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Perturbative results on localization for a driven two-level system
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Using perturbation theory in the strong coupling regime, that is, the dual Dyson series, and renormalization-
group techniques to resum secular terms, we obtain the perturbation series of the two-level system driven by a
sinusoidal field till second order. The third order correction to the energy levels is obtained by proving how this
correction does not modify at all the localization condition for a strong field as arising from the zeros of the
zeroth Bessel function of integer order. A comparison with weak coupling perturbation theory is done showing
how the latter is contained in the strong coupling expansion in the proper limits. The strong coupling expansion
we obtain proves to be accurate in the regime of high-frequency driving field. This computation gives an
explicit analytical form to Floquet eigenstates and quasienergies for this problem, for high-frequency driving
fields, supporting recent theoretical and experimental findings for quantum devices expected to give a repre-
sentation for qubits in quantum computation.
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I. INTRODUCTION independent Hamiltonian is obtained using perturbation
theory. Our results confirm till third order the well-known
Quantum computatioh;* intended as information theory result that the zeros of the zeroth order Bessel function are
performed using qubits, that is, two-level systems evolvingthe points where CDT occurs. Besides, our result recovers
by the unitary evolution as obtained by the laws of quantunthe small perturbation theory computation in the proper lim-
mechanics, demands an increasing control on such systemi$s- This is_in agreement with the recent numerical
Recent experimental finding® proved that qubits can be computations??* But, it is essential to emphasize that the
realized by solid-state devices, making the realization of dnain result of the paper, the strong coupling expansion, is
guantum computer even more possible. Such solid-state d&ery accurate for high-frequency driving fields.
vices performs in a way like two-level systems driven exter- The paper is so structured. In Sec. Il we discuss localiza-
nally by some time-varying field. This means that it is verytion on a quite general ground, using Floquet theory. In Sec.
important to have a clear theoretical understanding of sucH! We give a presentation of the perturbation methods that
systems to make their control easier. we used to obtain our results. In Sec. IV we present the
Advances in this field have been realized by devising nevgomputation for the two-level system driven by a sinusoidal
approaches to the solution of the Safirger equation in field giving the effective time-independent Hamiltonian ob-
different regimes®~**These methods are perturbative in na-tained by a computation till second order. In Sec. V we give
ture but permit us to study a quantum system in differenthe third-order correction to the effective Hamiltonian show-
physical regimes. So, there seems to be a proper framewotRg how the localization condition at high fields is kept in
to make two-level systems theoretically manageable in anfgreement with all numerical results as also happens to the
situation. These methods give to the Floquet method, fopmall field condition. Then we discuss the conditions under
periodical perturbations, a strong analytical support. which localization happens comparing the perturbation series
The proper control of a qubit, realized by some solid-statePbtained with the weak perturbation series showing the way
device, relies on the possibility to obtain localization of aone rgsult contains the other. Finally, in Sec. VI conclusions
particle in each one of the two available states. This effect i€ given.
also known assoherent destruction of tunnelingDT)6:’
as tunneling between one state and the other is destroyed by. LOCALIZATION IN DRIVEN TWO-LEVEL SYSTEMS
making unity the probability of staying of the particle in the ] o
initial state. So in recent years, this question has been the The model we consider has the Hamiltonian
main motivation for several works on two-level systefhig’t
Some of these papers have put forward an interesting non- H— é n £t 1
perturbative result showing a set of curves for the crossing of 2937901 (1), @
the quasienergies of the Floquet solution for two-level sys-
tems with different periodical external fields. As it stands,A being the separation between the two levgldenotes the
such a result, being nonperturbative in its very nature, apcoupling, o, and o3 are Pauli matrices, anf{t)=f(t+T)
pears rather difficult to recover with perturbation theories. Wwith T the period of the perturbation. The theory of Ct51
The aim of this paper is to show how perturbation theorycan be straightforwardly applied. Given the unitary evolution
can give definite results for localization in different regimes,operatorU(t), one can compute the probability of the sys-
putting the study of two-level systems on a sound groundem of being in the initial state as
from an analytical point of view. Besides, an expression is
given for localization, after that an effective time- P(t)=|((0)|U(t)|4(0))|?, (2
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with |(0)) being one of the eigenstates of. One has 3
CDT when this probability is equal to unity. As the Hamil- X(1)=AoSIN(t+ o) + € g Ao(t — o) COS L+ o)
tonian is periodic in time, one can apply the Floquet theory
and také? Ao
—61—65|n(3t+3¢0)+0(62), (5
P= EJ'TP(t)dt 3) Ay and ¢ being constants depended on the initial condi-
TJo tions. We recognize a secular tetmt, that makes this se-

