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Conductance fluctuations in the presence of spin scattering
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~Received 8 April 2003; published 28 October 2003!

Electron transport through disordered systems that include spin scatterers is studied numerically. We con-
sider three kinds of magnetic impurities: the Ising, theXY, and the Heisenberg. By extending the transfer
matrix method to include the spin degree of freedom, the two terminal conductance is calculated. The variance
of conductance is halved as the number of spin components of the magnetic impurities increases. Application
of the Zeeman field in the lead causes a further halving of the variance under certain conditions.
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I. INTRODUCTION

Quantum transport phenomena that involve the carri
spin degree of freedom have attracted a lot of attention d
ing the past decade.1,2A number of studies have analyzed th
spin polarized transport in ballistic regime and reported
triguing phenomena,3,4 and have opened up the possibility
new spintronic devices. It is also interesting to study
spin-dependent transport in diffusive and chaotic regimes
cause the interference of coherent electron waves show
number of characteristic effects when the spin degree of f
dom is taken into consideration. One of the special cha
teristics of diffusive and chaotic systems is the fluctuat
nature of transport coefficients such as conductance.5 It is
well understood that such fluctuations do not depend on
details of the sample parameters, but depend only on
symmetry of the system.5,6 The two relevant symmetries her
are time-reversal symmetry~TRS! and spin-rotation symme
try ~SRS!. TRS is broken by applied magnetic fields or b
magnetic scattering due to magnetic impurities or magn
domain walls. If TRS is broken, systems are classified
unitary, regardless of whether or not SRS is broken. T
spin-orbit interaction breaks SRS but preserves TRS, an
this case the systems are classified as symplectic.

When the spin degree of freedom is taken into accou
the description of the conductance fluctuations becom
more complex. Conductance fluctuations of two-dimensio
systems which are coupled to the Ising spin glass
reported.7 It has been reported that the reduction of varian
of conductance takes place due to the Zeeman splitting in
sample region.8–10 Altshuler and Shklovskii had shown tha
the variance of the conductance is described by8

^dG2&5s2
3K

b S e2

\p3D 2

bd , ~1!

wherebd is a dimension-dependent factor that is of the or
of unity. b is equal to 1, 2, and 4 for orthogonal, unitary a
symplectic systems, respectively. The quantityK is equal to
the number of noninteracting series of energy levels w
s-fold spin degeneracy.

Recent works have pointed out that the universal cond
tance fluctuations~UCF’s! in a chaotic quantum dot in th
presence of spin-orbit scattering shows new features.11–13

They have shown that the UCF in the presence of spin
0163-1829/2003/68~16!/165344~5!/$20.00 68 1653
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pendent scattering is interesting not only from the theoret
point of view but also from the experimental view point.

The transport properties of mesoscopic systems dep
not only on the sample but also on the states in the le
through which currents flow into and out of the sample a
through which voltages are measured.14 How the transport
properties and the universality class are changed by mo
lating lead states is a very interesting question, especi
when the spin degree of freedom plays a role.

In this paper, we investigate the influence of the spin sc
tering on transport properties in disordered systems. We c
sider magnetic impurities in sample region and the Zeem
field in the lead. Three types of magnetic impurities are c
sidered. We call these Ising,XY, and Heisenberg, dependin
on the number of spin components. In order to calculate
terminal conductance, we employ the transfer mat
method15 that is extended to include the spin degree of fre
dom. Magnetic impurities remove the spin degeneracy
break TRS in certain cases.

We find that the variance of the conductance is halved
the number of spin components of the magnetic impurit
increases. When the Zeeman field is applied in a lead
further reduction of the variance is observed. In order
observe the crossover of the universality class with the
crease of the Zeeman field in the lead, we study the le
spacing distribution of transmission eigenvalues. Part of
work has been presented in the international conference ‘‘
calisation 2002.’’16,17

II. MAGNETIC SCATTERING

We consider a two dimensional~2D! system connected to
two electrodes. The 2D system is constructed in thex- and
y-directions and the current flows in thex direction. There is
an exchange interaction between the electron spin and
static local spins in the system. The one-electron Ham
tonian is

H5H01H8, ~2!

