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Density-functional theory simulation of large quantum dots
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Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-
electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient
method for the simulation of quantum dots using density-function theory is developed; it includes the particle-
in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly mini-
mize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a
simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional
model system and show that numerical studies of large quantum dots with several hundred electrons become
computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be
continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical
dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads
to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.
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I. INTRODUCTION

A semiconductor quantum dot~QD! is a kind of nanode-
vice in which the motion of electrons is quantized in all thr
dimensions through the lateral confinement of a hig
mobility modulation-doped two-dimensional~2D! electron
gas in a semiconductor heterostructure.1–4 Both quantum in-
terference and electron-electron interactions play impor
roles in quantum dots, and their interplay underlies ma
properties that are fascinating in terms of both fundame
mesoscopic physics and future technical applications. V
ous theoretical models have been developed to explain
perimental discoveries and to predict new properties.2,4 The
Kohn-Sham~KS! density-functional theory~DFT! method5–7

provides an accurate numerical model to study electr
electron interaction effects in QD systems.8–19 In spite of its
comparatively low computational cost, previous DFT calc
lations are limited to systems in which the electron numbe
generally less than a few tens. In many experimental ca
however, the electron numbers involved are more than s
eral hundreds. The main theoretical approaches in the reg
of large number of electrons are statistical methods2,3,20,21

which are usually based on some general assumptions w
validity, in many cases, is yet to be justified. It is therefo
desirable to explore the large dot regime directly by us
numerically more accurate models such as DFT. This
poses a demanding computational task because to o
meaningful statistics, many calculations with several h
dred electrons need to be done. It is therefore compellin
develop more efficient numerical techniques for DFT sim
lation of QD systems.

Two key issues are involved in the numerical impleme
tation of the KS-DFT method:22,23 ~1! the numerical repre-
sentation of wave functions and the KS Hamiltonian and~2!
the solution of the numerical KS equation. While local ba
sets ~mainly Gaussian-type orbitals! dominate in conven-
tional quantum chemistry of molecular systems,24 the plane-
wave ~PW! basis,22,23 combined with the pseudopotenti
0163-1829/2003/68~16!/165337~9!/$20.00 68 1653
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method, is widely used in theab initio electronic calculations
of various material systems, in which the fast-Fouri
transform~FFT! method can be used to take full advanta
of the periodicity of crystal structures. In principle, the P
method is valid only for periodic systems, but aperiodic s
tems can be treated by introducing the supercell techniqu22

In recent years, several groups have been advocating the
of basis-free real-space methods for electronic structure
culations of finite systems, in which the wave functions a
represented in real space, and the kinetic-energy operat
discretized by a high-order finite-difference~FD! method.25

With a given representation, there are various methods
solve the resultant numerical KS equation.22,23 Roughly they
fall into two different types: methods that minimize the tot
energy directly,22,23and those that solve the KS equation in
self-consistent way.23 In addition, for DFT simulations of
finite systems, another important issue is the calculation
the Hartree potential.26–29

Aiming at modeling QD systems efficiently, we have d
veloped techniques in both the numerical representation
KS orbitals and the solution of the KS equation. We note t
in QD systems, the wave functions vanish at the boundar
and in some cases even hard-wall boundary conditions
used. For a function in a rectangular box with zero bound
values, the most natural basis set is the particle-in-the-
~PiB! basis set. The kinetic-energy operator is diagonal in
PiB space and the transformation between real and PiB s
can be efficiently performed by the fast-sine-transform~FST!
method, which is a variant of the FFT. For the solution of t
KS equation, we modified Teter, Payne, and Allan’s~TPA’s!
band-by-band conjugate-gradient method30,22 to get a more
efficient direct-minimization approach.

