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Persistent current in ballistic mesoscopic rings with Rashba spin-orbit coupling
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The presence of spin-orbit coupling affects the spontaneously flowing persistent currents in mesoscopic
conducting rings. Here we analyze their dependence on magnetic flux with emphasis on identifying possibili-
ties to prove the presence and extract the strength of Rashba spin splitting in low-dimensional systems. Effects
of disorder and mixing between quasi-one-dimensional ring subbands are considered. The spin-orbit coupling
strength can be inferred from the values of flux where sign changes occur in the persistent charge current. As
an important consequence of the presence of spin splitting, we identify a nontrivial persistent spin current that
is not simply proportional to the charge current. The different flux dependences of persistent charge and spin
currents are auniquesignature of spin-orbit coupling affecting the electronic structure of the ring.
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I. INTRODUCTION

The interplay between spin-orbit~SO! coupling and quan-
tum confinement in semiconductor heterostructures has
cently attracted great interest. It provides a useful tool
manipulate the spin degree of freedom of electrons by c
pling to their orbital motion and vice versa. As a result, sp
orbit coupling has become one of the key ingredients
phase-coherent spintronics applications.1,2 Various sources of
broken inversion symmetry give rise to intrinsic~zero-field!
spin splitting in semiconductor heterostructures.3 We focus
here on the one induced by structural inversion asymme
i.e., the Rashba effect.4 It is typically important in small-gap
zinc-blende-type semiconductors and can be tuned by e
nal gate voltages.5–7

Many proposals have been put forward recently for
vices based on spin-dependent transport effects due to
Rashba SO coupling in low-dimensional systems.8 To ex-
plore the possibilities for their realization, it is desirable
have a reliable way to determine experimentally the stren
a of the Rashba SO coupling. Transport experiments h
been performed in two-dimensional~2D! electron systems
anda was extracted from beating patterns in Shubnikov–
Haas oscillations5–7 as well as the SO relaxation time ob
tained from weak-antilocalization behavior in the resistanc9

The only previous experimental studies of SO coupling
quasi-1Dsystems have measured transport through me
copic rings.10,11 Beating patterns in the Aharonov-Boh
~AB! oscillations of the ring’s conductance are expected
arise from quantum phases12–15 induced by the presence o
SO coupling.

In practice, it turns out,16 however, that the signature o
the Rashba effect in AB oscillations can be masked by f
tures arising due to the ring’s nonideal coupling to exter
leads. As an alternative, we explore here the possibility
0163-1829/2003/68~16!/165341~9!/$20.00 68 1653
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obtain a direct measure of the Rashba SO coupling stre
from the persistent current17,18 induced by a magnetic flux
perpendicular to the ring. This approach would have the
vantage of circumventing entirely any problems arising fro
contacting the ring.

There is a vast literature of theoretical17–25 and
experimental26–28 studies on persistent currents. From t
theoretical point of view, the effect of SO coupling on th
Fourier transform of observables has been addressed in R
22–24. Measurements of the persistent charge current h
been performed both in an ensemble of metallic rings26 and
on single isolated rings realized in nanostructured 2D e
tron systems.27,28So far, persistent currents have not yet be
studied in rings where the Rashba effect is likely to be i
portant. From our study, we find features in the flux dep
dence of the persistent charge current that allow for a di
quantitative determination of the Rashba SO coupl
strength. We discuss how averaging over rings with differ
numbers of particles and mixing between different 1D su
bands affects these features. An unambiguous signatur
SO coupling is obtained from a comparison of the persist
spin current with the persistentcharge current. In the ab-
sence of SO coupling, the persistent spin current is fin
only for an odd number of particles in the ring and is pr
portional to the persistent charge current. With SO coupli
the persistent spin current is finite also for an even elect
number. For an odd number of electrons in the ring,
persistent spin current is sizable only for small values of
SO coupling strength. The flux dependence of the persis
spin current is generally strikingly different from that of th
charge current. Observability of the persistent spin curren
its induced electric field29–32 should enable an unambiguou
identification of SO effects in low-dimensional mesoscop
rings.

