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Quantum Hall effect in a p-type heterojunction with a lateral surface superlattice

V. Ya. Demikhovskii* and D. V. Khomitskiy
Nizhny Novgorod State University Gagarin Avenue 23, Nizhny Novgorod 603950, Russian Federation

~Received 20 May 2003; published 2 October 2003!

The quantization of the Hall conductance in ap-type heterojunction with a lateral surface superlattice is
investigated. The topological properties of the four-component hole wave function are studied both inr andk
spaces. A method of calculation of the Hall conductance in a two-dimensional hole gas described by the
Luttinger Hamiltonian and affected by a lateral periodic potential is proposed, based on an investigation of the
four-component wave-function singularities ink space. The effects of spin-orbit interaction, spin splitting in a
magnetic field, and the asymmetric heterojunction potential are included. Deviations from the quantization
rules for electron magnetic subbands of the Hofstadter ‘‘butterfly’’ are found, and the explanation of this effect
is proposed. For the case of a strong periodic potential the mixing of magnetic subbands is taken into account,
and the exchange of the Chern numbers between magnetic subbands is discussed.
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I. INTRODUCTION

Quantum states and the transport of two-dimensional~2D!
Bloch electrons in a magnetic field show an extremely r
variety of physical and topological properties. The fascin
ing physical problems occurring here are caused by the
tual effects of the lattice periodic potential and the nonpe
odic vector potential of a uniform magnetic field. It is know
that the former leads to an energy band structure while
latter tends to form discrete energy levels. The param
which plays an important role in the problem is the magne
flux F penetrating the lattice elementary cell. If the flux
equal to a rational numberp/q of flux quanta F0
52p\c/ueu wherep andq are mutually prime integers, it is
possible to define a new set of translations on the lat
~called magnetic translations1,2! for which the quasimomen
tum is a good quantum number. For example, if the vec
potential of a uniform magnetic fieldB is chosen in the Lan-
dau gaugeA5(0,Bx,0), andF/F05p/q, the simplest form
of magnetic translations on a square lattice with the perioa
is x→x1qna,y→y1ma, wheren and m are integers. So
the magnetic elementary cell isq times larger in thex direc-
tion, and the corresponding magnetic Brillouin zone~MBZ!
is defined as follows:

2p/qa<kx<p/qa, 2p/a<ky<p/a. ~1!

When the quasimomentum runs over MBZ~1!, the energy
varies in a band which is called a magnetic subband. W
the amplitude of a periodic potentialV0 is smaller than the
cyclotron energy\vc one can neglect the influence of neig
boring Landau levels and may obtain a set ofp magnetic
subbands arising from a single level.3 If several electron
Landau levels are taken into account, the periodic poten
leads to a mixing between magnetic subbands origina
from different levels.4–6 However, the translational prope
ties of the electron wave function remain the same both
coupled and uncoupled Landau levels. For example, one
see that, regardless of the particular form and the numbe
Landau levels taken into account, the electron wave func
gains an additional phase under magnetic translations.
0163-1829/2003/68~16!/165301~9!/$20.00 68 1653
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relation between the translated and initial wave functions i
magnetic field is known as the generalized Bloch conditio
~or Peierls conditions! ~Refs. 7 and 2!

ckxky
~x,y,z!5ckxky

~x1qa,y1a,z!exp~2 ikxqa!

3exp~2 ikya!exp~22p ipy/a!. ~2!

It follows from Eq. ~2! that the wave function gains a phas
2pp after the circulation along the boundary of the magne
unit cell. As a result, the magnetic field forces the perio
part uk(r )5exp(2ikr )ck(r ) of the wave function to have a
2p vorticity @see Eq.~14!# in the magnetic unit cell which
indicates that there are at leastp zeros of the wave function
per each magnetic cell, as shown by Kohmoto.8 This result
has a topological nature because of its independence o
shape and amplitude of a periodic potential.

During the last years the researchers have investig
several significant theoretical and experimental features
systems where a 2D electron gas with an additional perio
potential is in the regime of the quantum Hall effect. If
single Landau level is split by a 2D periodic potential of
superlattice which has the area of an elementary cell co
sponding top/q flux quanta penetrating the cell, the spe
trum transforms to the system ofp magnetic subbands
grouped near the unperturbed level. Here one might exp
that each of the magnetic subbands gives a Hall conducta
sH equal toe2/ph, but this is not the case. According t
Laughlin each subband must carry an integer multiple of
Hall current carried by the entire Landau level. The con
mation of this rule, which describes the quantization of t
Hall conductance in periodically modulated 2D systems,
been obtained by Thouless, Kohmoto, Nightingale, and
Nijs ~hereafter referred as TKNN! in their pioneering paper.3

They studied in detail a simple quasi-1D model of a stron
anisotropic lattice for which an explicit expression forsH
has been derived. In this paper it was shown that the Lan
levels are split by a periodic potential, and that a magne
subband spectrum consisting ofp subbands is formed if the
unit cell of the potential space period has an area corresp
ing to p/q magnetic flux quanta. Then, if the Fermi energy
©2003 The American Physical Society01-1
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the electron system falls into ther th gap of theNth Landau
level, the Hall conductance can be written as3

sH5
e2

h
~ t r1N21!, ~3!

where t r is an integer obtained from the Diophantine equ
tion

t rp1srq5r . ~4!

