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Density-functional theory simulation of large quantum dots
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Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-
electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient
method for the simulation of quantum dots using density-function theory is developed; it includes the particle-
in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly mini-
mize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a
simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional
model system and show that numerical studies of large quantum dots with several hundred electrons become
computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be
continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical
dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads
to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.
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[. INTRODUCTION method, is widely used in thab initio electronic calculations
of various material systems, in which the fast-Fourier-
A semiconductor quantum dé®D) is a kind of nanode- transform(FFT) method can be used to take full advantage
vice in which the motion of electrons is quantized in all threeof the periodicity of crystal structures. In principle, the PW
dimensions through the lateral confinement of a high-method is valid only for periodic systems, but aperiodic sys-
mobility modulation-doped two-dimension&2D) electron tems can be treated by introducing the supercell techrfiue.
gas in a semiconductor heterostructtirtéBoth quantum in-  In recent years, several groups have been advocating the use
terference and electron-electron interactions play importandf basis-free real-space methods for electronic structure cal-
roles in quantum dots, and their interplay underlies manyculations of finite systems, in which the wave functions are
properties that are fascinating in terms of both fundamentalepresented in real space, and the kinetic-energy operator is
mesoscopic physics and future technical applications. Varidiscretized by a high-order finite-differen¢ED) method?®
ous theoretical models have been developed to explain eXVith a given representation, there are various methods to
perimental discoveries and to predict new propefie$he  solve the resultant numerical KS equatf@if Roughly they
Kohn-ShamKS) density-functional theoryDFT) method~’  fall into two different types: methods that minimize the total
provides an accurate numerical model to study electronenergy directh?>?3and those that solve the KS equation in a
electron interaction effects in QD systefis® In spite of its  self-consistent wa$? In addition, for DFT simulations of
comparatively low computational cost, previous DFT calcu-finite systems, another important issue is the calculation of
lations are limited to systems in which the electron number ighe Hartree potentigf~—2°
generally less than a few tens. In many experimental cases, Aiming at modeling QD systems efficiently, we have de-
however, the electron numbers involved are more than seweloped techniques in both the numerical representation of
eral hundreds. The main theoretical approaches in the regintS orbitals and the solution of the KS equation. We note that
of large number of electrons are statistical metAidd$?*  in QD systems, the wave functions vanish at the boundaries,
which are usually based on some general assumptions whoaad in some cases even hard-wall boundary conditions are
validity, in many cases, is yet to be justified. It is thereforeused. For a function in a rectangular box with zero boundary
desirable to explore the large dot regime directly by usingvalues, the most natural basis set is the particle-in-the-box
numerically more accurate models such as DFT. This im{PiB) basis set. The kinetic-energy operator is diagonal in the
poses a demanding computational task because to obtaifiB space and the transformation between real and PiB space
meaningful statistics, many calculations with several hun<can be efficiently performed by the fast-sine-transfoF8T)
dred electrons need to be done. It is therefore compelling tonethod, which is a variant of the FFT. For the solution of the
develop more efficient numerical techniques for DFT simu-KS equation, we modified Teter, Payne, and AllaiT®A’s)
lation of QD systems. band-by-band conjugate-gradient metffod to get a more
Two key issues are involved in the numerical implemen-efficient direct-minimization approach.
tation of the KS-DFT metho&? (1) the numerical repre- The methodology developed in this paper is equally ap-
sentation of wave functions and the KS Hamiltonian é2d plicable to systems of any dimension, but since quantum dots
the solution of the numerical KS equation. While local basisare usually approximated as ideally 2D systénvge will
sets (mainly Gaussian-type orbitalsdlominate in conven- report our numerical results only for 2D systems. In our pre-
tional quantum chemistry of molecular systetfishe plane-  vious study!® this methodology was used to investigate sta-
wave (PW) basis?®?3 combined with the pseudopotential tistics of conductance peak spacing and ground-state spin in
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large quantum dots with electron numidup to 200. In this Assuming that the ground state of the noninteracting ref-
paper, we extend the calculations for even larger dots With erence system is nondegenerate, the noninteracting kinetic
up to 400, which makes it possible to investigate the interenergy is given by [n®,nf]1==; (y7|—3V? y7), and the
play between classical integrability of external potentials andyround-state spin density is uniquely expressed as
electron-electron interaction. Some results will be presented
as an application of the methodology. We find that the nature
of the noninteracting classical dynamics does affect the DFT n(r)=> [47(Nf% o=a,B. (2
results: integrability leads to a greater fraction of high-spin '

