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Quantum Hall effect in a p-type heterojunction with a lateral surface superlattice
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The quantization of the Hall conductance irpdype heterojunction with a lateral surface superlattice is
investigated. The topological properties of the four-component hole wave function are studied batidik
spaces. A method of calculation of the Hall conductance in a two-dimensional hole gas described by the
Luttinger Hamiltonian and affected by a lateral periodic potential is proposed, based on an investigation of the
four-component wave-function singularitieskrspace. The effects of spin-orbit interaction, spin splitting in a
magnetic field, and the asymmetric heterojunction potential are included. Deviations from the quantization
rules for electron magnetic subbands of the Hofstadter “butterfly” are found, and the explanation of this effect
is proposed. For the case of a strong periodic potential the mixing of magnetic subbands is taken into account,
and the exchange of the Chern numbers between magnetic subbands is discussed.
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[. INTRODUCTION relation between the translated and initial wave functions in a
magnetic field is known as the generalized Bloch conditions
Quantum states and the transport of two-dimensi¢ia) (or Peierls conditions(Refs. 7 and 2
Bloch electrons in a magnetic field show an extremely rich

variety of physical and topological properties. The fascinat- Uik (XY,2) =t (X+qa,y+a,z)exp —ik.ga)
ing physical problems occurring here are caused by the mu- xy Y
tual effects of the lattice periodic potential and the nonperi- xexp —ikj,a)exp(—2wipy/a). (2

odic vector potential of a uniform magnetic field. It is known

that the former leads to an energy band structure while thé follows from Eq. (2) that the wave function gains a phase
latter tends to form discrete energy levels. The paramete27p after the circulation along the boundary of the magnetic
which plays an important role in the problem is the magneticunit cell. As a result, the magnetic field forces the periodic
flux ® penetrating the lattice elementary cell. If the flux is partu,(r)=exp(—ikr) ¢ (r) of the wave function to have a
equal to a rational numbemp/q of flux quanta &, —p vorticity [see Eq.(14)] in the magnetic unit cell which
=2wficl/|e| wherep andq are mutually prime integers, it is indicates that there are at legstzeros of the wave function
possible to define a new set of translations on the lattic®er each magnetic cell, as shown by Kohnfbithis result
(called magnetic translatioh§ for which the quasimomen- has a topological nature because of its independence of the
tum is a good quantum number. For example, if the vectoshape and amplitude of a periodic potential.

potential of a uniform magnetic field is chosen in the Lan- During the last years the researchers have investigated
dau gaugeA=(0,Bx,0), and®/®y=p/q, the simplest form several significant theoretical and experimental features of
of magnetic translations on a square lattice with the pesiod systems where a 2D electron gas with an additional periodic
is x—Xx+gnay—y+ma, wheren andm are integers. So, potential is in the regime of the quantum Hall effect. If a
the magnetic elementary cell gstimes larger in thexdirec-  single Landau level is split by a 2D periodic potential of a
tion, and the corresponding magnetic Brillouin zdMBZ)  superlattice which has the area of an elementary cell corre-

is defined as follows: sponding top/q flux quanta penetrating the cell, the spec-
trum transforms to the system qf magnetic subbands
—mlqask,sm/qa, —mwlask,<m/a. (1) grouped near the unperturbed level. Here one might expect

