given by

R~s!5exp@ iAa~s!Ta#, ~14!

where the Ta generate the Lie algebra o(N). These1
2 N(N

21) generators areN3N Hermitian antisymmetric tensors
they may be chosen to satisfy the normalization Tr(TaTb)
5N dab. ~For N52, the sole generator is T5sy.! There are
therefore1

2 N(N21) vector potentialsAa(s), variation with
respect to which defines the O(N) currents

I a~s!5
dSint@Y~s!n~s!#

dAa~s!
uA50

52ia nk~s!Tkl
a E

0

L

ds K~u2s!nl~s! ~15!

and the noise current-current correlation function

^T I a
n~s!I b

n~0!&5 K d2Sint

dAa~s!dAb~0!L
A50

52NadabFd~s!E
0

L

du K~u!G~u!2K~s!G~s!G.
~16!

The conductance~in units ofe2/h) is computed according to
the Kubo formula,23

gab~ ivn!5
2p

vn
E

0

L

ds eivns^T I a
n~s!I b

n~0!&. ~17!

We defineg( ivn) by gab( ivn)[Ng( ivn)dab . We have no
expression for the analytic continuation of the conducta
to real frequencies. As a diagnostic of any phase transit
we will examine the quantitygA[g( ivn51). We find

gA5
4p2a

L S L

p D eE
0

L

dssine~ps/L !^cos„f~s!2f~0!…&.

~18!

A similar expression was proposed by Basconeset al.:9
5-2
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gB54p2aS L

p D eK cosS fS 1

2
L D2f~0! D L . ~19!

At the quantum critical point, we can evaluate dc (v
→0) limit of g( ivn ,ac ,T50). We obtain

gc5p~12e!ctnS 1

2
pe D . ~20!

Note that while the critical couplingac is q dependent, the
critical conductancegc(e) is universal and independent ofq.
The approximationsgA andgB also take on universal value
at criticality:

gA
c 5

1

pE0

p

duS sinu

u D e

3gc~e!, ~21!

gB
c 5S 2

p D 11e

3gc~e!. ~22!

III. SELF-CONSISTENT HARMONIC APPROXIMATION

The fully nonlinear theory with action

S@f~s!#5E
0

L

ds
1

4 S ]f

]s D 2

1aE
0

L

dsE
0

L

ds8 K~s2s8!

3@12cos„f~s!2f~s8!…# ~23!

is replaced with a trial Gaussian theory described by
quadratic action

S0@f~s!#5
1

2E0

L

dsE
0

L

ds8 V~s2s8!@f~s!2f~s8!#2

5
1

2 (
vn

Ĝ21~vn!uf̂~vn!u2, ~24!

where

Ĝ~vn![
1

2@V̂~0!2V̂~vn!#
. ~25!

V(s), or equivalentlyĜ(vn), is treated variationally, so we
extremize by setting

]

]Ĝ~vn!
H F01

1

L
^S2S0&0J ~26!

whereF052L21Trfexp(2S0@f#). This leads to the follow-
ing self-consistent equation:

1

Ĝ~vn!
5

1

2
vn

212aE
0

L

ds@12cos~vns!#K~s!G~s!,

~27!

where
16534
e

G~s![expS 2
1

2
^@f~s!2f~0!#2&0D

5expS 2
2

L (
n51

`

@12cos~vns!#Ĝ~vn!D . ~28!

We iterate these equations to self-consistency.
The dimensionless conductancegA(a,L) is plotted fore

50.1 and 0.2 in Fig. 1. As the dimensionless inverse te
peratureL is increased fromL516 to L5256, the curves
apparently cross at a critical pointac(e). For a.ac , the
conductance increases as the temperature is lowered, ind
ing a conducting phase. Fora,ac , the conductance van
ishes as the temperature is lowered, i.e., the Coulomb
survives. For larger values ofe, however, a spurious first
order transition preempts this critical behavior, as shown
Fig. 2. The solution to the SCHA is hysteretic, and disco

FIG. 1. Solution to the large-N model at finiteL with e50.25
~top! and e50.75 ~bottom!. l versusa for L58, 32, 128, 512
~thin lines! andL5` ~thick line!. ac(e50.25)50.5619, andac(e
50.75)50.1226.