states and to a broader distribution of Coulomb blockadeqere " are the lowest single-particle orbitals which are ob-
peak spacings. However, the effect of integrability is smallekained from

than the effect of symmetry of the external potential, indicat-

ing that the interactions affect the integrability of the system ks (r)=e ¢ (r), 3
more easily than its symmetry.

The outline of the paper is as follows. In the following
section, after a simple description of the KS-DFT me_thod, 0= — LYV (1) + V[N 1+ Vo nenfir].  (4)
we present the main components of our methagithe PiB
representation of the KS equatiof2) a modified band-by- Vy[n;r] and Vg nenP;r] are the Hartree and exchange-
band conjugate-gradient method for the direct minimizationcorrelation potentials, respectively:
of the KS total energy(3) a Fourier convolution method for
the calculation of the Hartree potential that was developed by L nr’)y .,

Martyna and Tuckerma&fin the PW pseudopotential calcu- VH[n,r]=f md r ®)
lations; and(4) a simple one-way multigrid technique to ac-
celerate the convergence that was first proposed by Lee

N7

with the KS HamiltoniarH g defined as

SE I n% nP]

et al3! In Sec. IIl, our method is tested and evaluated in a 2D VoI nbyr= —=——= (6)
model QD with electron humbeX=100. In Sec. IV, this on’(r)

method is applied to study spin and peak-spacing distribu- , . )
tions in large integrable and chaotic quantum dots Withp In our calculations, we have used the local spin-density
to 400. Finally, Sec. V summarizes the main results and cor@PProximation(LSDA) (Refs. 5,7 for E,c. In the 3D cases,
cludes the paper. the validity of LSDA has been well justified in the modeling

of material systems. Although more accurate exchange-
correlation functional forms such as the generalized-gradient
Il. METHOD approximation(GGA) (Refs. 5,32 are available, it has been
A. Kohn-Sham spin-density functional theory shown 'ghat t_he GGA results are close to those from LSDA
L . . calculations in QD system$.In the cases of 2D systems,
Considering the important role pla_yed by_eleptron SPIN MNgeyeral LSDA exchange-correlation functional forms have
QD systems, we take the effect of spin polarization explicitlyee geveloped by parametrizing results obtained from quan-
into account in the framework of Kohn-Sham spin-density;, mMonte Carlo modeling of 2D electron g&s3*We use
functional the?ry(KS-SDFj).5v7 In KS'S_DhF-'—I' the ground-  1anatar and Ceperley's parametrized fotrof 2D LSDA
state energy of an interacting system with electron nutber ¢, ional for nonpolarized and ferromagnetic limits, and use
and the total spirs in the local external potentiafe,(r) IS 4 exchangelike interpolation formula for intermediate

written as a functional of spin densities” with o=a,8  pgarization? In terms of the implementation, the calculation

denoting spin up and spin down, respectively: of V,. is trivial when the spin densities are in real space as is
the case in our algorithm, but the calculation\Gf requires
E[na,nﬁ]:Ts[na’nB]+f N(r)\Ve(r)dr more effort as will be shown later.
1 n(ryn(r’) , o B. PiB representation
+3 Wdrdr +E{n*,n”]. To simplify the notation, we will take 1D systems as an

example, the generalization to higher dimensional cases be-
(1) ing straightforward. Any regular functiof(x) that is local-

ized in the finite region &x<L with zero boundary values
(Effective atomic units are used throughout the paper: focan be expanded as
GaAs QD’s with an effective electron mass* =0.067n,
and a dielectric constart=12.9, values are 10.96 meV for \F _NwX
energy and 10.19 nm for lengihTn%,n?] is the kinetic f(x):%‘f Co\sin— @
energy of the KS noninteracting reference system which has
the same ground-state spin density as the interacting one a@@d the expansion coefficien®, are

