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Anisotropic transport in a two-dimensional electron gas in the presence of spin-orbit coupling

John Schliemann and Daniel Loss
Department of Physics and Astronomy, University of Basel, CH-4056 Basel, Switzerland

~Received 20 June 2003; published 14 October 2003!

In a two-dimensional electron gas as realized by a semiconductor quantum well, the presence of spin-orbit
coupling of both the Rashba and Dresselhaus type leads to anisotropic dispersion relations and Fermi contours.
We study the effect of this anisotropy on the electrical conductivity in the presence of fixed impurity scatterers.
The conductivity also shows in general an anisotropy which can be tuned by varying the Rashba coefficient.
This effect provides a method of detecting and investigating spin-orbit coupling by measuring spin-unpolarized
electrical currents in the diffusive regime. Our approach is based on an exact solution of the two-dimensional
Boltzmann equation and provides also a natural framework for investigating other transport effects including
the anomalous Hall effect.

DOI: 10.1103/PhysRevB.68.165311 PACS number~s!: 73.63.2b, 71.70.Ej
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I. INTRODUCTION

In the recent years the emerging field of spintronics1,2 has
generated an intense interest in effects of spin-orbit inte
tion in low-dimensional semiconductor heterostructures.
conduction-band electrons in zinc-blende semiconductors
dominant effects of spin-orbit interaction in low-dimension
geometry can be described in terms of two effective con
butions to the Hamiltonian. On the one hand, there is
Rashba spin-orbit term3 which is due to the inversion asym
metry of the confining potential and has the form

HR5
a

\
~pxs

y2pys
x!, ~1!

wherepW is the momentum of the electron confined in a tw
dimensional geometry andsW the vector of Pauli matrices
The coefficienta is tunable in strength by the external ga
perpendicular to the plane of the two-dimensional elect
gas. The other contribution is the Dresselhaus spin-orbit t
which is present in semiconductors lacking bulk invers
symmetry.4 When restricted to a two-dimensional semico
ductor nanostructure grown along the@001# direction this
coupling is of the form5,6

HD5
b

\
~pys

y2pxs
x!, ~2!

where the coefficientb is determined by the semiconduct
material and the geometry of the sample.

The interplay of these two types of spin-orbit couplin
has been investigated theoretically with respect to sev
physical phenomena including the spin splitting in zero m
netic field,7–10 spin precession and relaxation,5,6,10–17contri-
butions to magneto-oscillations,18 quantum interference cor
rections to the conductivity,19,20 mesoscopic transpor
through quantum dots,21 and issues of gate operations b
tween quantum dot spin qubits.22 In the present work we
point out another effect occurring in the presence of b
Rashba and Dresselhaus spin-orbit coupling, namely, an
0163-1829/2003/68~16!/165311~9!/$20.00 68 1653
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isotropy in the electrical conductivity for diffusive spin
unpolarized charge transport in the presence of fixed im
rity scatterers.

One of the most important concepts in the discussion
spin-orbit coupling in semiconductors, and in the field
spintronics in general, is the spin field-effect transistor p
posed by Datta and Das.23 This proposal uses the Rashb
spin-orbit coupling to perform controlled rotations of spi
of electrons passing through a field effect transistor~FET!
device operating in the ballistic transport regime. Ballis
transport is necessary to avoid randomization of the s
state by even spin-independent scatterers which wo
change the electron momentum and therefore also the e
tive field provided by the Rashba term in an uncontroll
way. The requirement of ballistic transport has been so
one of the major obstacles toward the practical realization
a spin FET. Recently, an alternative scenario for a spin F
was proposed which can also operate in the nonballi
regime.14 This proposal exploits the fact that if the Rash
coefficient is tuned via external gates to be equal to
Dresselhaus coefficient,a5b, a new conserved quantit
arises which prohibits the randomization of the spin. As
shall see below, this particular pointa5b in parameter
space will also be of special interest in our present study

Our description of diffusive two-dimensional transport
the presence of spin-orbit interaction and fixed impurities
based on an exact solution of the two-dimensional Bo
mann equation and provides also a natural framework
investigating other transport effects including the anomal
Hall effect. In particular, our scheme of generating exact
lutions to the transport equation can deal with arbitrary d
persion relations and is not restricted to isotropic cases.

