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Statistics of polaritons in the nonlinear regime
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We discuss the quantum statistical properties of exciton polaritons in semiconductor microcavities. The
nonlinear dynamics is treated within a model of interacting bosons for the signal, pump, and idler modes. We
focus on the regime of parametric amplification below threshold. We present the time evolution of the signal
and idler modes towards their stationary solutions and discuss their statistical properties. In particular, we
evaluate the amount of squeezing of the radiation emitted out of the microcavity in a configuration, which may
be relevant for experiments.
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[. INTRODUCTION multiple scattering effects above threshbfiThe statistics
of the photons emitted by nonlinear systems has been exten-

Microcavity polaritons were observed for the first time in sively studied in quantum optics. In this context, the para-
1992 (Ref. 1) and play a central role in understanding the metric amplifier model has played a central role when inves-
linear optical properties of quantum wells embedded in semitigating nonclassical quantum optical effetts particular,
conductor microcavitie They arise from the strong interac- squeezing of the radiation field has been extensively dis-
tion between exciton and photons inside the microcavity anadussed within this model. The experimental observation of a
are two-dimensional quasiparticles with quite exotic properparametric effect involving polaritons raises the question,
ties. Unlike the quantum well excitons, the microcavity po-whether any statistical properties of the polaritons and in
laritons have a very sharp energy dispersidne to the cav- particular squeezing could be observable in this system. In-
ity photon component, which has a very light mass. Unlikedeed, it has been pointed dUt* that bulk polariton states
the cavity photons, polaritons have a pronounced nonlineaiave some intrinsic statistical properties and in particular,
behavior because of the exciton-exciton interaction and othey exhibit squeezing, although no important squeezing is
the anharmonic exciton-photon coupligaturation. Re-  expected in the linear regime both in the bulk case and for
markably, semiconductor microcavities allow us to achieve anicrocavity polaritond®'? On the contrary, generation of
two-dimensional system of small mass quasiparticles, whictmonclassical light is promising in the nonlinear regitiet®
can be manipulated by laser beams both in energy and m@olaritons are half-light half-matter excitations, hence a mea-
mentum space. surement of the field emitted from microcavity will give di-

In the last few years nonlinear optical properties of quan+ect access to the statistical properties of the polaritons mat-
tum wells embedded in microcavities have been observetkr inside the cavity. Thus, it will allow us to investigate new
and interpreted in terms of microcavity polariton and interesting properties of the polariton matter. In this pa-
scattering’” In these experiments, an external laser field exper we discuss the statistical properties of the polariton am-
cites two polaritons(pump polaritons at the field energy. plifier without a probe. We will refer to the experimental
The pump polaritons are scattered under conservation of eronfiguration introduced to  observe  amplified
ergy and momentum into to two different polaritons modes photoluminescenceand consider a simplified three mode
which are called signal and idler modes, respectively. In thenodel, which has already been successfully used in discuss-
experimental configuratidnthe signal mode is ag=0, ing the parametric amplification and luminescence of
which is the lowest energy state. A low intensity probe pulsegpolaritonst’~2° As is well known a threshold characterizes
at q=0 is used in order to test the response of the systenthe parametric system, below which a small injected signal is
This pulse becomes amplified and the amplification enoramplified and above which the system behaves similar to a
mously grows as a threshold value of the excitation fieldnonlinear oscillator. The model considered in this paper al-
intensity is approached. This is the characteristic behavior dbws a satisfactory description of the nonlinear effects below
a parametric amplifier. the threshold. Above threshold more polariton modes are in-

Starting from this result, more features have been demonvolved in the dynamics and have to be included in the
strated experimentalf7.® We mention the observation of model®!°In a first step we investigate the dynamics of the
amplified polariton luminescent@ the determination of system in the regime of continuous pumping below thresh-
threshold behavior of the amplifier, where macroscopic poold. In particular we discuss the time evolution of the polar-
larization states spontaneously appear and the evidence fiton operators around the stationary value of the pump mode
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and the dynamics of the signal and idler population as welmentum conservation and is presented and discussed in Refs.
as of the anomalous correlatigtihe expectation value of the 17, 18. As already stated above we will restrain ourselves to
product of the signal and idler amplitudedVe find that the consider only scattering processes involving three polariton
signal and idler modes are strongly correlated during thenodes. In the following we consider the modgs 0 (sig-
whole time evolution. In a second step we discuss the correnal), k (pump), 2k (idler). The polariton-polariton interaction
lations in the polariton system in the stationary regime. Weterms read

characterize the behavior of the system at the parametric

threshold and give the expression for the first order and sec- HE™ =% winPaiPa PxPk+ H.C. (2)

ond order correlations from which the basic information on

the polariton statistics can be obtained. In particular we conNotice thatw;, is positive and represent a repulsive interac-
centrate on squeezing, whose magnitude is shown to be cortien. Its explicit form is reported in Refs. 17—19. It contains
parable with the one obtained from the quantum optical modthe contributions of the exciton-exciton interaction and of the
els. Recently, the measurement of squeezing Iin &xciton saturation. This Hamiltonian describes the interac-
configuration corresponding to a degenerate polariton paraion between polaritons in a loss less cavity. In practice, the
metric amplifier has been discussedile present results on guantum well is embedded in a microcavity whose mirrors
spectral squeezing for this system as an application of thare distributed Bragg reflectors. These have a non-negligible
considerations developed above. The model is presented ransmission coefficient, which is a source of losses. In order
Sec. Il. In Secs. lll and IV the dynamics and the stationaryto account for these losses and for the interaction with the
solutions are discussed. Section V is devoted to the polaritoaxternal laser field for simplicity we work within the well-
statistics and squeezing in the nondegenerate amplifiknown quasimode approximatiénThe quasimode Hamil-
whereas squeezing in the degenerate amplifier is discussedtionian takes the form

Sec. VI.

