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Statistics of polaritons in the nonlinear regime
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We discuss the quantum statistical properties of exciton polaritons in semiconductor microcavities. The
nonlinear dynamics is treated within a model of interacting bosons for the signal, pump, and idler modes. We
focus on the regime of parametric amplification below threshold. We present the time evolution of the signal
and idler modes towards their stationary solutions and discuss their statistical properties. In particular, we
evaluate the amount of squeezing of the radiation emitted out of the microcavity in a configuration, which may
be relevant for experiments.
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I. INTRODUCTION

Microcavity polaritons were observed for the first time
1992 ~Ref. 1! and play a central role in understanding t
linear optical properties of quantum wells embedded in se
conductor microcavities.2 They arise from the strong interac
tion between exciton and photons inside the microcavity
are two-dimensional quasiparticles with quite exotic prop
ties. Unlike the quantum well excitons, the microcavity p
laritons have a very sharp energy dispersion3 due to the cav-
ity photon component, which has a very light mass. Unl
the cavity photons, polaritons have a pronounced nonlin
behavior because of the exciton-exciton interaction and
the anharmonic exciton-photon coupling~saturation!. Re-
markably, semiconductor microcavities allow us to achiev
two-dimensional system of small mass quasiparticles, wh
can be manipulated by laser beams both in energy and
mentum space.

In the last few years nonlinear optical properties of qu
tum wells embedded in microcavities have been obser
and interpreted in terms of microcavity polarito
scattering.4,5 In these experiments, an external laser field
cites two polaritons~pump polaritons! at the field energy.
The pump polaritons are scattered under conservation of
ergy and momentum into to two different polaritons mod
which are called signal and idler modes, respectively. In
experimental configuration4 the signal mode is atq50,
which is the lowest energy state. A low intensity probe pu
at q50 is used in order to test the response of the syst
This pulse becomes amplified and the amplification en
mously grows as a threshold value of the excitation fi
intensity is approached. This is the characteristic behavio
a parametric amplifier.

Starting from this result, more features have been dem
strated experimentally.6–8 We mention the observation o
amplified polariton luminescence4,6 the determination of
threshold behavior of the amplifier, where macroscopic
larization states spontaneously appear and the evidenc
0163-1829/2003/68~16!/165324~10!/$20.00 68 1653
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multiple scattering effects above threshold.6,8 The statistics
of the photons emitted by nonlinear systems has been ex
sively studied in quantum optics. In this context, the pa
metric amplifier model has played a central role when inv
tigating nonclassical quantum optical effects.9 In particular,
squeezing of the radiation field has been extensively
cussed within this model. The experimental observation o
parametric effect involving polaritons raises the questi
whether any statistical properties of the polaritons and
particular squeezing could be observable in this system.
deed, it has been pointed out10,11 that bulk polariton states
have some intrinsic statistical properties and in particu
they exhibit squeezing, although no important squeezing
expected in the linear regime both in the bulk case and
microcavity polaritons.10,12 On the contrary, generation o
nonclassical light is promising in the nonlinear regime.13–16

Polaritons are half-light half-matter excitations, hence a m
surement of the field emitted from microcavity will give d
rect access to the statistical properties of the polaritons m
ter inside the cavity. Thus, it will allow us to investigate ne
and interesting properties of the polariton matter. In this
per we discuss the statistical properties of the polariton a
plifier without a probe. We will refer to the experiment
configuration introduced to observe amplifie
photoluminescence5 and consider a simplified three mod
model, which has already been successfully used in disc
ing the parametric amplification and luminescence
polaritons.17–20 As is well known a threshold characterize
the parametric system, below which a small injected signa
amplified and above which the system behaves similar t
nonlinear oscillator. The model considered in this paper
lows a satisfactory description of the nonlinear effects bel
the threshold. Above threshold more polariton modes are
volved in the dynamics and have to be included in t
model.6,19 In a first step we investigate the dynamics of t
system in the regime of continuous pumping below thre
old. In particular we discuss the time evolution of the pol
iton operators around the stationary value of the pump m
©2003 The American Physical Society24-1
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and the dynamics of the signal and idler population as w
as of the anomalous correlation~the expectation value of th
product of the signal and idler amplitudes!. We find that the
signal and idler modes are strongly correlated during
whole time evolution. In a second step we discuss the co
lations in the polariton system in the stationary regime.
characterize the behavior of the system at the param
threshold and give the expression for the first order and
ond order correlations from which the basic information
the polariton statistics can be obtained. In particular we c
centrate on squeezing, whose magnitude is shown to be c
parable with the one obtained from the quantum optical m
els. Recently, the measurement of squeezing in
configuration corresponding to a degenerate polariton p
metric amplifier has been discussed.21 We present results on
spectral squeezing for this system as an application of
considerations developed above. The model is presente
Sec. II. In Secs. III and IV the dynamics and the station
solutions are discussed. Section V is devoted to the polar
statistics and squeezing in the nondegenerate amp
whereas squeezing in the degenerate amplifier is discuss
Sec. VI.

