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Perturbative results on localization for a driven two-level system

Marco Frasca*
Via Erasmo Gattamelata, 3, 00176 Roma, Italy

~Received 30 March 2003; revised manuscript received 4 August 2003; published 15 October 2003!

Using perturbation theory in the strong coupling regime, that is, the dual Dyson series, and renormalization-
group techniques to resum secular terms, we obtain the perturbation series of the two-level system driven by a
sinusoidal field till second order. The third order correction to the energy levels is obtained by proving how this
correction does not modify at all the localization condition for a strong field as arising from the zeros of the
zeroth Bessel function of integer order. A comparison with weak coupling perturbation theory is done showing
how the latter is contained in the strong coupling expansion in the proper limits. The strong coupling expansion
we obtain proves to be accurate in the regime of high-frequency driving field. This computation gives an
explicit analytical form to Floquet eigenstates and quasienergies for this problem, for high-frequency driving
fields, supporting recent theoretical and experimental findings for quantum devices expected to give a repre-
sentation for qubits in quantum computation.
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I. INTRODUCTION

Quantum computation,1–4 intended as information theor
performed using qubits, that is, two-level systems evolv
by the unitary evolution as obtained by the laws of quant
mechanics, demands an increasing control on such syst

Recent experimental findings5–9 proved that qubits can b
realized by solid-state devices, making the realization o
quantum computer even more possible. Such solid-state
vices performs in a way like two-level systems driven ext
nally by some time-varying field. This means that it is ve
important to have a clear theoretical understanding of s
systems to make their control easier.

Advances in this field have been realized by devising n
approaches to the solution of the Schro¨dinger equation in
different regimes.10–15These methods are perturbative in n
ture but permit us to study a quantum system in differ
physical regimes. So, there seems to be a proper framew
to make two-level systems theoretically manageable in
situation. These methods give to the Floquet method,
periodical perturbations, a strong analytical support.

The proper control of a qubit, realized by some solid-st
device, relies on the possibility to obtain localization of
particle in each one of the two available states. This effec
also known ascoherent destruction of tunneling~CDT!16,17

as tunneling between one state and the other is destroye
making unity the probability of staying of the particle in th
initial state. So in recent years, this question has been
main motivation for several works on two-level systems.18–21

Some of these papers have put forward an interesting n
perturbative result showing a set of curves for the crossin
the quasienergies of the Floquet solution for two-level s
tems with different periodical external fields. As it stand
such a result, being nonperturbative in its very nature,
pears rather difficult to recover with perturbation theories

The aim of this paper is to show how perturbation theo
can give definite results for localization in different regime
putting the study of two-level systems on a sound grou
from an analytical point of view. Besides, an expression
given for localization, after that an effective time
0163-1829/2003/68~16!/165315~6!/$20.00 68 1653
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independent Hamiltonian is obtained using perturbat
theory. Our results confirm till third order the well-know
result that the zeros of the zeroth order Bessel function
the points where CDT occurs. Besides, our result recov
the small perturbation theory computation in the proper li
its. This is in agreement with the recent numeric
computations.20,21 But, it is essential to emphasize that th
main result of the paper, the strong coupling expansion
very accurate for high-frequency driving fields.

The paper is so structured. In Sec. II we discuss local
tion on a quite general ground, using Floquet theory. In S
III we give a presentation of the perturbation methods t
we used to obtain our results. In Sec. IV we present
computation for the two-level system driven by a sinusoi
field giving the effective time-independent Hamiltonian o
tained by a computation till second order. In Sec. V we g
the third-order correction to the effective Hamiltonian sho
ing how the localization condition at high fields is kept
agreement with all numerical results as also happens to
small field condition. Then we discuss the conditions un
which localization happens comparing the perturbation se
obtained with the weak perturbation series showing the w
one result contains the other. Finally, in Sec. VI conclusio
are given.

II. LOCALIZATION IN DRIVEN TWO-LEVEL SYSTEMS

The model we consider has the Hamiltonian

H5
D

2
s31gs1f ~ t !, ~1!

D being the separation between the two levels,g denotes the
coupling,s1 and s3 are Pauli matrices, andf (t)5 f (t1T)
with T the period of the perturbation. The theory of CDT16,17

can be straightforwardly applied. Given the unitary evoluti
operatorU(t), one can compute the probability of the sy
tem of being in the initial state as

P~ t !5u^c~0!uU~ t !uc~0!&u2, ~2!
©2003 The American Physical Society15-1
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with uc(0)& being one of the eigenstates ofs3. One has
CDT when this probability is equal to unity. As the Ham
tonian is periodic in time, one can apply the Floquet the
and take22

P̄5
1

TE0

T

P~ t !dt ~3!

to ascertain that we have true localization by having un
also in this case. The consequence is that one can s
again from Floquet theory, that the conditions for CDT ar
from crossing of quasienergies. This condition is necess
but not sufficient.