Il. MODEL qu(CI)=J’ dQ{v(Q)Cqpy aqa+H.C}, 3

| Po:ggr;gons”lréal mlfr:ocavtny ?re lr_e S.? ?antt:]y exm_tted bi& a\Nherev(Q) is the frequency-dependent reflectivity of the
aser field well below the saturation imit for the excitons. Sstop band of the microcavity. The identification of the cou-

ItxlsitV\{ie"n Iﬁmrvr_}’hp%ar't%?s bbehha\l/\i/er asr\l;)issons |Innthe l?r\:v ling coefficient in Eq.(4) with the reflectivity is a funda-
excitatio It.“The bosonic benavior SUrVIVEsS as long as ental feature of the quasimode approachhe operator
exciton density is much smaller than the typical exciton satu-

: 5% o . : . ag o destroys an external photon with in-plane momentum
(r:ztl'orrlodee':ts.ggo-frhn?;?;%ﬁ I Izlg(r)'tsc?rlgl?nt(t)e(rjr!:s(flé)?s'nttr;acc)jt)'trl] and a generic frequency). The external source field is
P pg i€ ' Ing polari ' . ' ! gcoupled to the polaritons through the Hamiltonian
bosons® This property allows simple modeling of the main
features of the polariton amplification process, which is a B n _ : +
consequence of polariton-polariton scattering. In the foIIow-HpumP_thuml{t)pk +H.C=AF pump€XHLT @pumd 1Py + H'z'
ing we consider the polariton to be bosdhs® (4)

Polariton-polariton scattering involves polariton pairs, the eisenberg equations of motion for the three polariton

whose wave vectors take all the values allowed by momen()perators are straightforwardly obtained from EGS, (3),

tum conservation._Here we considebr only the (;nergy arlld MBnd(4). In order to describe dissipation, we perform the stan-
megtum hconservmg mtsr.\]racpon | et\(/jveen t :jeeh p_gla”torbard elimination of the external field dynamics. This proce-
modes: the pump mode the signal mode ai, and the idler 6 ajows us to introduce the lifetimes, i, . of the

mode dat (I(—q)i This fi.s Eigsméled becaqse EOIS.r itons 28" holariton modes and the corresponding Langevin force op-
excited resonantly at a fixddand we restrict the discussion eratorsFo(t), Fu(t), Fa(t), which are defined as

to the parametric amplification regime where the contribu-
tion of multiple scattering is negligibf:'8 Furthermore, we
consider a cw excitation and do not apply any probe beam. Fq(t)zf dQuv(Q)Cqaga(t=0)exd —iQt]. 5)
In this configuration, the scattering process will be triggered

by the quantum fluctuations in the system. The Hamiltonia

for the interacting polaritons reads Mrhe Langevin equation for the polariton modes read

= eff d
H=Hop Hee. B i po() =[0(0)~  7a]Po(t) + PP + Fo(),
The free termH p=X wLp(q)p; pq contains the lower po- 63)
lariton energy dispersiom, p(q) andpy, p; are the annihi-
lation and creation Bose polariton operators definecpas d
=Xq4bq+Cqaq, Whereb,, a, are the exciton and photon i — D (1) =20 — 1 o 2K) —i B (t
Bosqe qoper%tgrs, respegtive?y, ang, Cq (X4>0 andC, dtpzk( )= [2e0pump™ B1p(2k) =1 v2clPdt)
<0) are the corresponding Hopfield coefficiehtshe ef- — i 2(1)Po(t) — FE (1) e~ 1 29pumd
fective interaction Hamiltonian in Eq1) describes scatter- @intPk~()Po 2K ’
ing processes between pairs of polariton operators with mo- (6b)
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. d _ Here @ p(0) = o p(q) + 2| Pk|? is the renormalized fre-
i1 57 Pe(D) = [@1p(K) — @pumpt T 7] Pi(t) quency, which includes the blueshift. In order to discuss the
dynamics of the polariton interaction, Eq®) have to be
+20inPy (1) Po(t) Por(t) + F(t)e ™ @pumd solved together with Eq.7). To this end we construct from
Eqg. (8) a set of coupled equations for the anomalous corre-
+Fpumd 0), (60 Jation A(t) =(poPax)(t) and for the expectation values of the

number operators of the polaritons in the signal and idler

where Foumdt) = Found0)e'“pmd, pa(t) = par(t)€'2pmd, 11 es These equations read

Pi(t) =Pi(t) €' pumd.
In Eq. (6), we have introduced the renormalized polariton ¢

frequencies® p(q) defined below, . p(q) is blueshifted iaA(t):((vT_i7T)A(t)+wintPE(t)[NO(t)"_N2k(t)+l]a

with respect to the unperturbed lower polariton frequency (93

w p(q), because of the repulsive polariton-polariton

interaction'’ Since we are describing an irreversible process,

the equation of motion verified bgg (t) contains the term iaA*(t)z —(w1+iyr)A* (1) — win Py 2(t)[No(1)
i yo with the same sign as ipy(t). The commutation rela-
tions are granted by the presence of the Langevin force op- + Ny (t)+1], (9b)

eratorsFq(t), Fi(t), Fo(t).