II. MODEL

Polaritons in a microcavity are resonantly excited by
laser field well below the saturation limit for the excitons. A
it is well known, polaritons behave as bosons in the l
excitation limit. The bosonic behavior survives as long as
exciton density is much smaller than the typical exciton sa
ration density.22 Therefore, it is possible to discuss the op
cal properties of interacting polaritons in terms of interact
bosons.18 This property allows simple modeling of the ma
features of the polariton amplification process, which is
consequence of polariton-polariton scattering. In the follo
ing we consider the polariton to be bosons.17,18

Polariton-polariton scattering involves polariton pai
whose wave vectors take all the values allowed by mom
tum conservation. Here we consider only the energy and
mentum conserving interaction between three polari
modes: the pump modek, the signal mode atq, and the idler
mode at (2k2q). This is justified because polaritons a
excited resonantly at a fixedk and we restrict the discussio
to the parametric amplification regime where the contrib
tion of multiple scattering is negligible.17,18 Furthermore, we
consider a cw excitation and do not apply any probe be
In this configuration, the scattering process will be trigge
by the quantum fluctuations in the system. The Hamilton
for the interacting polaritons reads17

H5HLP1HPP
eff . ~1!

The free termHLP5(q\vLP(q)pq
1pq contains the lower po-

lariton energy dispersionvLP(q) andpq , pq
1 are the annihi-

lation and creation Bose polariton operators defined aspq
5Xqbq1Cqaq , where bq , aq are the exciton and photo
Bose operators, respectively, andXq , Cq (Xq.0 and Cq
,0) are the corresponding Hopfield coefficients.17 The ef-
fective interaction Hamiltonian in Eq.~1! describes scatter
ing processes between pairs of polariton operators with
16532
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mentum conservation and is presented and discussed in R
17, 18. As already stated above we will restrain ourselve
consider only scattering processes involving three polar
modes. In the following we consider the modesq50 ~sig-
nal!, k ~pump!, 2k ~idler!. The polariton-polariton interaction
terms read

HPP
eff5\v intp2k

1 p0
1pkpk1H.c. ~2!

Notice thatv int is positive and represent a repulsive intera
tion. Its explicit form is reported in Refs. 17–19. It contain
the contributions of the exciton-exciton interaction and of t
exciton saturation. This Hamiltonian describes the inter
tion between polaritons in a loss less cavity. In practice,
quantum well is embedded in a microcavity whose mirro
are distributed Bragg reflectors. These have a non-neglig
transmission coefficient, which is a source of losses. In or
to account for these losses and for the interaction with
external laser field for simplicity we work within the well
known quasimode approximation.2 The quasimode Hamil-
tonian takes the form

Hqm~q!5E dV$v~V!Cqpq
1aq,V1H.c.%, ~3!

where v(V) is the frequency-dependent reflectivity of th
stop band of the microcavity. The identification of the co
pling coefficient in Eq.~4! with the reflectivity is a funda-
mental feature of the quasimode approach.2 The operator
aq,V destroys an external photon with in-plane momentumq
and a generic frequencyV. The external source field is
coupled to the polaritons through the Hamiltonian

Hpump5\Fpump~ t !pk
11H.c.5\Fpumpexp@ ivpumpt#pk

11H.c.
~4!

The Heisenberg equations of motion for the three polari
operators are straightforwardly obtained from Eqs.~1!, ~3!,
and~4!. In order to describe dissipation, we perform the sta
dard elimination of the external field dynamics. This proc
dure allows us to introduce the lifetimesg0 , gk , g2k , of the
polariton modes and the corresponding Langevin force
eratorsF0(t), Fk(t), F2k(t), which are defined as

Fq~ t !5E dVv~V!Cqaq,V~ t50!exp@2 iVt#. ~5!

The Langevin equation for the polariton modes read

i
d

dt
p0~ t !5@ṽLP~0!2 ig0#p0~ t !1v intp̂k

2~ t ! p̂2k
1 ~ t !1F0~ t !,

~6a!

i
d

dt
p̂2k

1 ~ t !5@2vpump2ṽLP~2k!2 ig2k# p̂2k
1 ~ t !

2v intp̂k
12~ t !p0~ t !2F2k* ~ t !e2 i2vpumpt,

~6b!
4-2
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i\
d

dt
p̂k~ t !5@ṽLP~k!2vpump1 igk# p̂k~ t !

12v intp̂k
1~ t !p0~ t ! p̂2k~ t !1Fk~ t !e2 ivpumpt

1Fpump~0!, ~6c!

where Fpump(t)5Fpump(0)eivpumpt, p2k(t)5p2k(t)e
i2vpumpt,

pk(t)5 p̂k(t)e
ivpumpt.

In Eq. ~6!, we have introduced the renormalized polarit
frequenciesṽLP(q) defined below,ṽLP(q) is blueshifted
with respect to the unperturbed lower polariton frequen
vLP(q), because of the repulsive polariton-polarito
interaction.17 Since we are describing an irreversible proce
the equation of motion verified byp0

1(t) contains the term
ig0 with the same sign as inp0(t). The commutation rela-
tions are granted by the presence of the Langevin force
eratorsF0(t), Fk(t), F2k(t).