Our aim in the following section is to derive such cond
tions that apply to the quasienergies for the sinusoidal c
that is, assumingf (t)5cos(vt) with v52p/T. We give an
explicit analytical expression for the Floquet eigenstates
quasi-energies by using perturbation theory in the str
coupling regime with the method described in the followi
section.

III. DUAL DYSON SERIES AND RESUMMATION
TECHNIQUES

It is generally believed that perturbation theory, bei
plagued by secularities, that is, unbounded terms in a pe
bation series that increase as powers of time,t,t2, . . . ,
should be avoided to treat a model like the one we cons
in this paper. Indeed, the methods devised so far for rem
ing such singular terms proved to be generally not very e
to apply. Recently, a new approach, that can be called
namical renormalization-group method,23–28has given an al-
gorithmic way to remove secularities, making computat
in perturbation theory though tedious but very easy to
complish. This method, coupled with the dual Dys
series,29–33 gives a straightforward method to compu
higher-order corrections to well-known results.17 Besides, we
will get an explicit analytical expression for the Floqu
modes and the quasienergies in the given approximation
we will prove that the small coupling result is recovere
This is a property of the dual Dyson series.

The dynamical renormalization-group method was fi
formulated by the Urbana Group23,24 based on the observa
tion that renormalization group methods can be seen a
means of asymptotic analysis.23 They showed how their ap
proach can be proved equivalent to other methods that re
secularities, such as the multiple time scale method,34 for
many cases. This method, for its very nature, can be
scribed by an example. So, let us consider the well-kno
equation of the forced harmonic oscillator

ẍ~ t !52x~ t !2ex~ t !3, ~4!

e being the strength of the anharmonic term assumed to
small. A naive perturbation expansion ine till first order
gives the well-known result
16531
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x~ t !5A0sin~ t1f0!1e
3

8
A0~ t2t0!cos~ t1f0!

2e
A0

16
sin~3t13f0!1O~e2!, ~5!

A0 and f0 being constants depended on the initial con
tions. We recognize a secular termt2t0 that makes this se
ries useless as it breaks down fore(t2t0).1. The situation
can be improved if we interpret the timet0 as the logarithm
of the ultraviolet cutoff in quantum field theory and intro
duceA andf as the renormalized counterpart ofA0 andf0
due to the fact that the nonlinearity may change these c
stants. Then, we introduce another renormalization point
splitting t2t0 in t2t1t2t0 and adsorb the terms contain
ing t2t0 into A andf. We introduce a multiplicative renor
malization constantZ1511(n51

` anen and an additive one
Z25(n51

` bnen so that A0(t0)5Z1(t0 ,t)A(t) and f0(t0)
5f(t)1Z2(t0 ,t) with the coefficientsan andbn to be com-
puted order by order to remove the terms witht2t0 as hap-
pens in standard renormalization group.35,36 It is easily seen
that, in our case, a possible choice to first order isa150 and
b152 3

8 (t2t0) removing the secular term and we are le
with

x~ t !5A sin~ t1f!1e
3

8
A~ t2t!cos~ t1f!

2e
A

16
sin~3t13f!1O~e2!, ~6!

now A andf being function oft. But t does not appear in
the original problem and sox(t) must be independent of it
This gives us the condition

]x

]t U
t5t

50, ~7!

that is, the renormalization-group equation in our case gi
the equations

]A

]t
5O~e2!, ~8!

]f

]t
5

3

8
eA1O~e2!

where the well-known shift in the frequency of the oscillat
is recovered. Besides, the secularity is completely remo
by taking in Eq.~6! the conditiont5t with A(t) andf(t)
given by the solutions of the renormalization-group equ
tions. Finally we have

x~ t !5A~0!sinF S 11
3

8
eA~0! D t1f~0!G

2e
A~0!

16
sinF3S 11

3

8
eA~0! D t13f~0!G1O~e2!.

~9!
5-2
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So, a straightforward application of renormalization-gro
methods was permitted to remove a secular term in the
turbation series. But there is a way to make the computa
simpler by noting that we have done nothing else than
compute the envelope of Eq.~5! using known renormaliza
tion techniques.