The methodology developed in this paper is equally
plicable to systems of any dimension, but since quantum d
are usually approximated as ideally 2D systems,4 we will
report our numerical results only for 2D systems. In our p
vious study,19 this methodology was used to investigate s
tistics of conductance peak spacing and ground-state sp
©2003 The American Physical Society37-1
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large quantum dots with electron numberN up to 200. In this
paper, we extend the calculations for even larger dots witN
up to 400, which makes it possible to investigate the in
play between classical integrability of external potentials a
electron-electron interaction. Some results will be presen
as an application of the methodology. We find that the nat
of the noninteracting classical dynamics does affect the D
results: integrability leads to a greater fraction of high-s
states and to a broader distribution of Coulomb blocka
peak spacings. However, the effect of integrability is sma
than the effect of symmetry of the external potential, indic
ing that the interactions affect the integrability of the syst
more easily than its symmetry.

The outline of the paper is as follows. In the followin
section, after a simple description of the KS-DFT meth
we present the main components of our method:~1! the PiB
representation of the KS equation;~2! a modified band-by-
band conjugate-gradient method for the direct minimizat
of the KS total energy;~3! a Fourier convolution method fo
the calculation of the Hartree potential that was developed
Martyna and Tuckerman29 in the PW pseudopotential calcu
lations; and~4! a simple one-way multigrid technique to a
celerate the convergence that was first proposed by
et al.31 In Sec. III, our method is tested and evaluated in a
model QD with electron numberN5100. In Sec. IV, this
method is applied to study spin and peak-spacing distr
tions in large integrable and chaotic quantum dots withN up
to 400. Finally, Sec. V summarizes the main results and c
cludes the paper.

II. METHOD

A. Kohn-Sham spin-density functional theory

Considering the important role played by electron spin
QD systems, we take the effect of spin polarization explic
into account in the framework of Kohn-Sham spin-dens
functional theory~KS-SDFT!.5,7 In KS-SDFT, the ground-
state energy of an interacting system with electron numbeN
and the total spinS in the local external potentialVext(r ) is
written as a functional of spin densitiesns with s5a,b
denoting spin up and spin down, respectively:

E@na,nb#5Ts@na,nb#1E n~r !Vext~r !dr

1
1

2E E n~r !n~r 8!

ur2r 8u
drdr 81Exc@na,nb#.

~1!

~Effective atomic units are used throughout the paper:
GaAs QD’s with an effective electron massm* 50.067me
and a dielectric constante512.9, values are 10.96 meV fo
energy and 10.19 nm for length.! Ts@na,nb# is the kinetic
energy of the KS noninteracting reference system which
the same ground-state spin density as the interacting one
Exc@na,nb# is the exchange-correlation energy function
The spin densitiesns satisfy the constraint*ns(r )dr5Ns

with Na5(N12S)/2 andNb5(N22S)/2.
16533
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Assuming that the ground state of the noninteracting r
erence system is nondegenerate, the noninteracting kin
energy is given byTs@na,nb#5( i ,s^c i

su2 1
2 ¹2uc i

s&, and the
ground-state spin density is uniquely expressed as

ns~r !5(
i

Ns

uc i
s~r !u2, s5a,b. ~2!

Herec i
s are the lowest single-particle orbitals which are o

tained from

HKS
s c i

s~r !5« i
sc i

s~r !, ~3!

with the KS HamiltonianHKS defined as

HKS
s [2 1

2 ¹21Vext~r !1VH@n;r #1Vxc
s @na,nb;r #. ~4!

VH@n;r # and Vxc
s @na,nb;r # are the Hartree and exchang

correlation potentials, respectively:

VH@n;r #[E n~r 8!

ur2r 8u
d3r 8, ~5!

Vxc
s @na,nb;r #[

dExc@na,nb#

dns~r !
. ~6!

In our calculations, we have used the local spin-dens
approximation~LSDA! ~Refs. 5,7! for Exc . In the 3D cases,
the validity of LSDA has been well justified in the modelin
of material systems. Although more accurate exchan
correlation functional forms such as the generalized-grad
approximation~GGA! ~Refs. 5,32! are available, it has bee
shown that the GGA results are close to those from LS
calculations in QD systems.14 In the cases of 2D systems
several LSDA exchange-correlation functional forms ha
been developed by parametrizing results obtained from qu
tum Monte Carlo modeling of 2D electron gas.33–35 We use
Tanatar and Ceperley’s parametrized form33 of 2D LSDA
functional for nonpolarized and ferromagnetic limits, and u
an exchangelike interpolation formula for intermedia
polarization.4 In terms of the implementation, the calculatio
of Vxc is trivial when the spin densities are in real space a
the case in our algorithm, but the calculation ofVH requires
more effort as will be shown later.