E.[n%n?] is the exchange-correlation energy functional. .
The spin densities” satisfy the constrainfn’(r)dr=N“ C,= \ﬁf f(x)siande. ®)
with N*=(N+2S)/2 andN#=(N—2S)/2. LJo L
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Integrating Eq.(8) numerically on a set of equally spaced gradient schent® to obtain higher efficiency. Here we give
discrete pointgx;=jAx=j(L/N,)} using the extended trap- an outline of the algorithm, and emphasize the modifications
ezoidal formuléé leads to we have made.
N1 The basic idea of a band-by-band scheme is to minimize
\/5 x jn J2L the total energy over one bafor orbita) at a time*® which,
Cn=\ 2 121 fJ'S"n,\l_X:Fn,\l_X (9 compared to other conjugate-gradient scheffi@$has the
following advantages(l) much lower requirement for stor-
with f;=f(x;) and age space€2) simpler implementation, an@) particularly in

N1 our algorithm, an efficient approximate line-minimization
X

. _arjn scheme, as will be shown.
Fn= ]2::1 fis'nN_XEFST{fJ}’ (10) First the steepest descd@D) vector for theith orbital at
the mth iteration is calculated from
where FST{f;} denotes the fast sine transform of the data
fi}. my _ m m
{ J}One of the key ingredients in our method is the action of 14 >_(1_§1 |'/’i><¢i|)()\i ~Hyo)ul") (14
the single-particle Hamiltonian operator on wave functions:
with N"=(y"|Hks| ") (to simplify the notation, we use

Hf(x)=Tf(x)+Vf(x), (11 Dirac’s state vector notation and drop the spin index in the
following formulation. In TPA's algorithm, the SD vector is
Preconditioned before it is used to build the conjugate vector.
In our calculations, however, it was found that although in

any cases preconditioning does accelerate the convergence,
s effect is not always positive. On the other hand, the com-
'outational overhead in the preconditioning step, which in-
volves another orthogonalization process as well as the ac-
&ion of the preconditioning operator on the SD vector, can be
expensive for large systems. As shown later, by using a sim-
plified multigrid technique, we can achieve fast convergence
even without preconditioning of the SD vectors.
The conjugate vectdry(") is then constructed as a linear

the efficiency of which is critical for the performance of the
whole method. Whereas the potential-energy operator is d
agonal in real space, the kinetic-energy operator is diagon
in PiB space. Wave functions can be transformed betwee
the two spaces efficiently by the fast sine transform. In ou
method, wave functions are in discrete real spggg, and
the application of the potential-energy operator is therefor
trivial, V{f;}={V;f;}, whereV; is the value of the potential
at the pointx;. The kinetic-energy operator is applied to
wave functions in PiB space:

2 21,2
Tf(x)=— ﬁ_vzf(x): 2 > ansin@, (12)  combination of the SD vectdg;") and the previous conju-
2m Ny “n 2m L gate vector
with k,=nm/L, which in the discrete form becomes ™ =™+ yM o™ Ly, (15)
2 12Kk; where
T{f;}=—FST{Fo——1. (13
Ny 2m (g™
m__ i i
The PiB representation formulated above is closely re- Y _<£im—1|§im—1> (16)

lated to the PW method. In fact, for finite systems with soft-

wall boundaries, the two representations are numericallyvith yil=0. The conjugate vector is further orthogonalized
equivalent. Mathematically, however, they are different: Theto the present bands{") and normalized is denoted as the
PiB basis set is real and the zero boundary condition is imnormalization operator

posed by the basis set itself, but in the PW case the basis

functions are complex and the wave functions are forced to lor ™ =NL— ¢ o). (17

be zero at the boundaries by the external potential of systems . ) ) PN

under study. The PW method will fail in the case of the The new wave function for thith orbital [¢7"" ") is formed
hard-wall boundary problem, which is quite common in thefrom the linear combination

studies of quantum dots, but the PiB method is still valid. il m —_—

Mathematically the PiB method is closely related with the [ ) =" coSOmint [ @ ) SIN Oy, (18
discrete variable representation methods that are widely us

in chemical physicd” %hich is guaranteed to remain normalized and orthogonal to

all other orbitals.6,,,, is obtained by minimizing the total
_ o _ . energy as a function ofg with |;(6))=|¢")cose