d
i — = — i ) 2 * _ p*2
IIl. TIME DEPENDENT SOLUTION gt No(D) = =21 70No(1) T win{ Pk(DA™ (1) = Pi(DAD],

In order to understand the dynamics of the population %9
transfer between pump mode and signal and idler modes, we
have to discuss the dynamics of the polariton amplifier. In i — Noy(t) = — 20 YN (1) + wind P2(1)A* (1)
particular, we are interested in the behavior of the system in dt
the vicinity of the parametric threshold. In principle, this —pr 2H)A(1)], (9d)

information is contained in the E@6). However, the opera-

tor equationg6) cannot be solved in this form as they in- where
volve products of three oscillator operators. A simplification

is achieved by noticing that the pump maplgis coupled to No(t)=(pg Po)(t), No(t)={PaPa)(t), Y= "Yax
a macroscopic stationary external figlthe exciting laser
field). Through this coupling, the polariton stdteacquires a

macroscopic amplitude. _ Before discussing the general solution of EG8.and(9), it
We account for this feature by replacing the pump polaris yseful to understand the dynamical behavior of the system

iton operatorp,(t) by its expectation value’,(t)=(Px)  when the pump mode is in the stationary regime. From Eg.
X(t). In this case the equation of motion of the pump mode(7) we obtain

(60) for resonant excitation, i.€@, p(K) = wpymp reads

+ 70, w1=0p(2K)+® p(0) —20pymp-  (10)

=i WPyt 20inP (PoP2k) + Fpumd 0)=0. (11
dPy(t)

iT:—iykPk(t)+2wimP’,§(t)<p0f)2k)(t)+Fpump(O). In this last expressiorR,, Py, and{pop,)=A%" which
7) represents the phase-dependent anomalous correlation, are
stationary quantities. We notice that the solution for the

In this last expression, the mean valif poPc) has been PUMP mode will depend explicitly on the stationary anoma-

; ; o a lous correlationAs® between signal and idler modes. In the
factorized into the product of mean valugs, ) (t){(poP2x) i . . .
X (£) = P¥ (1) (PoPai) (t). This approximation is justified be- following, we will consider the pump mode amplitudeg,

cause the pumped mode is macroscopically occupiecf: to be adjusta_ble parameters. In reality, they are a function
whereas the signal and idler modes are not. Within this ap¢! e external field amplitude ,,,. The relation between

proximation we finally obtain the equations of motion for the thesr—_z quantities is given by EqLD). \_N_e will dis_cuss tQF
signal and idler operators solution of Eq.(11) later, once the explicit expression faf

has been calculated.
d In the stationary regime of the pump mode, the inhomo-
i&po(t)=[5)m(0)—iVo]po(t)+wimPE(t)P;k(t)JrFo(t), geneous operator equatiof®) can be solved analytically,
e.g., by Laplace transforms. The solutions are characterized
(8a) by two complex frequencies.. for both py andp;, and by
oS for bothpg andp,y (Refs. 18, 19

d
iabzk(t):[zwpump_a)LP(Zk)_i')’2k]ﬁ;k(t) 1
3 0= =5 [@1p(0) = BLp(2K) + 20pumg=i (Yo+ 720 £ VA,
— 0P () Po(t) — Fa(1). (8b) (129
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1 . 0.1
% =7 [B1p(2K) = yp(0) ~ 20pump— i (Yo+ V20) £ VA*] 0.08 A
(12b) 0.06 ol Py 1y
" 0.04
Wi
0.02 No(t
1 - : 2 4 6 8 10
A= S{[BLa(2K) +Bp(0) ~ 20pump=1 (Yot Y2 1* TIME ty
_4wﬁ“|Pk|4}. (13) FIG. 1. Plot of theq=0 occupation number, the anomalous

correlation, and the quantity;| P,/ y as a function of time for a
The solution of Eq(8) is stable provided that the imaginary pumping fieldF pymg= 0.3 Fiveshois With Fipvesnod® V¥ @in. The
part of the frequencie€l?) is negative. As a function of the time unit is 14.
pumped modeP,, the imaginary part of the square root of