ries useless as it breaks down fdft —ty)>1. The situation

to ascertain that we have true localization by having unity@n Pe improved if we interpret the tinig as the logarithm
also in this case. The consequence is that one can sho®f the ultraviolet cutoff in quantum field theory and intro-
again from Floquet theory, that the conditions for CDT arisedUceA and ¢ as the renormalized counterpartAf and ¢o
from crossing of quasienergies. This condition is necessar§ue to the fact that the nonlinearity may change these con-
but not sufficient. Stants. Then, we introduce another renormalization point by
Our aim in the following section is to derive such condi- SPIitting t—tq in t— 7+ 7—t, and adsorb the terms contain-
tions that apply to the quasienergies for the sinusoidal cas#)d 7—to into A and¢. We introduce a multiplicative renor-
that is, assuming(t) = cost) with w=27/T. We give an malization constanZ,=1+3,_,a,€" and an additive one
explicit analytical expression for the Floquet eigenstates and>==,_1bn€" s0 that Ag(to) =Z;(to, 7)A(7) and ¢o(to)
quasi-energies by using perturbation theory in the strong= ¢(7)+Z,(to,7) with the coefficients,, andb, to be com-
coupling regime with the method described in the following puted order by order to remove the terms witht, as hap-
section. pens in standard renormalization graip® It is easily seen
that, in our case, a possible choice to first ordea;is 0 and

b,=—2(r—t,) removing the secular term and we are left
11l. DUAL DYSON SERIES AND RESUMMATION with

TECHNIQUES
3
It is generally believed that perturbation theory, being X(D)=Asin(t+ $)+egA(t—7)cogt+$)
plagued by secularities, that is, unbounded terms in a pertur-
bation series that increase as powers of time?, ...,
should be avoided to treat a model like the one we consider
in this paper. Indeed, the methods devised so far for remov- _ . _
ing such singular terms proved to be generally not very eas)OW A and ¢ being function ofr. But 7 does not appear in
to apply. Recently, a new approach, that can be called d _he ongmal problem an_o_l sr(t) must be independent of it.
namical renormalization-group meth&td28has given an al- 1his gives us the condition
gorithmic way to remove secularities, making computation ax
in perturbation theory though tedious but very easy to ac- —| =0, 7
complish. This method, coupled with the dual Dyson at|__,
series?®~33 gives a straightforward method to compute
higher-order corrections to well-known resulfsBesides, we
will get an explicit analytical expression for the Floquet
modes and the quasienergies in the given approximation and IA
we will prove that the small coupling result is recovered. — =
This is a property of the dual Dyson series. at
The dynamical renormalization-group method was first
formulated by the Urbana Groti?* based on the observa- dp 3 eA+0O(e)

A 5
—61—6$|n(3t+3¢)+0(e ), (6)

that is, the renormalization-group equation in our case gives
the equations

O(€?), ®

tion that renormalization group methods can be seen as a at 8
means of asymptotic analysisThey showed how their ap-

proach can be proved equivalent to other methods that resuﬂﬁhere the WeII-kn(_)Wﬂ shift in the fr_eqL_lency of the oscillator
secularities, such as the multiple time scale mefHofdy IS recovered. Besides, the secularity is completely removed

many cases. This method, for its very nature, can be det-).y taking in Eq.(6) the condition7=t with A(t) and ¢(t)

scribed by an example. So, let us consider the well-knowr§!Ven b_y the solutions of the renormalization-group equa-
equation of the forced harmonic oscillator tions. Finally we have

3
. =A(0)sin | 1+ s €A +
X(1)=~x(1)~ ex(V?, @ (O)S'”( g At ‘f’(o)}
. . A0) _ 3 ,
€ being the strength of the anharmonic term assumed to be BT sin 3| 1+ geA(O) t+3¢(0)|+0O(€e).
small. A naive perturbation expansion intill first order
gives the well-known result (9)
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So, a straightforward application of renormalization-group A t
methods was permitted to remove a secular term in the per- He(t)= 503@([{ —i2901J f(t')dt'}; (15
turbation series. But there is a way to make the computation 0
Simpler by noting that we haVe done nothing else than tqhe dua' Dyson Series iS Computedz%)?z
compute the envelope of E(5) using known renormaliza-
tion techniques. t
Then, the method of renormalization group to resum secu- SD(t,t0)=Tex;{ —i 6] HF(tl)dt,} (16)
larities in a perturbation series that we present here is ob- o

tained by the mathematical theory of envelopes and is due tgs ysualZ being the time ordering operator and an ordering

Kunihir0.25_27|n order to describe |t, let us consider the fol- parameteré has been introduced that will be taken unity at

lowing equation the end of computation. It is fundamental for our argument
) that the computation of this series is performed at a different
X(t)=f(x(1),t), (100 starting pointt.