Another study on the possible influence of the Dress
haus spin-orbit coupling on the operation of the spin F
was performed very recently by Lusakowski, Wrobel, a
Dietl.16 These investigations are restricted to the ballistic
gime, but take into account, in addition to Hamiltonian~2!,
also contributions to the Dresselhaus term being trilinea
the momentum. In the present study we will mostly negl
these trilinear contributions, but discuss their possible in
ence briefly in Sec. IV C. In another very recent prepr
©2003 The American Physical Society11-1
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Winkler also studied spin transport in the presence of sp
orbit interaction stemming from both structure inversi
asymmetry and bulk inversion asymmetry.17 In particular, in
Refs. 16 and 17 the possibilities arising from differe
growth directions for the two-dimensional electron syst
are explored. Yet another recent work dealing with transp
in the presence of spin-orbit coupling was performed
Mishchenko and Halperin who derived the equations of m
tion for the single-electron-density matrix in Wigner repr
sentation in a two-dimensional free-electron gas.24 The au-
thors applied their results to the dynamic conductivity of t
system taking into account, however, the Rashba term o
such that no anisotropy in conductivit
occurred. Finally we mention a very recent work by Ga
ichev et al.25 who present an experimental method to dist
guish the effects of Rashba and Dresselhaus spin-orbit
pling using the spin galvanic effect.

This paper is organized as follows. In Sec. II we revie
the dispersion relations and eigenstates of free electrons
fined in two dimensions in the presence of spin-orbit co
pling of both the Rashba and the Dresselhaus type, and
present results for the Fermi contours. In Sec. III we pres
a scheme to generate exact solutions to the two-dimensi
Boltzmann equation that underlies our present study. T
approximation-free solution to the semiclassical transp
equation is then applied in Sec. IV to the case of free e
trons being subject to spin-orbit interaction of the abo
type. We close with a summary and discussion of the res
in Sec. V.

II. DISPERSION RELATIONS, EIGENSTATES,
AND FERMI CONTOURS

We consider the single-particle Hamiltonian for a tw
dimensional electron system

H5
pW 2

2m
1HR1HD , ~3!

where m is an effective band mass. The eigenenergies
given by

«6~kW !5
\2k2

2m
6A~aky1bkx!

21~akx1bky!2, ~4!

with eigenstates

^rWukW ,6&5
eikW•rW

AA

1

A2
S 1

6eix(kW )D , ~5!

whereA is the area of the system and

x~kW !5arg@2aky2bkx1 i ~akx1bky!#. ~6!

The semiclassical particle velocities are given by

vW 6~kW !5
]«6~kW !

\]kW
5

\kW

m
6

~a21b2!kW12ab~s̃xkW !

\A~a21b2!k212ab~kWTs̃xkW !
,

~7!
16531
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wheres̃x is a usual Pauli matrix acting on the vectorkW . As a
consistency check let us consider the quantum-mechan
velocity operator

rẆ5
i

\
@H,rW#. ~8!

Using the above expressions for the eigenstates, it is stra
forward to show that its matrix elements are given by

^kW ,6urẆukW8,6&5dkW ,kW8vW 6~kW !, ~9!

i.e., the semiclassical velocitiesvW 6(kW ) are, as usual, the di
agonal elements of the velocity operator.

Parametrizing wave vectors askW5k(cosw,sinw), one ob-
tains for positive Fermi energy« f the following parametri-
zation of the Fermi contours:

k6
f ~w;« f !57AS m

\2D 2

@a21b212absin~2w!#

1A2m

\2
« f1S m

\2D 2

@a21b212absin~2w!#.

~10!

Here the double sign corresponds to the above two dis
sion branches, and the Fermi wave vector is given by

kW 6
f ~w;« f !5k6

f ~w;« f !~cosw,sinw!. ~11!

At negative Fermi energies the Fermi contours can beco
somewhat more complicated. This case corresponds to ra
low electron densities and shall not be considered here
ther. In the following the Fermi energy is always assumed
be positive. From Eq.~10! one finds the electron densityn as

n5
1

~2p!2 (
m56

E dw
1

2
@km

f ~w;« f !#
2

5
1

2p F2m

\2
« f12S m

\2D 2

~a21b2!G . ~12!

If a50 or b50 the dispersions are isotropic and Fer
contours are concentric circles. ForaÞ0Þb the Fermi con-
tours are anisotropic which, as we shall see below, lead
general to anisotropic transport properties. Note that the
persion relations and Fermi contours are symmetric aro
the pointswP$p/4,3p/4,5p/4,7p/4%, i.e., these quantities
are invariant under reflections along the (1,1) and (1,21)
directions. These directions define the symmetry axes of
problem. In particular, for these directions the wave vect
and particle velocities are collinear.