B. PiB representation

To simplify the notation, we will take 1D systems as a
example, the generalization to higher dimensional cases
ing straightforward. Any regular functionf (x) that is local-
ized in the finite region 0,x,L with zero boundary values
can be expanded as

f ~x!5(
n

CnA2

L
sin

npx

L
~7!

and the expansion coefficientsCn are

Cn5A2

LE0

L

f ~x!sin
npx

L
dx. ~8!
7-2
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Integrating Eq.~8! numerically on a set of equally space
discrete points$xj[ j Dx[ j (L/Nx)% using the extended trap
ezoidal formula36 leads to

Cn5A2

L
Dx (

j 51

Nx21

f jsin
p jn

Nx
5Fn

A2L

Nx
~9!

with f j[ f (xj ) and

Fn[ (
j 51

Nx21

f jsin
p jn

Nx
[FST$ f j%, ~10!

where FST$ f j% denotes the fast sine transform of the da
$ f j%.

One of the key ingredients in our method is the action
the single-particle Hamiltonian operator on wave function

H f ~x!5T f ~x!1V f ~x!, ~11!

the efficiency of which is critical for the performance of th
whole method. Whereas the potential-energy operator is
agonal in real space, the kinetic-energy operator is diago
in PiB space. Wave functions can be transformed betw
the two spaces efficiently by the fast sine transform. In
method, wave functions are in discrete real space$ f j%, and
the application of the potential-energy operator is theref
trivial, V$ f j%5$Vj f j%, whereVj is the value of the potentia
at the pointxj . The kinetic-energy operator is applied
wave functions in PiB space:

T f ~x![2
\2

2m
¹2f ~x!5

2

Nx
(

n
Fn

\2kn
2

2m
sin

npx

L
, ~12!

with kn5np/L, which in the discrete form becomes

T$ f j%5
2

Nx
FSTH Fn

\2kn
2

2m J . ~13!

The PiB representation formulated above is closely
lated to the PW method. In fact, for finite systems with so
wall boundaries, the two representations are numeric
equivalent. Mathematically, however, they are different: T
PiB basis set is real and the zero boundary condition is
posed by the basis set itself, but in the PW case the b
functions are complex and the wave functions are forced
be zero at the boundaries by the external potential of syst
under study. The PW method will fail in the case of t
hard-wall boundary problem, which is quite common in t
studies of quantum dots, but the PiB method is still va
Mathematically the PiB method is closely related with t
discrete variable representation methods that are widely u
in chemical physics.37

C. Direct-minimization conjugate-gradient method for the
Kohn-Sham equation

In direct-minimization approaches, the KS total-ener
functional is minimized directly over orbital wave function
under orthonormal constraints.22 We have made several im
portant modifications to TPA’s band-by-band conjuga
16533
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gradient scheme30 to obtain higher efficiency. Here we giv
an outline of the algorithm, and emphasize the modificatio
we have made.

The basic idea of a band-by-band scheme is to minim
the total energy over one band~or orbital! at a time,30 which,
compared to other conjugate-gradient schemes,38,39 has the
following advantages:~1! much lower requirement for stor
age space,~2! simpler implementation, and~3! particularly in
our algorithm, an efficient approximate line-minimizatio
scheme, as will be shown.

First the steepest descent~SD! vector for thei th orbital at
the mth iteration is calculated from

uz i
m&5S 12(

j Þ i
uc j&^c j u D ~l i

m2HKS!uc i
m& ~14!

with l i
m5^c i

muHKSuc i
m& ~to simplify the notation, we use

Dirac’s state vector notation and drop the spin index in
following formulation!. In TPA’s algorithm, the SD vector is
preconditioned before it is used to build the conjugate vec
In our calculations, however, it was found that although
many cases preconditioning does accelerate the converge
its effect is not always positive. On the other hand, the co
putational overhead in the preconditioning step, which
volves another orthogonalization process as well as the
tion of the preconditioning operator on the SD vector, can
expensive for large systems. As shown later, by using a s
plified multigrid technique, we can achieve fast convergen
even without preconditioning of the SD vectors.