The effect of electron-electron interactions on the pers
©2003 The American Physical Society41-1
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tent charge current in mesoscopic rings has been the su
of a long-standing debate, especially in the diffusive limit33

However, in a ballistic quasi-1D ring, it appears to be qu
clear that, at low temperatures, interactions only affect
current amplitude, leaving its flux dependence essenti
unaltered.34 Signatures of SO coupling discussed in our wo
presented here should therefore remain largely unchan
when interactions are switched on. A proper quantitat
treatment of interaction effects could employ a Lutting
liquid model for a clean interacting ring34 that has to be
generalized to the case with SO coupling present.35 We post-
pone a discussion along this line to a later publication.

The paper is organized as follows. In Sec. II, we wr
down and discuss the model Hamiltonian used to desc
the ring. Electronic properties and persistent currents o
purely 1D ring are computed in the following Sec. III. Se
IV is devoted to the effect of higher radial subbands. Co
clusions are presented in Sec. V.

II. MODEL OF A MESOSCOPIC RING WITH RASHBA
SPIN-ORBIT COUPLING

For completeness and to introduce the notation used
in our work, we outline here briefly the derivation of th
Hamiltonian describing the motion of an electron in a re
istic quasi-1D ring.36 We consider 2D electrons in thexy
plane that are further confined to move in a ring by a rad
potentialVc(r ). The electrons are subject to the Rashba
coupling, which reads

Hso5
a

\
@sx~pW 2eAW !y2sy~pW 2eAW !x#. ~1!

Here AW is the vector potential of an external magnetic fie
applied in thez direction. The coupling strengtha defines
the spin-precession lengthl so5p\2/(ma). The full single-
electron Hamiltonian reads

H5
~pW 2eAW !x

21~pW 2eAW !y
2

2m
1Vc~r !1Hso1\vzsz , ~2!

where the Zeeman splitting from the external magnetic fi
is included as the last term. Due to the circular symmetry
the problem, it is natural to rewrite the Hamiltonian in pol
coordinates:36

H52
\2

2mF ]2

]r 2
1

1

r

]

]r
2

1

r 2 S i
]

]w
1

F

F0
D 2G1Vc~r !

2
a

r
s r S i

]

]w
1

F

F0
D1 iasw

]

]r
1\vzsz , ~3!

whereF is the magnetic flux threading the ring,F0 the flux
quantum, s r5coswsx1sinwsy , and sw52sinwsx
1coswsy . In the case of a thin ring—i.e., when the radiusa
of the ring is much larger than the radial width of the wa
function—it is convenient to project the Hamiltonian on t
eigenstates of
16534
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H052
\2

2mF ]2

]r 2
1

1

r

]

]r G1Vc~r !.

To be specific, we use a parabolic radial confining poten

Vc~r !5
1

2
mv2~r 2a!2, ~4!

for which the radial width of the wave function is given b
l v5A\/mv. In the following, we assumel v /a!1 and ne-
glect contributions of orderl v /a. In this limit, H0 reduces to

H052
\2

2mF ]2

]r 2G1
1

2
mv2~r 2a!2. ~5!

We now calculate matrix elements of the Hamiltonian, E
~3!, in the basis of eigenfunctions of Eq.~5! that correspond
to quasi-1D radial subbands, labeled here by the quan
numbern. The diagonal matrix elements are given by

Hn,n5
\2

2ma2 S i
]

]w
1

F

F0
D 2

2
a

a
s r S i

]

]w
1

F

F0
D

2 i
a

2a
sw1\vzsz1\vS n1

1

2D . ~6!

The only nonvanishing off-diagonal matrix elements a
those coupling adjacent radial subbands:

Hn,n115Hn11,n
† 5 iswAn11

2

a

l v
. ~7!