Equation~4! has integer solutions for some integer values
sr whereusr u<p/2. It was found further that the quantizatio
of sH in periodically modulated systems has a topologi
nature. That is, the value ofsH for a fully occupied magnetic
subband is related to the number and type of the wa
function singularities ink space. Kohmoto showed that the
singularities determine the first Chern number for a parti
lar magnetic subband which is, in units of2e2/h, exactly
the Hall conductance of this subband.8

An original method for a calculation of the Hall condu
tance of a 2D electron gas affected by a weak period
modulation was proposed by Usov.9 He showed that the
value of sH is related to the winding numbersSm , m
51,2, . . . of thewave-function singularities in MBZ~1!.
The appearance of these singularities is a direct consequ
of the nontrivial topology of the MBZ, and a winding num
berSm is determined as the phase mismatch at the begin
and end of a circulation around the singular pointkm . As a
result, the Hall conductance of a fully occupieda-th subband
is given by9

sH
a 5

e2

h F1

p
1

q

p (
m

SmG . ~5!

The topological features of the problem were discussed
the first time by Novikov.10 That is, the formation ofp mag-
netic subbands near the Landau level was treated as a
bundle of magnetic Bloch functions on aT2 torus which is
MBZ ~1!. This problem was also discussed by Avron, Sei
and Simon using homotopy theory.11 It should be mentioned
that Simon12 also made a connection between the topolog
invariant and Berry’s geometrical phase factor.13 Berry’s
phase expresses the Hall conductance in the spirit of
linear response Kubo formula as a 2D integral over M
~1!.14–16 The integrand here is called Berry’s curvatur
which is ak-dependent function. The universality of the e
istence of a topological invariant in the QHE was also de
onstrated in systems where substrate disorder17,18 and many-
body interactions18 are present.

Another approach to a calculation of the Hall conductan
is based on the Strˇeda formula.19 If the Fermi level is located
in the energy gap, the Hall conductance can also be give

sH5ec
]N~E!

]B
, ~6!

whereN(E) is the number of states per unit area having
energy lower than the gap energy. Diophantine equation~4!
and Str˘eda formula~6! have been widely used for calcula
tions of the Hall conductance of a 2D electron gas with
16530
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riodical modulation,5,20,27 even in the presence of Landa
level coupling.5 This approach has been also applied to
systems21–23where the generalization of Eq.~6! is known as
the Kohmoto-Halperin-Wu formula.23 However, the applica-
tion of Str̆eda formula~6! to the systems with multicompo
nent wave functions~like the hole states described by th
Luttinger Hamiltonian! is not evident, and thus we shall fo
cus on the analytical approach based on the investigatio
k-space singularities.

During the last decade a number of experimental stud
has been performed in order to investigate a 2D electron
laterally modulated by a surface superlattice of quantum d
~antidots!. Such a system is convenient for investigations
both classical effects~commensurability of the lattice period
and cyclotron radius, transition to chaos, etc.! and of the
energy spectrum consisting of magnetic subbands. For
ample, oscillations of the longitudinal magnetoresistan
have been detected under the conditions where the clas
cyclotron radius 2Rc envelopes an integer number of an
dots or where numerous reflections from one anti
occur.24,25 The first experimental evidence of electron La
dau levels split into the set of magnetic subbands was
tained by measurements of the longitudinal magnetore
tance in ann-type heterojunction with a lateral surfac
superlattice.26 Then, the Hall resistance in a laterally mod
lated 2D electron gas was studied experimentally and
confirmation of a subband energy spectrum was found.27 It
should be mentioned that in the experiments a fundame
role is played by the effects of randomly distributed impu
ties. Their influence on the collision broadening and t
transport scattering rate in a 2D electron gas with a perio
cal modulation was also studied theoretically.28,20

Experiments inp-type heterojunctions without periodi
potential have also become possible due to the progres
technology which substantially improved the quality ofp
channels in GaAs/AlGaAs heterojunctions.29–31Thus, almost
all intriguing phenomena found for 2D electron system
were also observed in 2D hole channels. The quantum st
of 2D holes in a laterally modulatedp-type heterojunction
were also studied in our recent paper34 together with an in-
vestigation of the magnetooptical properties. Since the tra
port experiments in a laterally modulated 2D hole gas h
started,32 it is now needful to derive a quantum-mechanic
description of transport phenomena in such systems, an
particular, of the quantum Hall effect.