The conjugate vectoruw i
m& is then constructed as a linea

combination of the SD vectoruz i
m& and the previous conju

gate vector

uw i
m&5uz i

m&1g i
muw i

m21&, ~15!

where

g i
m5

^z i
muz i

m&

^z i
m21uz i

m21&
~16!

with g i
150. The conjugate vector is further orthogonaliz

to the present banduc i
m& and normalized (N is denoted as the

normalization operator!:

uw i8
m&5N~12uc i

m&^c i
mu!uw i

m&. ~17!

The new wave function for thei th orbital uc i
m11& is formed

from the linear combination

uc i
m11&5uc i

m&cosumin1uw i8
m&sinumin , ~18!

which is guaranteed to remain normalized and orthogona
all other orbitals.umin is obtained by minimizing the tota
energy as a function ofu with uc i(u)&5uc i

m&cosu
1uwi8

m&sinu. In TPA’s algorithm,22,30 umin is determined by
the following approximate scheme: The total energy a
function of u is approximated byE(u)'Eavg1A1cos2u
1B1sin 2u; the three unknowns,Eavg, A1 andB1, are deter-
mined according to three pieces of information:E(u50),
]E(u)/]uuu50, andE(u5p/300).
7-3
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Here we propose a more efficient approximate scheme
the determination ofumin . The derivative ofE(u) with re-
spect tou can be obtained from

]E~u!

]u
52^w i8

muHKS~u!uc i
m&cos 2u

2~^c i
muHKS~u!uc i

m&2^w i8
muHKS~u!uw i8

m&!sin 2u.

~19!

AssumingHKS(u)'HKS(0), from ]E(u)/]u50 we get

umin5
1

2
tan21

B

A
~20!

with

A52^c i
muHKS~0!uc i

m&1^w i8
muHKS~0!uw i8

m& ~21!

and

B52^w i8
muHKS~0!uc i

m&. ~22!

The underlying approximation in our scheme is similar
that of TPA’s, but our scheme is much more efficient in ter
of computational effort: In TPA’s scheme, at each band ite
tion the total energy must be calculated twice, i.e.,E(u
50) and E(u5p/300); in our scheme, the most time
consuming step is the action ofHKS on uw i8

m&, which is
much faster than the calculation of the total energy. Con
ering further the fact that the total number of band iteratio
can be very large, we note that an efficient line-minimizat
scheme such as ours is crucial to reduce the computati
effort.

In TPA’s algorithm, after the wave function is update
according to Eq.~18!, the Kohn-Sham Hamiltonian is up
dated immediately, which involves the reconstruction
VH(r ) and Vxc(r ) according to the new density. This is a
tually quite expensive for large systems. On the other ha
we expect that the KS Hamiltonian will not experience lar
changes inside the iterations of a single orbital. So in
algorithm, we updateHKS after everyNupdateband iterations,
and the optimal value ofNupdatewill be explored in the fol-
lowing section.

In each orbital, the procedure described above is repe
Nbandtimes; the iterations are then started on the next orb
After the wave functions of all orbitals are updated in th
way, the total energy is calculated and is compared to tha
the previous cycle to determine if the final convergence
achieved. The main parameters in the algorithm areNband
and Nupdate. Their effects on the performance of the alg
rithm will be tested in detail in the following section.