III. PROPERTIES OF IDEAL 1D RINGS

The ideal 1D limit for a mesoscopic ring is realized wh
only the lowest radial subband is occupied by electrons
all relevant energy scales as, e.g., temperature, voltage,
disorder broadening are small enough such that interb
excitations can be neglected. In the following section,
focus on this situation that can be realized in recently fab
cated ring structures.37–39

A. Energy spectrum of a 1D ring with impurity

Straightforward algebra yields the eigenenergies ofH0,0
which are usually labeled by an integer numberq:

Eq,65\vaS q2
F

F0
1

1

2
7

1

2 cosuq
D 2

1
\va

4 S 12
1

cos2uq
D 6

\vz

cosuq
. ~8!

Here we have introduced the frequencyva5\/(2ma2) and
omitted the constant energy shift of the radial subband b
tom. The eigenvectors corresponding to the eigenener
given in Eq.~8! are

Cq,65ei (q11/2)wxq,6 , ~9!
1-2
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with the spinors

xq,15S cosS uq

2 De2 iw/2

sinS uq

2 Deiw/2
D , ~10a!

xq,25S 2sinS uq

2 De2 iw/2

cosS uq

2 Deiw/2
D . ~10b!

The angleuq is given by13

tan~uq!52

a

a S q2
F

F0
1

1

2D
\vaS q2

F

F0
1

1

2D2\vz

. ~11!

The spinorsxq,6 are the eigenstates of the operator

suq
5szcosuq1s rsinuq ~12!

and constitute a basis in spin space with space-depen
quantization direction, as shown in Fig. 1. We will refer
this w-dependent spin basis as thelocal spin frame. uq is the
angle between the local quantization axis and the direc
perpendicular to the ring (z axis!. The tilt angle described by
Eq. ~11! becomes independent of the quantum numbeq
when the Zeeman energy is negligible, i.e., whenu\va(q
2F/F01 1

2 )u@\vz . For typical realizations of mesoscop
rings with many electrons present, states contributing imp
tantly to the persistent current fulfill this requirement. The
fore, in the following, we focus exclusively on the lim
where Zeeman splitting vanishes anduq→u5 limv z→0uq .
Then all eigenstates have the same local spin frame, to w
we can transform using the SU~2! matrix

U5S e2 iw/2cos
u

2
2e2 iw/2sin

u

2

eiw/2sin
u

2
eiw/2cos

u

2

D . ~13!

FIG. 1. Schematic illustration of the spin texture exhibited
the eigenstates of the ideal one-dimensional ring.
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This yieldsH1D[U †(H0,02\v/2)vz50U where

H1D5\vaS 2 i
]

]w
2

F

F0
2

1

2 cosu
szD 2

1
\va

4 S 12
1

cos2u
D . ~14!

Here cosu parametrizes the strength of the SO couplin
The eigenstates in the local spin frame are sim
ei (q11/2)wu6&, whereu6& denote the eigenspinors ofsz and
the eigenenergies are given by Eq.~8! with uq→u and vz
50. Note that the orbital part of the eigenstates obeys a
periodic boundary conditions to compensate for the antip
odicity of the spinors of Eq.~10!.

To discuss the effect of a nonmagnetic impurity, we e
ploit the formal analogy between a ring with an impurity a
a 1D periodic potential.17 The latter is described by a Kronig
Penney model,40 with the magnetic flux playing the role o
the quasimomentum of the 1D crystal. The impurity is mo
eled by its energy-dependent transmission amplitudet
5utuexp(id). The energy spectrum for the electrons with sp
u6& can now be obtained by solving the transcendental se
lar equation

utucosF2pS F

F0
6

1

2 cos~u! D G52cos~2pk61d!, ~15!

complemented by the relation

E65\vaFk6
2 1

1

4 S 12
1

cos2u
D G . ~16!

In general, the secular equation~15! cannot be solved ana
lytically for arbitrary transmission functiont. To simplify the
problem, we will now assume that the impurity is a delt
function barrierV0d(w). The transmission coefficient for
state exp(ikw)u6& is t52k/@2k1 iV0 /(\va)#. For states
close to the Fermi level, Eq.~15! can be written as

cosS 2p
F6

F0
D5cos~2pk6!1sgn~k6!A sin~2pk6!,

~17!

with a constantA5V0 /(\vaN), whereN is the total num-
ber of electrons. We also defined the effective fluxes

F65F1F0S 1

2
6

1

2 cos~u! D . ~18!