H05(
i ,s

Wici ,s
1 ci ,s2 (

^ i , j &,s,s8
Vis, j s8ci ,s

† cj ,s8 , ~3!

H852J (
i ,s,s8

ci ,s
† ss,s8ci ,s8•Si , ~4!
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whereci ,s
† (ci ,s) denotes the creation~annihilation! operator

of electron at the sitei with spins(561) on the 2D square
lattice. On-site energyWi denotes the nonmagnetic rando
potential distributed independently and uniformly in t
range @2W/2,W/2#. The hopping is restricted to neare
neighbors.

We investigate how the variance of the conductance
tribution of H0 changes due to the presence ofH8. The vari-
ance of conductance distribution forH0 is determined by the
symmetry, which is controlled by the hopping term,Vis, j s8 .
If it is set to 232 unit matrix,H0 belongs to the orthogona
class.H0 belongs to the unitary class when

Vi ,i 1 ŷ5S exp~ if! 0

0 exp~ if!
D , ~5!

wheref is a Peierls phase which is distributed uniformly
the range@0,2p). To realize systems belonging to the sym
plectic class,18 we set the hopping

Vi ,i 1 x̂5S cosu sinu

2sinu cosu D ~6!

and

Vi ,i 1 ŷ5S cosu i sinu

i sinu cosu D , ~7!

where the parameteru denotes the strength of the spin-orb
interaction.

The additional termH8 is the spin scattering term.s is
the Pauli spin matrix andSi is the static local spin. We con
sider three types of magnetic impurities: Ising,XY, and
Heisenberg whereSi5(0,0,Sz), (Sx ,Sy,0), and (Sx ,Sy ,Sz),
respectively. The absolute value ofSi is set to unity, and their
components are distributed randomly according to the u
form distribution onn-dimensional spheren(51,2 or 3) be-
ing the number of spin components.

In order to calculate the conductance, we employ
transfer matrix method15 and extend it to include the spi
degree of freedom. The conductanceG is given by the Lan-
dauer formula19,20 as

G5
e2

h
tr~ tt†!5

e2

h (
i

t i , ~8!

wheret is the transmission matrix including the spin degr
of freedom andt i is the transmission eigenvalue. In th
present simulation, the system size is 30330 in units of the
lattice spacing.

In Fig. 1 we show the variance of conductance in t
presence of magnetic impurities whereH0 belongs to the
orthogonal class.W is set to be 4.0 andJ50.4.104 ensemble
averages are taken for each data. WhenJ50, there is no
magnetic scattering and the variance is close to that expe
for the universal conductance fluctuation of orthogo
systems.5 For convenience, let us denote the variance of( it i
for the conventional orthogonal class asVorth andG/(e2/h)
5G̃, so that in the case ofJ50, VarG̃5Vorth. Vorth is 1/2
16534
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for the chaotic cavity, 8/15 for the quasi-1D wire, 0.74 f
2D, and 1.2 for 3D systems, respectively.5,6

In the presence of the Ising type impurities, no spin fl
processes occur as in the conventional nonmagnetic sys
However, the up spin and down spin electrons are descr
by different wave functions, because the exchange field
magnetic impurities lifts the spin degeneracy. With suf
ciently largeJ, these wave functions are no longer correlat
and the variance is represented by

Var G̃5Var G̃↑1Var G̃↓ , ~9!

whereG̃↑(↓) is the conductance through the up~down! spin
channel. Since both of the variancesG̃↑ andG̃↓ areVorth/4,
the sumG̃ becomesVorth/2.

While Ising type impurities do not rotate the spin dire
tion, the spin flip process occurs inXY type impurities. Then
the variance is simply given by VarG̃5Vorth/4, since the
factor of 4 coming from the spin degeneracy in the conv
tional nonmagnetic orthogonal class is missing. Though
Hamiltonian is complex due tosy , the statistics of the trans
mission eigenvalues as well as the energy level statistics
that of the orthogonal class. This can be seen if we define
time-reversal operatorT as T5 isxK, whereK denotes the
complex conjugation. This operator is antiunitary, satisfi
T251 and commutes with the Hamiltonian of the syste
including XY type impurities.

