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Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling
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In a two-dimensional electron gas as realized by a semiconductor quantum well, the presence of spin-orbit
coupling of both the Rashba and Dresselhaus type leads to anisotropic dispersion relations and Fermi contours.
We study the effect of this anisotropy on the electrical conductivity in the presence of fixed impurity scatterers.
The conductivity also shows in general an anisotropy which can be tuned by varying the Rashba coefficient.
This effect provides a method of detecting and investigating spin-orbit coupling by measuring spin-unpolarized
electrical currents in the diffusive regime. Our approach is based on an exact solution of the two-dimensional
Boltzmann equation and provides also a natural framework for investigating other transport effects including
the anomalous Hall effect.
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[. INTRODUCTION isotropy in the electrical conductivity for diffusive spin-
unpolarized charge transport in the presence of fixed impu-
In the recent years the emerging field of spintrohfdsas rity scatterers.
generated an intense interest in effects of spin-orbit interac- One of the most important concepts in the discussion of
tion in low-dimensional semiconductor heterostructures. Foepin-orbit coupling in semiconductors, and in the field of
conduction-band electrons in zinc-blende semiconductors thépintronics in general, is the spin field-effect transistor pro-
dominant effects of spin-orbit interaction in low-dimensional posed by Datta and D&3.This proposal uses the Rashba
geometry can be described in terms of two effective contrispin-orbit coupling to perform controlled rotations of spins
butions to the Hamiltonian. On the one hand, there is th&f electrons passing through a field effect transigfEET)
Rashba spin-orbit terhwhich is due to the inversion asym- device operating in the ballistic transport regime. Ballistic
metry of the confining potential and has the form transport is necessary to avoid randomization of the spin
state by even spin-independent scatterers which would
a « change the electron momentum and therefore also the effec-
HR:%(pxoy_ Pyo”), @D tive field provided by the Rashba term in an uncontrolled
way. The requirement of ballistic transport has been so far
where|5 is the momentum of the electron confined in a two-°"®€ _Of the major obstacles towarc_i the pract@cal realiza_tion of
. . - . . a spin FET. Recently, an alternative scenario for a spin FET
d|menS|or_1a_I geometry and_the vector of Pauli matrices. was proposed which can also operate in the nonballistic
The coefficienta is tunable in strength by the external gate o qime14 This proposal exploits the fact that if the Rashba
perpendicular 1o the ple_me.of the two—d|men3|0r)al eIeCtrOQ:oefficient is tuned via external gates to be equal to the
gas. The other cor)trlbuthn is the Dresselhaus sp|niorb|t IR esselhaus coefficieny= B, a new conserved quantity
which is present in sgmlconductors l"’.‘Ck'ng. bulk INVErSION,rises which prohibits the randomization of the spin. As we
symmetry* When restricted to a two—dlmens_lona_l SeMICON-gp il see below, this particular point=p in parameter
ducto_r hanostructure g6rown along theoT] direction this space will also be of special interest in our present study.
coupling is of the forrf Our description of diffusive two-dimensional transport in
the presence of spin-orbit interaction and fixed impurities is
Ho="2 (pyo¥— pyo™) @) based on an exact solution of the two-dimensional Boltz-
Dg Y o mann equation and provides also a natural framework for
investigating other transport effects including the anomalous
where the coefficieng is determined by the semiconductor Hall effect. In particular, our scheme of generating exact so-
material and the geometry of the sample. lutions to the transport equation can deal with arbitrary dis-
The interplay of these two types of spin-orbit coupling persion relations and is not restricted to isotropic cases.
has been investigated theoretically with respect to several Another study on the possible influence of the Dressel-
physical phenomena including the spin splitting in zero maghaus spin-orbit coupling on the operation of the spin FET
netic field! 1% spin precession and relaxatio”°~*’contri-  was performed very recently by Lusakowski, Wrobel, and
butions to magneto-oscillatiort§ quantum interference cor- Dietl.!® These investigations are restricted to the ballistic re-
rections to the conductivit}??® mesoscopic transport gime, but take into account, in addition to Hamiltonié®,
through quantum dots, and issues of gate operations be-also contributions to the Dresselhaus term being trilinear in
tween quantum dot spin qubfts.In the present work we the momentum. In the present study we will mostly neglect
point out another effect occurring in the presence of boththese trilinear contributions, but discuss their possible influ-
Rashba and Dresselhaus spin-orbit coupling, namely, an aence briefly in Sec. IV C. In another very recent preprint
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Winkler also studied spin transport in the presence of spinghereg* is a usual Pauli matrix acting on the vectorAs a