III. TIME DEPENDENT SOLUTION

In order to understand the dynamics of the populat
transfer between pump mode and signal and idler modes
have to discuss the dynamics of the polariton amplifier.
particular, we are interested in the behavior of the system
the vicinity of the parametric threshold. In principle, th
information is contained in the Eq.~6!. However, the opera
tor equations~6! cannot be solved in this form as they in
volve products of three oscillator operators. A simplificati
is achieved by noticing that the pump modepk is coupled to
a macroscopic stationary external field~the exciting laser
field!. Through this coupling, the polariton statek acquires a
macroscopic amplitude.

We account for this feature by replacing the pump pol
iton operatorpk(t) by its expectation valuePk(t)[^ p̂k&
3(t). In this case the equation of motion of the pump mo
~6c! for resonant excitation, i.e.,ṽLP(k)5vpump reads

i
dPk~ t !

dt
52 igkPk~ t !12v intPk* ~ t !^p0p̂2k&~ t !1Fpump~0!.

~7!

In this last expression, the mean value^ p̂k
1p0p̂2k& has been

factorized into the product of mean values^ p̂k
1&(t)^p0p̂2k&

3(t)5Pk* (t)^p0p̂2k&(t). This approximation is justified be
cause the pumped mode is macroscopically occup
whereas the signal and idler modes are not. Within this
proximation we finally obtain the equations of motion for t
signal and idler operators

i
d

dt
p0~ t !5@ṽLP~0!2 ig0#p0~ t !1v intPk

2~ t !p2k
1 ~ t !1F0~ t !,

~8a!

i
d

dt
p̂2k

1 ~ t !5@2vpump2ṽLP~2k!2 ig2k# p̂2k
1 ~ t !

2v intPk*
2~ t !p0~ t !2F̃2k

1 ~ t !. ~8b!
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Here ṽLP(q)5vLP(q)12v intuPku2 is the renormalized fre-
quency, which includes the blueshift. In order to discuss
dynamics of the polariton interaction, Eqs.~8! have to be
solved together with Eq.~7!. To this end we construct from
Eq. ~8! a set of coupled equations for the anomalous co
lation A(t)5^p0p̂2k&(t) and for the expectation values of th
number operators of the polaritons in the signal and id
modes. These equations read

i
d

dt
A~ t !5~vT2 igT!A~ t !1v intPk

2~ t !@N0~ t !1N2k~ t !11#,

~9a!

i
d

dt
A* ~ t !52~vT1 igT!A* ~ t !2v intPk*

2~ t !@N0~ t !

1N2k~ t !11#, ~9b!

i
d

dt
N0~ t !522ig0N0~ t !1v int@Pk

2~ t !A* ~ t !2Pk*
2~ t !A~ t !#,

~9c!

i
d

dt
N2k~ t !522ig2kN2k~ t !1v int@Pk

2~ t !A* ~ t !

2Pk*
2~ t !A~ t !#, ~9d!

where

N0~ t !5^p0
1p0&~ t !, N2k~ t !5^ p̂2k

1 p̂2k&~ t !, gT5g2k

1g0 , vT5ṽLP~2k!1ṽLP~0!22vpump. ~10!

Before discussing the general solution of Eqs.~7! and~9!, it
is useful to understand the dynamical behavior of the sys
when the pump mode is in the stationary regime. From
~7! we obtain

2 igkPk12v intPk* ^p0p̂2k&1Fpump~0!50. ~11!

In this last expression,Pk , Pk* , and ^p0p̂2k&[Asat, which
represents the phase-dependent anomalous correlation
stationary quantities. We notice that the solution for t
pump mode will depend explicitly on the stationary anom
lous correlationAsat between signal and idler modes. In th
following, we will consider the pump mode amplitudesPk ,
Pk* to be adjustable parameters. In reality, they are a func
of the external field amplitudeFpump. The relation between
these quantities is given by Eq.~11!. We will discuss the
solution of Eq.~11! later, once the explicit expression forAsat

has been calculated.
In the stationary regime of the pump mode, the inhom

geneous operator equations~8! can be solved analytically
e.g., by Laplace transforms. The solutions are character
by two complex frequenciesv6 for both p0 and p̂2k

1 and by
v6

C for both p0
1 and p̂2k ~Refs. 18, 19!

v65
1

2
@ṽLP~0!2ṽLP~2k!12vpump2 i ~g01g2k!6AL#,

~12a!
4-3
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v6
C 5

1

2
@ṽLP~2k!2ṽLP~0!22vpump2 i ~g01g2k!6AL* #

~12b!

with

L5
1

2
$@ṽLP~2k!1ṽLP~0!22vpump2 i ~g01g2k!#2

24v int
2 uPku4%. ~13!

The solution of Eq.~8! is stable provided that the imaginar
part of the frequencies~12! is negative. As a function of the
pumped modePk , the imaginary part of the square root
Eq. ~13! may be larger than the sum of the polariton broa
enings. In this case, the stability condition is not verified.
particular, when the energy and momentum between pu
and signal and idler modes are strictly conserved, we h
ṽLP(2k)1ṽLP(0)22vpump50 and the real part of the
square root of Eq.~13! vanishes. The imaginary part ofv1

changes it sign in function of the pump polariton occupat
uPku2 and vanishes when

g0g2k2v int
2 uPku450. ~14!