D. Calculation of VH

For finite systems, the simplest and perhaps the mos
efficient way to calculateVH is by direct numerical integra
tion, which is feasible only for small systems. Anoth
widely used approach is to solve the Poisson equa
equivalent to Eq.~5!. Though the Poisson equation itself ca
be solved with great efficiency, the calculation of bounda
16533
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values can be quite expensive even by using efficient mu
pole expansion techniques. Additionally, the Poisson so
approach is valid only for 3D systems; in the case of
systems, there is no Poisson equation equivalent to Eq.~5!.
In recent years, several schemes have been proposed t
tend the conventional Fourier convolution method to fin
systems.26,28,29,40In particular we have incorporated Martyn
and Tuckerman’s method29 into our approach to quantum
dots. Considering that the Martyna-Tuckerman method w
developed mainly for the modeling of molecular and ma
rial systems within the plane-wave pseudopotential fram
work, we will formulate the approach here with some deta

The calculation of the Hartree potential is straightforwa
for periodic systems, but this is not the case for finite ape
odic systems. The potentialVH(r ) has the form of the con-
volution between the density and the Coulomb interact
kernel,vc(r )51/r , which has the following simple relation
in the Fourier space:36

ṼH~k!5ñ~k!ṽc~k!, ~23!

where f̃ (k) refers to the Fourier transform off (r ). Equation
~23! is useful only when we have the analytical form ofñ(k)
and can perform the inverse Fourier transform ofṼH(k) ana-
lytically, which is not true for most cases where the density
usually represented in discrete real space.

When applying the Fourier method to discrete finite s
tems, periodic boundary conditions are always assumed
has long been known that the unphysical interactions
tween neighboring supercells can be avoided by calcula
VH in a doubly extended grid.41 In particular for 2D systems
as illustrated in Fig. 1, the originalLx3Ly grid (V) is ex-
tended to 2Lx32Ly (V2L). The density in the extended gri
is defined as

n2L~r !5H n~r ! if rPV

0 otherwise.
~24!

Imposing periodic boundary conditions to both the dens
and the Coulomb interaction kernel in the extended grid,
potential can be calculated according to the convolut
theorem:

FIG. 1. Illustration of the Fourier convolution method for th
calculation of the Hartree potential in finite systems. The origi
grid where the density and potential are defined is extended
doubled space. The density in the extended region is set to z
Imposing the periodic boundary condition for this extended gr
the unphysical interaction between neighboring supercells can
avoided.
7-4
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VH~r !5(
k

n̄2L~k!v̄c~k!eik•r, ~25!

wheren̄2L(k) and v̄c(k) are respectively finite Fourier inte
grals of the density and the Coulomb interaction kernel in
extended grid:

n̄2L~k!5
1

V2L
E

V2L

n2L~r !e2 ik•rdr , ~26!

v̄c~k!5E
V2L

vc~r !e2 ik•rdr , ~27!

whereV2L is used to denote both the extended grid and
volume ~or area in the 2D case!.

While n̄2L(k) can be easily obtained from the discre
Fourier transform of its real-space values by FFT, the ca
lation of v̄c(k) is much more involved because of the sing
larity of the Coulomb interaction kernel in real space. T
key to Martyna-Tuckerman’s approach is to decompose
Coulomb interaction kernel into long- and short-range pa

vc~r !5
erf~ar !

r
1

erfc~ar !

r
[vc

(long)~r !1vc
(short)~r !,

~28!

where erf(x) and erfc(x) are the error function and it
complement, respectively, anda is the parameter that con
trols the effective cutoff range. The finite Fourier integral
the short-range part can be well approximated by its infin
Fourier transform:

v̄c
(short)~k![E

V2L

vc
(short)~r !e2 ik•rdr

'E
whole space

vc
(short)~r !e2 ik•rdr[ ṽc

(short)~k!,

~29!

which is analytically known in both 2D and 3D cases. T
finite Fourier integral of the long-range interaction can
directly obtained from the discrete Fourier transform of
real-space values. In the practical implementation,v̄c needs
to be calculated only once at the beginning. The calcula
of VH(r ) involves only two FFT’s~one forward and one
backward!, which makes this approach much more efficie
than methods based on a Poisson solver.