Equation~17! with constantA would be exact for a barrie
with energy-independent transmission amplitudet5@1
2 iA sgn(k)#/(A211). The approximated secular equatio
~17! has the solution
1-3
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kq,65q1
1

2p
arcosFcos~2pF6 /F0!2sgn~q!AA2@sin2~2pF6 /F0!1A2#

11A2 G . ~19!
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Equation ~19! together with Eq.~16! yields the single-
particle energy spectrum for a ring with an idealized imp
rity. Note that, in the representation of the local spin fram
the impurity problem maps onto that of electrons without S
coupling but with an effective spin-dependent flux22,23 given
by Eq.~18!. This is illustrated in an example spectrum show
in Fig. 2.

B. Persistent charge currents

Having calculated the single-particle electronic propert
of the ring, we proceed to evaluate the persistent charge
rent. At zero temperature, it is given by17

I 52
]Egs

]F
52 (

i Poccupied

]Ei

]F
, ~20!

whereEgs is the ground-state energy andEi are the single-
particle eigenenergies. Herei stands for a set of quantum
numbers used to label corresponding eigenstates, inclu
here the spin projection in the local spin frame. The sec
equality in Eq.~20! is valid only in the absence of electron
electron interactions, which we neglect here. The ze
temperature formula applies when the thermal energykBT is
smaller than the energy difference between the last occu
state and the first unoccupied one. Generally, tempera
induces a rounding of the sharp features~jumps! in the flux
dependence of the persistent current that are due to l
crossings. In the following, we will always consider th
numberN of electrons in the ring to be fixed—i.e., work i
the canonical ensemble. This is the relevant situation for
isolated ring.

FIG. 2. Single-particle energy spectrum of an ideal 1D ring w
a modeld-barrier impurity. Parameters are cosu52/5 andA50.1.
Energy levels for states corresponding to spin-up~solid line! and
spin-down~dashed line! in the local-spin-frame basis are shifted,
flux direction, by 1/cosu.
16534
-
,

s
r-

ng
d

-

ed
re

el

n

For spinful electrons, the flux dependence of the per
tent charge current is distinctly different for the followin
cases:19 ~i! N54N, ~ii ! N54N12, and ~iii ! N52N11,
whereN denotes a positive integer. WhenN is large enough,
the persistent charge current in units ofI 05\vaN/F0 has a
universal behavior independent ofN. We start discussing the
weak barrier limit~smallA in our model!, shown in Fig. 3. In
case~i! where N54N, the numbers of spin-up and spin
down electrons~spin projection in the local spin frame! are
both even, resulting in jumps of the persistent current
F/F05M11/261/(2 cosu), with M being integer. This is
simply the superposition of the even-number spinle
electron persistent current characteristics for each spin di
tion, shifted in flux by61/(2 cosu). Case~ii ! corresponds to
an odd number of spin-up and spin-down electrons and
hibits jumps of the persistent charge current atF/F05M
61/(2 cosu), which is the analogous superposition of th
appropriately flux-shifted spinless odd-electron currents
each spin direction. Note that the caseN54N12 is obtained
from theN54N case simply by shifting flux by 1/2F0. It is
apparent that, for both cases~i! and ~ii !, the minimum dis-
tance between jumps of the persistent charge current wi
the periodic flux interval is a measure of 1/cosu and, hence,
of the SO coupling strength. In contrast, for case~iii !—i.e.,
an odd number of electrons in the ring—jumps appear at
same values of flux (F/F050 and61/2) as in the absenc
of spin-orbit coupling. The only effect of SO coupling turn
out to be a suppression of impurity rounding for these jum
This can be explained quite easily. Inspection shows that,
finite SO coupling, jumps in the persistent charge curren
the case of an odd number of electrons are due to a cros
of levels with opposite spin, while those in the case of
even electron number arise from crossings of levels hav
the same spin. As a spin-independent impurity cannot cou
levels with opposite spin, only the jumps in the case of
even electron number get rounded because of impur
induced anticrossings. For an odd number of electro
jumps in the persistent charge current get broadened onl
temperature. The effect of increasing the impurity~barrier!
strength can be seen by comparing Figs. 3 and 4, where
persistent charge current is shown for different SO coupl
strengths, occupancy of the ring, and disorder.