Then, the method of renormalization group to resum se
larities in a perturbation series that we present here is
tained by the mathematical theory of envelopes and is du
Kunihiro.25–27 In order to describe it, let us consider the fo
lowing equation

ẋ~ t !5 f ~x~ t !,t !, ~10!

with x(t) that can also be a vector. The initial condition
given by x(t0)5X(t0). At this stage we assumeX(t0), not
yet specified. We write the solution of this equation
x(t;t0 ,X(t0)) which is exact. If we changet0 to t08 we are
able to determineX(t0) by assuming that the solution shou
not change

x„t;t0 ,X~ t0!…5x„t;t08 ,X~ t08!… ~11!

and in the limitt0→t08 becomes

dx

dt0
5

]x

]t0
1

]x

]X

]X

]t0
50 ~12!

giving the evolution equation or flow equation of the initi
value X(t0). We see again the renormalization-group eq
tion proper to this approach.

Till now, all our equations are exact and no perturbat
theory entered in any part of our argument. But, except fo
few cases, the solutionx„t;t0 ,X(t0)… is only known pertur-
batively and such a solution is generally valid only local
i.e., for t;t0 andt;t08 and a more restrictive request shou
be demanded for our renormalization-group equation

dx

dt0
U

t05t

5
]x

]t0
U

t05t

1
]x

]X

]X

]t0
U

t05t

50. ~13!

But this equation can be interpreted by the mathemat
theory of envelopes.25 Indeed, varyingt0 we have that
x„t;t0 ,X(t0)… is a family of curves witht0 as a characterizing
parameter. Then, Eq.~13! becomes an equation to compu
the envelope of such a family of curves. Such an envelop
given by the initial conditionx(t;t05t)5X(t). It can be
proved thatX(t) satisfies Eq.~10! in a global domain up to
the orderx(t;t0) for t;t0.

Now, we can describe our approach in some steps to s
how such an algorithmic perturbation method indeed wo

1. Consider the following unitary transformation o
Hamiltonian~1! ~here and in the following, we set\51) to
remove the perturbation29,30

UF~ t !5expF2 igs1E
0

t

f ~ t8!dt8G , ~14!

giving the transformed Hamiltonian
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HF~ t !5
D

2
s3expF2 i2gs1E

0

t

f ~ t8!dt8G ; ~15!

the dual Dyson series is computed by29–32

SD~ t,t0!5T expF2 i eE
t0

t

HF~ t8!dt8G , ~16!

as usualT being the time ordering operator and an orderi
parametere has been introduced that will be taken unity
the end of computation. It is fundamental for our argume
that the computation of this series is performed at a differ
starting pointt0.

2. Assume, at the start, that the time evolution opera
has the form

U~ t,t0!5UF~ t !SD~ t,t0!UR~ t0!, ~17!

whereUR(t0) is a ‘‘renormalizable’’ part of the unitary evo
lution.

3. At the given order, one getsSD(t,t0) as

SD~ t,t0!5I 2 i e f 1~ t,t0!2e2f 2~ t,t0!1••• ~18!

and, at this stage, if some oscillating functions int0 appear
like e2 ivt0 then introduce the phasef(t0)52t0 as a ‘‘renor-
malizable’’ parameter rewriting it aseivf(t0).28 We make this
choice assuming that any initial phase of the system can
changed by the dynamics. The minus sign is fixed arbitrar
The secularities must be left untouched.

4. Eliminate the dependence ont0 by requiring25,26

dU~ t,t0!

dt0
U

t05t

50, ~19!

and one obtains the renormalization group equation

dUR~ t !

dt
5eg1UR~ t !1e2g2UR~ t !1O~e3! ,

~20!
df~ t !

dt
5ef1f~ t !1e2f2f~ t !1O~e3! ,

where, at some stage to obtain such equations at the se
order, we have to use their expressions at the first order,
to compute their form atnth order, one has to use thes
equations at the order (n21)th, into condition~19!. This is a
step toward the computation of the envelope of the pertur
tion series.25,26

5. Finally, the renormalization equations should be solv
and substituted into equation

U~ t,t0!u t05t ~21!

giving the solution, i.e., the envelope we were looking f
without secularities at the order we made the computatio

We will give an explicit application of this procedure i
the following section choosingf (t)5cos(vt), that is, a sinu-
soidal driving.
5-3
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IV. STRUCTURE OF THE PERTURBATION SERIES
TO SECOND ORDER

The unitary transformationUF(t) for a sinusoidal driving
field takes the form

UF~ t !5expF2 i
g

v
sin~vt !s1G ~22!

and the transformed Hamiltonian takes the form

HF~ t !5
D

2
s3exp@2 iz sin~vt !s1# ~23!

having put z52g/v. This Hamiltonian gives the term
SD(t,t0) till first order as

SD~ t,t0!5I 2 i
D

2
s3J0~z!~ t2t0!