The above findings for the Fermi contours are illustra
in Fig. 1 where we show data for typical values for the Fer
energy, Dresselhaus coefficient, and effective band mass26–28

at various values fora.29–34If both a andb are nonzero the
Fermi contours are anisotropic having the (1,1) and
21) directions as symmetry axes. The casea56b is
1-2
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particular.14 Here a new conserved quantity given byS
ª(sx7sy)/A2 arises,35 and the spin state of the electron
becomes independent of the wave vector. For this situa
the dispersion relations are more conveniently written
~choosinga51b)

« (6)~kW !5
\2

2m
uKW (6)~kW !u22

2mb2

\2
, ~13!

where

KW (6)~kW !5kW6
A2mb

\2
~1,1! ~14!

is the distance vector between the centers of the circles
points on their circumference. The double sign label
branches in Eq.~13! doesnot correspond to the one in Eq
~4! and is therefore put in parentheses. As seen in Fig
right at a5b different parts of the dispersion branches f
aÞb merge to different circles inducing a relabeling
branches.

III. BOLTZMANN THEORY OF ANISOTROPIC
TRANSPORT IN TWO DIMENSIONS

The Boltzmann equation for transport in the tw
dimensional electron gas in the presence of fixed rand
impurities reads36

] f m

]t
1rẆ•

] f m

]rW
1kẆ•

] f m

]kW
5S ] f m

]t D
coll

. ~15!

FIG. 1. Fermi contours for various values of the Rashba coe
cient a at a Fermi energy of 10 meV, a Dresselhaus coefficien
10 meV nm, and a band mass of 0.067 in units of the bare elec
massm0. The upper left panel shows the isotropic Fermi conto
at a50. In the upper right and lower left panel data at intermedi
values ofa are plotted, while the lower right panel shows data
a5b. In this case the Fermi contours are two circles having
same radius and being displaced from the origin.
16531
n
s

nd
g

1,

m

Here m is a band index; in the context of the precedi
section it corresponds to the double sign labeling the t
dispersion branches.f m(rW,kW ,t) is the usual semiclassical dis
tribution function, and the collision term is given by

S ] f m

]t D
coll

5(
m8

E d2k8

~2p!2
@w~kW ,m;kW8,m8! f m8~kW8!$12 f m~kW !%

2w~kW8,m8;kW ,m! f m~kW !$12 f m8~kW8!%#, ~16!

wherew(kW ,m;kW8,m8) is a transition probability determine
by the fixed impurities. The semiclassical equations of m
tion read

rẆ5vW m~kW !5
]«m~kW !

\]kW
, \kẆ52eEW , ~17!

where«m(kW ) is the dispersion of the bandm, (2e)52ueu is
the electron charge, andEW is an external electric field in the
plane of the two-dimensional gas. Assuming a homogene
system in a stationary state,f m(rW,kW ,t)5 f m(kW ), and elastic
scattering fulfilling the microreversibility condition
w(kW ,m;kW8,m8)5w(kW8,m8;kW ,m), the Boltzmann equation36

becomes in lowest order inuEW u

2eEW •vW m~kW !S 2
] f 0

]« D5S@ f m~kW !#, ~18!

with the scattering operator

S@ f m~kW !#5(
m8

E d2k8

~2p!2
@w~kW ,m;kW8,m8!$ f m~kW !

2 f m8~kW8!%#. ~19!

Here f 0 is the equilibrium Fermi distribution depending on
on the energy«, and the derivative in Eq.~18! has to be
evaluated at«5«m(kW ).

Now let q(aW ) be the angle a given vectoraW forms with
the direction ofEW , fulfilling the relations

EW •aW 5Ea cos@q~aW !#, ~20!

~eW z3EW !•aW 5Ea sin@q~aW !#, ~21!

where eW z is the direction perpendicular to the two
dimensional (xy) plane. The form of the transport equatio
~18! suggests to study the action of the scattering oper
~19! on the functions f m(kW )5uvm(kW )ucos@q„vm(kW )…# and
f m(kW )5uvm(kW )usin@q„vm(kW )…#. In fact, by inserting these
functions into Eq.~19! and expressing the angleq„vm8(k

W8)…
in terms ofq„vm(kW )… and @q„vm(kW )…2q(vm8„k

W8)…# via el-
ementary trigonometric relations, it is easy to show that

-
f
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s
e

e
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SF S uvW m~kW !ucos@q„vW m~kW !…#

uvW m~kW !usin@q„vW m~kW !…#
D G

5S 1

tm
i ~kW !