Measurements are often performed on ensembles of m
rings.26 The measured persistent charge current is then
average over different occupation numbers, with even
odd occupations occurring with the same probability. Amo
cases with even electron numbersN54N and 4N12 would
also be equiprobable. An example of average persis
charge current is shown in Fig. 5. It exhibits the well-know
period halving20,21which must occur irrespective of the pre
ence of SO coupling. Most importantly, however, all featur
present for the single ring and discussed above for differ
1-4
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occupancy are still visible. It should therefore be possible
obtain the Rashba SO coupling strength from a measurem
of the ensemble-averaged persistent charge current.

C. Persistent spin currents

As electrons carry spin as well as charge, their mot
gives rise also to a spin current besides the charge cur
Very often, the difference of charge currents carried
spin-up and spin-down electrons is identified with the s
current. While this is appropriate in many contexts, it has
be kept in mind12,32 that the spin current is actually a tenso

FIG. 3. Persistent charge current vs magnetic flux for a se
values for the spin-orbit coupling strength. The total number
electrons is set to 4N in panel ~a!, to 4N12 in panel~b!, and to
2N11 in panel~c! in the regime of large-enoughN such that the
persistent current is universal. A dimensionless barrier strengt
A50.1 was assumed. The persistent current is measured in un
I 05\vaN/F0.
16534
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A particular case where this fact matters is the one to
considered here. As the electron velocity in the presenc
SO coupling turns out to be an operator in spin space41 and
eigenstates for electrons of the ring correspond to eige
pinors of a spatially varying spin matrix@su as defined in
Eq. ~12!#, the proper expression for the spin current has to
derived carefully. After presenting details of this derivatio
we proceed to show results for the persistent spin current
electrons in a ring with Rashba SO coupling.

The operator of then component of spin density in a
real-space representation is given bysn(rW)5sn(r 8W )d(rW

2r 8W ), with sn being the SU~2! spin matrix whose eigen
states form the basis for projection of spin in then direction.

f
f

of
of

FIG. 4. Same as Fig. 3 but with different impurity parame
A50.5. Note the remaining sharpness of jumps in the case o
odd electron number and finite spin-orbit coupling even at t
rather large value ofA.
1-5
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In general, this projection direction can vary in space. T
equation of motion for the spin-density operator is given
the familiar Heisenberg form

d

dt
sn~rW !5

i

\
@H,sn~rW !# ~21a!

5S d

dt
sn~r 8W ! D d~rW2r 8W !2¹WrW•@sn~r 8W !vW ~rW !#.

~21b!

Here ¹WrW denotes the gradient operator acting on the coo
naterW, andvW (rW) is the electron velocity operator. The latt
differs from its expressionvW 0 in the absence of SO couplin
by a spin-dependent term41 vW 5vW 01a( ẑ3sW )/\.

Straightforward calculation for the case ofspatially con-
stantsn and vanishing Zeeman splitting yields the continu
equation

d

dt
sn~rW !1¹W •Wn~rW !5

2a

\2
@ n̂3~ ẑ3sW !#•~pW 2eAW !,

~22a!

with the n component of the spin-current tensor given by

FIG. 5. Average persistent charge current for an ensembl
identical rings with different electron numbers, shown as funct
of magnetic flux for different values of the spin-orbit couplin
strength. The impurity parameter isA50.1 in panel~a! and A

50.5 in panel~b!. The current unit isĪ 05\vaN̄/F0, where N̄
denotes the average number of electrons.
16534
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Wn~rW !5vW ~rW !sn . ~22b!