Equation ~14! defines the threshold valueuPk
thresholdu2

5Ag0g2k/v int for the parametric process above which t
solutions of Eq.~8! become unstable. We notice that wh
Eq. ~14! holds, the frequencies~12! become

v15ṽLP~0!, ~15a!

v25ṽLP~0!2 i ~g01g2k!, ~15b!

v1
C 52ṽLP~0!, ~15c!

v2
C 52ṽLP~0!2 i ~g01g2k!. ~15d!

In this case the frequenciesv1 and v1
C correspond to rea

eigenvalues. Therefore, the system at threshold is in a
tionary state with a phase oscillating in time at the freque
~15a!. An analogous solution can be found also, when
strict conservation of energy and momentum does not h
The relevance of this last solution for the parametric sys
will be discussed in the next section.

We are now in position to solve Eqs.~7! and ~9! numeri-
cally as a function of the external field amplitud
Fpump. For a given value of the external field amplitud
we present in Fig. 1 the time dependent solutions for
signal mode populationN0(t), the anomalous correlatio
A(t) and the quantityv intuPku2/g, which takes the value1 at
threshold. For simplicity we setg05g2k5g. We have not
reportedN2k(t), because it behaves exactly asN0(t). The
above quantities are calculated with a choice of the mate
parameters corresponding to a GaAs quantum well in a
crocavity and with a polariton broadeningg50.5 meV,
which is taken to be the same for all polariton modes. T
situation of strict momentum and energy conservation is c
sidered. All three quantities saturate for long times to th
stationary values denoted byPk

sat, N0
sat, Asat. The pump

mode populationNk(t) grows rapidly for short times and
16532
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saturates to a valueNk
sat that depends on the external fie

strengthFpump, which has been chosen below the thresh
valueF threshold[Ag3/v int. As discussed in Sec. IV,F threshold
corresponds to the threshold in the cw regime. This beha
indicates that during the time evolution an efficient trans
of population between the pump and the signal and id
modes takes place. However, the stationary valueuPk

satu2,
which is obtained from the dynamical equations~7! and~8!,
is smaller than its threshold value for any value of the a
plitude of the external field. This result is consistent with t
behavior ofuPk

satu2 shown in Fig. 2 and indicates that corre
lations between all three polariton modes are needed, in
der to describe the transition to the coherent regime.
shown in Fig. 1, the anomalous correlationA(t) grows rap-
idly and follows the growth of the pump modePk(t) for
short times. This behavior originates in the presence of
source term proportional touPk(t)u2 in Eq. ~9b!. Below
threshold, the value of the anomalous correlation is mu
larger than the signal population during the whole time e
lution and saturates to a stationary valueAsat, which is larger
than the one of the mode populationsN0

sat, N2k
sat. These char-

acteristics indicate that the build up of the anomalous co
lation is the leading process below threshold and that sig
and idler remain strongly correlated during the whole tim
evolution of the system. The growth of the mode populatio
N0

sat, N2k
sat is retarded with respect to that of the pump mo

Pk(t) and of the anomalous correlation. The peak values

FIG. 1. Plot of theq50 occupation number, the anomalou
correlation, and the quantityv intuPku2/g as a function of time for a
pumping fieldFpump50.3 F threshold, with F threshold[Ag3/v int. The
time unit is 1/g.

FIG. 2. Polarization of the pumped mode as a function of
external field@Eq. ~22!#.
4-4
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the signal and idler populations become important o
above threshold. This indicates that the phase correla
which builds up through the anomalous correlation, is est
lished before the onset of the population through stimula
emission takes place. This result is reminiscent of the t
dependent behavior of the signal population with respec
the pump mode, which is observed experimentally in a ti
resolved pump and probe experiment23 and confirms the con
siderations on this subject presented in Ref. 18. The value
the anomalous correlation and of the mode populations
come comparable only in the vicinity of the paramet
threshold whenFpump becomes very large.

IV. STATIONARY SOLUTION

We now calculate the average values of the polariza
and the correlations between polariton operators from wh
experimental quantities such as photoluminescence spec
and emitted photon statistics are obtained. These quan
are needed in the calculation of the squeezing of the po
tons in the stationary state. To this end, we also have
specify the initial state of the system. For a comparison w
experiments, we chose as an initial state either the polar
vacuum or a statistical mixture ofn-polariton states.

Let us first consider the equation for the average polar
tion

i
d^p0~ t !&

dt
5@ṽLP~0!2 ig0#^p0~ t !&1v intPk

2^ p̂2k
1 ~ t !&,

~16a!

i
d^ p̂2k

1 ~ t !&
dt

52@ṽLP~2k!22vpump1 ig2k#^ p̂2k
1 ~ t !&

2v intPk*
2^p0~ t !&. ~16b!
h

T
o
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As already mentioned, the amplitude of the pumped mo
uPku in Eq. ~16! is a time independent parameter related
the outside fieldFpump through the stationary equation~11!.
The eigenfrequencies of Eq.~16! are given by Eq.~12!; these
homogenous linear equations have trivial solutions be
threshold~i.e., uPku4,g0g2k /v int

2 ), for the initial states men-
tioned above. At threshold, the equations show a nontri
solution oscillating in time and independent on the init
condition. The oscillating frequency is the solution of th
compatibility condition obtained from Eq.~16!