For Heisenberg andXY type impurities, spin flips occur
However, whenH8 includes the Heisenberg type scattere
the Hamiltonian no longer commutes with the time-rever
operator, and the system is classified into the unitary cl
Therefore, the variance is further reduced by a factor of

From these results, the variance of conductance in
presence of impurities is given by

Var G̃5
Vorth

2n
. ~10!

FIG. 1. Variance of conductance in the presence of magn
impurities. The system size is 30330. W is set to be 4.0 andJ
50.4.
4-2



b

. W
th

de

b

s
e

s
er

e

g

port
lt of

the
mes
hat
can

ting
f the

ec-
n

and
in

in

es
n if

an
in
ted

of
ob-
ers,
e
d if

bo
a

bo
a

he

CONDUCTANCE FLUCTUATIONS IN THE PRESENCE OF . . . PHYSICAL REVIEW B 68, 165344 ~2003!
We have numerically investigated a square 2D system,
the argument above is general, and this relation should
valid in other dimensions.16

Figure 2 shows the change of the variance whenH0 is in
the unitary class. Parameters are the same as in Fig. 1
consider the random magnetic field and the phase in
transfer integral is given by Eq.~2!. Without magnetic impu-
rities, the system belongs to the unitary class with spin
generacy and the variance isVorth/2. Ising type magnetic
impurities removes the spin degeneracy and the variance
comesVorth/4. Spin flips occur due to theXY type magnetic
impurities and the variance becomes half of the Ising ca
As shown in Fig. 2, the variance of the conductance wh
H8 includes the Heisenberg type impurities is the same a
the case of theXY type, because the Hamiltonian of neith
system commutes with the time reversal operator.

The reduction of the variance is also obtained whenH0
includes the spin-orbit interaction and the Hamiltonian b
longs to the symplectic class~Fig. 3!. Once the magnetic
impurities are included, irrespectively of the type of the ma
netic scatterers, the variance becomesVorth/8 from Vorth/4.

FIG. 2. Variance of conductance when the sample contains
the magnetic field and magnetic impurities. Parameters are the s
as in Fig. 1.

FIG. 3. Variance of conductance when the sample contains
the spin-orbit interaction and magnetic impurities. Parameters
the same as in Fig. 1.
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III. EFFECT OF LEADS

We then address the question of whether or not trans
properties and the universality class can change as a resu
an asymmetric spin population in the leads, i.e., when
number of up and down spin channels in the leads beco
asymmetric as a result of Zeeman splitting. We show t
even if the sample is unchanged, the universality class
change under certain conditions.

We consider the Zeeman field in one of the leads, set
the other lead Zeeman field free. The transverse energy o
channel (i ,s) in the lead« i

s is given by

« i
s522 cosS ip

L11D2Zs ~ i 51,2, . . . ,L !, ~11!

whereL denotes the number of sites in the transverse dir
tion (y direction!, and Z denotes the strength of Zeema
splitting ands(561) is the spin index. The channel (i ,s)
is a propagating mode ifuEF2« i

su,2.0, EF being the Fermi
energy. For example, when we setEF521.1 andZ51.0,
the number of up~down! spin channels becomes 27~15! for
the sample of width 30 sites.

Figure 4 shows the variance in the presence of Ising
XY type impurities in a system including Zeeman splitting
a lead. In this simulation, we setW53.0, u5p/4, andEF
521.1. The system size is again set to be 30330 in units of
the lattice spacing. The population of up and down spins
one lead is always set to be symmetric (Z50), and that in
the other lead is varied (Z50,3.0).

From this figure, we observe that the variance becom
almost half due to the Zeeman splitting in the leads, eve
the sample region is not changed at all. The effect of Zeem
splitting is similar to that of increasing the number of sp
component of the magnetic impurities. It should be no
that if the direction of the Zeeman field is the same as one
the spin components of the scatters, the reduction in not
served. For example, in the case of Ising type scatter
applying the Zeeman field in thez direction does not chang
the variance while the halving of the variance is observe
we apply the Zeeman field in thex or y directions. The same

th
me

th
re

FIG. 4. The effect of the Zeeman coupling in a lead on t
variance.H0 belongs to the orthogonal class,W53.0 andZ53.0.
4-3
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is true for the case of theXY type scatters. We need to app
the Zeeman field in thez direction to observe the halving o
the variance.