FIG. 2. Large-N results forac(e) ~solid! compared with the
Kosterlitz RG valueac

RG51/2p2e ~dashed!. Inset: critical conduc-
tancegc(e) within the large-N approximation, withN52.
5-3
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tinuous, providedL is large enough. Fore&0.6, however,
this discontinuity becomes apparent only at relatively l
temperaturesL21& 1

64 .

IV. COULOMB GAS REPRESENTATION
AND MONTE CARLO

Including the offset charge, the Euclidean action for o
system isS5S01Sint1Stop, where

S0@f#5
1

4E0

L

ds S ]f

]s D 2

, ~29!

Sint@f#52aE
0

L

dsE
0

L

ds8 K~s2s8!cos@f~s!2f~s8!#,

~30!

Stop52 in@f~L !2f~0!#[22p inW@f#, ~31!

whereW@f#5@f(L)2f(0)#/2p is the winding number of
the phase field. In the phase representation, the topolog
term represents a purely imaginary contribution to the act
However, in the Coulomb gas representation, the action
mains purely real.

We have discarded a formally divergent constant from
action

DS5LE
0

L

ds K~s!, ~32!

which may be rendered finite through an ultraviolet regul
ization of K(s), viz.

Kb~s!5H p

L
cscS pusu

L D @12e2L sin(pusu/L)/pb#J 22e

, ~33!

so thatKb(0)5b2(12e).
The partition function for our problem is given by

J~n!5J0K ein[f(L)2f(0)] (
N50

`
1

N!
~2Sint!

NL
0

~34!

5J0 (
N50

`
aN

N! E0

L

ds1
1
•••E

0

L

dsN
2)

j 51

N

K~sj
12sj

2!

3Keinf(L)e2 inf(0)e i (
k51

N
@f~sk

1
!2f~sk

2
!#L 0 , ~35!

where the average is with respect to the bare actionS0. This
allows us to transform the complex action~due to the topo-
logical term! in the phase representation to a purely real
tion in a dipole gas representation.25 The coordinates$sk

6%
are interpreted as locations of positive and negative char
Each factor of (2Sint) introduces another pair of suc
charges, i.e., a dipole. We now write the fieldf(s) as a sum
of winding plus a periodic pieces:

f~s!5
2pWs

L
1h1w~s!, ~36!
16534
r

al
n.
e-

r

-

-

s.

w~s!5
1

AL
( 8
vn

ŵ~vn!e2 ivns, ~37!

where h is a constant andW is the winding number. The
prime on the sum denotes exclusion of then50 term, which
is accounted for byh. The bare action is then

S05
p2W2

L
1

1

4
( 8
vn

vn
2uŵ~vn!u2. ~38!

Thus,^uŵ(vn)u2&052/vn
2 , and

C~s![
1

2
^@w~s!2w~0!#2&0

5
L

p2 (
n51

`
12cos~2pns/L !

n2

5FsS 12
s

L D G
per

, ~39!

where the subscript indicates that the expression is to
periodically extended from its value on the intervals
P@0,L#. Summing over the winding numberW and averag-
ing over f(s), we obtain theN-dipole pair Boltzmann
weight,

%N~s1
1 , . . . ,sN

2!5
aN

N! )j 51

N

K~sj
12sj

2!

3expF 1

2 (
j , j 8

s,s8

ss8C~sj
s2sj 8

s8!G
3

q3~pP/L1pnu ip/L !

q3~0u ip/L !
, ~40!

whereP is the total dipole moment,

P5(
j 51

N

~sj
12sj

2!, ~41!

andq3(zut) is the Jacobiu function.26

We now use theq-function identity

q3~zut!5S i

t D 1/2

e2 iz2/ptq3S 2
z

t U2 1

t D ~42!

to obtain

%N~s1
1 , . . . ,sN

2!5
aN

N! )j 51

N

K~sj
12sj

2!