Eq. (13) may be larger than the sum of the polariton broad-qayrates to a valuss™ that depends on the external field

enings. In this case, the stability condition is not verified. InstrengthF which has been chosen below the threshold
: pump:
g?(rjt lcs?ézrélv;?%niérei (rer?:drg)s/ Z?S sTr?ch; Ztgrgeesgge?epﬁgealueF‘hreShO'dE 7"/ o AS discussed in Sec. ¥ resnolg
' Sorresponds to the threshold in the cw regime. This behavior

wLP(Zk)“L“;LP]gOE) _fé’)l’ump.zg an_?h the real part to;fthe indicates that during the time evolution an efficient transfer
square root of Eq(13) vanishes. The imaginary part ef, of population between the pump and the signal and idler

changes it sign in function of the pump polariton occupatlonmodes takes place. However, the stationary vdRE|?,

2 i
|P«/* and vanishes when which is obtained from the dynamical equatidi@$ and(8),
Yoyak— iy Py4=0. (14) s smaller than its threshold value for any value of the am-
plitude of the external field. This result is consistent with the
Equation (14) defines the threshold valugP{"*"{2  pehavior of|P$2 shown in Fig. 2 and indicates that corre-
=\/YoYa2k/ wine fOr the parametric process above which thelations between all three polariton modes are needed, in or-
solutions of Eq.(8) become unstable. We notice that whender to describe the transition to the coherent regime. As

sat

Eq. (14) holds, the frequencied 2) become shown in Fig. 1, the anomalous correlatidt) grows rap-
_ idly and follows the growth of the pump mode,(t) for
w; =op(0), (158 ghort times. This behavior originates in the presence of the
. , source term proportional tdP,(t)|? in Eq. (9b). Below
w-=op(0) =1 (vot 20, (15D threshold, the value of the anomalous correlation is much
c - larger than the signal population during the whole time evo-
w;=—a.p(0) (150 ; ; U hich i
+ LPAY lution and saturates to a stationary valR&, which is larger
- . than the one of the mode populatidd§™, N52'. These char-
wC=—3p(0) =i (yo+ Y1) (150 o : 2K
- LP Yo Yak)- acteristics indicate that the build up of the anomalous corre-

In this case the frequencies, and wE correspond to real Iatior_1 is the Iea_ding process below thres_hold and that si_gnal
eigenvalues. Therefore, the system at threshold is in a st&"d idler remain strongly correlated during the whole time
tionary state with a phase oscillating in time at the frequenc;}evotlm'o”t of the system. The growth of the mode populations
(153. An analogous solution can be found also, when theNg » N3i is retarded with respect to that of the pump mode
strict conservation of energy and momentum does not hold?«(t) and of the anomalous correlation. The peak values of
The relevance of this last solution for the parametric system

will be discussed in the next section. POLARIZATION [ arb. units ]

We are now in position to solve Eq&) and(9) numeri-
cally as a function of the external field amplitude
Foump-  FOr a given value of the external field amplitude,
we present in Fig. 1 the time dependent solutions for the
signal mode populatiorNy(t), the anomalous correlation 0.6 |
A(t) and the quantity;,|P|%/ v, which takes the valug at
threshold. For simplicity we sefo=y,x=7vy. We have not  gg4!
reportedN,(t), because it behaves exactly Hdg(t). The
above quantities are calculated with a choice of the material02 i
parameters corresponding to a GaAs quantum well in a mi-
crocavity and with a polariton broadening=0.5 meV,
which is taken to be the same for all polariton modes. The 9 70 s ; : . 5
situation of strict momentum and energy conservation is con- .
sidered. All three quantities saturate for long times to their PUMP INTENSITY [arb.units ]
stationary values denoted b§;®, N3, AS® The pump FIG. 2. Polarization of the pumped mode as a function of the
mode populationN,(t) grows rapidly for short times and external field[Eq. (22)].
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the signal and idler populations become important onlyAs already mentioned, the amplitude of the pumped mode
above threshold. This indicates that the phase correlationPy| in Eq. (16) is a time independent parameter related to
which builds up through the anomalous correlation, is estabthe outside fieldF y,,, through the stationary equatigtl).
lished before the onset of the population through stimulated he eigenfrequencies of E(L6) are given by Eq(12); these
emission takes place. This result is reminiscent of the timé&iomogenous linear equations have trivial solutions below
dependent behavior of the signal population with respect téhreshold(i.e., |Py|*< yoyac/ 0y, for the initial states men-
the pump mode, which is observed experimentally in a timdioned above. At threshold, the equations show a nontrivial
resolved pump and probe experinférend confirms the con- solution oscillating in time and independent on the initial
siderations on this subject presented in Ref. 18. The values §ondition. The oscillating frequency is the solution of the
the anomalous correlation and of the mode populations bekompatibility condition obtained from Eq16)
come comparable only in the vicinity of the parametric [0—@1p(0)+i yoll @+ @Lp(2K) — 20 pumpt i Vai]
threshold wherF ., becomes very large.