E. Accelerating convergence: A one-way multigrid technique

The multigrid method is an efficient technique to accel
ate the convergence in various real-space relaxa
approaches.36 The basic idea is that low-frequency errors a
easier to eliminate on a coarse grid than on a fine grid.
et al.31 proposed a simple one-way multigrid~OWMG! tech-
nique in finite-difference real-space KS calculations. Wa
functions being represented in real space in our metho
similar technique can be implemented in a straightforw
way: The KS energy functional is first minimized on a coa
16533
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grid; the converged wave functions, after interpolation a
reorthogonalization, are taken as the initial guess for
minimization on the fine grid. With these well
preconditioned initial wave functions, the convergence
the fine grid can be easily attained.

III. NUMERICAL OPTIMIZATION OF PARAMETERS

Assembling all the pieces together, we test the per
mance and explore the optimal values of parameters of
method in a coupled quartic oscillator potential~QOP! sys-
tem:

Vext~x,y!5aS x4

b
1by422lx2y21g~x2y2xy2!r D ,

~30!

with r 5Ax21y2. The prefactora is used to control thee-e
interaction strength, which is usually characterized by

Wigner-Seitz radiusr s[1/Apn̄ with n̄ being weighted aver-
age electron density,n̄5*n2(r )dr /N. In this paper, we use
a51024 to have r s;1.5, which is close to experimenta
values. The parameterb is usually taken asp/4. Both the
classical dynamics and the single-particle quantum mech
ics at g50 have been extensively studied:42 the system
evolves continuously from integrable to fully chaotic asl
varies from 0 to 1. The parameterg is introduced to break
fourfold symmetry. In test calculations, we takel50.6 and
g50.1.

The calculations are done in a grid of sizeLx5Ly550
and the number of grid points isNx5Ny564. All the nu-
merical results in this section come from calculations w
electron numberN5100 and spinS50. For the exchange
correlation energyExc we use Tanatar and Ceperley’s para
etrized form of the LSDA functional.33 The convergence cri-
terion is set ase51026, which corresponds to abou
1025 meV in GaAs-AlGaAs QD systems.

Considering that the FD method has been widely used
the numerical modeling of QD systems,8,9,14,17we first make
a comparison between FD and PiB. In the FD representat
the second-order derivative in the kinetic-energy operato
locally discretized in real space:

]2

]x2
f ~x!5

1

h2 (
j 52m

m

Cj f j1O~h2m!, ~31!

whereh is the discretization step and the coefficientsCj can
be obtained systematically for anym. Figure 2 shows the
convergence of the total energy with respect to the numbe
grid points using 5-point (m52) FD, 13-point (m56) FD,
and PiB representations. The low-order finite-differen
scheme,m52, is poor in terms of accuracy, and converg
slowly as the grid size increases. The high-order FD sche
m56, improves the accuracy by two orders of magnitu
but is still less accurate than PiB forNx532, 48, and 64.

We check the accuracy and efficiency of our lin
minimization scheme by comparing with both TPA’s a
proach and the numerically exact Brent’s line sea
algorithm.36 In this case, we useNband55 andNupdate51 as
7-5
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recommended in TPA’s original work.22 Figure 3 plotsumin
in the first 25 band iterations calculated from the thr
schemes. The values ofumin from both TPA’s and our method
agree very well with exact values—the relative errors
always smaller than 1%. But in terms of computational
fort, our scheme is much more efficient as discussed in
preceding section.

To find the optimalNband andNupdate, we do the calcula-
tions with different values ofNband and Nupdate, and the re-
sults are shown in Fig. 4. With fixedNupdate51, it is seen
that a relatively largerNband is more efficient than smal
Nband. Fixing Nband520, Nupdate520 gives the best perfor
mance. The combination of largeNband and Nupdate reduces
the computational effort by almost one order of magnitu
Though the actual values of optimalNband and Nupdate may
vary for different systems, the basic idea demonstrated in
test calculation is believed to be of general significance.

FIG. 2. ~Color online! Convergence of the total energy wit
respect to the number of grid points using 5-point FD, 13-point F
and PiB representation. We note that in the case of PiB, the err
Nx5Ny580 is larger than that atNx5Ny564, which is mainly due
to the numerical convergence error considering that the conver
criteria is taken ase51026.