3
HL~P1nL !

HL~0!
e2U e22nP e2Ln2

,

~43!

whereU is given by
5-4
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U52
1

2 (
j , j 8
ss8

ss8usj
s2sj 8

s8u ~44!

and

HL~y!5q3~ iy u iL /p!5 (
m52`

`

e2m2L e22my, ~45!

and where the location of each charge is restricted to
interval sj

sP@0,L#, so thatPP@2NL,NL#.
Interpreting Eq.~43! for n50, we have that the system

consists of a gas ofN dipole pairs. Each of the 2N charges
interacts with every other charge according to a o
dimensional Coulomb potential2ss8us2s8u. In addition,
each charge is logarithmically attracted to its unique mat
the other member of its dipole pair—via a potentialVd(s)
52 ln K(s).(22e)lnusu. For nÞ0, there is an additiona
electric field of strength 2n present.a is the dipole fugacity;
a→0 will suppress the appearance of dipoles. Hence, in
absence of any short-time cutoffb, short-distance dipole
pairs will proliferate without limit. A simple estimation o
the dipole density, ignoring the Coulomb interactions,
ndip;b2(12e)/(12e). In our Monte Carlo simulations, we
have usedb51; the essential physics is rather weakly d
pendent onb, though. Grand canonical averages are to
computed in the usual way, i.e.,^A&5Tr(%A)/Tr%, where
the trace entails a sum over all possible numbersN of dipole
pairs and integration over their 2N charge coordinates.

In Fig. 3, we plot the Coulomb energy for a single-dipo
pair,

VC~s!5usu1 ln
HL~s1nL !

HL~0!
12ns ~46!

as well as the total dipole energyVC(s)1Vd(s) for n50,
n5 1

4 , andn5 1
2 for L55 andL525. Note how the interac

tion becomes asymmetric~yet still properly periodic! whenn

FIG. 3. Results of the self-consistent harmonic approximat
for e50.10 ande50.20, with dimensionless inverse temperatu
L516, 32, 64, 128, and 256. The crossing of the curves at a sin
point indicates a second order phase transition.
16534
e

-

e

-
e

is neither integer nor half-odd integer. Furthermore, the C
lomb interaction is effectively cancelled whenn5 1

2 .
The XY phase correlation function

G~s!5^eif(s) e2 if(0)& ~47!

is simply related to the dipole separation correlation funct

h~s!5K (
i 51

N

d~si
12si

22s!L . ~48!

To see this, define the quantity

QN~t1,t2!5~N11!E
0

L

ds1
1E

0

L

ds1
2
•••E

0

L

dsN
1E

0

L

dsN
2

3%N11~s1
1 ,s1

2 , . . . ,sN
1 ,sN

2 ,t1,t2!. ~49!

Then one has

a K~s!G~s!5
1

LJ (
N50

` E
0

L

dt QN~t1s,t!5h~s!.

~50!

What is computed in the Coulomb gas Monte Carlo calcu
tion is the dipole separation correlation functionh(s),
from which the XY phase correlator is obtained vi
G(s)5h(s)/aK(s). The conductance is then obtaine
using Eq.~18!.

The renormalized charging energyEc* is given by

Ec*

Ec
5

1

2

]2F

]n2
un50

512
L

2 K HL9~P!

HL~P!L 12K P
HL8~P!

HL~P!L 2
2

L
^P2&. ~51!

Note that when the dipole fugacitya vanishes, there are n
pairs at all and one obtains

Ec*

Ec
ua50512

L

2

HL9~0!

HL~0!
, ~52!

which also follows from an analysis of the noninteracti
HamiltonianHa505Ec(n̂1n)2. In this case, the renormal
ized charging energyEc* interpolates between its low
temperature value ofEc* 5Ec and its high-temperature limi
of Ec* 50.

A. Results

Typical raw data forgA(a,L) are shown in Fig. 4. Two
phases are identified for every positive value ofe: a smalla
insulating phase in which the Coulomb gap persists andgA
decreases asT→0 (L→`), and a largea conducting phase
in which gA diverges asT→0, indicating a nonlinearI -V
relation at T50. The boundary between these phases
marked by a critical valueac(e), at which there is a quantum
phase transition. Ata5ac , the conductance becomes tem
perature independent~providedT is low enough that the sys

n

e-
5-5
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tem is in the scaling regime!. Monte Carlo results forac(e)
andgA

c (e) are presented in Fig. 5, along with comparisons
SCHA and large-N results.