+ iyl P/ *=0, (17)

IV. STATIONARY SOLUTION wherew?,|P,|* takes its threshold value. Therefore, we con-

We now calculate the average values of the poIarizatior‘F"Jde that at threshold a new state of the system arises, which

and the correlations between polariton operators from whicff characterized by a macroscopic polarization for both, the
nal and the idler modes. When energy and momentum are

experimental quantities such as photoluminescence spectruﬂg . L :
and emitted photon statistics are obtained. These quantities nﬁerved,_the solution ofth17) commdefs with Eq(153
are needed in the calculation of the squeezing of the poIaric—) the previous section. The presence of a macroscopic po-
tons in the stationary state. To this end, we also have tIarlzatlon indicates that a cooperative state has been built up

. o . ...in the system. An analogous result has been derived in Ref.
specify the initial state of the system. For a comparison withh4 i, the framework of a classical three-wave model. This

experiments, we chose as an initial state either the polaritofu5i,re has been observed experimenfapme character-

vacuum or a statistical mixture ofpolariton states. ~ istics of the behavior of the system above the parametric
Let us first consider the equation for the average polarizathreshold are discussed in Refs. 19, 20.
tion We now investigate the behavior of the system below
d(po(D)) threshold. In this regime, as indicated above the polarization
; 0 = s 2/5+ vanishes. The simplest nonvanishing quantities below thresh-
| —= 0)—i t)+ winP t)), ;
dt [6p(0) =170){Po(1)) F @inPi(Pak(1)) old are the two mode correlatior$,(t), No(t) and the

(163 anomalous correlatioA(t) introduced in Sec. lll. In order to
obtain information on the dynamical behavior in the vicinity

d(pa(t) _ . of the stationary pump mode we evaluate these quantities
' dt =~ [©1p(2K) ~ 20pumpt i y2k](P2x(1)) from the analytical solution of Eq€8), where P, has his
o stationary valueP}'. We first evaluate the anomalous corre-
— 0Pk (Po(t))- (16D |ation A(t) below threshold
A(t) _wimpi X AJr(e*it(o) +o)c) e*i’[(w +wc))<o| (0) +(0)|0 A*(efit((u +wc) e*i’[((u +(uc))
= + +/ — + - — - +/ — - -
(w+_w_)(w$_w_) 2k Po pO > 2k

+ +
X(0lpo(0)pg (0)[0) + 250 =7 o (&7 5= 1) - (mAf‘;g)(e—“(w*w%—l)}
+2y,l %—(e-“w”%—lw%—(e‘“w+‘°°>—1)“, (18)
(w_+w7) (w_+w?>)
|
where A, =1/ wr—iys* VA] and ys=yo— 7. In Eq. Below threshold, in the limit of infinite time the stationary

(18), the first two terms in the curly brackets arises from thesolution for the anomalous correlation reads
quantum fluctuation(0|po(0)p, (0)|0) in the initial state,

which is taken in our case as the polariton vacuum state. The (yr—iwp) o P2
other terms in the curly brackets arise from the correlation of imA(t)=—i —5— T > il 1'1’“2" .
the Langevin forces. t—oo w7+ Y5~ 0ind Pl * 1 vovax

(19
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When the threshold values B is inserted in Eq(18), A(t) ternal source fields through E€L1). After having calculated
becomes A(t) explicitly, we can discuss the solution of E(@.1) in
detail. Introducing Eq(19) into Eq. (11) and choosingwt

wintpz =0 and the external field to be real, we obtain

Athresh()l({t) _ _int” k X [ [A;k(l— e*WT) — A;k(e*tyT
v 20| Py®
int

yr— 051 Pel* Yakvo

i } |Pk|'yk+ :Fpump- (22)

A
Aft-—(e"-1)
YT

—e 2]+ 2y,
The solution of Eq(22) is a two-valued function consisting
Ay Ay of two branches. The upper branch asymptotically ap-
+2y9 —(e7"T-1)— 5, (& 2m—1) 1. proaches the threshold value ®f from above and for nega-
o I tive values ofFp,,, whereas the lower branch approaches
(208 asymptotically the same value f&% from below. The upper
Atresholg) diverges linearly for large This indicates that at branch corresponds to values®f, for which the solutions
threshold this solution becomes unstable, because the contff Ed- (8) become unstable and the polariton numbigs
bution of the fluctuations grows in time. This behavior is @d Nz, become negative. Equatid@?2) is solved numeri-
characteristic of a system undergoing a symmetry breakinga!ly for the lower branch and its behavior is presented in
transition. Therefore, at threshold the stationary solutih ig. 2 in normalized units. In the lower branch the pump
for A(t) is meaningless because the state of the system h&9lariton amplitudeP, grows linearly with the external filed
intrinsically changed and a macroscopic polarization ap_amplltude_ for a small externql field. Fgr larger values of the
pears, as indicated by Eq&L6) and (18). However, there external field the pump polariton amplitude saturates and ap-
exists an explicit expression féx at threshold and for exact Proaches asymptotically to a value B that corresponds to
momentum and energy conservation, which is found directiy€ threshold and is independentfgj,,. Finally, we notice

from Egs.(11) and(19). In this regime the stationary anoma- that the relatio;(22) allows us to fix the pump mode popu-
lous correlation at threshold is lation N, =|P,|“ for a given external excitation and thus to

determine the realistic strength of the coupling in Eg).
oo L [@int ||:pum;{0)| y Indeed, the anomalous correlati¢t9) and the populations
|AGeeo = sV |7 V5| (0B (21 asfunctions of the external field diverge in the unphysi-
Y Y int cal asymptotic limit corresponding ®y,;— .