2
1

tm
'~kW !

1

tm
'~kW !

1

tm
i ~kW !

D S uvW m~kW !ucos@q„vW m~kW !…#

uvW m~kW !usin@q„vW m~kW !…#
D , ~22!

with

1

tm
i ~kW !

5(
m8

E d2k8

~2p!2 Fw~kW ,m;kW8,m8!•S 12
uvW m8~kW8!u

uvW m~kW !u

3cos@q„vW m~kW !…2q„vW m8~kW8!…# D G , ~23!

1

tm
'~kW !

5(
m8

E d2k8

~2p!2 Fw~kW ,m;kW8,m8!•
uvW m8~kW8!u

uvW m~kW !u

3sin@q„vW m~kW !…2q„vW m8~kW8!…#G . ~24!

Note thattm
i (kW ) and tm

'(kW ) are independent of the commo

direction with respect to the anglesq„vW m(kW )… and
q„vW m8(k

W8)… in the above integrals are defined, since on
differences of those angles occur. Therefore,tm

i (kW ) and

tm
'(kW ) are independent of the direction of the electric fieldEW .

Now consider the deviationgm(kW ) of the distribution
function f m(kW ) from equilibrium,

gm~kW !5 f m~kW !2 f 0. ~25!

Making the ansatz

gm~kW !5S 2
] f 0

]« D uvW m~kW !u$Am~kW !cos@q„vW m~kW !…#

1Bm~kW !sin@q„vW m~kW !…#%, ~26!

with two parametersAm(kW ), Bm(kW ), one finds from the
above equations

Am~kW !5
2eEtm

i ~kW !

11S tm
i ~kW !

tm
'~kW !

D 2 , ~27!

Bm~kW !5
2eEtm

'~kW !

11S tm
'~kW !

tm
i ~kW !

D 2 , ~28!

or
16531
gm~kW !5gm
i ~kW !1gm

'~kW !, ~29!

with

gm
i ~kW !52eS 2

] f 0

]« D tm
i ~kW !

11S tm
i ~kW !

tm
'~kW !

D 2EW •vW m~kW !, ~30!

gm
'~kW !52eS 2

] f 0

]« D F tm
'~kW !

11S tm
'~kW !

tm
i ~kW !

D 2G •~eW z3EW !•vW m~kW !.

~31!

From this distribution function the electrical current of pa
ticles in bandm can be obtained as

jWm52eE d2k

~2p!2
vW m~kW !gm~kW !, ~32!

and the total electrical current is given by

jW5(
m

jWm . ~33!

From these relations one obtains the following conductiv
tensor:

s5S sxx
i 1sxy

' sxy
i 2sxx

'

sxy
i 1syy

' syy
i 2sxy

' D , ~34!

where we have introduced the definitions

s i j
i 5e2(

m
E d2k

~2p!2 S 2
] f 0

]« D •F tm
i ~kW !

11S tm
i ~kW !

tm
'~kW !

D 2G
3@vW m~kW !# i@vW m~kW !# j , ~35!

s i j
'5e2(

m
E d2k

~2p!2 S 2
] f 0

]« D •F tm
'~kW !

11S tm
'~kW !

tm
i ~kW !

D 2G
3@vW m~kW !# i@vW m~kW !# j . ~36!

Several remarks are in order.
~i! For an isotropic dispersion and scattering potenti

isotropic in real space, onlysxx
i 5syy

i are different from
zero, and the conductivity tensor is proportional to the u
matrix. If additionally only one dispersion branch is ther
the parametert i becomes

1

t i~kW !
5E d2k8

~2p!2
@w~kW ;kW8!$12cos@q~kW !2q~kW8!#%#.

~37!

This is just the usual expression for the relaxation time in
isotropic standard case36 and is independent of the wave ve
1-4
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tor kW , t i(kW )5:t0. In fact, the above considerations can
seen as a generalization of the standard isotropic cas
general anisotropic dispersions in two dimensions. Note t
although the parameterstm

i andtm
' have dimension of time

this does not mean that any relaxation-timeapproximation
has been used to treat the case of anisotropic dispersion
fact Eqs.~29!–~31! constitute anexact solutionof the Bolt-
zmann equation~18!.

~ii ! If in addition to sxx
i 5syy

i Þ0, the contributionssxy
i

5syx
i are nonzero, the degeneracy of the conductivity eig

values is lifted. In the casesxx
i 5syy

i these eigenvalues ar
then given bysxx

i 6sxy
i with the eigendirections (1,61).