@v2ṽLP~0!1 ig0#@v1ṽLP~2k!22vpump1 ig2k#

1v int
2 uPku450, ~17!

wherev int
2 uPku4 takes its threshold value. Therefore, we co

clude that at threshold a new state of the system arises, w
is characterized by a macroscopic polarization for both,
signal and the idler modes. When energy and momentum
conserved, the solution of Eq.~17! coincides with Eq.~15a!
of the previous section. The presence of a macroscopic
larization indicates that a cooperative state has been buil
in the system. An analogous result has been derived in
24 in the framework of a classical three-wave model. T
feature has been observed experimentally.6 Some character-
istics of the behavior of the system above the parame
threshold are discussed in Refs. 19, 20.

We now investigate the behavior of the system bel
threshold. In this regime, as indicated above the polariza
vanishes. The simplest nonvanishing quantities below thre
old are the two mode correlationsN0(t), N2k(t) and the
anomalous correlationA(t) introduced in Sec. III. In order to
obtain information on the dynamical behavior in the vicini
of the stationary pump modek, we evaluate these quantitie
from the analytical solution of Eqs.~8!, where Pk has his
stationary valuePk

sat. We first evaluate the anomalous corr
lation A(t) below threshold
A~ t !5
2v intPk

2

~v12v2!~v1
C 2v2

C !
3H D2k

1 ~e2 i t ~v11v1
C

!2e2 i t ~v11v2
C

!!^0up0~0!p0
1~0!u0&2D2k

2 ~e2 i t ~v21v1
C

!2e2 i t ~v21v2
C

!!

3^0up0~0!p0
1~0!u0&12g0i F D2k

1

~v11v1
C !

~e2 i t ~v11v1
C

!21!2
D2k

1

~v11v2
C !

~e2 i t ~v11v2
C

!21!G
12g0i F 2D2k

2

~v21v1
C !

~e2 i t ~v21v1
C

!21!1
D2k

2

~v21v2
C !

~e2 i t ~v21v2
C

!21!G J , ~18!
y
where D2k
6 51/2@vT2 igS6AL# and gS5g2k2g0 . In Eq.

~18!, the first two terms in the curly brackets arises from t
quantum fluctuation̂ 0up0(0)p0

1(0)u0& in the initial state,
which is taken in our case as the polariton vacuum state.
other terms in the curly brackets arise from the correlation
the Langevin forces.
e

he
f

Below threshold, in the limit of infinite time the stationar
solution for the anomalous correlation reads

lim
t→`

A~ t !52 i
~gT2 ivT!v intPk

2

vT
21gT

22v int
2 uPku4gT

2/g0g2k
. ~19!
4-5
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When the threshold values ofPk is inserted in Eq.~18!, A(t)
becomes

Athreshold~ t !5
v intPk

2

gT
3H @D2k

1 ~12e2tgT!2D2k
2 ~e2tgT

2e22tgT!#12g0FD2k
1 t2

D2k
1

gT
~e2tgT21!G

12g0FD2k
2

gT
~e2tgT21!2

D2k
2

2gT
~e22tgT21!G J .

~20a!

Athreshold(t) diverges linearly for larget. This indicates that a
threshold this solution becomes unstable, because the co
bution of the fluctuations grows in time. This behavior
characteristic of a system undergoing a symmetry break
transition. Therefore, at threshold the stationary solution~19!
for A(t) is meaningless because the state of the system
intrinsically changed and a macroscopic polarization
pears, as indicated by Eqs.~16! and ~18!. However, there
exists an explicit expression forA at threshold and for exac
momentum and energy conservation, which is found dire
from Eqs.~11! and~19!. In this regime the stationary anoma
lous correlation at threshold is

uAstat
thesholdu5

1

2
Av int

g S uFpump~0!u
g

2A g

v int
D . ~20b!

Here it is assumed for simplicity that all polariton mod
have the same width. It is evident that in this case the ano
lous correlation is completely determined by the exter
field amplitude. ForFpump(0)/g,Ag/v int, i.e., below the
parametric threshold, the modulus of the anomalous corr
tion becomes negative and thus meaningless. In Ref. 17,
~18! are solved together with Eq.~11! in which the factoriza-
tion ^p0p2k&5^p0&^p2k& is performed. The expression fo
this factorized form of the anomalous correlation coincid
with the one given above. This shows that at threshold
anomalous correlation factorizes and the system is indee
a coherent state.

We now evaluate the stationary occupation number of
signal and idler modes, which read

N0
sat5

gT

g0

v int
2 uPku4

gT
21vT

22v int
2 uPku4gT

2/g0g2k
, ~21a!

N2k
sat5

g0

g2k
N0

sat. ~21b!