In the current paper we present a method of calculation
the Hall conductance in a 2D hole gas affected by late
periodic potential. The preliminary results of QHE theory
a 2D hole gas with a periodical modulation were repor
earlier.33 In Sec. II we briefly describe the magnetic ho
Bloch states in ap-type heterojunction subjected to a ma
netic field and affected by a lateral periodic potential. In S
III we generalize the method derived by Usov9 for a calcu-
lation of the Hall conductance in a system studied in Sec
where the charged particle is described by a four-compon
eigenfunction of the Luttinger Hamiltonian. We find an u
usual behavior of the Hall conductance as a function of
Fermi energy compared to the well-known dependence
tained for electron subbands of the Hofstadter ‘‘butterfly.3
1-2
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QUANTUM HALL EFFECT IN A p-TYPE . . . PHYSICAL REVIEW B 68, 165301 ~2003!
The quantization of the Hall conductance is investigated b
at weak and strong periodic potentials. In the latter case
take into account the magnetic subband mixing which le
to the exchange of the Chern numbers between magn
subbands, changing their impact to the Hall conductance.
believe that the differences between the quantization of
Hall conductance in laterally modulatedn- and p-type het-
erojunctions, as predicted by us, can be observed experim
tally. In Sec. IV we give a summary of our results.

II. MAGNETIC HOLE STATES IN A LATERALLY
MODULATED HETEROJUNCTION

Holes are studied near the upper edge of a GaAsp-like
valence band located atk50. We assume that the extern
magnetic field is pointed along thê001& crystal direction
which is perpendicular to the heterojunction plane (xy). The
2D holes are described in theuJ;mJ& basis by the 434 Lut-
tinger Hamiltonian where both the magnetic field and
potential of a single heterojunctionVh(z) are taken into
account.29,30 In addition to Vh(z) we introduce a periodic
electric potentialV(x,y) of a lateral surface superlattice
Such superlattices are usually fabricated by electron b
lithography, and they have been extensively used in the
periments on Bloch electrons in a magnetic field.24–27,32The
simplest form for the potential of a surface superlattice is6

V~x,y!5V0cos2
px

a
cos2

py

a
. ~7!
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Here a is the superlattice period and the caseV0,0 (.0)
corresponds to the periodic electric potential generated b
quantum dot ~antidot! superlattice. The HamiltonianHL
which defines the hole magnetic Bloch states in the prese
of a magnetic field with the vector potentialA5(0,Bx,0) is
obtained from the 434 Luttinger Hamiltonian in the follow-
ing way. First, the components of the wave vector are
placed by their operator forms29,30:

ka→ k̂a52 i
]

]xa
1

e

c
Aa

where the atomic units\5m051 are used. Then, following
Luttinger, the harmonic oscillator creation and annihilati
operators are defined29–31:

â15
R

A2
k̂1, â5

R

A2
k̂2

wherek̂65 k̂x6 i k̂y andR5@c/eB#1/2. Finally, periodic elec-
trostatic potential~7! is introduced by addingV(x,y)•Ê to
the Hamiltonian whereÊ is the 434 unit matrix. As a result,
the Hamiltonian for the hole magnetic Bloch states takes
following form in the no-warping approximation34:
HL5F H11 ḡA3~eB/c!â2 g3A6eB/ckzâ 0

H22 0 2g3A6eB/ckzâ

H33 ḡA3~eB/c!â2

H44

G , ~8!
-

re
ga-
the

r-
en-

r-
where

H1152~g1/22g2!kz
22~eB/c!F ~g11g2!S â1â1

1

2D1
3

2
kG

1Vh~z!1V~x,y!,

H2252~g1/21g2!kz
22~eB/c!F ~g12g2!S â1â1

1

2D2
1

2
kG

1Vh~z!1V~x,y!,

H3352~g1/21g2!kz
22~eB/c!F ~g12g2!S â1â1

1

2D1
1

2
kG

1Vh~z!1V~x,y!,
H4452~g1/22g2!kz
22~eB/c!F ~g11g2!S â1â1

1

2D2
3

2
kG

1Vh~z!1V~x,y!.