that each of the magnetic subbands gives a Hall conductance
When the quasimomentum runs over MBD), the energy o equal toe?/ph, but this is not the case. According to
varies in a band which is called a magnetic subband. Whehaughlin each subband must carry an integer multiple of the
the amplitude of a periodic potenti&l, is smaller than the Hall current carried by the entire Landau level. The confir-
cyclotron energy: w. one can neglect the influence of neigh- mation of this rule, which describes the quantization of the
boring Landau levels and may obtain a setpofnagnetic  Hall conductance in periodically modulated 2D systems, has
subbands arising from a single levelf several electron been obtained by Thouless, Kohmoto, Nightingale, and den
Landau levels are taken into account, the periodic potentiaNijs (hereafter referred as TKNNn their pioneering papér.
leads to a mixing between magnetic subbands originatinghey studied in detail a simple quasi-1D model of a strongly
from different levels'~® However, the translational proper- anisotropic lattice for which an explicit expression for,
ties of the electron wave function remain the same both fohas been derived. In this paper it was shown that the Landau
coupled and uncoupled Landau levels. For example, one cdavels are split by a periodic potential, and that a magnetic
see that, regardless of the particular form and the number ¢fubband spectrum consisting psubbands is formed if the
Landau levels taken into account, the electron wave functiomnit cell of the potential space period has an area correspond-
gains an additional phase under magnetic translations. Thag to p/q magnetic flux quanta. Then, if the Fermi energy of
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the electron system falls into thi¢h gap of theNth Landau  riodical modulatior?,?®?’ even in the presence of Landau

level, the Hall conductance can be writterf as level coupling® This approach has been also applied to 3D
) system&'~2where the generalization of E¢f) is known as
UH:e_(trJr N—1), 3) the Kohmuoto—HaIperin—Wu formul& However, the applica-
h tion of Streda formula(6) to the systems with multicompo-

wheret, is an integer obtained from the Diophantine equa-"€nt wave functionslike the hole states described by the
tion Luttinger Hamiltonian is not evident, and thus we shall fo-
cus on the analytical approach based on the investigation of
t,p+s.q=r. (4)  k-space singularities.
. . . : During the last decade a number of experimental studies
Equation(4) has integer solutions for some integer values ofh b f di d . . 2D el
s, where|s,|<p/2. It was found further that the quantization as been performed in order to investigate a 2D electron gas
y L e .__laterally modulated by a surface superlattice of quantum dots
of o in periodically modulated systems has a topological

: ; 4 antidot3. Such a system is convenient for investigations of
nature. That is, the value ofy for a fully occupied magnetic ( 3 y 9

. both classical effect&commensurability of the lattice periods
subband is related to the number and type of the wave GC y b

functi . larities irk Kohmoto sh d that th and cyclotron radius, transition to chaos, etand of the
unction singuiarities irk space. fohmaoto snowed that these energy spectrum consisting of magnetic subbands. For ex-
singularities determine the first Chern number for a particu

| ’ bband which is. i its efe?/h " ‘ample, oscillations of the longitudinal magnetoresistance
ar magnetc subband which 1S, In units efe=/n, exaclly  ,,ye peen detected under the conditions where the classical
the Hall conductance of this subbahd.

- . cyclotron radius R; envelopes an integer number of anti-
An original method for a calculation of the Hall conduc-ag or where numerous reflections from one antidot

tangel Otf a 2D electron g;lsbaﬁsc%e\ﬁl byr? Weo?kthp?”%d'c ccur?»?® The first experimental evidence of electron Lan-
modulation was proposed Dy LSOWE Showe at "€ qau levels split into the set of magnetic subbands was ob-

value of o, is related to the winding numberSy,, m tained by measurements of the longitudinal magnetoresis-

=12,... of thewave-funt_:tlon S|_n_gul§1r|t|es_ in MBZ1). tance in ann-type heterojunction with a lateral surface
The appearance of these singularities is a d|re_ct consequengiheriatticé® Then, the Hall resistance in a laterally modu-
of the nontrivial topology of the MBZ, and a winding num- '

- lated 2D electron gas was studied experimentally and the
Sonfirmation of a subband energy spectrum was fdrd.
should be mentioned that in the experiments a fundamental
role is played by the effects of randomly distributed impuri-

and end of a circulation around the singular pdipt. As a
result, the Hall conductance of a fully occupieeh subband

is given by ties. Their influence on the collision broadening and the
e[l q transport scattering rate in a 2D electron gas with a periodi-
ol=—|=+—= > Sul. (5)  cal modulation was also studied theoreticafty°
hip pm Experiments inp-type heterojunctions without periodic