~iii ! Provided thatsxx
' 5syy

' Þ0, this contribution to the
conductivity tensor corresponds to the anomalous or extr
dinary Hall effect. This is an antisymmetric contribution
the conductivity tensor which does not stem from an exter
magnetic field but entirely from scattering processes.
such a contribution to be present, time-reversal symm
has to be broken.

For the case of anisotropic dispersions induced by s
orbit coupling as discussed in detail in the following sectio
we will see that there is no anomalous Hall effect~since
time-reversal symmetry is intact!, but there is a symmetric
off-diagonal contribution to the conductivity tensor whic
stems from bothsxy

i 5syx
i Þ0 andsxx

' 52syy
' Þ0 .

IV. CONDUCTIVITY IN THE PRESENCE OF SPIN-ORBIT
COUPLING

We now proceed with calculating transport properties
Fermi-liquid electrons in two dimensions in the presence
spin-orbit coupling, using the formalism of the precedi
section. To be specific, we will evaluate the transition pro
abilities in the scattering operator~19! by Fermi’s golden
rule,

w~kW ,m;kW8,m8!5
2p

\

n

A
u~kW ,muVukW8,m8!u2•d„«m~kW !

2«m8~kW8!…, ~38!

where V is the operator of a single scatterer andn is the
density of scatterers. The momentum eigenstates invo
above are normalized as

~kW ,mukW8,m8!5AdkW ,kW8dm,m8 , ~39!

with A being the area of the system. As a further simplific
tion we will consider fixed impurities withd-function shaped
scattering potentials (s-wave approximation!,

V~rW !5kd~rW !, ~40!

where k parametrizes the strength of the potential. T
square moduli of the matrix elements read

u~kW ,muVukW8,m8!u25
k2

2
$11mm8cos@x~kW !2x~kW8!#%.

~41!
16531
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Moreover, we will concentrate on the case of zero tempe
ture, where the derivative of the Fermi function as it arises
the integral expressions for transport parameters is equa
the negative of ad function peaked at the Fermi energy. Th
the integrations over momentum space in Eqs.~35! and~36!
reduce to integration over the Fermi contour.

However, even with these simplifications, the integratio
involved are in general nonelementary. In order to make a
lytical progress we concentrate on the case of finite Dres
haus coupling and small Rashba coupling (uau!b, Sec.
IV A ! and the particular casea5b ~Sec. IV B!.

A. The casea™b

It is straightforward to expand the quantities entering
transport parameters and conductivities discussed in Sec
for a!b in lowest order ina. However, since the calcula
tions are somewhat lengthy, details are given in the App
dix. The full result for the elements of the conductivity te
sor ~34! up to linear order ina but general values for
Dresselhaus coefficientb and positive Fermi energy« f is
stated in Eqs.~A17! and ~A18!. These expressions are st
somewhat complicated but simplify significantly if one add
tionally assumes that the ‘‘Dresselhaus energy’’«D
ªmb2/\2 is small compared to« f as it is usually the case
for realistic situations. In other words, defining the ‘‘Rash
energy’’ as«Rªma2/\2, we consider the situation

«R!«D!« f , ~42!

where the Fermi energy is related to the electron densitn
via @cf. Eq. ~12!#

n5
1

2p F2m

\2
« f12S m

\2D 2

b2G1O~a2!. ~43!

Then one has

sxx5syy5s01OS «R

« f
,
«D

« f
D , ~44!

sxy5syx5s0~2sign~a!!
7

8
A«R«D

« f

1OS «R

« f
,A«R

« f

«D

« f
D , ~45!

wheres0 is the usual Drude conductivity,

s05
e2t0n0

m
, ~46!

and

t05
\3

nk2m
, ~47!

n05
kf

2

2p
~48!

are the momentum relaxation time and particle density,
spectively, in the absence of spin-orbit coupling. The eig
values of the conductivity tensor are
1-5
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s15sxx1sxy , s25sxx2sxy , ~49!

with corresponding eigendirections (1,1) and (1,21), re-
spectively. These directions are the symmetry axes of
underlying dispersion relations; the same eigendirections
found from Eqs.~A17! and ~A18! where the Dresselhau
energy has not been assumed to be small compared to
Fermi energy. From Eqs.~44! and~45!, the conductivity an-
isotropyDs is given by

Dsª
us12s2u

s11s2
5

7

8

A«R«D

« f
1OS «R

« f
,
«D

« f
D . ~50!