Our results forac(e) differ significantly from those of
Basconeset al.,9 who obtainedac through analysis of the
renormalized charging energy, assumingEc* (a);(ac

2a)1/e. @Our values forac(e) are approximately four times
smaller throughout the range 0,e< 1

2 .# In fact, we find that
our raw data forEc* /Ec versusa are in good agreement wit
those of Basconeset al.27 This agreement is noteworth
since their Monte Carlo was carried out in the phase rep
sentation, whereas our is in the Coulomb gas representa
However, it is very difficult to reliably extractac from the
charging energy data, as our results shown in Fig. 6 show
a temperature corresponding toL550 ~Ref. 9! or L540 ~this
work!, there is no detectable signature of the phase trans
at a5ac . A similar behavior is found in the large-N results
of Fig. 7. In the large-N theory, l(a) plays the role of an
energy gap, similar toEc* . As is evident from Fig. 1, even a

FIG. 4. Results of the self-consistent harmonic approximat
for e50.30 ande50.40, with dimensionless inverse temperatu
L516,32,64,128,256. For high temperatures, the curves see
cross at a single point. However, a spurious first-order transi
intervenes at a lowT ~largeL).

FIG. 5. Single pair potentialsVC(s) and VC(s)1Vd(s) for n
50 ~solid!, n50.25~dashed!, andn50.5 ~dot-dashed!. Upper pan-
els haveL55; lower panels haveL525. In all casesb50.2.
16534
o

e-
n.

At

n

relatively low temperatures of 1/L'1/32, extrapolation ofac

based on the zero-temperature critical~i.e., power-law! be-
havior is problematic~Fig. 8!. Indeed, for a fixed 1/L, vary-
ing a takes the system through renormalized classical, qu
tum critical, and quantum disordered regimes,28 and the
single parameterL5` behavior ofl(a) is insufficient to
extractac .29

Finally, we plot conductanceversuscharge offsetn for
e50.2 ande50.8 in Figs. 9 and 10, respectively. Two valu
of a on either side ofac are chosen, corresponding to opp

n

to
n

FIG. 6. Coulomb gas Monte Carlo results for conductan
gA(a) at L510 ~filled triangles!, L520 ~open squares!, and L
540 ~filled circles! for e50.30 ~left panel! and e50.50 ~right
panel!. A critical point marks the boundary between a higha con-
ducting phase and a lowa insulating~Coulomb blockade! phase.

FIG. 7. Critical couplingac(e) ~top! and critical conductance
gA

c (e) ~bottom!, comparing data from Monte Carlo~open squares,
with error bars!, self-consistent Harmonic approximation~filled tri-
angles!, and large-N ~smooth curve! calculations. As discussed in
the text, the SCHA yields a discontinuous transition at the low
temperatures; the SCHA results shown are obtained from cross
of conductance forL&64. The dashed line in the top figure is th
Kosterlitz RG resultac

RG51/2p2e.
5-6
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site temperature dependences atn50. We find a curious
double peak structure in the vicinity ofn5 1

2 at higher tem-
peratures, but it disappears asT→0. For n5 1

2 and e50.8,
the conducting state prevails even at small values ofa. This
feature is emphasized in Fig. 11, wheregA(a,n5 1

2 ) is con-
trasted fore50.8 ande50.1. Fore50.8, a conducting state
is observed down to values ofa as small as 0.01, well below
then50 critical value ofac.0.07. Hence, it is possible fo
the junction to exhibit opposite temperature dependence
the troughs (n'0) and peaks (n' 1

2 ) of the conductance a
the gate voltage is varied. This result is to be contrasted w
the behavior ate50.1, where the conductance atn50.5 is
very weakly temperature dependent. Indeed, ate50 andn

FIG. 8. Dimensionless renormalized charging energyEc* /Ec

versusa at L510 ~filled triangles!, L520 ~open squares!, and L
540 ~filled circles! for e50.50 ~top panel! and e50.80 ~bottom
panel!. Arrows indicate the location of the phase transition as
tained from crossing of conductance curves.

FIG. 9. ConductancegA versuscharge offsetn at e50.2 for a
50.2 ~top panel! and a50.5 ~bottom panel! at dimensionless in-
verse temperaturesL510 ~filled triangles!, L520 ~open squares!,
and L540 ~filled circles!. The critical coupling for n50 is
ac.0.44.
16534
in

th

51
2, the inverse charging energy is known to diverge ve

weakly.30 While the experiments of Joyezet al.31 seem to be
perfectly consistent with the more familiare50 behavior,
anomalous temperature dependence in the troughs has
observed in the conductance of quantum dots,32 although it is
hardly clear that the nonequilibrium effects which we co
sider are uniquely responsible for this phenomenon.