orbit interaction stemming from both structure inversionconsistency check let us consider the quantum-mechanical
asymmetry and bulk inversion asymmetfyin particular, in velocity operator

Refs. 16 and 17 the possibilities arising from different

growth directions for the two-dimensional electron system o -

are explored. Yet another recent work dealing with transport r= g[H'r]- ®)

in the presence of spin-orbit coupling was performed by ) ) o )

Mishchenko and Halperin who derived the equations of moUsing the above expressions for the eigenstates, it is straight-

tion for the single-electron-density matrix in Wigner repre-forward to show that its matrix elements are given by

sentation in a two-dimensional free-electron §&$he au-

thors applie_zd their results to the dynamic conductivity of the <|2’ + |I.7||2’,i>= 5 Iz’l;i(k))v (9)

system taking into account, however, the Rashba term only '

such that no anisotro in conductivity . . . Lo .

occurred. Finally we mention a \F/?a/ry recent work by Ga)'/,]_l.e., the semiclassical veIouugg(k) are, as usual, the di-

ichev et al?® who present an experimental method to distin-"’lgon""I elem_e_nts of the veIocnyéoperator. _

guish the effects of Rashba and Dresselhaus spin-orbit cou- Parametrizing wave vectors &s-k(cose,sing), one ob-

pling using the spin galvanic effect. tains for positive Fermi energy; the following parametri-
This paper is organized as follows. In Sec. Il we reviewZation of the Fermi contours:

the dispersion relations and eigenstates of free electrons con- >

fined in two dimensions in the presence of spin-orbit cou- ¢, . | _ \/ m 2, p2 ;

pling of both the Rashba and the Dresselhaus type, and wez(ie) == 72 [a”+ 7+ 2apsin2¢)]

present results for the Fermi contours. In Sec. Il we present

2

a scheme to generate exact solutions to the two-dimensional 2m

Boltzmann equation that underlies our present study. This +\[ 5 ert| | [+ B%+2aBsin2¢)].
approximation-free solution to the semiclassical transport h h

equation is then applied in Sec. IV to the case of free elec- (10

trons being subject to spin-orbit interaction of the aboveHere the double sian corresponds to the above two disper-
type. We close with a summary and discussion of the results. 9 b S P
in Sec. V. Sion branches, and the Fermi wave vector is given by

KL (@ier) =KL (@;21)(cosp,sineg). (11
Il. DISPERSION RELATIONS, EIGENSTATES, . . . .
AND FERMI CONTOURS At negative Fermi energies the Fermi contours can become

_ . . o somewhat more complicated. This case corresponds to rather
~We consider the single-particle Hamiltonian for a two- jow electron densities and shall not be considered here fur-
dimensional electron system ther. In the following the Fermi energy is always assumed to

. be positive. From Eq.10) one finds the electron densityas

szp—m-l-'HR-f-'HD, (3 1 1 . ,
=— 2 f do5 [k (¢ien)]
wherem is an effective band mass. The eigenenergies are (2m)" u==
given by 1 [2m m\ 2 ,
A ﬁzkz _E ﬁSf‘l‘Z ﬁ (a +ﬂ) . (12)
St(k):%i\/(aky+ﬁkx)2+(akx+ﬁky)21 (4)
If «=0 or =0 the dispersions are isotropic and Fermi
with eigenstates contours are concentric circles. Fer 0# 3 the Fermi con-
tours are anisotropic which, as we shall see below, leads in
. elkr 1 1 general to anisotropic transport properties. Note that the dis-
(rlk, £y=—=— i (ﬁ)), (5)  persion relations and Fermi contours are symmetric around
VA V21 e the pointse e {w/4,3w/4,57/4,7w/4}, i.e., these quantities

are invariant under reflections along the (1,1) and-(1l)

whereA is the area of the system and o e ‘
4 directions. These directions define the symmetry axes of the

el _ _ ; problem. In particular, for these directions the wave vectors
x(kj=ard = aky = Blti(akct Bky) ] ©) and particle velocities are collinear.