We note that changing the sign ofa ~by reversing the poten
tial gradient across the quantum well! results in a shift by
p/2 in the wave-vector dependence of dispersion relati
and eigenstates. Such a shift leads to a sign change ins1

2s2). Therefore, this quantity contains only odd powers
a.

B. The caseaÄb

As discussed already in detail in Ref. 14 and in Sec.
the casea5b is special under several aspects. Here
transport quantities are readily obtained using form~13! for
the dispersion relations. As a result, the conductivity tenso
isotropic with

sxx5syy5s05
e2t0n0

m
, ~51!

wheret05\3/nk2m as in Eq.~47!, and

n05
uKW f u2

2p
5

1

2p

2m

\2 S « f1
2mb2

\2 D ~52!

is the density of electrons. At small deviations from the po
a5b one should expect the conductivity tensor to deve
again an anisotropy. However, this cannot be analyzed in
same way as the caseuau!b since the particle velocities an
other quantities entering the integrands in Eqs.~23! and~24!
do not allow for an expansion inua2bu arounda5b for
wave vectors withkx5ky . At these points the dispersio
branches~4! continuously merge into two new circles whe
approachinga5b, cf. the lower right panel of Fig. 1. There
fore, in order to evaluate the conductivity tensor arounda
5b, one should use other methods rather than expanding
dispersion relations. For our purposes here, we shall be
tent with the statement that the conductivity tensor is
course continuous arounda5b, and is isotropic exactly a
that point.

C. The influence of trilinear contributions
to the Dresselhaus term

Hamiltonian ~2! is derived from the bulk Dresselhau
spin-orbit coupling being trilinear in the momentu
operators,4
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s

f

I,
e

is

t
p
e

he
n-
f

H D
bulk5

g

\
@sxpx~py

22pz
2!1sypy~pz

22px
2!1szpz~px

22py
2!#,

~53!

with a coupling parameterg. In a sufficiently narrow quan-
tum well grown along the@001# direction one can approxi
mate the operatorspz and pz

2 by their expectation values
^pz&, ^pz

2&. This leads to the following two contributions t
spin-orbit coupling resulting from bulk inversion asymmetr
The Dresselhaus term~2! linear in the momenta withb
5g^pz

2&, and the trilinear term

H D
(3)5

g

\
~sxpxpy

22sypypx
2!. ~54!

Clearly the typical magnitude ofH D
(3) compared to the linea

term HD is given by the ratio of the Fermi energy« f of the
in-plane motion to the kinetic energy of the quantized deg
of freedom in the growth direction. For typical values of« f
of about 10 meV and not too broad quantum wells this ra
is small, and we have therefore neglected the Dresselh
term trilinear in the momentum components. If desired, it
straightforward to include this term in the calculations
transport quantities, although the procedure becomes con
erably more involved and will require numerical calcul
tions. However, we do not expect, for the following reaso
that including the trilinear Dresselhaus term but not t
Rashba term will lead to anisotropic charge transport: T
Hamiltonian

H5
pW 2

2m
1HD1H D

(3) ~55!

gives the following dispersions for wave vectorskW
5k(cosw,sinw):

«6~k,w!5
\2k2

2m

6Ab2k22@12cos~4w!#S \2

2
bgk42

\4

8
g2k6D .

~56!

The angular variablew enters only terms of cos(4w) which
leads to Fermi contours with fourfold symmetry, different
from the just twofold symmetry in the case of Rashba a
linear Dresselhaus term. In particular, for Hamiltonian~55!
the dispersions are symmetric with respect to both the a
pairs (1,0), (0,1) and (1,1), (1,21), and these axes pair
are the possible candidates for eigendirections of the con
tivity tensor. However, since directions in the above pairs
equivalent due to the existence of the other pair of symme
axes, we do not expect an anisotropy in transport quanti
Moreover, as seen above, such anisotropies arise from
interplay of the Rashba and the Dresselhaus term and
tunable by external gates. Concerning gating the Rashba
efficient by an electric field across the quantum well, o
should keep in mind that such an operation might effectiv
also alter the Dresselhaus coefficientb5g^pz

2& by changing
1-6
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the expectation valuêpz
2&. However, this additional effec

cannot change our principle findings concerning anisotro
transport.