The lower half of matrix~8! is obtained by Hermitian con
jugation. In Eq.~8! e is a modulus of elementary charge,g1 ,
g2 , g3, and k are the material bulk parameters which a
well-known for GaAs. The hole energy is counted as ne
tive from the upper edge of the valence band throughout
paper. In the effective mass approximation thekz component
of quasimomentum in Eq.~8! is replaced by its operator form
kz52 i ]/]z. This substitution is performed atB50 and
V(x,y)50 which yields an infinite set of two-fold degene
ate heavy and light hole size quantization levels and eig
functions cj

n(z),n51,2, . . . . The z-dependent envelope
functionsCj

n(z) at finite B can be constructed as the supe
positions of zero-field functionscj

n .29,30 Now let periodic
1-3
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potential~7! be applied, corresponding to the rational ma
netic flux through the elementary cell with the areaS5a2:

BS

F0
5

BS

2p\c/ueu
5

p

q
. ~9!

If condition ~9! is satisfied, any of four componentsc j @see
Eq. ~10!# of the vector of hole envelope functions become
magnetic Bloch function classified bykx and ky quantum
numbers varying in MBZ~1!, and the total hole quantum
state can be written as follows:

Ckx ,ky
~r !5ckxky

1 ~r !U32 ;
3

2L
1ckxky

2 ~r !U32 ;2
1

2L
1ckxky

3 ~r !U32 ;
1

2L 1ckxky

4 ~r !U32 ;2
3

2L . ~10!

The translational properties of each component of the en
lope function ~10! in (xy) plane are the same as for th
single-component electron wave function.34 In particular, ev-
ery component of Eq.~10! satisfies to the Peierls conditio
~2!. Hence, one can write the componentsckxky

j (r ) of ~10! as

a superposition of the Landau quantum states,3–6,34namely,

ckxky

j ~r !5
1

LaAq
(

n
Cj

n~z!(
N

(
n51

p

dj nNn~kx ,ky!

3 (
l 52L/2

L/2

uNS x2x02 lqa2nqa/p

,H
D

3expS ikxF lqa1
nqa

p G D
3expS 2p iy

lp1n

a Dexp~ ikyy!, ~11!

whereuN(x) is a harmonic oscillator wavefunction,,H is the
magnetic length andx05ky,H

2 . It should be mentioned tha
the set of basis functions for the hole states in magn
subbands originating from the coupled hole Landau lev
has more complicated structure than those for electrons~the
latter is discussed, for example, in Refs. 5 and 6!. That is, in
the absence of a periodic potential the four-component eig
vector of the Luttinger Hamiltonian in a single subband
size quantizationn has the form29

FNky

n 5eiky~C1
n~z!uN22 , C2

n~z!uN ,

C3
n~z!uN21 , C4

n~z!uN11). ~12!

In Eq. ~12! the functionsuN(x) vanishe for negative value
of its index. Below we shall discuss in details the structure
expression~11!.

First, we should restrict ourselves to some limited num
of size quantization subbands to be taken into account
heterojunctions with a typical hole concentrationnh55
16530
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31011 cm22 and a depletion-layer density Ndep
51015 cm23, only the lowest hole subband of the size qua
tization is occupied.29,30 Hence, in expression~11! for the
hole state it seems to be relevant to consider only sev
subbands of size quantization neighboring the lowest o
During the investigation of hole states~11! in this section we
consider the first three subbands of size quantization wh
correspond to two heavy-hole levels and one light-hole lev
In addition, for each subband of size quantization in Eq.~11!
we take into account only several Landau levelsN. The basis
for hole state~11! at V(x,y)50 consists of the following
four-component vectors:

eiky@0, 0, 0, C4
1~z!u0#, eiky@0, C2

1~z!u0 , 0, C4
1~z!u1#,

eiky@C1
1~z!u0 , C2

1~z!u2 , C3
1~z!u1 , C4

1~z!u3#,

eiky@0, 0, 0, C4
2~z!u0#, ~13!

eiky@0, 0, 0, C4
2~z!u1#, eiky@C1

2~z!u0 , 0, 0, C4
2~z!u3#,

where the upper indexn51,2 labels the first and secon
subbands of size quantization for heavy holes, and the lig
hole components for the second subband have been remo
It is easy to see that each term in Eq.~13! has the form of Eq.
~12! with particular values ofn andN. It should be noted tha
the neighboring~in energy! hole levels do not, in genera
correspond to a monotonic sequence of indicesN5
21,0,1, . . . in Eq. ~12!. This is the fundamental differenc
between hole and electron Landau level~the latter are la-
beled by an increasing index!. In the presence of a periodi
potential V(x,y) for which condition ~9! is satisfied, each
Landau level is split intop subbands. To define the limits fo
indices (n,N) in Eq. ~11!, one should fix theuJ;mJ& projec-
tion j 51,2,3,4 and then take the sum ofj th components of
all vectors in Eq.~13! with coefficientsdj nNn(kx ,ky). The
total number of nonzero components in the set of basis v
tors ~13! in our example was equal to 11, which is small
than the total number of available components 436524 be-
cause the components of Eq.~12! which had negative indices
were set to zero. Hence, after substituting the total hole w
function @Eqs. ~10! and ~11!# into the Schro¨dinger equation
with Hamiltonian~8! one obtains the 11p311p eigenvalue
problem for the 11p coefficientsdj nNn(kx ,ky) in every 11p
hole magnetic subband.