The semiclassical particle velocities are given by The above findings for the Fermi contours are illustrated
in Fig. 1 where we show data for typical values for the Fermi

_ . de.(k) &K (a?+ Bk +2aB(c7k) energy, Dresselhaus coefficient, and effective band h&s

vo(k)=———=—= , at various values for.?°~34If both « and 8 are nonzero the
fok m ﬁ\/(a2+[52)k2+ 2aB(K"a*k) Fermi contours are anisotropic having the (1,1) and (1,

(7) —1) directions as symmetry axes. The cage *p is
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02 ‘ - - ‘ ‘ ‘ Here u is a band index; in the context of the preceding
section it corresponds to the double sign labeling the two

_ 01 e~10meV di_spe_rsion branchesﬁu(F,IZ,t) is_ t_he usual _serr_liclassical dis-
i m=0.067m, tribution function, and the collision term is given by
E o0 B=10meVnm
= a=0.0

0.1 af, d2k’ . -, R

-0.2 ; t t ; . . coll 4/ (277)

N —w(k',m' sk m) (KL=, (K}, (16)
T';' ol | | wherew(k,u;k’, 1) is a transition probability determined
£ by the fixed impurities. The semiclassical equations of mo-
2 tion read

-04 | 1 .

0202 o1 o ) 01 02 01 0 ) 01 02 =g (K)= &8”(5), ﬁiZ: —eE, 17

kfnm] kJnm] # fiok

FIG. 1. Fermi contours for various values of the Rashba coeffi- > . . il
cient« at a Fermi energy of 10 meV, a Dresselhaus coefficient ofWheres“(k) is the dispersion of the band, (—e)= |e| IS

10 meV nm, and a band mass of 0.067 in units of the bare electroff’® €lectron charge, artelis an external electric field in the
massm,. The upper left panel shows the isotropic Fermi contoursPlane of the two-dimensional gas. Assuming a homogeneous
ata=0. In the upper right and lower left panel data at intermediatesystem in a stationary staté, (r,k,t)=f,(k), and elastic
values ofa are plotted, while the lower right panel shows data for scattering  fulfilling the microreversibility —condition

a= . In this case the Fermi contours are two circles having tth(E M'E' M,):W(R, M"'Z ), the Boltzmann equatidh
same radius and being displaced from the origin. e e
becomes in lowest order il

particulart* Here a new conserved quantity given By

:=(0*F oY)/ /2 arises® and the spin state of the electrons —eE7.(R)
becomes independent of the wave vector. For this situation w
the dispersion relations are more conveniently written as

(choosinga= + B) with the scattering operator

0

):S[f,m (18)

de

h? 2mp?

I " d%k’
g(i)(k)_ﬁ“((i)(k” - PR (13 S[fﬂ(k)]zz f
M

(2m)?
where —f (K"}, (19

[w(K, ;K" ){F L (K)

\/Emﬁ(l ) (14) Heref? is the equilibrium Fermi distribution depending only
%2 ' on the energye, and the derivative in E¢(18) has to be

. _ _ evaluated at=e¢ ,(k).

is the distance vector between the centers of the circles and Now let 0(5) be the angle a given vectar forms with
points on their circumference. The double sign labeling o - o 9 g_
branches in Eq(13) doesnot correspond to the one in Eq. the direction ofE, fulfilling the relations