The topological features of the problem were discussed foPOtential have also become possible due to the progress in
the first time by Novikov® That is, the formation op mag- ~ technology which substantially |mprqveq3'§he quality f
netic subbands near the Landau level was treated as a fibgfannels in GaAs/AlGaAs heterojunctictis™ Thus, almost
bundle of magnetic Bloch functions onT& torus which is &l intriguing phenomena found for 2D electron systems
MBZ (1). This problem was also discussed by Avron SeilerWere also observed in 2D hole channels. The quantum states
and Simon using homotopy thedyit should be mentioned of 2D holes in.a I:_;\terally modulatep-type heter_ojuncti_on
that Simor? also made a connection between the topologicalVere &lSo studied in our recent paﬁange_ther with an in-
invariant and Berry’'s geometrical phase facdfmBerry’s vestigation of the magnetooptical properties. Since the trans-
phase expresses the Hall conductance in the spirit of thBOrt experiments in a laterally modulated 2D hole gas have

linear response Kubo formula as a 2D integral over mpzstarted’” it is now needful to derive a quantum-mechanical
(1).14-%8 The integrand here is called Berry's curvature description of transport phenomena in such systems, and, in

which is ak-dependent function. The universality of the ex- Particular, of the quantum Hall effect. .
istence of a topological invariant in the QHE was also dem- !N the current paper we present a method of calculation of
onstrated in systems where substrate disdfd&and many- the_HaII condu_ctance in a 2D hole gas affected by Iate_ral
body interaction® are present. periodic potential. The preliminary results of QHE theory in

Another approach to a calculation of the Hall conductancé* 2D hole gas with a periodical modulation were reported

is based on the Gida formulat? If the Fermi level is located €arlier™ In Sec. 1l we briefly describe the magnetic hole

in the energy gap, the Hall conductance can also be given b§loCh states in @-type heterojunction subjected to a mag-
etic field and affected by a lateral periodic potential. In Sec.

IN(E) Il we generalize the method derived by Usder a calcu-
B (6)  lation of the Hall conductance in a system studied in Sec. Il,
where the charged patrticle is described by a four-component
whereN(E) is the number of states per unit area having areigenfunction of the Luttinger Hamiltonian. We find an un-
energy lower than the gap energy. Diophantine equgddn usual behavior of the Hall conductance as a function of the
and Steda formula(6) have been widely used for calcula- Fermi energy compared to the well-known dependence ob-
tions of the Hall conductance of a 2D electron gas with petained for electron subbands of the Hofstadter “butterfly.”

0'H=eC
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The quantization of the Hall conductance is investigated botiHere a is the superlattice period and the cagg<0 (>0)

at weak and strong periodic potentials. In the latter case weorresponds to the periodic electric potential generated by a
take into account the magnetic subband mixing which leadguantum dot(antido) superlattice. The Hamiltoniamd,

to the exchange of the Chern numbers between magnetighich defines the hole magnetic Bloch states in the presence
subbands, changing their impact to the Hall conductance. Wef a magnetic field with the vector potential=(0,Bx,0) is
believe that the differences between the quantization of thebtained from the 4 4 Luttinger Hamiltonian in the follow-
Hall conductance in laterally modulated and p-type het- ing way. First, the components of the wave vector are re-
erojunctions, as predicted by us, can be observed experimeplaced by their operator forfs®

tally. In Sec. IV we give a summary of our results.