C. Dlrect-m|n|m|za£cc:2n(fgr#:r?1a2:3$gfnt method for the ;;|‘Pi,m>5in 0 In TPAS .algorithm?mo émm is determined by

e following approximate scheme: The total energy as a

In direct-minimization approaches, the KS total-energyfunction of ¢ is approximated byE(6)~E,+A;c0s2
functional is minimized directly over orbital wave functions +B;sin 26, the three unknownsz, 4, A; andB,, are deter-
under orthonormal constraintéWe have made several im- mined according to three pieces of informatid(6=0),
portant modifications to TPAs band-by-band conjugate-dE(8)/d0|,-o, andE(6= m/300).
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Here we propose a more efficient approximate scheme for .
the determination ob,,,. The derivative ofE(#) with re- " n,(r)=0
spect tod can be obtained from : *

Q
n,, (r)=n(r)

EO) o n : o;
g~ X |Hks(6)]#i"ycos 20 . (=0 ., n,(r)=0
= (4" Hes(O) |47 — (@i "Hks(8)] ™)) sin 26. o
(19 2L
AssumingHys(60) ~Hks(0), from dE(6)/96=0 we get FIG. 1. lllustration of the Fourier convolution method for the
calculation of the Hartree potential in finite systems. The original
_1 —1B grid where the density and potential are defined is extended into
emin_itan A (20) doubled space. The density in the extended region is set to zero.

_ Imposing the periodic boundary condition for this extended grid,
with the unphysical interaction between neighboring supercells can be

avoided.
A=— (4" Hks(0)[ 4 +(@{ "Hks(O)| ™) (2D)

values can be quite expensive even by using efficient multi-

pole expansion techniques. Additionally, the Poisson solver

_ rm m approach is valid only for 3D systems; in the case of 2D
B=2(¢{"Hks(O)] 7). 22 systems, there is no Poisson equation equivalent to(Eq.

The underlying approximation in our scheme is similar toln recent years, several schemes have been proposed to ex-
that of TPA's, but our scheme is much more efficient in termstend the conventional Fourier convolution method to finite
of computational effort: In TPA's scheme, at each band iterasystemg®282%49n particular we have incorporated Martyna
tion the total energy must be calculated twice, iE(6 and Tuckerman’s methddinto our approach to quantum
=0) and E(#=/300); in our scheme, the most time- dots. Considering that the Martyna-Tuckerman method was
consuming step is the action ¢fcs on |¢/™), which is  developed mainly for the modeling of molecular and mate-
much faster than the calculation of the total energy. Considrial systems within the plane-wave pseudopotential frame-
ering further the fact that the total number of band iterationgvork, we will formulate the approach here with some detail.
can be very large, we note that an efficient line-minimization ~ The calculation of the Hartree potential is straightforward
scheme such as ours is crucial to reduce the computationf@r periodic systems, but this is not the case for finite aperi-
effort. odic systems. The potenti&(r) has the form of the con-

In TPAs algorithm, after the wave function is updated volution between the density and the Coulomb interaction
according to Eq(18), the Kohn-Sham Hamiltonian is up- kernel,v.(r)=1/r, which has the following simple relation
dated immediately, which involves the reconstruction ofin the Fourier spac&

Vy(r) andV,.(r) according to the new density. This is ac- - - -

tually quite expensive for large systems. On the other hand, Vih(k)=n(k)v(k), (23

we expect that the KS Hamiltonian will not experience large ~ : .
changzs inside the iterations of a single orbri)tal. So in guyvheref(k) refers to the Fourier transform (ﬁ_(r)' Equ~at|on
algorithm, we updatéiys after everyN,,4yeband iterations, (23) is useful only when we have the analytlca~l formngk)

and the optimal value dfl 4. Will be explored in the fol-  and can perform the inverse Fourier transfornvg{k) ana-
lowing section. lytically, which is not true for most cases where the density is

In each orbital, the procedure described above is repeatatsually represented in discrete real space.