(4) and is therefore put in parentheses. As seen in Fig. 1,

K(:)(R): Ri

right at o= g different parts of the dispersion branches for E-5=Eaco$6(5)], (20

a# B merge to different circles inducing a relabeling of

branches. .. - .
(e,XE)-a=Easin¥(a)], (21

IIl. BOLTZMANN THEORY OF ANISOTROPIC

TRANSPORT IN TWO DIMENSIONS where e, is the direction perpendicular to the two-

dimensional xy) plane. The form of the transport equation
The Boltzmann equation for transport in the two- (18) suggests to study the action of the scattering operator
dimensional electron gas in the presence of fixed rando ' ) = < <
e s A O e
1 1 ® : ’ -
functions into Eq(19) and expressing the angt&v . (k"))

(15 in terms of §(v ,(K)) and[ ¥ ,(K))— (v, (k'))] via el-

coll ementary trigonometric relations, it is easy to show that

o e a2
at ar ok | ot
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o (l@(l{ﬂcow(@(f»]) 9,.(k =gl (k) +gL(K), (29
v (K)[siN (v (k)] with
: : (k) ( ﬁfo) () 2E-0,(K), (30
- =- T = . TN =—e R e ,
GG (|vﬂ<k>|coqﬂ(vﬂ(k>)]) - Ry e 1+( (k)) o
1 1 [0, (K)siN 9@ ,(K))] 7(K)
= TC
CON L o7 - (K) )
with gﬂ(k)——e< %> +(T;(E) 5| (e,XE) v ,(k)
217 - 7 (K)
_2f dk w(k, ;K\ m')- 1—M : (30)
(2m)? [0,k From this distribution function the electrical current of par-
o L ticles in bandu can be obtained as
XCOS{ﬁ(v,L(k))—ﬁ(v,y(k’))])], (23)
- d’k .
In= —ef v,.(K)g,.(K), (32)
(2m)?
—E f i [ (KiK' M’)-M and the total electrical current is given b
T%k) NPT R HTR] e
Lo =2 Ja (33
Xsir’[f)‘(vﬂ(k))—ﬁ(vﬂ/(k'))]l. (24) v

From these relations one obtains the following conductivity

Note thatr!,(k) and ;,(K) are independent of the common t€NSor:

direction with respect to the angles¥(v,(k)) and St oty ol oy
9(v,/(K")) in the above integrals are defined, since only ol bt ol —gt ) (34)
differences of those angles occur. Therefor&(l?) and Y Ty Ty
7,(K) are independent of the direction of the electric fiEld where we have introduced the definitions
Now consider the deviatiorg#(IZ) of the distribution d2k 9f0 A (K)
function f ,(k) from equilibrium ol =e2> j —— | ——=—
© ' ij - (2772 Jde +( ”(k))
g, (k) =1 ,(k)—f°. (25 7,(K)
Making the ansatz X[v (K i[v ,,(K)];, (35)
R af% . . . .. 2 0 "
0,.(K)= —g)|vM<k>|{A,L<k>coiﬁ(v,L<k>)] mi=e3 | ok <_i), 0
o emrl el ﬁ(k))
with two parametersA,(k), B,(k), one finds from the X[v (K 1i[v ,(K)]; - (36)

above equations .
q Several remarks are in order.

(i) For an isotropic dlsper5|on and scattering potentials

_ I
A (K)= eEr, (k) 27) isotropic in real space, onlyrxx— zr” are different from
# TUL(IZ) 2’ zero, and the conductivity tensor |s proportional to the unit
LR matrix. If additionally only one dispersion branch is there,
7u(K) the parameter! becomes
B, (= —EuR) 28 —-| X WL cog 9(0)— 0K}
= = y rouli w 1 —Co - "
A AL ST R pY
1+ x(K) (37)
7u(K) o | .
This is just the usual expression for the relaxation time in the
or isotropic standard ca¥eand is independent of the wave vec-
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tor K, TH(;Z):;TO_ In fact, the above considerations can beMoreover, we will concentrate on the case of zero tempera-

seen as a generalization of the standard isotropic case dre: where the derivative of the Fermi function as it arises in
general anisotropic dispersions in two dimensions. Note thafn€ integral expressions for transport parameters is equal to

although the parameters, and 7, have dimension of time, the negative of & function peaked at the Fermi energy. Thus
this does not mean that any rglaxation-timeq:)roximation the integrations over momentum space in E§$) and(36)

has been used to treat the case of anisotropic dispersions. rI%duce (o integration over the Fermi contour.