We shall conclude this section by discussing the followi
property of the hole wave functions in the (xy) plane of the
superlattice. In Sec. I we mentioned that the wave funct
of a Bloch electron has at leastp zeros per magnetic cell i
the magnetic flux is equal top/q of flux quanta, which is a
consequence of Peierls condition~2!. It is interesting to gen-
eralize this result for a multicomponent wave function. Th
is, if uk

j denotes the phase of thej th periodic partuk
j (r )

5exp(2ikr )ck
j (r ) of the hole componentck

j (r ) defined by
Eq. ~11!, one can introduce the vorticityG j for each compo-
nent as follows:

G j5
1

2p R dl
]uk

j ~x,y!

] l
, ~14!
1-4
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QUANTUM HALL EFFECT IN A p-TYPE . . . PHYSICAL REVIEW B 68, 165301 ~2003!
where the integration contour is taken along the boundar
the magnetic unit cell in the counterclockwise direction.
was mentioned above that condition~2! is valid for every
component of the vector of hole envelope functions. So,
not surprising that vorticity~14! has to be equal for all hole
components:

G j52p, j 51,2,3,4. ~15!

However, we found that the position inside the magnetic c
the degeneracy of each zero, and the total number of z
can be different for each of theuJ;mJ& components. This
feature can be explained by examining the particular se
basic functions in Eq.~11! for different uJ;mJ& components.
It should also be noted that the total number of zeros
magnetic cell can be greater thanp due of the opposite sign
of some vorticities, or that it can be smaller thanp due to the
appearance of multifold zeros. All of these results are sho
in Fig. 1, where the probability distributions in the (xy)
plane of all four hole envelope functions are plotted atkx
5ky50 in one ofp nonoverlapped magnetic subbands ar
ing from the hole Landau levelN521 at the magnetic flux
p/q55. The zeros are shown as black circles of differe
sizes corresponding to their degeneracy~see the inset!. One
can see that different hole components have different n
bers and~in general! a different degeneracy of zeros. Som
of the zeros are located on the sides and in the corners
magnetic cell, which is reflected in Fig. 1 by the semi-circ
and quarter-circle areas. Again we see that despite the di
ent positions and the number of zeros for each of theuJ;mJ&
components, the total vorticity per one magnetic cell@Eq.

FIG. 1. Probability distributionsuc j u2 ( j 51,2,3,4) for the
uJ;mJ& hole envelope functions are shown in one ofp nonover-
lapped magnetic subbands split from the Landau levelN521 at
p/q55 and kx5ky50 ~a!-~d!. Darker areas correspond to th
greater values of the probability. The positions of wave-funct
zeros are marked by black circles with diameters proportiona
their degeneracy. The zeros which are located on the sides a
the corners of the magnetic cell are marked by the semi-circle
quarter-circle areas, respectively.
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~15!# is equal for all components at any (kx ,ky) in all mag-
netic subbands. This result reflects the topological nature
the wave-function vorticity@Eq. ~14!#.

III. QUANTIZATION OF HALL CONDUCTANCE

The Hall conductancesH of 2D electrons subjected to
periodic potential is quantized in units ofe2/h as soon as the
Fermi energyEF lays in the energy gap. A nonmonoton
dependence ofsH on the position ofEF in such systems ha
been obtained by many authors,3,5,21,22,27and it can be quali-
tatively explained for the quasi-1D case as done in
TKNN paper.3 Let the electric field be applied in they direc-
tion. This field gives a steady change ofky and, according to
Eq. ~11!, a steady motion ofx0 which determines the posi
tion of the harmonic oscillator functionuN(x2x0) in the x
direction. So, the Hall current appears in thex direction.
However, the position ofuN(x) depends not only onx0 but,
as it can be seen from Eq.~11!, also onn. If at some pointky
the dominating componentdn of an eigenvector in a particu
lar magnetic subband changes, say, fromdn to dn1s wheres
is an integer, the corresponding oscillator function in E
~11! changes nonmonotonically its position in thex direction
by sqa/p. In a quasi-1D model studied by TKNN,3 such a
change is provided by the proximity of 1D energy dispers
curves. As a result, various values of the Hall conductanc
each of the magnetic subbands are possible, and the de
dence ofsH on the position ofEF has a nonmonotic charac
ter. The values ofs for the simple parabolic spectrum can b
determined from Diophantine equation~4!, but it is not clear
how to generalize this equation on the case of mixed h
Landau levels considered in our paper.