Npangtimes; the iterations are then started on the next orbital. When applying the Fourier method to discrete finite sys-
After the wave functions of all orbitals are updated in thistems, periodic boundary conditions are always assumed. It
way, the total energy is calculated and is compared to that dias long been known that the unphysical interactions be-
the previous cycle to determine if the final convergence igween neighboring supercells can be avoided by calculating
achieved. The main parameters in the algorithm Mgg,;  Vw in @ doubly extended gritt In particular for 2D systems
and Nypdae Their effects on the performance of the algo- as illustrated in Fig. 1, the origindl, XL, grid () is ex-

and

rithm will be tested in detail in the following section. tended to 2,X2L, ({2,.). The density in the extended grid
is defined as
D. Calculation of V n(ry ifreQ
For finite systems, the simplest and perhaps the most in- Ny ()= 0 otherwise (24)

efficient way to calculat&/,, is by direct numerical integra-

tion, which is feasible only for small systems. Another Imposing periodic boundary conditions to both the density
widely used approach is to solve the Poisson equatiomand the Coulomb interaction kernel in the extended grid, the
equivalent to Eq(5). Though the Poisson equation itself can potential can be calculated according to the convolution
be solved with great efficiency, the calculation of boundarytheorem:
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_ _ " grid; the converged wave functions, after interpolation and
VH(f)=; Ny (K)vc(k)e™ ™, (25  reorthogonalization, are taken as the initial guess for the
minimization on the fine grid. With these well-
wheren,, (k) andv (k) are respectively finite Fourier inte- Préconditioned initial wave functions, the convergence on
grals of the density and the Coulomb interaction kernel in théhe fine grid can be easily attained.

extended grid:
I1l. NUMERICAL OPTIMIZATION OF PARAMETERS

— 1 .
n2L(k)=Q—f Ny (r)e 'k rdr, (26) Assembling all the pieces together, we test the perfor-
2L 05 mance and explore the optimal values of parameters of our
method in a coupled quartic oscillator potent{@OP sys-

v_c(k):f ve(ne v rar, (27 tem:
Qa1 4
X
where(),, is used to denote both the extended grid and its ~ Vg(X,y)=a E+by“—2)\x2y2+ y(xzy—xyz)r),
volume (or area in the 2D case

While n, (k) can be easily obtained from the discrete 30
Fourier transform of its real-space values by FFT, the calcuwith r=x?+y?2. The prefactor is used to control the-e
lation Ofv_c(k) is much more involved because of the Singu_interaction strength, which |_s usuilly characterized by the
larity of the Coulomb interaction kernel in real space. TheWigner-Seitz radius = 1/\/5 with n being weighted aver-
key to Martyna-Tuckerman’s approach is to decompose thgge electron density)= /n?(r)dr/N. In this paper, we use
Coulomb interaction kernel into long- and short-range partsa=10-* to haver.~1.5, which is close to experimental

values. The parametdr is usually taken asr/4. Both the

erf(ar) + erfo(ar) = (N9 (1) 4 (short) ) classical dynamics and the single-particle quantum mechan-
r r ¢ ¢ ’ ics at y=0 have been extensively studi&dthe system
(28)  evolves continuously from integrable to fully chaotic X&s
where erf&) and erfck) are the error function and its varies from 0 to 1. The parameteyris introduced to break
complement, respectively, and is the parameter that con- fourfold symmetry. In test calculations, we take=0.6 and

trols the effective cutoff range. The finite Fourier integral of y=0.1.