. . However, even with these simplifications, the integrations
fact Eqs.(29)7(31) constitute arexact solutiorof the Bolt- involved are in general nonelementary. In order to make ana-
zZmann equatioril18).

lytical progress we concentrate on the case of finite Dressel-

(i”i) If in addition to o= oy, #0, the contributionsry,  haus coupling and small Rashba coupling|& B, Sec.

= gy, are nonzero, the degeneracy of the conductivity eigenpy A) and the particular case= 3 (Sec. IV B.
values is lifted. In the case‘)‘(X= o@,y these eigenvalues are
then given bycrl)l(xi aly with the eigendirections (+1). A. The casea<p
(i) Provided thatoy,= o7, #0, this contribution to the It is straightforward to expand the quantities entering the

conductivity tensor corresponds to the anomalous or extraokransport parameters and conductivities discussed in Sec. Il
dinary Hall effect. This is an antisymmetric contribution to fqr a<f in lowest order ina. However, since the calcula-
the CondUCtiVity tensor which does not stem from an eXternaﬂions are somewhat |engthy, details are given in the Appen_
magnetic field but entirely from scattering processes. Foyix. The full result for the elements of the conductivity ten-
such a contribution to be present, time-reversal symmetr¥or (34) up to linear order ina but general values for
has to be broken. Dresselhaus coefficien® and positive Fermi energy; is

For the case of anisotropic dispersions induced by spinstated in Eqs(A17) and (A18). These expressions are still

orbit coupling as discussed in detail in the following section,somewhat complicated but simplify significantly if one addi-

off-diagonal contribution to the conductivity tensor which for reglistic situations. In other words, defining the “Rashba

stems from bothy), = o), #0 andoy,=— o7, #0 . energy” aser:=ma?/%2, we consider the situation
IV. CONDUCTIVITY IN THE PRESENCE OF SPIN-ORBIT ER<Ep<ef, (42)
COUPLING where the Fermi energy is related to the electron demsity
) . i via [cf. Eq. (12)]
We now proceed with calculating transport properties for
Fermi-liquid electrons in two dimensions in the presence of 1|2m m) 2
spin-orbit coupling, using the formalism of the preceding n=5_|-Z&t2| 3 B?|+0(a?). (43
section. To be specific, we will evaluate the transition prob- h h
abilities in the scattering operat@i9) by Fermi’'s golden Then one has
rule,
=gy = 0o+ O 2R, 2D 44
. 2wy . o . Oxx=0yy=00+ 8_f18_f ) (44)
WK, u; K p )=7K|(k,M|V|k )] 8(e ,(K)
o . 7 [erep
_SM,(Er)), (38) o-xy—ayx—ao(—&gr(a))g e
whereV is the operator of a single scatterer ands the er |erep
density of scatterers. The momentum eigenstates involved O~ V3.5 ) (45)
above are normalized as ) f f .f.
where o is the usual Drude conductivity,
(IZI/"L|IZ,1M,):A6|Z,|Z'5M,M’ 1 (39) e27'0n0
=, 46
with A being the area of the system. As a further simplifica- 7o m (49
tion we will consider fixed impurities witl#-function shaped 5,4
scattering potentialssfwave approximation
h3
V(r)=kd(r), (40) o= (47)
where k parametrizes the strength of the potential. The K2
square moduli of the matrix elements read No==— (48)
2
2
" % K % " he momentum relaxation time and particle density, re-
K ulVIK 2= {1+ pp' K)— x(K') 1} are the mo ime and parti Y,
| (ke VIR )] 2{ pp'cog x (k) = x (k) } spectively, in the absence of spin-orbit coupling. The eigen-