To calculate the Hall conductance of hole magnetic s
bands, we shall generalize the topological approach de
oped by Kohmoto8 and Usov9 to the case of the complicate
hole subband spectrum both at weak and at strong mod
tion amplitudes. Since the value ofsH is determined by the
sum of partial conductances of filled magnetic subbands,
shall first study the Hall conductance of one fully occupi
magnetic subbanda. In the absence of disorder and at ze
temperature, its contribution to the Hall conductance is giv
by3,8,9,28

sH
a 5

e2

p2\
E ImK ]uk

]ky
U]uk

]kx
L d2k, ~16!

where uk5Ckxky
(r )e2 ikr is the periodic part of the Bloch

function in theath subband. The generalization of Eq.~16!
for the four-component hole state@Eq. ~10!# can easily be
obtained by substituting wave-function~10! into Eq. ~16!,
which gives us the following expression forsH :

sH
a 5

e2

p2\
(
j 51

4 E ImK ]uk
j

]ky
U]uk

j

]kx
L d2k, ~17!

where uk
j 5Ckxky

( j ) (r )e2 ikr and Ckxky

( j ) (r ) is defined by Eq.

~11!. The double summation over theuJ;mJ& basis has been
reduced in Eq.~17! to an ordinary sum due to the orthogo

o
in
d
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nality of the uJ;mJ& basis functions. In this section we sha
focus on the magnetic subbands originating from the low
subband of size quantization. Thus, we can ignore the sec
heavy-hole subband by omitting the last three vectors in
~13! containing Cm

2 (z), which will reduce the number o
nonzero components in our case from 11 to 7. After sub
tuting uk

j into Eq. ~16! and taking into account the orthogo
nality and normalization of the basis functions in Eq.~11!,
one may express Hall conductance~17! through the partial
derivatives of the componentsdj nNn(kx ,ky) describing the
quantum state. For brevity, in the following we shall repla
the set of indices (j nNn) by a single indexn51, . . . ,7p
which runs sequentially all the required values. We thus

sH
a 5

e2

p2\
E ImF i

2
,H

2 1 (
n51

7p ]dn*

]ky

]dn

]kx
Gd2k. ~18!

It should be noted that the expression of the same kind as
~18! has been initially derived for the Hall conductance o
magnetic subband split from a single electron Landau lev9

Our calculations show that Eq.~18! is also valid for the case
of several interacting electron or hole levels as long as
spectrum is nondegenerate. The nondegeneracy means t
any (kx ,ky) point in MBZ ~1! and for any subbandsa andb
the relation«a(kx ,ky)Þ«b(kx ,ky) holds for the energy dis
persions. The difference in Eq.~18! from the single-level
problem is only in the size of the matrix equation for t
coefficientsdn which is now equal toN•p instead ofp, but
the orthogonality and normalization of the basis functions
Eq. ~11! is of the same kind as for a single-level proble
This feature allows us to expand directly the approach p
posed by Usov for the case of several interacting levels.
we use expression~18! for calculations of the Hall conduc
tance for magnetic subbands originating from the hole L
dau levels which are coupled by the off-diagonal element
the Luttinger Hamiltonian even in the absence of the sup
lattice potential.

It is evident from Eq.~18! that for a calculation of the
Hall conductance one should study first the analytical pr
erties of coefficientsdn as the functions of quasimomentum
First, one can transform the 2D integral@Eq. ~18!# into a 1D
contour integral. In order to simplify the integration and
reduce it to the summation of the winding numbers over
singularities~see the right side of~5!!, one has to introduce
the extended magnetic Brillouin zone~EMBZ! which is de-
rived from the previously determined magnetic Brillou
zone@Eq. ~1!# by extending itp/q times in theky direction:

2p/qa<kx<p/qa, 2pp/qa<ky<pp/qa. ~19!

Similar to the case of the electron spectrum described
Usov,9 it can be shown that the integration along the ‘‘boun
aries’’ of EMBZ ~19! gives no impact to the value ofsH
which is explicitly determined only by the contour integra
around the singularities~defining the winding numbers!. We
shall briefly repeat the outline of the derivation of this res
~also see Ref. 28!. One can choose a representation for wh
one of the components of the vectord5(d1 , . . .dNp), say,
d1, is real. The pointskm , m51,2 . . . where d1(km)50
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appear to be singular points for the other componentsdj , j
52,3, . . . ,which means thatdj , j 52,3, . . . does not have
a definite limit at k5km .9 That is, if we write dj as dj
5udj uexp(iuj), only udj (km)u is defined while the limit of
u j (k) depends on the direction approaching the pointkm . As
a result, foru j one obtains a phase mismatch after a circu
tion aroundkm which is called~in units of 2p) a winding
number Sm