II. MAGNETIC HOLE STATES IN A LATERALLY Kk __,i_’_EA
MODULATED HETEROJUNCTION e Ra™ IﬂX c “

a

Holes are studied near the upper edge of a GpAike
valence band located &t=0. We assume that the external where the atomic units =my=1 are used. Then, following
magnetic field is pointed along th@01) crystal direction | uttinger, the harmonic oscillator creation and annihilation
which is perpendicular to the heterojunction plarg)( The  operators are definét>*
2D holes are described in thém;) basis by the x4 Lut-
tinger Hamiltonian where both the magnetic field and the

potential of a single heterojunctiok,(z) are taken into ) R. . R.
account®® |n addition to V(z) we introduce a periodic at=—k,, a=-—=k_
electric potentialV(x,y) of a lateral surface superlattice. V2 V2

Such superlattices are usually fabricated by electron beam
lithography, and they have been extensively used in the ex- T B U2 e .
periments on Bloch electrons in a magnetic fiélc?’3*The Whereki_kxi'.ky an.dR-—[c/eB] : Fmally, periodic elec-
simplest form for the potential of a surface superlattiée is trostatic potential7) is introduced by addiny/(x,y)-E to
the Hamiltonian wher& is the 4< 4 unit matrix. As a result,
X a I 1 1
V(x,y)=Vocos°-—co§—y. @) the Hgmlltoman for the hole magnetlc Bl_och _states takes the
a a following form in the no-warping approximatidh

Hii yJ3(eBic)a®? ys;\6eBlcka 0
H, = Hao 0 BRE J6eBick,a ®
Has y\/3(eBlc)a?
Haa

where

~.~ 1) 3
Has= = (y1/2— y2)K2 = (eBlc)| (y1+y2)| a'a+ 5| 5«
an 3
Hu= — (72/2= y2)Ke = (eBI0)| (71+72)| &8+ 5| + 5k TVn(2) FVXY).
The lower half of matrix(8) is obtained by Hermitian con-
+Vh(2) +V(XY), jugation. In Eq.(8) eis a modulus of elementary chargg,,
v, v3, and k are the material bulk parameters which are
10 1 well-known for GaAs. The hole energy is counted as nega-
Hoo= — (y1/2+ y2)k2—(eBlc)| (y1— vo)| ata+ = | — =« tive from the upper edge of the valence band throughout the
2 ! 2 v 2) 2 paper. In the effective mass approximation kae&omponent

of quasimomentum in Ed8) is replaced by its operator form
+ +
Vi(2) +V(xy), k,=—idldz. This substitution is performed @=0 and
V(x,y) =0 which yields an infinite set of two-fold degener-

11 ate heavy and light hole size quantization levels and eigen-
Haz=—(y1/2+ yz)kﬁ—(eB/c) (y1—7y,)| ata+ > + Sk functions CJ-V(Z),V: 1,2,.... The zdependent envelope
functionsCy(2) at finite B can be constructed as the super-
+Vi(2)+V(X,y), positions of zero-field functions} .*>*° Now let periodic
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potential (7) be applied, corresponding to the rational mag-x10'*cm 2 and a depletion-layer density Ny
) : 2. B Ndep
netic flux through the elementary cell with the a®aa“: =10" cm™2, only the lowest hole subband of the size quan-
tization is occupied®® Hence, in expressiofill) for the
B_S: BS _ P (9) hole state it seems to be relevant to consider only several
&, 2whclle] q° subbands of size quantization neighboring the lowest one.
During the investigation of hole statékl) in this section we

If condition (9) is satisfied, any of four componenys [see ; ) . S .
Eq. (10)] of the vector of hole envelope functions becomes aconS|der the first three subbands of size quantization which

magnetic Bloch function classified by, and k, quantum correspond to two heavy-hole levels and one light-hole level.

o In addition, for each subband of size quantization in @4)
numbers varying in MBZ(1), a.nd the total hole quantum we take into account only several Landau lewglg he basis
state can be written as follows:

for hole state(11) at V(x,y)=0 consists of the following

) 3 3 four-component vectors:
Wik (N=19 (r)—;—> . .
o w22 e[0, 0, 0, Ci(2)ug], €0, Ci(z)ug, 0, Ci(2)u],
3 1 .
+¢Exky<”§;‘§> e9[C1(2)Up, C3(2)uz, C3(2)u1, Ci(2)ug],

e“y[0, 0, 0, C3(2)ug], (13

3 31 4 3 3

i (D|505) i (D575 - (10) . '
e"y0, 0, 0, C3(2)u;], eM[C%2)up, 0, 0, C3(2)ug],

The translational properties of each component of the enve- . )

lope function (10) in (xy) plane are the same as for the where the upper |nde>1{=1_,2 labels the first and secor_1d

single-component electron wave functitn particular, ev- subbands of size quantization for heavy holes, and the light-

ery component of Eq(10) satisfies to the Peierls condition hc_JIe components for the seconq subband have been removed.