FIG. 3. ~Color online! Comparison ofumin calculated by three
different schemes.
16533
e

e
-
e

.

is

We have implemented both the two-level (h and 2h) and

three-level (h, 4
3 h, and 2h) OWMG schemes. Instead of us

ing a sophisticated interpolation as in Ref. 31, we use a s
pler Lagrange polynomial interpolation method. Comparis
with the single-level calculation shows a quite obvious i
provement in computational efficiency. To check the effect
the interpolation accuracy, in Fig. 5 we plot the relative co
putational effort in one KS calculation as a function of t
order of the Lagrange interpolation formula in both two- a
three-level OWMG calculations. We see that a high-ord
interpolation scheme is useful to improve the performanc

IV. APPLICATION: SPIN AND CONDUCTANCE
PEAK-SPACING DISTRIBUTIONS IN LARGE

INTEGRABLE AND CHAOTIC QUANTUM DOTS

In Coulomb blockade experiments of QD systems,
conductance through the dot varies strongly as a function

,
at

nt

FIG. 4. ~Color online! Errors in the total energy as a function o
CPU time during the DMCG calculation for differentNband with
Nupdate51 ~a! and for differentNupdatewith Nband520 ~b! with re-
spect to the exact total energy that is calculated using a finer
(Nx580) and tighter convergence criterion (e51027).

FIG. 5. ~Color online! Relative computational efforts for one KS
calculation as a function of the order of interpolation in both tw
and three-level OWMG calculations. The CPU time in the sing
level calculation is taken as the unit.
7-6
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gate voltage, forming a series of sharp peaks.1 In the linear
regime at near-zero temperature, the spacing between n
boring peaks is related to the second difference of
ground-state energyEg.s. with respect to electron numberN:

D2E~N!5Eg.s.~N11!1Eg.s.~N21!22Eg.s.~N!, ~32!

which is usually called the addition energy. The ground-st
spin of the QD can be inferred from the shift in position
the conductance peaks upon applying a magnetic field
small, highly symmetrical QD’s with less than a few tens
electrons, the conductance peak spacing shows shell-fi
structure, and the ground-state spin is determined by Hu
rule.43 In large QD systems with irregular geometry or d
order, both quantities show random mesoscopic fluctuati
but their statistical properties are of universal significance1,2

The connection between classical integrability and
quantum properties of noninteracting systems is w
established.44 When the classical dynamics is fully chaoti
the energies and wave-functions of a closed system fol
the statistics of random matrix theory. In contrast, when
classical dynamics is integrable, there can be both larger
smaller spacings between the energy levels and distin
nonrandom wave functions.

Here we are interested in the interplay between class
integrability ande-e interactions: Does the classical integr
bility of the external potential have significant effects on t
statistical properties of quantum dots withe-e interactions
fully considered? To answer this, we calculate spin and pe
spacing distributions in the QOP system in three differ
cases: fully integrable with fourfold symmetry (l50,g
50), fully chaotic with symmetry (l50.6,g50), and fully
chaotic without symmetry (l50.6,g50.1).42 The high effi-
ciency of our method makes it possible to calculate
ground-state energy and spin forN ranging from 1 up to 400,
so that good statistics can be obtained from asingle poten-
tial.

FIG. 6. ~Color online! Addition energy as a function ofN and its
tenth-order polynomial fitting calculated from the QOP system w
l50.6,g50.1. The overall trend is the classical effect of increas
charging energy as the quantum dot gets bigger while the fine s
ture is the quantum variation of interest.
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For a givenVext, the ground-state energyEg.s. and spin
Sg.s. as a function ofN are determined by calculating sever
spin configurations for eachN and selecting the one with
minimum energy. As an example, Fig. 6 showsD2E(N) cal-
culated in the potential (l50.6,g50.1). The spin distribu-
tion is simply the fraction of each spin configuration amo
all ground-state spins. To calculate the distribution of pe
spacing, we need to first remove the smooth trend
D2E(N) ~denotedD2E) as that is mainly a classical effect,19

and scale the resultant data by the mean level spacingD. D
is found fromD52p\2/Aeff with Aeff estimated as the clas
sically allowed area at the Fermi level. The final dimensio
less peak spacing, denoteds, is

s~N![
D2E~N!2D2E~N!