Here it is assumed for simplicity that all polariton modes
have the same width. It is evident that in this case the anoma- V. POLARITON STATISTICS AND SQUEEZING
lous correlation is completely determined by the external o N
field amplitude. FOrFpumd0)/y< ¥/, i.€., below the We are now able to calculate the statistics of the amplified
parametric threshold, the modulus of the anomalous correlg20laritons in the Langevin equations approach and in the
tion becomes negative and thus meaningless. In Ref. 17, Eqglationary regime. We remark that a different approach than
(18) are solved together with E¢L1) in which the factoriza- the one pursued in this paper consists in evaluating the po-
tion (PoPa)={Po)(Px) is performed. The expression for lariton statistics from the Glauber quasiprobability distribu-
this factorized form of the anomalous correlation coincidedion P- This approach will be discussed elsewhere. The quan-
with the one given above. This shows that at threshold thd®: Which is accessible in experiments, is the photon field
anomalous correlation factorizes and the system is indeed iftered through the microcavity. This field is related to the

a coherent state. polariton amplitude inside the microcavity. The relation be-
We now evaluate the stationary occupation number of thdween the polariton field inside the microcavity and the field
signal and idler modes, which read outside the cavity is obtained through the quasimode ap-
' proach. It reads
sat:ﬁ wﬁn| Pk|4 (218) ‘ t .
0 vt o ol Pd vl vovad ag,0(t)= g (0)e™ =i f At () Capy(t)e .
Yo (23
NZR=——Ng". (21D \We remember thad is the in-plane wave vector of the field
Yok P

) N which in our model is fixed to have the valugs-0, k, 2k.
Notice that these quantities are smaller than 1 but becomene photon field is measured through a detector, and hence

large at threshold thus indicating that a macroscopic occupaveraged in frequency. Therefore, it is useful to introduce the
tion of these modes will take place above threshold. Thisyeraged field operators

behavior is consistent with the results of the dynamical cal-

culations discussed in Sec. lll. The approximations used here ~ 1 (=
are consistently valid wheN3* and N33 are less than or of aq(t)=5— fﬁwdﬂaq,ﬂ(t)- (249
order of 1.

Until now, P, has been considered as a system parametefhe corresponding relation between these new operators and
However, this quantity is related to the amplitude of the ex-the polariton amplitudes reads
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AMOUNT OF SQUEEZING [%]

R —iot_ 30
aq(t)—zf wanqyﬂ(o)e ivCqpg(t). (24D
We once more stress the fact that through the reldi2di) 2
the polariton field becomes a measurable quantity in contrasiyg |
to what happens in the bulk case. This is very important
when discussing the statistical properties of polaritons, 45
which can be retrieved from the photon statistics through Eq.
(24). 10
The statistics of the system is characterized through the
higher equal time correlations of polariton amplitudes. In g}
particular, we have calculated correlations involving four op-
erators. Correlations involving only one-mode operators

show Gaussian properties of the distribution viz. ] 5 10 15 20
PUMP INTENSITY [ arb. units ]
+ .+ =2 + 2:2Nsat, 25
{Po Po PoPo) = 2(Po Po) (259 FIG. 3. Amount of squeezing in percent as a function of the
(P3PHPoP2) = 2(PhPa)?=2NSE.  (25p ~ SXtermalfeld
These correlations can be measured in a standard photon- ) 1/4 5.
counting experiment in which only the signal or the idler (A1) = 75 a7z [ 1= wind Pl “sin(¥)/ y] (28)
. . . . 1 w|nt|Pk| ly
mode is observed. Correlations involving both modes are
non-Gaussian with ¢=2(¢— 6) ,
Near threshold, e.gw| Pi|* voy2k=1 and fory= /2
(PoP2kPoP2k) = (PoP2y)*=A%" 2 (26)
From these results we conclude that the field statistics and <di>: #:m, (293
hence the Glauber quasiprobability distribution will not be 1= wind Pl y
standard. From the above results, it is clear that the interest-
ing quantities to be measured are the mixed signal-idler <d2>= 1/4 :E (29b)
modes. The measurement of these quantities is not straight- 2 1+ o Pel?y 8

forward because signal and idler modes are separated in d

space with an angular separation of about 30° in the experi-

mental setup considered in Ref. 4. Furthermore, the intensity 1

of the field originating in the idler mode is much smaller than <d§)(d§>>E. (290

that of the signal as a consequence of the small photonic

component of the idler. In order to measure mixed momentsherefore, a non-negligible amount of squeezing is found in
one has to generate new field amplitude resulting from thene d, amplitude only. The amount of squeezing of the out-
SUperpOSition of the Signal and idler fields. COIIeCting bothcoming photons may be obtained using the re|a(m)_ In

the emitted modes by a lens or using mirrors can achieve thisig. 3 we plot the squeezing in percerg=100(1
goal. —2\/Ad?) as a function of the pump intensity. We notice,