j . Detailed calculations show that the windin
numbers are equal for alldj , j 52,3, . . . , i.e., Sm

j 5Sm , j
52,3, . . . ,Np. To be specific, let us further consider th
calculation of the winding numbers ford2. For the singular
point km its winding numberSm can be calculated as a
algebraic sum of rotations~modulo 2p) of the vector with
the components (Red2 ,Im d2). Typical behaviors ofd1 and
of both Red2 and Imd2 in a magnetic subband are shown
Fig. 2, where the contoursL1,2 show the direction of integra
tion around the singularities. The parameters here are
following: the magnetic fluxp/q53/2, the superlattice pe
riod a580 nm, and the amplitude of periodic potentialV0
50.7 meV which corresponds to the case of non-overlap
magnetic subbands. It should be noted that surface supe
tices with a modulation depth of the order 0.6–0.7 meV ha
already been used at the temperatureT550 mK in the ex-
periments with the electron subband spectrum.27 It is evident
from Fig. 2 that while approaching the singular point whe
d150 which is marked by the black dot, both real and ima
nary parts ofd2 have different limits depending on the dire
tion in the (kx ,ky) plane, and thus do not have a true limit
this point. The impact of the componentdj at a singular point
km to the Hall conductance is proportional toudj u2Sm

j

5udj u2Sm whereSm is the winding number fork5km . As a
result, the summation over all componentsj 51,2, . . . ,Np
gives the impact to the Hall conductance provided by a s
gular pointkm :

FIG. 2. Typical behaviors of the componentsd1 and d2 of the
eigenvectord describing the hole quantum state for the magne
flux p/q53/2 @see Eq.~11!# in the representation with reald1 ~the
distribution for the third component is not shown!. The correspon-
dent Hall conductivity here is equal to21 in units e2/h for the
following parameters: the superlattice perioda580 nm and the am-
plitude of periodic potentialV050.7 meV, which provides the non
overlapped magnetic subbands atp/q53/2. Darker areas corre
spond to the greater values of thed1,2 modulus, and the negative
parts are shaded with lines. The contoursL1,2 around the singulari-
ties are shown together with the integration directions.
1-6



u
an

th
-
q
s

f
an
f
f

u

u

or
an
S

ith

-
n be
for
of

ag-
o-
be
and
y
n is
an-

e
ent
the

rum

f
trum

and
re-
. 3

of
re-
um-
n

. It

li
fro
he

n-
o

func-

ls as
li-

QUANTUM HALL EFFECT IN A p-TYPE . . . PHYSICAL REVIEW B 68, 165301 ~2003!
(
j

udj u2Sm
j 5Sm(

j
udj u25Sm , ~20!

where we used the normalization of the vector,d
5(d1 , . . .dNp). As soon as the winding numbers are calc
lated, the Hall conductance of a particular magnetic subb
is given by Eq.~5!. By examining expression~5!, one can
mention that the first term in the square brackets is just
contribution of one of thep subbands to the Hall conductiv
ity of a single Landau level while the remaining term in E
~5! appears only in the presence of a periodic potential. A
result, the expression in brackets in Eq.~5! is always an
integer. It was shown by Kohmoto8 that this integer defines
the topological number, namely, the first Chern class o
vector bundle associated with the current magnetic subb

The quantized values ofsH as a function of the number o
filled magnetic subbands~or, equivalently, of the position o
the Fermi level in the energy gaps! are shown in Figs. 3 and
4 both for non-overlapped and overlapped magnetic s
bands. When the amplitudeV0 of the periodic potential~7! is
smaller than the distanceDE12 between neighboring Landa
levels, none of the subbands are overlapped~see the bottom
inset in Fig. 3! and the deviations in the values ofsH from
the sequences obtained for the Hofstadter ‘‘butterfly’’ f
electrons3,27 are caused by the specific character of hole L
dau states compared to the electrons. As we have seen in

FIG. 3. Quantized values ofsH ~solid lines! as a function of the
Fermi level position in energy gaps. The energiesEn schematically
show the centers of the magnetic subbands, and the dashed
serve as a guide to the eye. The arrow indicates the deviation
the quantization sequence for the Hofstadter ‘‘butterfly’’ for t
electrons which appear whenEF lies in the gap betweenE11 and
E12. ~Bottom inset! Hole energy spectrum consisting of the no
overlapped magnetic subbands originating from the four upperm
hole Landau levels with indicesN521,0, and 2, and dominating
spin projections6. The magnetic fluxp/q53/2, the superlattice
period a580 nm, and the amplitude of periodic potentialV0