We then show that the Zeeman field in the lead chan
the universality class of the system. To detect the crosso
of the universality classes, we investigate the spacing di
bution P(s) where s is the interval between neighborin
transmission eigenvaluest ’s. An ensemble of about 106

samples is simulated to get good statistics.
Figure 5 shows the spacing distributionP(s) of the trans-

mission eigenvaluet for the sample with spin-orbit interac
tion. In the absence of Zeeman splitting in the leads (s),
P(s) is close to the Wigner surmise for the Gaussian sy
plectic ensemble~GSE!. On the other hand, with Zeema

TABLE I. Variance of the system in the presence of magne
impurities and the Zeeman field.

Universality
class ofH0

Additional
spin scattering

Zeeman
field in a lead

Variance/
Vorth

Orthogonal 0 no 1
0 yes 1/2

Ising no 1/2
Ising yes 1/4
XY no 1/4
XY yes 1/8

Heisenberg irrelevant 1/8

Unitary 0 no 1/2
0 yes 1/4

Ising no 1/4
Ising yes 1/8
XY irrelevant 1/8

Heisenberg irrelevant 1/8

Symplectic 0 no 1/4
0 yes 1/8

Ising irrelevant 1/8
XY irrelevant 1/8

Heisenberg irrelevant 1/8

FIG. 5. Spacing distribution oft for the sample with the spin
orbit interaction. We setW52.0 andZ53.0. The distribution with-
out Zeeman splitting in a lead (s) fits to the form of GSE while
that with Zeeman (d) fits to the GUE.
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splitting in the leads (d), P(s) is close to that for the Gauss
ian unitary ensemble~GUE!. The reason for this crossover
that the asymmetry of up and down spins in the lead destr
the self-dual property of the scattering matrix.6 To be spe-
cific, we consider the (i , j ) component of theS-matrix Si , j
which describes the transmission from (i↑,i↓) to ( j↑, j↓).
The self-duality requires

Si , j5S a b

c dD , Sj ,i5S d 2b

2c a D ~12!

which means that the transmission probability fromi↑ to j↑
is the same as that fromj↓ to i↓. This symmetry is broken
when we apply the Zeeman field in the lead, which lifts t
degeneracy ofi↑ and i↓.

IV. SUMMARY

We have studied the effect of spin scattering in disorde
systems on the fluctuating nature of the conductance.
have considered magnetic impurities in a sample and ca
lated transport properties. Our results show that the varia
of conductance is halved as the number of spin compon
of the magnetic impurities increases. Halving of the varian
of the conductance is also obtained when the sample inclu
magnetic field or spin-orbit interaction.

We have also investigated the effect of the Zeeman sp
ting in a lead. Halving of the variance of conductance
obtained when the direction of the Zeeman field contains
component different from the component~s! of the magnetic
scatterers. This behavior is reminiscent of the change of
variance in the superconducting-normal junction.6,21,22 Ana-
lyzing the transmission eigenvalues, the universality cl
has been shown to be changed by the Zeeman field in
lead. The results are summarized in Table I and schem
cally shown in Fig. 6.

Before concluding, we relate our results with that
Aleiner and Fal’ko.13 They have obtained for the chaot
system

Var G̃5
s

4bS
, ~13!

wheres51,2 indicates the Kramers degeneracy andS52 if
the spin flip process is present andS51 otherwise.b
51, 2, or 4 is determined by the universality class. Sett

c

FIG. 6. Schematic diagram of the variance of the conductan
The horizontal arrow indicates the increase of the spin compon
of the magnetic scatterers, while the slanted arrow indicates
addition of the Zeeman field. The Zeeman field is assumed to c
tain a component different from that of the magnetic scatterers
4-4
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Vorth51/2 we recover their interesting result. For examp
when H0 is classified into the orthogonal class, andH8 in-
cludes theXY type magnetic impuritiesb51,s51, andS

52, which gives VarG̃5 1
8 5Vorth/4. Therefore, the presen

results are the extension of Aleiner and Fal’ko13 to higher
dimensions and to the inclusion of the effect of the Zeem
splitting in the lead.
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