As a last point we evaluate the squeezing of the microy,4¢ the 'squeezing saturates at 30% for sufficient large pump
cavity polaritons. Nonlinearly interacting microcavity polari- intensity. The expression for the spectrum of squeezing,

tons are good candidates as sources of squeezing. In orderf@ich js also an interesting measurable quantity, is not pre-
evaluate squeezing we introduce the squeezing Operors gented here. Its explicit expression is cumbersome and not

andd, very appealing. In fact, it contains a large number of terms,
1 because correlations, which vanish in the stationary regime,
(d2)= Z([€(po+pa) +€ (¢ +pi)])2 (27a  @lso appear. We shall present the calculation for the spectrum
8 of squeezing in the simpler model discussed in the next
section.
The feasibility of an experiment in which anomalous cor-
1 . relations and squeezing are measured is related to the mag-
<d§)=—§<[e""(po+ Pa) —€ (pg +pa) )2 nitude of the wave vector difference between signal and
(27b) idler. In fact when the idler polariton is mostly excitonlike,
the intensity of its emitted field is very small because its
The squeezing will be discussed at resonasage=0 where  photon component expressed through the Hopfield coeffi-
the gain of the parametric process is maximum. The amourdientC,, in Eq. (24b) is small. This makes the measurement
of squeezing depends on the phase difference betweesf the anomalous correlations and therefore of the squeezing
pumped modeP, =|P,|e ¢ and external referencé Set-  very difficult. The wave vector difference between idler and
ting furthermoreyy,= y,, =y we obtain signal and thus the ratio of the intensities of the signal and

and
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idler fields may varied by a convenient choice of the position OPTIMAL SQUEEZING [arb. units]
of the pump mode on the polariton dispersion. When this
position is very closed to the signal modeggt O, the three 0.3
modes are nearly degenerated and the intensities of the emit
ted fields associated with signal and idler become compa- g5 |
rable. The drawback of this configuration is that the very
intense pump signal is not easily filtered out because it
nearly coincides with the signal and the idler. Although 01
squeezing has not yet been measured, experiments in th
above configuration have already been successfully ¢
performed?® In the next section we discuss a simplified
model of a parametric system, which may be used to de-
scribe the experiments of Messgin al?°

Si(o/y, 8/v=—1.93)

P

__,/"Sz(m/y, 3iy=—1.93)

-0.1¢

-4 -2 0 2 4 6
FREQUENCY w/y

VI. THE DEGENERATE PARAMETRIC MODEL
FIG. 4. Optimal spectral squeezing for the degenerate polariton

As indicated in the previous section, squeezing is morarametric oscillator as a function of the normalized frequenigy
easily observed when the wave vectors of pump, signal, anfdr a detuning 6=—-1.93y and an external field.F ymp
idler modes are almost equal. The three-mode amplifier be=1.58  eshoie The quantityS;(w/y, 8/ y=—1.93) has its maxi-
comes in this case a one-mode system, which is known in theaum value 0.628 fow=0.
literature as the degenerate parametric amplifier. This model
has played a very important role in quantum optics, becausequation of motion forpy(t) and linearizing the resulting
it is the simplest model, in which effects such as bistability,equation with respect tB(t) we obtain
amplification, and transition between different operation re-
gimes can be studiett’?%2’ Furthermore, squeezing has
been introduced and extensively studied in this model and &P(t):[&)(O)—wpump—iyO]P(t)Jr2wimP*(t)(([?)0>s“"‘)2
the first measurements of the squeezing effect were per-
formed in a degenerate parametric syst&ri.is expected + Fo(t)e'“pumd, (323
that polariton squeezing will also be observable in this con-
figuration. This establishes a link between quantum opticsvhere
and the physics of polaritons, which may have interesting
consequences. In the degenerate case the Hamilt@hihas (0)=w_p(0) + 4win (Po) a2, (32b
the simpler form

The time evolution of the operatdt(t) has the same char-

H=7%wp(0)pg Po+ i winPd “Po+ i F pumpXH i @pumd 1S acteristics as that of the signal and idler modes in the non-
degenerate case. It decays exponentially and is therefore
+H.c. (30) stable for
As already mentioned, the degenerate parametric amplifier . 5 . 1
has been discussed in great detail in quantum oftties, ¥0={—[®(0) — @pumpl* + 4w (Po) > *} (33
e.g., Refs. 26, 27 We summarize some of its characteristics
here. The equation of motion fdiry(t) is obtained from Eq. OPTIMAL SQUEEZING [arb.units]

(6¢c) by settingk=0. In a first approximation, the external
field Fpymd0) forces the system in a coherent state such 03}
that the expectation values of the product of polariton

operators factorize into products of the expectation values g,
of the polariton amplitudes such as, e.dpgPoPo)

=(Pg Y Po){Po). In this approximation the stationary solu-
tion (Po) @ for the polariton amplitude is found and shows a
bistable behavior in function of the external laser field. Bi-
stability sets in when the detuning between pump and polar- ©

01}
S1(w=0, &/Y)