V. CONCLUSIONS

Nonequilibrium shakeup processes have the potentia
drastically affect the physics of tunnel junction behavior,
allowing for a conducting phase in which the Coulom
blockade is completely suppressed. The phase transitio
made manifest within a large-N approach, although it was
first predicted over 25 years ago by Kosterlitz21 in his renor-

-

FIG. 10. ConductancegA versuscharge offsetn at e50.8 for
a50.025~top panel! anda50.10 ~bottom panel! at dimensionless
inverse temperaturesL510 ~filled triangles!, L520 ~open squares!,
and L540 ~filled circles!. The critical coupling for n50
is ac.0.07.

FIG. 11. Conductanceversus coupling a at charge offset
n5

1
2 for e50.80~top! ande50.1 ~bottom!, for L55 ~open down-

pointing triangles!, L510 ~filled triangles!, and L520
~open squares!. For reference, atn50, ac(e50.8).0.07 and
ac(e50.1).0.66.
5-7
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malization group studies of O(N) classical spin chains with
long-ranged~power-law! interactions. We have applied thre
methods in studying the phase transition: large-N approach,
self-consistent harmonic approximation, and Coulomb
Monte Carlo. The results from all three methods are in go
qualitative agreement with each other~see Fig. 7!, and the
agreement between SCHA and Monte Carlo is unexpect
good, given the crudeness of the SCHA and its neglect of
proper topology of the phase field.

The phase transition has two principal signals. First,
renormalized charging energyEc* vanishes fora>ac . Sec-
ond, while the conductance vanishes fora,ac and diverges
for a.ac , precisely at the transitiongc5g(ac) is finite and
universal ~although e dependent!. Extracting the critical
value ac from numerical data at finite temperature can
tricky, we have found. In particular, the renormalized cha
ing energy shows little signal atac even at dimensionles
inverse temperatures of the order ofL5Ec /kBT;40; this
behavior is borne out explicitly in our large-N studies. It is
more reliable to obtainac from the crossing of the conduc
tance curvesg(a,L).

An extension of the model investigated here to the cas
granular systems has been recently considered.33
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APPENDIX: ABSENCE OF LONG-RANGED ORDER
FOR eÄ0

Applying Mermin’s classic Bogoliubov inequality
arguments,34 Šimánek35 has proven the absence of lon
ranged order in the 1/n2 XY chain. Here, we~trivially ! ex-
tend Šimánek’s work to the continuum, and show how th
e50 case is marginal, i.e., absence of order cannot be
proven fore.0.

We begin with an action

S@P~s!,f~s!#5E
0

L

dsF1

2
P2~s!1

1

4
~]sf!22hcosf~s!G

1aE
0

L

dsE
0

L

ds8 K~s2s8!

3$12cos@f~s!2f~s8!#%. ~A1!
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The Poisson bracket ofA andB is defined by

$A,B%[E
0

L

dsS dA

dP~s!

dB

df~s!
2

dA

df~s!

dB

dP~s! D , ~A2!

and the average of a functionalA@P(s),f(s)# is

^A&5

E DPE DfA@P,f#e2S[ P,f]

E DPE Df e2S[ P,f]

. ~A3!

Note that whenA is a functional off(s) alone, the func-
tional integral over the momentum fieldP(s) cancels be-
tween numerator and denominator, i.e., we recover the m
fied BMS model.

The Bogoliubov inequality guarantees34

^A* A&>
u^$C,A* %&u2

^$C,$C* ,S%%&
, ~A4!

for an arbitrary functionalC@P,f#. Following Šimánek, we
take

A@P,f#5E
0

L

dssinf~s!e2 ivns,

C@P,f#5E
0

L

ds P~s!e2 ivns, ~A5!

wherevn52pn/L is a Matsubara frequency. InL→` limit,
the Bogoliubov inequality then establishes the followi
identity:

E
2`

` dv

2p

m2

hm1 1
2 v212aCeuvu12e

<1, ~A6!

where m5^cosf(0)& is the average magnetization densi
Whene50, the integral diverges as2m2ln(hm), hence the
inequality demandsm50 whenh50, i.e., no long-ranged
order. However, the casee50 is marginal, and for anye
.0 the integral is convergent whenh50. While this does
not rigorously prove the existence of an ordered phase
e.0, it is at least consistent with our findings.
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