(41 values of the conductivity tensor are
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o =0yt oy, O =0y— Tyy, 49

o B 9w UK=L o p,(pZ— p2)+ 0Py (P2~ P2)+ 0P 2~ P21,
with corresponding eigendirections (1,1) and-1), re- (53)
spectively. These directions are the symmetry axes of the
underlying dispersion relations; the same eigendirections ar@ith a coupling parametey. In a sufficiently narrow quan-
found from Egs.(A17) and (A18) where the Dresselhaus tum well grown along th¢001] direction one can approxi-
energy has not been assumed to be small compared to theate the operatorp, and p§ by their expectation values
Fermi energy. From Eq$44) and (45), the conductivity an-  (p,), (p2). This leads to the following two contributions to

isotropy Ao is given by spin-orbit coupling resulting from bulk inversion asymmetry:
The Dresselhaus tern®2) linear in the momenta with3
gl 7Y =y(p2), and the trilinear term
A(T:=|U 7 |=— 8R8D+O(ﬁ,8—D) (50 ’
of+o- 8 & £ &f o Y 5 ,
HE) =2 (0" Pupf— o PyP}). (54)

We note that changing the sign ef(by reversing the poten-

tial gradient across the quantum welesults in a shift by  clearly the typical magnitude ot &) compared to the linear

m/2 in the wave-vector dependence of dispersion relationgs Hp is given by the ratio of the Fermi energy of the

and eigenstates. Such a shift leads to a sign changein (' jn_plane motion to the kinetic energy of the quantized degree

—o ). Therefore, this quantity contains only odd powers off freedom in the growth direction. For typical valuesegf

a. of about 10 meV and not too broad quantum wells this ratio

is small, and we have therefore neglected the Dresselhaus

B. The casea=g term trilinear in the momentum components. If desired, it is

straightforward to include this term in the calculations of

As discussed already in detail in Ref. 14 and in Sec, II'trans ort quantities, although the procedure becomes consid-
the casea=pB is special under several aspects. Here the port q ’ 9 P

transport quantities are readily obtained using fa®) for erably more involved and will require numerical calcula-

the dispersion relations. As a result, the conductivity tensor i%ﬁons: Howgver, we d'o. not expect, for the following reasons,
isotropic with at including the trilinear Dresselhaus term but not the

Rashba term will lead to anisotropic charge transport: The

rn Hamiltonian
o''o
Oyx= O'yy: og= m s (51) 52
H= 5=+ Hp+HE (55)

where 7y=%3%/v«?m as in Eq.(47), and

gives the following dispersions for wave vectorls
=k(cose,sing):

No (52

K2 1 2m 2m32)
= = — — 8 —
27 27 52| f #2 5242

tst(kuﬁo): T

is the density of electrons. At small deviations from the poin 2m

a= B one should expect the conductivity tensor to develop >
again an anisotropy. However, this cannot be analyzed in the + 21211 _ ﬁ_

; ; 7 = \//8 k“=[1—cod4¢)]| 5B
same way as the cage| < 3 since the particle velocities and 2
other quantities entering the_ intggrands in €E8) and(24) (56)
do not allow for an expansion ifw— 8| arounda= g for _ _
wave vectors withk,=k,. At these points the dispersion The angular variablg enters only terms of cosg} which
brancheg4) continuously merge into two new circles when leads to Fermi contours with fourfold symmetry, differently
approachingy= 3, cf. the lower right panel of Fig. 1. There- from the just twofold symmetry in the case of Rashba and
fore, in order to evaluate the conductivity tensor around linear Dresselhaus term. In particular, for Hamiltoni&®)
= 83, one should use other methods rather than expanding tH8€ dispersions are symmetric with respect to both the axes
dispersion relations. For our purposes here, we shall be cofirs (1,0), (0,1) and (1,1), (1), and these axes pairs
tent with the statement that the conductivity tensor is ofare the possible candidates for eigendirections of the conduc-

course continuous aroung= 8, and is isotropic exactly at tivity tensor. However, since directions in the above pairs are
that point. equivalent due to the existence of the other pair of symmetry

axes, we do not expect an anisotropy in transport quantities.
Moreover, as seen above, such anisotropies arise from the
interplay of the Rashba and the Dresselhaus term and are
tunable by external gates. Concerning gating the Rashba co-
Hamiltonian (2) is derived from the bulk Dresselhaus efficient by an electric field across the quantum well, one
spin-orbit coupling being trilinear in the momentum should keep in mind that such an operation might effectively
operator$, also alter the Dresselhaus coefficight y(p2) by changing

ﬁ4
yk*— ° y?k8 .