the short-range part can be well approximated by its infinite The calculations are done in a grid of sizg=L,=50
Fourier transform: and the number of grid points i¥,=N,=64. All the nu-

merical results in this section come from calculations with
—short) Ly _ (short) o - ik.r electron numbeN=100 and spinS=0. For the exchange-
ve  A(K)= fﬂ ve oAr)edr correlation energ¥,. we use Tanatar and Ceperley’s param-
2 etrized form of the LSDAsfunctionei*ﬁ The convergence cri-
o ~ terion is set ase=10"", which corresponds to about
~ fwhole Spacgff“"”)(r)e *rdr=p k), 1075 meV in GaAs-AlGaAs QD systems.
Considering that the FD method has been widely used in
(29 the numerical modeling of QD systefi&!*1"we first make
a comparison between FD and PiB. In the FD representation,

which is analytically known in both 2D and 3D cases. The h d-order derivative in the kineti :
finite Fourier integral of the long-range interaction can beln® second-order _er|vat|ve In the kinetic-energy operator Is
locally discretized in real space:

directly obtained from the discrete Fourier transform of its

ve(r)=

real-space values. In the practical implementatignneeds e . 0m
to be calculated only once at the beginning. The calculation —f(x)=— > C;f;+0(h2m), (32)
of Vy(r) involves only two FFT's(one forward and one x> h? j==m

backward, which makes this approach much more efficient

than methods based on a Poisson solver whereh is the discretization step and the coefficieﬁl;scan

be obtained systematically for amy. Figure 2 shows the
) o ) convergence of the total energy with respect to the number of
E. Accelerating convergence: A one-way multigrid technique grid points using 5-pointri=2) FD, 13-point M=6) FD,

The multigrid method is an efficient technique to acceler-and PiB representations. The low-order finite-difference
ate the convergence in various real-space relaxatioachemem=2, is poor in terms of accuracy, and converges
approaches® The basic idea is that low-frequency errors areslowly as the grid size increases. The high-order FD scheme,
easier to eliminate on a coarse grid than on a fine grid. Leen=6, improves the accuracy by two orders of magnitude,
et al3! proposed a simple one-way multigi®WMG) tech-  but is still less accurate than PiB fo, =32, 48, and 64.
nique in finite-difference real-space KS calculations. Wave We check the accuracy and efficiency of our line-
functions being represented in real space in our method, minimization scheme by comparing with both TPAS ap-
similar technique can be implemented in a straightforwardoroach and the numerically exact Brent's line search
way: The KS energy functional is first minimized on a coarsealgorithm®® In this case, we usB,,,+~5 and Nypdas=1 as
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FIG. 4. (Color onling Errors in the total energy as a function of
FIG. 2. (Color onling Convergence of the total energy with CPU time during the DMCG calculation for differeft,,nq with
respect to the number of grid points using 5-point FD, 13-point FD’Nupdatez 1 (a) and for differentN,pgaeWith Npang=20 (b) with re-
and PiB representation. We note that in the case of PiB, the error &pect to the exact total energy that is calculated using a finer grid
N,= Ny: 80 is larger than that &, = Ny:64, which is mainly due (N,=80) and tighter convergence criterioa= 10’7).
to the numerical convergence error considering that the convergent
criteria is taken ag=10""°. We have implemented both the two-levél 4nd 2n) and

recommended in TPAs original wofZ. Figure 3 plotsfiy, f[hree—level_h,_éh, and d) OWMG sc_:hemes. Instead of us-
in the first 25 band iterations calculated from the thregNd @ sophisticated interpolation as in Ref. 31, we use a sim-
schemes. The values 6f;, from both TPA's and our method PI€r Lagrange polynomial interpolation method. Comparison
agree very well with exact values—the relative errors areVith the single-level calculation shows a quite obvious im-
always smaller than 1%. But in terms of computational ef-Provement in computational efficiency. To check the effect of

fort, our scheme is much more efficient as discussed in thE€ interpolation accuracy, in Fig. 5 we plot the relative com-
preceding section. putational effort in one KS calculation as a function of the

To find the optimaNpangand Nypaae We do the calcula- order of the Lagrange interp_olation formula in both Fwo- and
tions with different values oNyangand Nypgae and the re- f[hree—levgl OWMG cglculatlons. We see that a high-order
sults are shown in Fig. 4. With fixeM e 1, it is seen interpolation scheme is useful to improve the performance.

that a relatively largemN,,,q is more efficient than small
Npang- FiXing Npani= 20, Nypaae= 20 gives the best perfor- IV. APPLICATION: SPIN AND CONDUCTANCE
mance. The combination of large,,ng and N pqate reduces PEAK-SPACING DISTRIBUTIONS IN LARGE
the computational effort by almost one order of magnitude. =~ INTEGRABLE AND CHAOTIC QUANTUM DOTS
Though the actual values of optimbll,ang and N pgae May

vary for different systems, the basic idea demonstrated in thig,o
test calculation is believed to be of general significance.