1
D

2
s3s1(

nÞ0
Jn~z!

e2 invts12e2 invt0s1

nv
1•••,

~24!

whereJn(z) are the Bessel functions ofnth ordern being an
integer. We see immediately that a secular term, proportio
to t2t0, plagues our computation. To remove it, we rewr
the above expression as

SD~ t,t0!5I 2 i
D

2
s3J0~z!~ t2t0!

1
D

2
s3s1(

nÞ0
Jn~z!

e2 invts12einvf(t0)s1

nv
1•••

~25!

introducing in the last oscillating term the renormalizab
parameterf(t0). So, one has

dU~ t,t0!

dt0
5UF~ t !F i

D

2
s3J0~z!

2
D

2
s3(

nÞ0
Jn~z!einvf(t0)s1

df~ t0!

dt0
GUR~ t0!

1UF~ t !F I 2 i
D

2
s3J0~z!~ t2t0!

1
D

2
s3s1(

nÞ0
Jn~z!

e2 invts12einvf(t0)s1

nv

1•••GdUR~ t0!

dt0
, ~26!

and imposing the condition~19!, we get the renormalization
group equations

dUR~ t !

dt
52 i

D

2
s3J0~z!UR~ t !1OF S D

v D 2G ,

16531
al

df~ t !

dt
5OF S D

v D 2G , ~27!

where the fact that these equations are at least first orde
been used, transforming some terms in Eq.~26! into second
order, making them negligible. We see that we have rec
ered a well-known result of the series for high frequenc17

with its corrections to first order. This gives the final resu
using Eq.~21!,

U~ t,0!5UF~ t !F I 1
D

2
s3s1(

nÞ0
Jn~z!

e2 invts121

nv

1•••Ge2 i (D/2)s3J0(z)t. ~28!

This result is well known in literature.11,12,31,33It has also
been proved that this is the expression of the Floquet uni
evolution at this order with the given approximations.11,12We
see that we have a periodic part and a part that originates
quasi-energies.

So, what is really interesting is to get higher-order corre
tions. Particularly, we see that the quasienergies are give
6(D/2) J0(z), a well-known fact, so that, CDT occurs, i
this approximation, at the zeros of the Bessel funct
J0(z).17 We now prove that higher-order corrections prese
such a result.

Applying the above procedure till second order it
straightforward to obtain

U~ t,0!5UF~ t !F I 1
D

2
s3s1(

nÞ0
Jn~z!

e2 invts121

nv

2 i
D2

2
s1J0~z! (

nÞ0
Jn~z!

sin~nvt !

n2v2

2
D2

4 (
nÞ0

Jn
2~z!

einvt21

n2v2

2
D2

4 (
n1Þ0,n2Þ0,n1Þn2

Jn1
~z!Jn2

~z!

3S ei (n12n2)vts121

n2~n12n2!v2
2

ein1vts121

n1n2v2 D
1•••Ge2 i (D/2)s3J0(z)t1 i (D2/2v)F(z)s1J0(z)t, ~29!

where we have introduced the functionF(z)
5(nÞ0(Jn(z)/n) into the last exponential. We recognize
product of a periodic unitary operator and a term originat
quasienergies. So, it is interesting to see that now we hav
effective Hamiltonian giving the quasienergies with a corre
tion term proportional tos1. But, the most important point is
that this correction is again proportional toJ0(z) and so, the
zeros of this Bessel function gives CDT also at second or
The effective Hamiltonian can be written as
5-4
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He f f5
DJ0~z!

2
s32

D2J0~z!

2v
F~z!s1 ~30!

that can be easily diagonalized but we do not pursue
matter here. Indeed, our aim in the following section will
to give the third-order correction to this Hamiltonian provin
that the high-frequency CDT is again determined by the
ros of J0(z).

V. THIRD-ORDER CORRECTION TO THE
QUASIENERGIES AND LOCALIZATION

The algebra is rather tedious but straightforward and
application of our method gives the third-order correction
the effective Hamiltonian

He f f
(3)52

D3J0~z!