50.7 meV.
16530
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II, four-component hole states have structures different w
those of electrons with a simple parabolic dispersion~see
Ref. 34 for details!. Another difference between the Hall pla
teaus for the electron and hole subband spectra which ca
important in the experiments is the unequal plateau width
hole subbands, which reflects the complicated structure
the hole subband spectrum~see the bottom of Fig. 3!. The
latter is determined by the Luttinger Hamiltonian~8! where
the spin-orbit interaction and the Zeeman splitting in a m
netic field are included together with the heterojunction p
tential, which is asymmetric in our case. It should also
noted that when the Fermi level is swept through a subb
centered atEn , the Hall conductivity interpolates smoothl
between the adjacent quantized values. The interpolatio
shown by the dashed lines in Figs. 3 and 4, while the qu
tized values are marked by the solid lines.

If the amplitudeV0 is increased, it was found that th
neighboring magnetic subbands arising from the differ
hole Landau levels can touch each other at some point in
MBZ. This touch means that a degeneracy of the spect
has occurred, and the application of expression~5! is invalid.
However, one can use this approach at higher values oV0
when some of magnetic subbands overlap but the spec
appears to be nondegenerate in the entire MBZ~1!. An ex-
ample of such a spectrum forV053 meV is shown in the
bottom inset of Fig. 4. One can see that the number
maximum width of gaps in Fig. 4 have decreased with
spect to the system of nonoverlapped subbands in Fig
which will reduce the number and the maximum width
Hall plateaus. For convenience, in Fig. 4 we label the
maining gaps and the corresponding Hall plateaus by n
bers. The calculation ofsH in every gap in Fig. 4 has bee
performed by summarizing the impacts@Eqs. ~18!# of all
subbands below this gap even if they are overlapped

nes
m

st

FIG. 4. Quantized values ofsH ~solid lines! in the energy gaps
between overlapped hole magnetic subbands are shown as a
tion of the Fermi level position.~Bottom inset! Overlapped hole
magnetic subbands originating from the same hole Landau leve
in Fig. 3 but split by a stronger periodic potential with the amp
tudeV053 meV. The numbers label energy gaps.
1-7
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should be stressed that such an approach is possible as
as the spectrum is nondegenerate, which is true in our c
Again the dashed line in Fig. 4 serves as a guide to the
We note also that in a real experiment a nonmonotonic
havior ofsH can be seen between the gaps 1 and 2, or 2
3 in Fig. 4, which will reflect the existence of several ove
lapped subbands in these intervals. Also note that the q
tized sequence forsH shown in Fig. 4 differs both from the
case of a nonoverlapped subband spectrum~see Fig. 3! and
from the case of coupled electron Landau levels.5 By exam-
ining the structure of Figs. 3 and 4 we find that in our ca
the differences between the quantization ofsH shown in
Figs. 3 and 4 are provided by only two changes insH

a for
subbandsa54 and 8~see Fig. 3!. Detailed calculations have
shown that these two subbands are degenerated at som
termediate values ofV0 which are greater than in Fig. 3 bu
lower than in Fig. 4. According to the topological point
view,8,10 the subband touches have caused an exchange o
Chern classesDc56q between these subbands whereq
52 in our examples. It can be easily seen that such an
change (22 for subband 4 and12 for subband 8! exactly
transforms the quantization shown in Fig. 3 to the dep
dence in Fig. 4. One should also mention that for the mix
hole subbands shown in Fig. 4 a negative value ofsH exists
which corresponds to the Hall current directed opposite
the classical drift velocity. Such a behavior of the Hall co
ductance in a complicated subband energy spectrum was
obtained in several earlier papers3,20,21 for simple electron
spectra. We hope that the qualitatively novel effects in
quantization of the Hall conductance in a high-quality lat
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IV. SUMMARY

We calculated the Hall conductance in a 2D hole gas
fected by a lateral periodic potential of a surface quantum
~antidot! superlattice. Our method is a generalization of t
approach derived by Kohmoto8 and Usov9 on the case of a
system where the charged particle is described by a fo
component eigenfunction of the Luttinger Hamiltonian. Th
generalization allowed us to study the QHE in a latera
modulated system where the effects of spin-orbit interacti
spin splitting in a magnetic field, and an asymmetric hete
junction potential are present. We found a specific behav
of the Hall conductance as a function of the Fermi energy
hole subbands compared to the well-known dependence
the Hofstadter ‘‘butterfly.’’ The quantization law for the Ha
conductance was investigated both at weak and strong m
lation depths. In the latter case the magnetic subband mix
was taken into account, which leads to the exchange of
Chern numbers between magnetic subbands, changing
impact to the Hall conductance.
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