In Coulomb blockade experiments of QD systems, the
nductance through the dot varies strongly as a function of

05 -—-8mr 1 : k : : ;
7 L @—® Two-Level |
B—8 Three-Level
04 1 &
£ ] Eo0s8f
@ =
03 E =)
o
] o 0.6
0.2 . 20
. E
—~ 2 O
§ 0.4 | &,
g 02 } 0.4r
2" |
(5] ¥ L 1 1 L 1 L
% o 1 0 2 4 6 8
E 1 Order of Lagrange Interpolation
-0.2 _

. - . . . 3 : : : 2 . FIG. 5. (Color onling Relative computational efforts for one KS
calculation as a function of the order of interpolation in both two-
FIG. 3. (Color onlin@ Comparison off,,, calculated by three and three-level OWMG calculations. The CPU time in the single-
different schemes. level calculation is taken as the unit.
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gate voltage, forming a series of sharp pehks.the linear 2 @' T - T - T -
regime at near-zero temperature, the spacing between neigh- |

boring peaks is related to the second difference of the |- I
ground-state energl, s with respect to electron numbatr. L |

AE(N)=E4s(N+1)+E;s(N—1)—2E4(N), (32

which is usually called the addition energy. The ground-state
spin of the QD can be inferred from the shift in position of
the conductance peaks upon applying a magnetic field. In % ' : ' : ' : '
small, highly symmetrical QD’s with less than a few tens of (b)’ ' ' ' ' ' '
electrons, the conductance peak spacing shows shell-filling i
structure, and the ground-state spin is determined by Hund’s
rule®® In large QD systems with irregular geometry or dis-
order, both quantities show random mesoscopic fluctuations, » 0 s
but their statistical properties are of universal significaltce. - 4
The connection between classical integrability and the |- -
guantum properties of noninteracting systems is well
established? When the classical dynamics is fully chaotic, 2 . | . | . | .
the energies and wave-functions of a closed system follow
the statistics of random matrix theory. In contrast, when the
classical dynamics is integrable, there can be both larger and
smaller spacings between the energy levels and distinctly
nonrandom wave functions. - 0
Here we are interested in the interplay between classical
integrability ande-e interactions: Does the classical integra-
bility of the external potential have significant effects on the
statistical properties of quantum dots wighe interactions i 1
fully considered? To answer this, we calculate spin and peak- -2—t——l ool ol ol
spacing distributions in the QOP system in three different Electron Number
cases: fully |nt_egra_ble with fourfold symmetryA €0,y FIG. 7. Dimensionless peak spacing as a functioh df three
=0). 'fuIIy' chaotic with symmetryx=0.6,Z2=0), aﬂd f“”Y different cases(a) A=0.0,y=0.0 (integrable and symmetpic(b)
chaotic without symmetryN=0.6,y=0.1)."< The high effi- A=0.6,y=0.0 (fully chaotic but symmetrig and (c) A=0.6.y
ciency of our method makes it possible to calculate the:o.l(fully chaotic and asymmetric
ground-state energy and spin fdiranging from 1 up to 400,

so that good statistics can be obtained fromirggle poten- . .
tial. For a givenVe,, the ground-state enerdyy s and spin

Sys.as a function oN are determined by calculating several
0.14 — . , —————— ‘ spin configurations for eacN and selecting the one with
minimum energy. As an example, Fig. 6 shotusE(N) cal-
— SduilamiDas 1 culated in the potential\(=0.6,y=0.1). The spin distribu-
— Pobmomial Hiting (=10} tion is simply the fraction of each spin configuration among
all ground-state spins. To calculate the distribution of peak
spacing, we need to first remove the smooth trend in
ALE(N) (denotedA,E) as that is mainly a classical effett,
and scale the resultant data by the mean level spakinyy
is found fromA = 2722/ A with A estimated as the clas-
sically allowed area at the Fermi level. The final dimension-
less peak spacing, denotedis