4v2 (
nÞ0

Jn
2~z!

n2
s3 . ~31!

This is a correction to thes3 term of the effective Hamil-
tonian so, we can conjecture that even-order corrections
to the s1 term and the odd-order corrections go to thes3
term. We see again that this term is proportional toJ0(z)
confirming the exactness in the high-frequency limit of t
occurrence of the CDT at the zeros of such a Bessel funct
Such correcting terms into the effective Hamiltonian can
recognized as ac Stark shifts and Bloch-Siegert shifts wh
are relevant, eventually, at the resonance28,37 where Rabi
flopping also in this regime is expected with the renorm
ized levels6(D/2)J0(z).

Anyhow, a further check can be obtained with the sm
coupling perturbation theory. Our method can be appl
again but now we use the interaction picture. So, if we
troduce the unitary transformationUI(t)5e2 i (D/2)s3t, we get
the transformed Hamiltonian

HI5g cos~vt !s1e2 iDs3t ~32!

and we can built the Dyson series, out of resonanceD
Þv), to second order as

U~ t,0!5UI~ t !F I 2
g

2
s1s3S ei (v2D)s3t21

v2D

2
e2 i (v1D)s3t21

v1D D

1
g2

4
S cos~2vt !1 is3

D

v
sin~2vt !

v22D2
2

ei (v1D)s3t21

v22D2

1
ei (v2D)s3t

~v2D!2
2

e2 i (v2D)s3t

v22D2
1

ei (v1D)s3t

~v1D!2

22
v21D2

~v22D2!2
D 1•••

Gei (g2/2)(D/v22D2)s3t. ~33!
16531
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A rather interesting result is that this series holds for a
ratio D/v different from the dual Dyson series discuss
above that holds forD/v!1. From the effective Hamil-
tonian ~30! and the third-order correction, we see that t
coefficient of thes3 part is given by

S35
DJ0~z!

2
2

D3J0~z!

4v2 (
nÞ0

Jn
2~z!

n2
~34!

that in the small coupling approximationJ0(z)→1
2(z2/4), and considering just the first term of the seri
giving z2/2, we obtain

S3'
D

2 S 12
z2

4 D2
D3

4v2

z2

2
1O~z4!. ~35!

From the small coupling expansion we recognize, afte
simple rearranging of the terms, thes3 term

S385
D

2
2

g2

2

D

v22D2
~36!

that, in the expected limit
D

v
!1, is the same asS3. Simi-

larly, one can verify the same result at any order of the t
perturbation series. This gives ana posterioriverification of
our computations. Besides, it confirms our point that the d
Dyson series is a high-frequency series while the Dyson
ries holds for both the limits of high and low frequencies, b
the result of the Dyson series in the high-frequency limit
contained in the dual Dyson series when the limit of sm
couplingz→0 is also taken. Indeed, the Dyson series and
dual Dyson series can be taken to coincide in the limits
small z and D/v!1, giving an interesting relationship be
tween the transformed Hamiltonians that we used to ob
the perturbation series.

We are now in a position to discuss the CDT in the lim
of small couplingz→0. To achieve our aim, we consider th
analytical expression of the quasienergies obtained in R
38. This gives

e656
v

2p
arccosF cosS p

D

v D1p
z2

4

D

v

sinS p
D

v D
12

D2

v2

G ,

mod~v! ~37!

that yields, in the limitz!1, Eq. ~36! proving again the
correctness of our computations. The important point is t
Eq. ~37! contain the result for CDT that the quasienerg
crosses forD/v52n beingn an integer and this cannot hap
pen for the perturbative result unless we are able to res
the series. So, we can draw the conclusion that perturba
theory by Dyson series can prove to be very effective for
study of CDT for strong fields and high-frequency regime
5-5
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VI. DISCUSSION AND CONCLUSIONS

From the von Neumann–Wigner theorem39 one has to ex-
pect that the crossings of the energy levels form a o
dimensional manifold. This result is central to fully unde
stand CDT for the two-level system that we consider
Recent works on this question derived such a re
numerically.20,21 In this paper we have shown that unle
some smart resummation technique is applied to a pertu
tion series, perturbation theory is helpful just to study t
behavior of the model in different regimes, recovering CD
under certain conditions.

The reason for this conclusion lies on the fact that
content of the von Neumann–Wigner theorem is nonper
bative. So, if we are able to resum a perturbation serie
recover a nonperturbative result, there may be a possibilit
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