2. Assume, at the start, that the time evolution operator

with x(t) that can also be a vector. The initial condition is has the form

given byx(tg)=X(tg). At this stage we assum¥(ty), not
yet specified. We write the solution of this equation as U(t.t)=Uc(t)Sn(t t-)Un(t 1
X(t;tg,X(to)) Which is exact. If we changg, to t), we are (1.10) =Ur()Sp(t,to)Ur(to). (17
able to determin&(ty) by assuming that the solution should whereUg(t,) is a “renormalizable” part of the unitary evo-
not change lution.
3. At the given order, one gefy(t,ty) as
X(t;t0,X(to))=X(t;t0, X(t5)) (17) ,

Sp(t,tg)=1—iefq(t,tg)— €*Fo(t,tg)+ - - (18

and in the limitty,—t; becomes
and, at this stage, if some oscillating functionstjnappear

dx dx dx X like ™% then introduce the phasg(to) = —t, as a “renor-
dty~ oty tox Ty 0 (120 malizable” parameter rewriting it as#(%0) 28 \We make this
choice assuming that any initial phase of the system can be
giving the evolution equation or flow equation of the initial changed by the dynamics. The minus sign is fixed arbitrarily.
value X(to). We see again the renormalization-group equa-The secularities must be left untouched.

tion proper to this approach. 4. Eliminate the dependence tgnby requirinés*%
Till now, all our equations are exact and no perturbation
theory entered in any part of our argument. But, except for a dU(t,to) .
few cases, the solutior(t;ty,X(tp)) is only known pertur- dt, o (19

batively and such a solution is generally valid only locally, fo~t

i.e., fort"’to andt"’té and a more restrictive request should and one obtains the renormalization group equation
be demanded for our renormalization-group equation

dUg(t) ) 3
dx|  ox . ax IX o 13 —at~ €91Ur(D+e°gUR(D) +O(€7)
dto tg=t (?to ty=t X (9to to=t ' (20)
. _ _ _ de(t) 5 3
But this equation can be interpreted by the mathematical gt~ €190+ e dh(1)+0(€7)

theory of envelope$ Indeed, varyingt, we have that
X(t;tg, X(tp)) is a family of curves wittt, as a characterizing where, at some stage to obtain such equations at the second
parameter. Then, Eq13) becomes an equation to compute order, we have to use their expressions at the first order, and
the envelope of such a family of curves. Such an envelope ifg compute their form anth order, one has to use these
given by the initial conditionx(t;to=t)=X(t). It can be equations at the orden(- 1)th, into condition(19). This is a
proved thatX(t) satisfies Eq(10) in a global domain up to  step toward the computation of the envelope of the perturba-
the orderx(t;ty) for t~t,. tion series?>26

Now, we can describe our approach in some steps to show 5, Finally, the renormalization equations should be solved
how such an algorithmic perturbation method indeed worksand substituted into equation

1. Consider the following unitary transformation on
Hamiltonian(1) (here and in the following, we sét=1) to U(t,to)]; —t (21)
remove the perturbatigh® °

giving the solution, i.e., the envelope we were looking for

. L without secularities at the order we made the computation.
UF(I):eXF{_'goljof(t )dt } (14) We will give an explicit application of this procedure in
the following section choosinf(t) = cos(t), that is, a sinu-
giving the transformed Hamiltonian soidal driving.
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IV. STRUCTURE OF THE PERTURBATION SERIES do(t) A\2
TO SECOND ORDER —7—=0 —)

(O]