V. SUMMARY AND DISCUSSION

We have presented a theory of anisotropic transport
two-dimensional electron gas. The anisotropy in the elec
cal conductivity is induced by the interplay between Rash
and Dresselhaus spin-orbit coupling in the semicondu
quantum well confining the electron gas. The principle a
for anisotropic diffusive charge transport are given by
symmetry axes of the single-particle dispersion relatio
which are anisotropic if both Rashba and Dresselhaus s
orbit interactions are present. We have evaluated the con
tivity tensor at zero temperature for scattering on fixed r
dom impurities whose potentials are modeled byd functions.
However, because of the anisotropic properties of the un
lying dispersions, we do not expect our results to cha
qualitatively if other impurity potentials are considered.
particular, the differential cross section ford-function poten-
tials is isotropic, which makes obvious that our result is d
to the spin-orbit induced effects and not due to special pr
erties of the scatterers.

To enable analytical progress in the evaluation of tra
port properties, we have concentrated on the case of a fi
Dresselhaus term and a small Rashba term (uau!b), and on
the case where the Rashba and Dresselhaus coefficient
equal (a5b). For uau!b we have found the anisotropi
corrections to the conductivity tensor due to the presenc
the Rashba term. These findings demonstrate the princ
result that diffusive charge transport becomes anisotrop
both Rashba and Dresselhaus spin-orbit coupling are pre
This anisotropy can be tuned by external gates which p
vides the possibility of detecting and investigating spin-or
interaction by measuring spin-unpolarized diffusive elec
cal currents. Apart from possible device applications of t
effect, the experimental observation of such a tunable ani
ropy in spin-unpolarized diffusive transport would certain
significantly confirm and deepen our understanding of sp
orbit coupling in semiconductors.

In our calculations we have concentrated on the Dres
haus contributions being linear in the momentum com
nents, as it is appropriate for not too wide quantum we
The possible influence of the trilinear Dresselhaus term
discussed in Sec. IV C.

The casea5b is special under several aspects due to
additional conserved quantity that arises at this point.14 Here
the conductivity tensor is found to be isotropic.

Our approach to anisotropic transport in two dimensio
is based on an exact solution of the Boltzmann equa
where the drift term is linearized in the in-plane electric fie
driving the current. This formalism can also deal with t
case of anisotropic single-particle dispersions and should
seen as a generalization of the usual isotropic case. We
pect this approach to be also useful in the study of ot
transport effects such as thermal conductivity, magnetot
mal effects, and the anomalous Hall effect.
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APPENDIX: CALCULATION OF TRANSPORT
PROPERTIES AT zaz™b

In this appendix we present details of the calculation
transport properties atuau!b using Fermi’s golden rule~38!
in the case of vanishing temperature.

1. Dispersion relations, eigenstates, and Fermi contours
at zaz™b

For the single-particle energies and the phasesx(kW ) en-
tering eigenvectors~5!, one finds the following expansions

«6~kW !5
\2k2

2m
6bkAS 11

a2

b2D 12
a

b

~kWTs̃xkW !

k2

5
\2k2

2m
6bkF11

a

b

~kWTs̃xkW !

k2
1OS a2

b2D G , ~A1!

x~kW !5argF S 2kx2
a

b
kyD1 i S ky1

a

b
kxD G

5argF ~2kx1 iky!S 12
a

b

i

k2
~kx1 iky!2D G

5argH ~2kx1 iky!•FexpS 2
a

b

i

k2
~kx1 iky!2D

1OS a2

b2D G J
5arg~2kx1 iky!2

a

b

~kWTs̃zkW !

k2
1OS a2

b2D . ~A2!

Here s̃x and s̃z are again usual Pauli matrices acting on t
two-component vectorskW . Note thatx(kW ) and therefore the
eigenstates remain unchanged ifkW points along the directions
(1,1) or (1,21). This can also be seen directly from Eq.~6!.
The expansion of the particle velocities reads

vW 6~kW !5
\kW

m
6

b

\ FkW

k
2

a

b S ~kWTs̃xkW !

k2
22s̃xD kW

k
1OS a2

b2D G ,

~A3!

uvW 6~kW !u5
\k

m
6

b

\
6

a

\

~kWTs̃xkW !

k2
1O~a2!. ~A4!

In order to evaluate the transport parameterst6
i andt6

' ac-
cording to Eqs.~23! and ~24! one needs angles of the typ
q„vW m(kW )…. As already remarked in Sec. III,t6

i and t6
' are

independent of the direction with respect to which the
angles are defined. It is convenient to choose this direc
along thex axis. Then one finds analogously to Eq.~A2!
1-7
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q„vW 6~kW !…5arg$@vW 6~kW !#x1 i @vW 6~kW !#y%

5q~kW !6
2a

\2k

m
6b

~kWTs̃zkW !

k2
1O~a2!. ~A5!