Notice that these quantities are smaller than 1 but bec
large at threshold thus indicating that a macroscopic occu
tion of these modes will take place above threshold. T
behavior is consistent with the results of the dynamical c
culations discussed in Sec. III. The approximations used h
are consistently valid whenN0

sat andN2k
sat are less than or o

order of 1.
Until now, Pk has been considered as a system param

However, this quantity is related to the amplitude of the e
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ternal source fields through Eq.~11!. After having calculated
A(t) explicitly, we can discuss the solution of Eq.~11! in
detail. Introducing Eq.~19! into Eq. ~11! and choosingvT
50 and the external field to be real, we obtain

uPkugk1
2v int

2 uPku3

gT2v int
2 gTuPku4/g2kg0

5Fpump. ~22!

The solution of Eq.~22! is a two-valued function consisting
of two branches. The upper branch asymptotically a
proaches the threshold value ofPk from above and for nega
tive values ofFpump whereas the lower branch approach
asymptotically the same value forPk from below. The upper
branch corresponds to values ofPk , for which the solutions
of Eq. ~8! become unstable and the polariton numbersN0
and N2k become negative. Equation~22! is solved numeri-
cally for the lower branch and its behavior is presented
Fig. 2 in normalized units. In the lower branch the pum
polariton amplitudePk grows linearly with the external filed
amplitude for a small external field. For larger values of t
external field the pump polariton amplitude saturates and
proaches asymptotically to a value ofPk that corresponds to
the threshold and is independent ofFpump. Finally, we notice
that the relation~22! allows us to fix the pump mode popu
lation Nk5uPku2 for a given external excitation and thus
determine the realistic strength of the coupling in Eq.~8!.
Indeed, the anomalous correlation~19! and the populations
~21! as functions of the external field diverge in the unphy
cal asymptotic limit corresponding toFpump→`.

V. POLARITON STATISTICS AND SQUEEZING

We are now able to calculate the statistics of the amplifi
polaritons in the Langevin equations approach and in
stationary regime. We remark that a different approach t
the one pursued in this paper consists in evaluating the
lariton statistics from the Glauber quasiprobability distrib
tion P. This approach will be discussed elsewhere. The qu
tity, which is accessible in experiments, is the photon fi
filtered through the microcavity. This field is related to th
polariton amplitude inside the microcavity. The relation b
tween the polariton field inside the microcavity and the fie
outside the cavity is obtained through the quasimode
proach. It reads2

aq,V~ t !5aq,V~0!e2 iVt2 i E
2`

t

dt8n~V!Cqpq~ t8!e2 iV~ t2t8!.

~23!

We remember thatq is the in-plane wave vector of the fiel
which in our model is fixed to have the valuesq50, k, 2k.
The photon field is measured through a detector, and he
averaged in frequency. Therefore, it is useful to introduce
averaged field operators

âq~ t !5
1

2p E
2`

`

dVaq,V~ t !. ~24a!

The corresponding relation between these new operators
the polariton amplitudes reads
4-6



ra
an
ns
E

th
In
p

or

to
er
ar

an
be
e
le

ig
d
e
s
an
on
n
th
th
th

ro
i-
e

rs

u
e

in
ut-

e,
mp

ing,
re-
not
s,

me,
rum
ext

r-
ag-

nd
,

its
ffi-
nt
zing
nd
nd

STATISTICS OF POLARITONS IN THE NONLINEAR REGIME PHYSICAL REVIEW B68, 165324 ~2003!
âq~ t !5
1

2p E
2`

`

dVaq,V~0!e2 iVt2 inCqpq~ t !. ~24b!

We once more stress the fact that through the relation~24b!
the polariton field becomes a measurable quantity in cont
to what happens in the bulk case. This is very import
when discussing the statistical properties of polarito
which can be retrieved from the photon statistics through
~24!.

The statistics of the system is characterized through
higher equal time correlations of polariton amplitudes.
particular, we have calculated correlations involving four o
erators. Correlations involving only one-mode operat
show Gaussian properties of the distribution viz.

^p0
1p0

1p0p0&52^p0
1p0&

252N0
sat, ~25a!

^p2k
1 p2k

1 p2kp2k&52^p2k
1 p2k&

252N2k
sat. ~25b!

These correlations can be measured in a standard pho
counting experiment in which only the signal or the idl
mode is observed. Correlations involving both modes
non-Gaussian

^p0p2kp0p2k&5^p0p2k&
25Asat 2. ~26!

From these results we conclude that the field statistics
hence the Glauber quasiprobability distribution will not
standard. From the above results, it is clear that the inter
ing quantities to be measured are the mixed signal-id
modes. The measurement of these quantities is not stra
forward because signal and idler modes are separate
space with an angular separation of about 30° in the exp
mental setup considered in Ref. 4. Furthermore, the inten
of the field originating in the idler mode is much smaller th
that of the signal as a consequence of the small phot
component of the idler. In order to measure mixed mome
one has to generate new field amplitude resulting from
superposition of the signal and idler fields. Collecting bo
the emitted modes by a lens or using mirrors can achieve
goal.

As a last point we evaluate the squeezing of the mic
cavity polaritons. Nonlinearly interacting microcavity polar
tons are good candidates as sources of squeezing. In ord
evaluate squeezing we introduce the squeezing operatod1
andd2

^d1
2&5

1

8
^@eiu~p01p2k!1e2 iu~p0

11p2k
1 !#&2 ~27a!

and

^d2
2&52

1

8
^@eiu~p01p2k!2e2 iu~p0

11p2k
1 !#&2.