The unitary transformatiob) ¢(t) for a sinusoidal drivin
field takes thz\ form F(O g where the fact that these equations are at least first order has

been used, transforming some terms in &%) into second

order, making them negligible. We see that we have recov-
(22)  ered a well-known result of the series for high frequéfcy

with its corrections to first order. This gives the final result,

Ue(t)= ex;{ —i %sin(wt)al

and the transformed Hamiltonian takes the form using Eq.(21),
A A e~ inwtoy _ 1
He()= 5 osexi] —iz sin(wt) ] (23) U(t,0)=Ug(t)| 1+ 5 03012 In(2)
having put z=2g/w. This Hamiltonian gives the term Ao (2t
Sp(t,to) till first order as +.. . |7 (420, (28)
S (titg) =1 —ié 1(2)(t=tg) This result is well known in literature~123%33|t has also
pitto) =1l 3o 0 been proved that this is the expression of the Floquet unitary

Cineter ineta evolution at this order with the given approximatidhg?we
N A s e t—e o see that we have a periodic part and a part that originates the
030, Jn(2) +e . :
2 o ) quasi-energies.

So, what is really interesting is to get higher-order correc-
(24 tions. Particularly, we see that the quasienergies are given by

whereJ, (z) are the Bessel functions ath ordern being an = (A/2)Jo(2), a well-known fact, so that, CDT occurs, in

integer. We see immediately that a secular term, proportionghis approximation, at the zeros of the Bessel function

to t—t,, plagues our computation. To remove it, we rewriteJo(2).'” We now prove that higher-order corrections preserve

the above expression as such a rgsult _ -
Applying the above procedure till second order it is

A straightforward to obtain
SD(t,to):|—|50330(2)('[_'[0)
A e—inwt(rl_l
A e nuto1_ghwdligos U(t,0)=Ur(t)| 1+ 5 0301 2, 34(2)
503012 3n(2) — oo o
A2 sin(nwt
@9 ERTIN sz mnet)
introducing in the last oscillating term the renormalizable " n"w
parameters(ty). So, one has inwt _
2 B -
- — z
du(tty) _ LA "%’
aty, (1) 1503 o(2) A2
3n,(2)3n,(2)

A ) do(t _T ny#0N,#0Nn#n
20,3 aenestan 2O Lo
2 n#0 dto

( ei(nl—nz)wtal_ 1 einlwtol_ 1
X

A _ 2 2
+U,:(t)[l—i 5 03302t~ 1o) Ma(M=Mz)w™  NiNze

o-inutoy _ ginwd(tlo ... efi(A/2)a-3Jo(z)t+i(A2/2w)F(z)¢rlJO(z)t, (29)

A
+ 503012 Jn(2)
n#0

Nw
where we have introduced the functionF(z)
. dUg(to) (26) =2>h20(Jn(2)/n) into the last exponential. We recognize a
dtg ’ product of a periodic unitary operator and a term originating
quasienergies. So, it is interesting to see that now we have an
and imposing the conditio(19), we get the renormalization- effective Hamiltonian giving the quasienergies with a correc-

group equations tion term proportional ter;. But, the most important point is
) that this correction is again proportionaldg(z) and so, the
dUg(t) _ i é Jo(2)U(t)+ 0 (é zeros of this Bessel function gives CDT also at second order.
dt 2 730ldER ’ The effective Hamiltonian can be written as
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AJy(2) A2Jy(2) A rather interesting result is that this series holds for any

5 03— —F(2)o (30 ratio A/w different from the dual Dyson series discussed
above that holds fod\/w<1. From the effective Hamil-

that can be easily diagonalized but we do not pursue thisonian (30) and the third-order correction, we see that the

matter here. Indeed, our aim in the following section will be coefficient of thes 5 part is given by

to give the third-order correction to this Hamiltonian proving

that the high-frequency CDT is again determined by the ze- AJy(2) A%1y(2) Jﬁ(z)

ros of Jo(2). = —

Hets=

34
2 4w? 170 n? (34
V. THIRD-ORDER CORRECTION TO THE that

in the small coupling approximationly(z)—1
QUASIENERGIES AND LOCALIZATION

—(Z%14), and considering just the first term of the series
The algebra is rather tedious but straightforward and th&Ving z°/2, we obtain

application of our method gives the third-order correction to

the effective Hamiltonian A

2 AS ZZ
1- —) ——2§+O(z4). (35)
A% ) he

2

73 (3D From the small coupling expansion we recognize, after a

simple rearranging of the terms, tlg term
This is a correction to ther; term of the effective Hamil-
tonian so, we can conjecture that even-order corrections go A
to the o4 term and the odd-order corrections go to ihg S§=§
term. We see again that this term is proportionald§6z)
confirming the exactness in the high-frequency limit of the
occurrence of the CDT at the zeros of such a Bessel functionpay in the expected Iimi{A—<1, is the same aS,. Simi-
Such correcting terms into the effective Hamiltonian can be @
recognized as ac Stark shifts and Bloch-Siegert shifts whickarly, one can verify the same result at any order of the two
are re|evant, eventua"y, at the resonéﬁéé where Rabi perturbation series. This gives arposterioriverification of
flopping also in this regime is expected with the renormal-our computations. Besides, it confirms our point that the dual
ized levels* (A/2)Jy(2). Dyson series is a high-frequency series while the Dyson se-