We have used the symbolsẑ and n̂ to denote unit vectors in
the z andn directions, respectively. Note that the express
~22b! and the source term on the right-hand side~RHS! of
Eq. ~22a! have been written in the usual shorthand notat
where it is understood that the real part has to be taken in
expectation value. As an example, we fixn5z and consider
the case of electrons moving in the lowest quasi-1D rad
ring subband. We find, after transformation into the repres
tation of the local spin frame, for the continuity equatio
~22a! the simple expression

d

dt
sz~w!1

1

a

]

]w
j z
w~w!52vasyS i

]

]w
1

f

f0
D tanu.

~23a!

The only nonvanishing (w) component of the spin curren
turns out to be

j z
w~w!5

\

maH S 2 i
]

]w
2

f

f0
2

1

2 cosu
szDszcosu

2S 2 i
]

]w
2

f

f0
DsxsinuJ . ~23b!

Eigenstates on the ring which are labeled by quantum n
bersq ands carry a current for thez projection of spin given
by

I z
(qs)5

1

2pa
^ j z

w~w!&qs52
1

e

]Eq,s

]F
s cosu, ~24!

which is just the charge current multiplied by the magneti
tion in z direction of the corresponding state.42

As an important example for the current of a spatia
varying projection of the magnetization, we consider the c
of the local spin frame: i.e.,sn(r 8W )5su(w). @See Eq.~12!.#
Additional terms arising from derivatives ofsu with respect
to polar anglew appear in the continuity equation forsu(rW).
After transformation into the local spin frame, it has the e
tremely simple form

d

dt
su~w!1

1

a

]

]w
j u
w~w!50, ~25a!

with the current

j u
w~w!5

\

maS 2 i
]

]w
2

f

f0
2

1

2 cosu
szDsz . ~25b!

The current of magnetization parallel to the quantization a
in the local spin frame carried by eigenstates is theref
given by

I u
(qs)52

1

e

]Eq,s

]F
s. ~26!

Comparison with results from above yields the relati
I z

(qs)5I u
(qs)cosu, and we have derived also the related o

I r
(qs)5I u

(qs)sinu.
We now present results for the total persistent spin curr

I u5(qsI u
(qs) for the projection onto the quantization axis

of
n

1-6
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the local spin frame. As shown above, spin currents for c
tain other projections can be easily obtained fromI u . The
fact that flux dependences for the persistent current contr
tions from opposite-spin eigenstates are shifted accordin
Eq. ~18! results in large spin currents at certain flux valu
In particular, this is realized when the currents carried
electrons with opposite spin flow in opposite directions.
Fig. 6, we show the persistent spin current for an even n
ber of electrons. For comparison, the persistent charge
rent is plotted as well. Both exhibit strikingly different flu
dependences. Note also that, in the absence of SO coup
the persistent spin current vanishes for even electron num
in the ring. Only the relative shift of energy bands in flu
direction caused by SO coupling enables a finite persis
spin current in this case. For an odd number of electrons,
persistent spin current is finite both with and without S
coupling present. We find it to be sizable, however, only
small values of SO coupling strength. We show a compari
of even and odd electron number cases in Fig. 7.

The persistent spin current would be a mere theoret
curiosity if no detectable effect of it could be found. Fort
nately, this is not so. Recently, it has been pointed out
several authors29–32 that a spin current, being a magnetiz
tion current, gives rise to an electric field. This is eas
proved by making a Lorenz transform to the rest frame
spin. For example, the electrostatic potential for a point a
distancez!a from the plane of the ring on the vertical from
the center of the ring is

f~z!'
m0

4p
gmBI usinu

a

z2
, ~27!

where m0 is the vacuum permeability,g the gyromagnetic
ratio, mB the Bohr magneton,a the radius of the ring, andu
the tilt angle due to SO coupling. This result is identical w
the one derived in Ref. 30 for the electric field resulting fro
persistent spin currents in Heisenberg rings.