_______________
~~~~~~~
-
-

iton frequencies is negative and its modulus is larger then e L S2(0=0, 8/y)
V37,.2" We now define the operator —01 e T
. . 4 —2 0 2 4 6
P(t)=Po(t) —(Po)>™ (31 DETUNING §/y

WAhiCh describes the departure from the_ stationary_ state F|G. 5. Optimal spectral squeezing for zero frequency and as a
(Po)™ and allows us to discuss the statistical properties ofunction of the normalized detuning= (o, p(0) — wpump/ and for

the system an_d in partic_ular the sqgeezing .phenomen@n external field Fp,m= 1.58 pyesnoie The  quantity S;(w/y
around the stationary solution. Introducing E81) into the  =0,6/7) has its maximum value 1.875 fd/y=—1.2.
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and is unstable in the opposite case. The equal sign defines VII. CONCLUSIONS AND OUTLOOK
the stability limit. The calculation of the relevant statistical
features of the model follows the same lines already dis
cussed for the nondegenerate model. Here we discuss in dgya framework of a three mode model®under the assump-

tail the spectral squeezing, which we did not present in thgjon that the pump mode can be factorized out of correlation
previous section. In analogy to E@7), we introduce for the  jnyolving the three polariton modes. We have presented a

_In conclusion, in this paper we have discussed the dy-
namical behavior of interacting polaritons in a microcavity in

degenerate case the operators detailed discussion of the behavior in time of the anomalous
1 correlation and of the modes occupation humbers, showing

dy(w)= =[€P(w)+e 1P (w)] (349 the importance of the anomalous correlation in the dynamics

2 of the system. In particular we discuss the approach of the

polariton occupation numbers and of the anomalous correla-

and tion to their stationary values and show that the population
R 1 o transfer from the pump to the idler and signal modes through
dy(w)=— ?[e”’P(w)—e*'ﬁP*(w)], (34  the anomalous correlation dominates the dynamics. The sta-

: tionary solutions are presented for a choice of the external

whereP(w) is the Fourier transform a®(t). field below threshold and at the threshold. We show that at

The quantity accessible in most squeezing experiments ireshold the anomalous correlation factorizes into the prod-
the spectrum of squeezing, defined in terms of &4) by uct of the signal and idler modes amplitudes as it is expected

the normal ordered combinatigi?’ for a macroscopically occupied state'®2*Furthermore, we
have introduced the statistical properties of the polariton
Si(w)=(:dy(w)d;(t=0): + :d;(t=0)ds(—w):) modes and thus of the emitted field showing a non-Gaussian
(359  behavior. In particular we show that a non-negligible amount

of squeezing is present in the correlation between signal and
idler fields. Finally the m%céel has been adapted to possible
A . ) - ) experimental configuratiofsin which idler and signal al-
So(@)=(1dx(@)da(t=0): + :dy(t=0)dy(~w):). p  most coincide and the optimal squeezing spectrum has been
(35D evaluated as a function of the frequency and as a function of
The angled is the phase of the coherent oscillator used inthe detuning for a given frequency.
homodyne detection. It is important to determine the value of We conclude by giving an outlook on the open problems
0, for which the expected squeezing will be optimal. For ain this context. The model discussed in this paper represents
given value of the frequency = w,, the phase is chos&h a useful but strongly simplified description of the parametric

and

such that system. As we have already mentioned, the three-mode de-
scription is well justified below the parametric threshold, but
 {(P(wo)P(t=0))+(P(t=0)P(— wg)) represents an oversimplification as the parametric threshold
e'f=— " . (36 is reached and fails above threshold. Therefore, a many
[(P(w0)P(t=0))+(P(t=0)P(— wo))| mode descriptich'® of the amplification process will be nec-

The explicit expressions for the squeezing spectrum and fdFSSary- In our discussion we have_ consi(_jered the_ fluctuation
the optimal squeezing may be found in the literafif&in  induced by the losses from the microcavity as being respon-
Fig. 4 and in Fig. 5 we present results for the optimal squeezSible for the polariton broadening. Although the experiments
ing evaluated foro=0 and forFp,=0.3y. In Fig. 4 the are performed at very low temperatures, the influence of the
spectrum of squeezing is presented for a normalized detu,@_xcnon—phonon interaction on the parametric process sho_uld
ing of 5= — 1.93, which is slightly smaller then the threshold be considered. Furthermore the exciton-phonon interaction
value 6= —v3 for the bistability to appear. In this case the becomes essential when effects _such as the gain dependence
maximum squeezing with the value 1/8, appearSjmnd is O temperatur€ has to be described. Moreover, two other
attained foro=0. The maximum value of the squeezing €T€CtS can affect the squeezing properties, namely, the cou-
found here corresponds to the maximum value of the squee)ing 0 an incoherent bath of excitons and the residual
ing that is obtained in a double-sided cavity. In Fig. 5 thePolariton-polariton interaction beyond the mean field limit.
same quantity is plotted as a function of the detuning and foMOre refined treatments are under current investigation.

w=0. In this case the maximum value of the squeezing is

found for a normalized detuning @&~ — 1.3. As the external ACKNOWLEDGMENTS
field approaches the threshold valbg,m;= 0.5y, the maxi- We acknowledge illuminating discussions with E. Gia-
mum value of the squeezing drifts towards a larger negativeobino, J.-P. Karr, S. Kundermann, J.-L. Staehli, and M.

detuning. Saba.
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