~27b!

The squeezing will be discussed at resonancevT50 where
the gain of the parametric process is maximum. The amo
of squeezing depends on the phase difference betw
pumped modePk5uPkue2 if and external referenceu. Set-
ting furthermoreg05g2k5g we obtain
16532
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^d1/2
2 &5

1/4

12v int
2 uPku4/g2 @16v intuPku2sin~c!/g# ~28!

with c52(f2u)
Near threshold, e.g.,v int

2 uPku4/g0g2k'1 and forc5p/2

^d1
2&5

1/4

12v intuPku2/g
⇒`, ~29a!

^d2
2&5

1/4

11v intuPku2/g
⇒ 1

8
, ~29b!

and

^d1
2&^d2

2&.
1

16
. ~29c!

Therefore, a non-negligible amount of squeezing is found
the d2 amplitude only. The amount of squeezing of the o
coming photons may be obtained using the relation~24!. In
Fig. 3 we plot the squeezing in percents5100(1
22ADd2

2) as a function of the pump intensity. We notic
that the squeezing saturates at 30% for sufficient large pu
intensity. The expression for the spectrum of squeez
which is also an interesting measurable quantity, is not p
sented here. Its explicit expression is cumbersome and
very appealing. In fact, it contains a large number of term
because correlations, which vanish in the stationary regi
also appear. We shall present the calculation for the spect
of squeezing in the simpler model discussed in the n
section.

The feasibility of an experiment in which anomalous co
relations and squeezing are measured is related to the m
nitude of the wave vector difference between signal a
idler. In fact when the idler polariton is mostly excitonlike
the intensity of its emitted field is very small because
photon component expressed through the Hopfield coe
cientC2k in Eq. ~24b! is small. This makes the measureme
of the anomalous correlations and therefore of the squee
very difficult. The wave vector difference between idler a
signal and thus the ratio of the intensities of the signal a

FIG. 3. Amount of squeezings in percent as a function of the
external field.
4-7
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idler fields may varied by a convenient choice of the posit
of the pump mode on the polariton dispersion. When t
position is very closed to the signal mode atq50, the three
modes are nearly degenerated and the intensities of the e
ted fields associated with signal and idler become com
rable. The drawback of this configuration is that the ve
intense pump signal is not easily filtered out because
nearly coincides with the signal and the idler. Althou
squeezing has not yet been measured, experiments in
above configuration have already been successf
performed.25 In the next section we discuss a simplifie
model of a parametric system, which may be used to
scribe the experiments of Messinet al.20

VI. THE DEGENERATE PARAMETRIC MODEL

As indicated in the previous section, squeezing is m
easily observed when the wave vectors of pump, signal,
idler modes are almost equal. The three-mode amplifier
comes in this case a one-mode system, which is known in
literature as the degenerate parametric amplifier. This mo
has played a very important role in quantum optics, beca
it is the simplest model, in which effects such as bistabil
amplification, and transition between different operation
gimes can be studied.9,17,26,27 Furthermore, squeezing ha
been introduced and extensively studied in this model
the first measurements of the squeezing effect were
formed in a degenerate parametric system.28 It is expected
that polariton squeezing will also be observable in this c
figuration. This establishes a link between quantum op
and the physics of polaritons, which may have interest
consequences. In the degenerate case the Hamiltonian~1! has
the simpler form

H5\vLP~0!p0
1p01\v intp0

12p0
21\Fpumpexp@ ivpumpt#p0

1

1H.c. ~30!

As already mentioned, the degenerate parametric amp
has been discussed in great detail in quantum optics~see,
e.g., Refs. 26, 27!. We summarize some of its characteristi
here. The equation of motion forp̂0(t) is obtained from Eq.
~6c! by settingk50. In a first approximation, the externa
field Fpump(0) forces the system in a coherent state su
that the expectation values of the product of polarit
operators factorize into products of the expectation val
of the polariton amplitudes such as, e.g.,^ p̂0

1p̂0p̂0&
5^ p̂0

1&^ p̂0&^ p̂0&. In this approximation the stationary solu
tion ^ p̂0&

stat for the polariton amplitude is found and shows
bistable behavior in function of the external laser field. B
stability sets in when the detuning between pump and po
iton frequencies is negative and its modulus is larger t
)g0 .27 We now define the operator

P~ t !5 p̂0~ t !2^ p̂0&
stat ~31!

which describes the departure from the stationary s
^ p̂0&

stat and allows us to discuss the statistical properties
the system and in particular the squeezing phenom
around the stationary solution. Introducing Eq.~31! into the
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equation of motion forp̂0(t) and linearizing the resulting
equation with respect toP(t) we obtain

i
d

dt
P~ t !5@v̂~0!2vpump2 ig0#P~ t !12v intP

1~ t !~^ p̂0&
stat!2

1F0~ t !eivpumpt, ~32a!

where

v̂~0!5vLP~0!14v intu^ p̂0&
statu2. ~32b!