C. The influence of trilinear contributions
to the Dresselhaus term
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V. SUMMARY AND DISCUSSION
APPENDIX: CALCULATION OF TRANSPORT

We have presented a theory of anisotropic transport in a PROPERTIES AT |a|<p
two-dimensional electron gas. The anisotropy in the electri-
cal conductivity is induced by the interplay between RaShb"i‘ra
and Dresselhaus spin-orbit coupling in the semlconductO(n
guantum well confining the electron gas. The principle axes
for anisotropic diffusive charge transport are given by the 1. Dispersion relations, eigenstates, and Fermi contours
symmetry axes of the single-particle dispersion relations, at |a|<p
which are anisotropic if both Rashba and Dresselhaus spin- . ) . .
orbit interactions are present. We have evaluated the condug- FOF the single-particle energies and the phagglg en-
tivity tensor at zero temperature for scattering on fixed ran{€ing eigenvectorss), one finds the following expansions:

dom impurities whose potentials are modeledsdynctions. 52K2
£ (k)— ,Bk\/

In this appendix we present details of the calculation of
nsport properties at|< B using Fermi’s golden rulé38)
the case of vanishing temperature.

2
However, because of the anisotropic properties of the under-

lying dispersions, we do not expect our results to change
qualitatively if other impurity potentials are considered. In _— o )
particular, the differential cross section féffunction poten- _ ﬂ+ Kl 1 @ (k'o”k) o @
tials is isotropic, which makes obvious that our result is due 2m 2
to the spin-orbit induced effects and not due to special prop-
erties of the scatterers.

To enable analytical progress in the evaluation of trans- X(k) arg{
port properties, we have concentrated on the case of a finite
Dresselhaus term and a small Rashba tdmah<€ 8), and on ({

the case where the Rashba and Dresselhaus coefficients are =arg (—kytiky)| 1

equal @=p). For |a|<B we have found the anisotropic

corrections to the conductivity tensor due to the presence of

the Rashba term. These findings demonstrate the principle —kytiky)

result that diffusive charge transport becomes anisotropic if

both Rashba and Dresselhaus spin-orbit coupling are present.

This anisotropy can be tuned by external gates which pro- +ol = ]

vides the possibility of detecting and investigating spin-orbit

interaction by measuring spin-unpolarized diffusive electri-

cal currents. Apart from possible device applications of this o (K'o™k)

T . . =arg —kyt+iky) -

effect, the experimental observation of such a tunable anisot- B K2

ropy in spin-unpolarized diffusive transport would certainly

significantly confirm and deepen our understanding of spinHereo™ ando? are again usual Pauli matrices acting on the

orbit coupling in semiconductors. two-component vectork. Note thatx(k) and therefore the
In our calculations we have concentrated on the Dressekigenstates remain unchanged ifoints along the directions

haus contributions being linear in the momentum compo{1,1) or (1~ 1). This can also be seen directly from E6).

nents, as it is appropriate for not too wide quantum wellsThe expansion of the particle velocities reads

The possible influence of the trilinear Dresselhaus term is

B 2(k +iky) )]

F{_Eﬁ(k +ik ) )

BZ

a,Z
+ O( E) . (A2)

discussed in Sec. IV C. . fik B a (K'ok) o k o a?
The casex= g is special under several aspects due to the V= (k)= mTElK” ,3 K2 P E '
additional conserved quantity that arises at this ptihtere (A3

the conductivity tensor is found to be isotropic.
Our approach to anisotropic transport in two dimensions . . hk ,3 a (KTo*K)
is based on an exact solution of the Boltzmann equation (k)| = oo % +0(a®). (A4

where the drift term is linearized in the in-plane electric field

driving the current. This formalism can also deal with theln order to evaluate the transport parameférsand% ac-
case of anisotropic single-particle dispersions and should beordlng to Egs(23) and (24) one needs angles of the type
seen as a generalization of the usual isotropic case. We ey (k)) As already remarked in Sec. ||J,-,”+ and - are
pect this approach to be also useful in the study of Otherndependent of the direction with respect to which these
transport effects such as thermal conductivity, magnetothemngles are defined. It is convenient to choose this direction
mal effects, and the anomalous Hall effect. along thex axis. Then one finds analogously to E&?2)

165311-7
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§@ . (K)=arg[v - (K) Ix+i[v (K}

(K"o?k)

i e Toe).