D
. ~33!

Probability distributions ofs can be easily constructed; it i
natural to look at the data whenN is even separately from
that whenN is odd because of possible spin-degeneracy
fects.

Figure 7 showss(N) in the three different cases. Note th
c-

FIG. 7. Dimensionless peak spacing as a function ofN in three
different cases:~a! l50.0,g50.0 ~integrable and symmetric!; ~b!
l50.6,g50.0 ~fully chaotic but symmetric!; and ~c! l50.6,g
50.1 ~fully chaotic and asymmetric!.
7-7
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one can already see the difference between the cases in
raw data.

Figure 8 shows peak-spacing and ground-state spin di
butions for even and oddN in the three cases. We call th
reader’s attention to several features: First,P(s) is always
fairly compact in the case of oddN but can have a long tai
at large spacing forN even; this tail is caused by the energ

of the top orbital when the spin sequence is (1
2 , 0, 1

2 ). Sec-
ond, note the sharpness ofP(s) for s'20.5 in panel~c! for
bothN even and odd. Third, there is a substantial probabi
of nonminimum spin. In fact, the probability ofS50 for N
even is less than half in all three cases, and the fractio

*Electronic address: baranger@phy.duke.edu
†Electronic address: weitao.yang@duke.edu
1L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R

Wetervelt, and N.S. Wingreen, inMesoscopic Electron Trans
port, edited by L.L. Sohn, G. Scho¨n, and L.P. Kouwenhoven
~Kluwer, Dordrecht, 1997!, pp. 105–214.

2Y. Alhassid, Rev. Mod. Phys.72, 895 ~2000!.

FIG. 8. ~Color online! Peak-spacing distributions inN in three
different cases:~a! l50.0,g50.0 ~integrable and symmetric!; ~b!
l50.6,g50.0 ~fully chaotic but symmetric!; and ~c! l50.6,g
50.1 ~fully chaotic and asymmetric!. The integrable symmetric
case has the highest proportion of high-spin states and the la
difference between evenN ~solid, red! and oddN ~dashed, blue!.
Insets: Distribution of ground-state spin in the three cases.
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this
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of

dots withS5 3
2 or 2 can be substantial. Finally, the probab

ity of large ground-state spin decreases as the dot beco
less ‘‘regular’’ in terms of both classical dynamics an
symmetry.

The most striking feature in Fig. 8, however, is the sim
larity between the case with integrable external potential
that with fully chaotic potential with the same geometric
symmetry. There are noticeable differences between the
cases—the distribution of peak spacing has longer nega
and positive tails in the integrable case, for instance, refl
ing the greater number of peaks in the raw data Fig. 7~a!—
but on the whole both the peak-spacing and spin distributi
are statistically the same and significantly different fro
those in Fig. 8~c!. It seems that geometrical symmetry pla
a more important role than the nature of the classical dyn
ics. A plausible interpretation of this feature is that thee-e
interaction can break the classical integrability of t
external potential more effectively than it can th
symmetry—integrability is more fragile than symmetry.

V. SUMMARY

In this paper, we have presented an efficient method
the KS-SDFT simulation of large quantum dot systems. T
main elements of the method are the following

~1! Wave functions are represented in real space, and
kinetic-energy operator is applied to wave functions by f
sine transform.

~2! The Hartree potential is calculated by Martyna a
Tuckerman’s Fourier convolution method.29

~3! For the solution of the KS equation, we introduce
several important modifications to Teteret al.’s band-by-
band conjugate-gradient method.30 A more efficient approxi-
mate line-minimization scheme was developed; it was fou
that large band iteration number and a delayed update of
KS Hamiltonian inside the band iterations increase the e
ciency by one order of magnitude.

~4! A one-way multigrid technique31 was used to acceler
ate the convergence.

As an application of the method, we investigated the
fects of the classical integrability of the external potential
spin and conductance peak-spacing distributions in a
model system withN up to 400. We found that the nature o
the classical dynamics does influence the quantum prope
of the interacting system, though not as much as the pres
of symmetry in the external potential.
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