The time evolution of the operatorP(t) has the same char
acteristics as that of the signal and idler modes in the n
degenerate case. It decays exponentially and is there
stable for

g0>$2@v̂~0!2vpump#
214v int

2 u^ p̂0&
statu4%1/2 ~33!

FIG. 4. Optimal spectral squeezing for the degenerate polar
parametric oscillator as a function of the normalized frequencyv/g
for a detuning d521.93g and an external field.Fpump

51.58F threshold. The quantityS1(v/g,d/g521.93) has its maxi-
mum value 0.628 forv50.

FIG. 5. Optimal spectral squeezing for zero frequency and a
function of the normalized detuningd5(vLP(0)2vpump)/g and for
an external field Fpump51.58F threshold. The quantity S1(v/g
50,d/g) has its maximum value 1.875 ford/g521.2.
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and is unstable in the opposite case. The equal sign de
the stability limit. The calculation of the relevant statistic
features of the model follows the same lines already d
cussed for the nondegenerate model. Here we discuss in
tail the spectral squeezing, which we did not present in
previous section. In analogy to Eq.~27!, we introduce for the
degenerate case the operators

d̂1~v!5
1

2
@eiuP̂~v!1e2 iuP̂1~v!# ~34a!

and

d̂2~v!52
1

2i
@eiuP̂~v!2e2 iuP̂1~v!#, ~34b!

whereP̂(v) is the Fourier transform ofP(t).
The quantity accessible in most squeezing experimen

the spectrum of squeezing, defined in terms of Eq.~34! by
the normal ordered combination26,27

S1~v!5^:d̂1~v!d1~ t50!: 1 :d1~ t50!d̂1~2v!:&
~35a!

and

S2~v!5^:d̂2~v!d2~ t50!: 1 :d2~ t50!d̂2~2v!:&.
~35b!

The angleu is the phase of the coherent oscillator used
homodyne detection. It is important to determine the value
u, for which the expected squeezing will be optimal. Fo
given value of the frequencyv5v0 , the phase is chosen26

such that

eiu5
^P̂~v0!P~ t50!&1^P~ t50!P̂~2v0!&

u^P̂~v0!P~ t50!&1^P~ t50!P̂~2v0!&u
. ~36!

The explicit expressions for the squeezing spectrum and
the optimal squeezing may be found in the literature.26,29 In
Fig. 4 and in Fig. 5 we present results for the optimal sque
ing evaluated forv050 and forFpump50.3g. In Fig. 4 the
spectrum of squeezing is presented for a normalized de
ing of d521.93, which is slightly smaller then the thresho
value d52) for the bistability to appear. In this case th
maximum squeezing with the value 1/8, appears inS2 and is
attained forv50. The maximum value of the squeezin
found here corresponds to the maximum value of the squ
ing that is obtained in a double-sided cavity. In Fig. 5 t
same quantity is plotted as a function of the detuning and
v50. In this case the maximum value of the squeezing
found for a normalized detuning ofd'21.3. As the externa
field approaches the threshold valueFpump50.5g, the maxi-
mum value of the squeezing drifts towards a larger nega
detuning.
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VII. CONCLUSIONS AND OUTLOOK

In conclusion, in this paper we have discussed the
namical behavior of interacting polaritons in a microcavity
the framework of a three mode model17,18under the assump
tion that the pump mode can be factorized out of correlat
involving the three polariton modes. We have presente
detailed discussion of the behavior in time of the anomal
correlation and of the modes occupation numbers, show
the importance of the anomalous correlation in the dynam
of the system. In particular we discuss the approach of
polariton occupation numbers and of the anomalous corr
tion to their stationary values and show that the populat
transfer from the pump to the idler and signal modes throu
the anomalous correlation dominates the dynamics. The
tionary solutions are presented for a choice of the exte
field below threshold and at the threshold. We show tha
threshold the anomalous correlation factorizes into the pr
uct of the signal and idler modes amplitudes as it is expec
for a macroscopically occupied state.17,18,24Furthermore, we
have introduced the statistical properties of the polari
modes and thus of the emitted field showing a non-Gaus
behavior. In particular we show that a non-negligible amo
of squeezing is present in the correlation between signal
idler fields. Finally the model has been adapted to poss
experimental configurations25 in which idler and signal al-
most coincide and the optimal squeezing spectrum has b
evaluated as a function of the frequency and as a functio
the detuning for a given frequency.

We conclude by giving an outlook on the open proble
in this context. The model discussed in this paper repres
a useful but strongly simplified description of the paramet
system. As we have already mentioned, the three-mode
scription is well justified below the parametric threshold, b
represents an oversimplification as the parametric thres
is reached and fails above threshold. Therefore, a m
mode description6,19 of the amplification process will be nec
essary. In our discussion we have considered the fluctua
induced by the losses from the microcavity as being resp
sible for the polariton broadening. Although the experime
are performed at very low temperatures, the influence of
exciton-phonon interaction on the parametric process sho
be considered. Furthermore the exciton-phonon interac
becomes essential when effects such as the gain depend
on temperature30 has to be described. Moreover, two oth
effects can affect the squeezing properties, namely, the
pling to an incoherent bath of excitons and the resid
polariton-polariton interaction beyond the mean field lim
More refined treatments are under current investigation.31
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