(A5)

For the Fermi contour as given in EQLO) for positive
€:=0 one has the expansion

] 2m m 2 2_m
Ki(@;eq)= W i+ 2 B +ﬁ'8
Mo 1
+—2 ——— 51| sin(2¢)
fi 52
1+2 Ef
mp?
+0(a?). (AB)

Note that, at a given electron densitythe Fermi energy ¢
is according to Eq(43) unchanged in first order in. More-

over, when inserting the Fermi momentum in zeroth order in

a!

‘ \/Zm m)’ ,_ M
(kZ)o= ?Sﬁ e B +ﬁ’8' (A7)

in Eqg. (A4) one obtains
N N 28f ﬁ 2
[Jv.(K5)[]o= WJF(g) ;

i.e., the Fermi velocity is in zeroth order inindependent of
the band indexu e {+,—}. Using Eq.(A8), expansior(A6)

(A8)

for the Fermi momentum can be rewritten up to linear order

PHYSICAL REVIEW B68, 165311 (2003

For 1/¢(l2), the zeroth order inx vanishes while the first
order reads

( 1 ) 2m o
- > =VK — — Q= >
7(K)/ | 712wl ,(K)|To
1 B )(“)
X| su— ——
25 Bl (0[] K2

We now turn to the parameters entering the conductivity ten-
sor. For the diagonal elements of we find in zeroth order

(Al2)

2e4 3(/3)2
2 23 Tl 7
(ol yo=( |\):e_ﬁ___+ﬁ m2\k)
Oxx)0 O'yyo h Vszh 3 28f+§ E 2
4\ h
(A13)

while the contributions in first order ia vanish. The off-
diagonal elements af! are zero ar=0, and the first order
reads

| | e 7 ma
(0%y)1= (o)1= 2 fi B

/3(2sf (3)) 2 m 16\%
Alm 7w (28f 3(5)2)2'
™ "2\%

(A14)

—112¢¢ 27(3)2

Finally, the off-diagonal elements of- vanish up to lin-
ear order ina,

in a as
m B Txy= Tyy=0+0(a?). (A15)
Ki(gien) = 5| Los(kbllo7 7 _ -
The diagonal elements are also zero at vanishingnd the
contribution in first order inx is
o
X| 1F—=——=——sin2¢) | + O(a?).
( Allv+(KD)[To nze) () (0%01=— (o)1
(A9) _ e’ A% ma Bf2e;
2. Transport quantities h vi?mh k| m
Using the expansions given in the preceding section it is a 2¢; 27(B\?
little tedious but straightforward to obtain expressions for the B\2 m 16\ %
transport quantities discussed in Sec. Ill up to linear order in + 7 } 5 3 577 - (A16)
the Rashba coefficient. For the parameter &) (K), ue il _(E)
{+,—1, one finds in zeroth order in, m  4\h

1) .m LM B )
= = — =——, (Al0)
(muo)o R RTINS

and the first order is given by

( 1 ) ,m1 apB (KToK)
T = — VK —( & = =
(K, 12 2 (v, (0[lo}® K2

(A11)

From this one finds the elements of the conductivity tensor
as

2sf+3 B\?2
& R m[2s B\m " 2\a
e e T
m 4\
+0(a?), (A17)
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| e 73 ma Therefore, the eigenvalues of the conductivity tensor are
Oxy™ Oyx= Oxy™ O-ix:F o 2m hh
2¢g; 0l =04t gy, O =0y Oy, (Al19)
7\ B 2sf+ B\? m
\ a4l a\m A | [2e 3[B\?\?
WJFZ % with corresponding eigendirections (1,1) and-1), re-
spectively. These directions are the symmetry axes of the

+O(a?). (A18)  underlying dispersion relations.
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