For the Fermi contour as given in Eq.~10! for positive
« f>0 one has the expansion

k6
f ~w;« f !5A2m

\2
« f1S m

\2D 2

b27
m

\2
b

1
ma

\2 S 1

A112
\2

mb2
« f

71D sin~2w!

1O~a2!. ~A6!

Note that, at a given electron densityn, the Fermi energy« f
is according to Eq.~43! unchanged in first order ina. More-
over, when inserting the Fermi momentum in zeroth orde
a,

~k6
f !05A2m

\2
« f1S m

\2D 2

b27
m

\2
b, ~A7!

in Eq. ~A4! one obtains

@ uvW 6~kW 6
f !u#05A2« f

m
1S b

\ D 2

, ~A8!

i.e., the Fermi velocity is in zeroth order ina independent of
the band indexmP$1,2%. Using Eq.~A8!, expansion~A6!
for the Fermi momentum can be rewritten up to linear or
in a as

k6
f ~w;« f !5

m

\ S @ uvW 6~kW 6
f !u#07

b

\ D
3S 17

a

\@ uvW 6~kW 6
f !u#0

sin~2w!D 1O~a2!.

~A9!

2. Transport quantities

Using the expansions given in the preceding section it
little tedious but straightforward to obtain expressions for
transport quantities discussed in Sec. III up to linear orde
the Rashba coefficienta. For the parameter 1/tm

i (kW ), mP
$1,2%, one finds in zeroth order ina,

S 1

tm
i ~kW !

D
0

5nk2
m

\3 S 11
m

2

b

\@ uvW m~kW !u#0
D , ~A10!

and the first order is given by

S 1

tm
i ~kW !

D
1

52nk2
m

\3

1

2

ab

$\@ uvW m~kW !u#0%
2

~kWTs̃xkW !

k2
.

~A11!
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n

r

a
e
in

For 1/tm
'(kW ), the zeroth order ina vanishes while the first

order reads

S 1

tm
'~kW !

D
1

5nk2
m

\3

a

\@ uvW m~kW !u#0

3S 1

2
m2

b

\@ uvW m~kW !u#0
D ~kWTs̃zkW !

k2
. ~A12!

We now turn to the parameters entering the conductivity t
sor. For the diagonal elements ofs i we find in zeroth order

~sxx
i !05~syy

i !05
e2

h

\3

nk2m

m

\ F2« f

m
1S b

\ D 2G
2« f

m
1

3

2 S b

\ D 2

2« f

m
1

3

4 S b

\ D 2 ,

~A13!

while the contributions in first order ina vanish. The off-
diagonal elements ofs i are zero ata50, and the first order
reads

~sxy
i !15~syx

i !15
e2

h

\3

nk2m

m

\

a

\

•

b

\ S 2« f

m
1S b

\ D 2D
211

4

2« f

m
2

27

16 S b

\ D 2

S 2« f

m
1

3

4 S b

\ D 2D 2 .

~A14!

Finally, the off-diagonal elements ofs' vanish up to lin-
ear order ina,

sxy
' 5syx

' 501O~a2!. ~A15!

The diagonal elements are also zero at vanishinga, and the
contribution in first order ina is

~sxx
' !152~syy

' !1

52
e2

h

\3

nk2m

m

\

a

\

b

\ F2« f

m

1S b

\ D 2G•
2« f

m
1

27

16S b

\ D 2

F2« f

m
1

3

4 S b

\ D 2G2 . ~A16!

From this one finds the elements of the conductivity ten
as

sxx5syy5sxx
i 5

e2

h

\3

nk2m

m

\ F2« f

m
1S b

\ D 2G
2« f

m
1

3

2 S b

\ D 2

2« f

m
1

3

4 S b

\ D 2

1O~a2!, ~A17!
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sxy5syx5sxy
i 2sxx

' 5
e2

h

\3

nk2m

m

\

a

\

•S 2
7

4D b

\ S 2« f

m
1S b

\ D 2D
2« f

m

S 2« f

m
1

3

4 S b

\ D 2D 2

1O~a2!. ~A18!
S.
.

hy

ys
-

.
Re
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Therefore, the eigenvalues of the conductivity tensor are

s15sxx1sxy , s25sxx2sxy , ~A19!

with corresponding eigendirections (1,1) and (1,21), re-
spectively. These directions are the symmetry axes of
underlying dispersion relations.
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