_
T

_ AEN)-A,E(N)

S(N) 3 33

oogl— L v v
: 50 100 150 200 250 300 350 400

Electron Number - o _ o
FIG. 6. (Color onling Addition energy as a function & and its Probability distributions of can be easily constructed; it is
tenth-order polynomial fitting calculated from the QOP system withnatural to look at the data wheM is even separately from
A=0.6,y=0.1. The overall trend is the classical effect of increasingthat whenN is odd because of possible spin-degeneracy ef-
charging energy as the quantum dot gets bigger while the fine strudects.
ture is the quantum variation of interest. Figure 7 shows(N) in the three different cases. Note that

165337-7



HONG JIANG, HAROLD U. BARANGER, AND WEITAO YANG PHYSICAL REVIEW B68, 165337 (2003

L5 dots withS=2 or 2 can be substantial. Finally, the probabil-
ity of large ground-state spin decreases as the dot becomes
less “regular” in terms of both classical dynamics and
symmetry.

The most striking feature in Fig. 8, however, is the simi-
larity between the case with integrable external potential and
that with fully chaotic potential with the same geometrical
symmetry. There are noticeable differences between the two
cases—the distribution of peak spacing has longer negative
and positive tails in the integrable case, for instance, reflect-
ing the greater number of peaks in the raw data Fig—#
but on the whole both the peak-spacing and spin distributions
are statistically the same and significantly different from
those in Fig. &). It seems that geometrical symmetry plays
a more important role than the nature of the classical dynam-
ics. A plausible interpretation of this feature is that #e
interaction can break the classical integrability of the
external potential more effectively than it can the
symmetry—integrability is more fragile than symmetry.

P(s)

P(s)

V. SUMMARY

In this paper, we have presented an efficient method for
the KS-SDFT simulation of large quantum dot systems. The
main elements of the method are the following

(1) Wave functions are represented in real space, and the
kinetic-energy operator is applied to wave functions by fast
. sine transform.

0 1 5 3 (2) The Hartree potential is calculated by Martyna and
Peak Spacing (s) Tuckerman’s Fourier convolution methéd.

(3) For the solution of the KS equation, we introduced
several important modifications to Tetet al's band-by-
A=0.6y=0.0 (fully chaotic but symmetric and (c) A=0.6y band c_onjuga.te—.gra_dient methdtA more efficient.approxi-
=0.1 (fully chaotic and asymmetric The integrable symmetric Mate line-minimization scheme was developed; it was found

case has the highest proportion of high-spin states and the largedlat large band iteration number and a delayed update of the
difference between eveN (solid, red and oddN (dashed, blue ~ KS Hamiltonian inside the band iterations increase the effi-

Insets: Distribution of ground-state spin in the three cases. ciency by one order Qf magnitude.
(4) A one-way multigrid techniqu¥ was used to acceler-

one can already see the difference between the cases in i€ the convergence. _ ,
raw data. As an application of the method, we investigated the ef-

Figure 8 shows peak-spacing and ground-state spin distrfects of the classical integrability of the external potential on
butions for even and odM in the three cases. We call the SPin and conductance peak-spacing distributions in a 2D
reader’s attention to several features: FiRds) is always Model system withN up to 400. We found that the nature of
fairly compact in the case of odd but can have a long tail the classical dynamics does influence the quantum properties

at large spacing foN even; this tail is caused by the energy of the interacting system, though not as much as the presence
of symmetry in the external potential.

P(s)

FIG. 8. (Color online Peak-spacing distributions iN in three
different cases(a) A =0.0,y=0.0 (integrable and symmetjic(b)

of the top orbital when the spin sequence js 0, 3). Sec-
ond, note the sharpness®B(s) for s~ —0.5 in panel(c) for
bothN even and odd. Third, there is a substantial probability

of nonminimum spin. In fact, the probability &=0 for N We thank D. Ullmo for helpful discussions. This work
even is less than half in all three cases, and the fraction ovas supported in part by NSF Grant No. DMR-0103003.
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