AnyhOW, a further check can be obtained with the Sma”ries holds for both the limits of hlgh and low frequenCieS, but

coupling perturbation theory. Our method can be appliedhe result of the Dyson series in the high-frequency limit is
again but now we use the interaction picture_ So, if we in-Contalned in the dual Dyson series when the limit of small

troduce the unitary transformatia (t) =e (4273t we get  couplingz— 0 is also taken. Indeed, the Dyson series and the

4w* n#0 n

(36)

the transformed Hamiltonian dual Dyson series can be taken to coincide in the limits of
_ small z and A/w<<1, giving an interesting relationship be-
H,=g cogq wt)o e 478t (320  tween the transformed Hamiltonians that we used to obtain

] ) the perturbation series.
and we can built the Dyson series, out of resonante ( \ve are now in a position to discuss the CDT in the limit

#w), to second order as of small couplingz— 0. To achieve our aim, we consider the
analytical expression of the quasienergies obtained in Ref.
o dyos 38. This gives
g e| w— o3 _1
U(t,00=U,(t) I_E‘Tl%(T .in A
—i(w+A)ost @ A "4 o
e H(otd)ogt__q €e.=*_——arcco$ co§ m—|+m7T— — )
I 2 ) 4 w A2
w+A 1-—
w2
cog2wt) +ioz—sin(2wt) (ot Ao
+g_2 w ellerdost—g mod w) (37)
4 w?—A? w?—A?
that yields, in the limitz<1, Eg. (36) proving again the
gi(w=A)ogt  g-i(w—A)ost  Gi(w+A)ogt correctness of our computations. The important point is that

+ - + Eq. (37) contain the result for CDT that the quasienergies
(w—A)? w?—A? (w+A)? : ; ;
crosses fol\/ w=2n beingn an integer and this cannot hap-
pen for the perturbative result unless we are able to resum
24 A2 the series. So, we can draw the conclusion that perturbation
L, @A +... | i@ 810?25t (33 theory by Dyson series can prove to be very effective for the
(w?—A?)2 study of CDT for strong fields and high-frequency regime.
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VI. DISCUSSION AND CONCLUSIONS ing explicitly the form of the Floquet modes till second order
and quasienergies till third order, for a strong field and high

From the von Neqmann—W|gner theoréone has to ex- frequency. At this stage, it appears mandatory to introduce
pect that the crossings of the energy levels form a one-

dimensional manifold. This result is central to fully under- resummation techniques in perturbation theory to complete
stand CDT for the tWo-IeveI system that we coxr/1sideredthe algorithmic approach we discussed in this paper.
y - Different regimes of parameter space have been analyzed

Recen.t worokzsl on Fh's question derved such a resulby our perturbation technique. Notably, we have obtained
numerically?®?! In this paper we have shown that unless . . ) . :
erturbation series for the high-frequency regih&€w in

some smart resummation technique is applied to a perturb he strong coupling approximatiags>A by dual Dyson se-

tion series, perturbation theory is helpful just to study theries The Dyson series has given the small coupling expan-
behavior of the model in different regimes, recovering CDTsiong<A that holds for any ratia/w but when this ratio is

under certain conditions. taken to be small, the dual Dyson series recovers the Dyson
The reason for this conclusion lies on the fact that the ’ y y

content of the von Neumann—Wigner theorem is nonpertur—serie$ forg<A as we have shown. These resullts appear very
bative. So, if we are able to resum a perturbation series tgromising for the study of quantum systems n d|ffere_znt re-
recover a nonperturbative result, there may be a possibility t Imes by a general way to approach computations with per-
give an analytical proof of the numerical results obtained s urbation theory.
far.
Notwithstanding such a conclusion, we have proved the

power of the Dyson series in the study of two-level systems | would like to thank Charles Creffield for suggesting to
in regimes where other means may prove unsuccessful, givae such an interesting question.
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