FIG. 6. Persistent spin current for spin projection onto the lo
spin frame ~dashed curve! and persistent charge current~solid
curve! vs magnetic flux for the case with electron number 4N12.
The barrier strength isA50.5 and cosu50.66. The current is mea
sured in units ofI 05\vaN/F0.
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IV. EFFECT OF MANY RADIAL SUBBANDS

In the previous section, we have analyzed the persis
current in a strictly 1D ring—i.e., a ring with only the lowes
radial subband occupied by electrons and a sufficiently la
subband energy splitting. We now generalize this discuss
to the case where higher subbands are important. SO
pling introduces coupling between neighboring radial su
bands as described in Eq.~7!. More specifically, the Hamil-
tonian, Eq.~7!, couples radial subbands with opposite spin
the local spin frame, leading to nonparabolicity of ener
dispersions and to hybridization of opposite-spin bands. T
physics in the limit of strong subband coupling is analogo
to what happens in a quantum wire with Rashba SO c
pling; this has been discussed in Refs. 43 and 44. Here
sufficient to notice that Hn,n11 is negligible if
l v / l so!1—i.e., if the radial width of the wave function i
much smaller than the spin-precession length. This condi
is fulfilled in realistic samples. Therefore, we neglect in t
following the coupling term, Eq.~7!. For the sake of simplic-
ity we now consider only the two lowest subbands. Furth
more, we introduce a barrier in the same way as in Sec. II
Assuming that the barrier does not couple different subba
and that the transmission coefficient is the same for b
radial subbands and is given byt5@12 i sgn(k)A#/(A2

11), we find for the energy spectrum

Eq,6,n5\vaFkq,6
2 1

1

4 S 12
1

cos2u
D G1\vS n1

1

2D ,

~28!

wheren50,1 is the subband index andkq,6 is still given by
Eq. ~19!. In Fig. 8, we show the average persistent curr
with and without SO coupling. In comparison to the sing
subband case, additional fine structure appears due to c
ing of levels with different radial quantum numbers. Th
jumps arising from these extra crossings are very sharp
to the way we model the barrier and occur at flux values t
are strongly dependent on the ring occupancy. All other f

l
FIG. 7. Comparison of persistent spin currents for electron nu

ber equal to 4N12 ~dashed curve! and 2N11 ~dotted curve!. The
barrier strength isA50.5 and cosu50.9 corresponding to a sma
spin-orbit coupling strength. The magnitude of persistent spin c
rent decreases rapidly for an odd electron number as cosu ap-
proaches 0.66.
1-7
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SPLETTSTOESSER, GOVERNALE, AND ZU¨ LICKE PHYSICAL REVIEW B 68, 165341 ~2003!
tures discussed for the strictly 1D case occur at the same
values for all radial subbands. Hence, upon averaging,
latter are magnified and the former demagnified, as it is e
dent comparing Fig. 8 with Fig. 5~a!. The dependence of th
average persistent current on the SO coupling and ba
strength is the same as for the 1D case; hence, we do
show it again for the many-subband case. The presenc
many radial subbands, although it introduces some additio
fine structure, essentially yields, after averaging over diff
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V. CONCLUSIONS

We have investigated the effect of Rashba spin-orbit c
pling on the persistent spin and charge currents circling
ballistic quasi-one-dimensional rings. The flux depende
of persistent charge currents exhibits features that allow f
direct measurement of the spin-orbit coupling streng
These features survive averaging over different elect
number configurations as well as the inclusion of higher s
bands. The most striking effect of spin-orbit coupling d
cussed here is the occurrence of finite persistentspincurrents
for even electron numbers. We have carefully derived
correct general form of spin currents in the presence of s
orbit coupling. The possibility to measure persistentspincur-
rents via the electric field generated by their transpor
magnetization should make it possible to unambiguou
verify the presence and magnitude of spin-orbit coupling
namely, by the different flux dependences of persistent s
and charge currents.
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