(2). Hence, one can write the componemﬁsk () of (10) as It is easy to see that each term in Ef3) has the form of Eq.

iy X Argeh (12) with particular values of andN. It should be noted that
a superposition of the Landau quantum statés, namely, e peighboring(in energy hole levels do not, in general,

1 P correspond to a monotonic sequence of indidds
j _ v ) —1,0,1 ... in Eq.(12). This is the fundamental difference
Vit (1) La\g EV: C’(Z)EN: n§=:l diminllec Ky) between hole and electron Landau levide latter are la-
L2 beled by an increasing indgxn the presence of a periodic
y y (x—xo—lqa—nqa/p) potential V(x,y) for which condition(9) is satisfied, each
N £y Landau level is split intg subbands. To define the limits for
indices (,N) in Eq. (11), one should fix théJ;m;) projec-

I=—L/2

% ik lgas nqa tion j=1,2,3,4 and then take the sum jgh components of
eXp 1Ky 192 p all vectors in Eq.(13) with coefficientsd;,yn(Ky«,Ky). The
I total number of nonzero components in the set of basis vec-
. Ip+n . tors (13) in our example was equal to 11, which is smaller
% exp{ 2y a explikyy), (D than the total number of available components6t= 24 be-

h s ah . i ; iofi. is th cause the components of EG2) which had negative indices
w ereuN(x) Isa armtinlc 0250| ator wavetunctiofl, ISthe  —yere set to zero. Hence, after substituting the total hole wave
magnetic length anelo =k, {}; . It should be mentioned that nction [Egs. (10) and (11)] into the Schrdinger equation

the set of basis functions for the hole states in magnetigih Hamiltonian (8) one obtains the JixX 11p eigenvalue
subbands originating from the coupled hole Landau |eve|%roblem for the 1 coefficientsd: ,n(k,,k,) in every 1P
has more complicated structure than those for electihes |0 magnetic subband. ! Y

latter is discussed, for example, in Refs. 5 apdT®at is, in We shall conclude this section by discussing the following

the absence of a periodic po';entigl th_e four_-component eigerbroperty of the hole wave functions in they) plane of the
vector of the Luttinger Hamiltonian in a single subband of g, peiattice. In Sec. | we mentioned that the wave function

size quantization has the forrff of a Bloch electron has at leagtzeros per magnetic cell if

the magnetic flux is equal tp/q of flux quanta, which is a

consequence of Peierls conditi@®). It is interesting to gen-

, , eralize this result for a multicomponent wave function. That
Ca(2un-1,  Ca(2)un+a). 12 s, if ] denotes the phase of ttjeh periodic partul(r)

In Eq. (12) the functionsuy(x) vanishe for negative values =eXp(—ikr)i(r) of the hole componeng;(r) defined by

of its index. Below we shall discuss in details the structure ofEQ- (11), one can introduce the vorticitly; for each compo-

FKlky: eiky(CI(Z)UN—zy Ci(z)uy,

expressior(11). nent as follows:

First, we should restrict ourselves to some limited number J.
of size quantization subbands to be taken into account. In F-=i dlaek(x'y) (14
heterojunctions with a typical hole concentration=5 ' 2n a
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4 a) b) (15)] is equal for all components at ani,(k,) in all mag-
a/2- - v - . netic subbands. This result reflects the topological nature of
' ‘ . the wave-function vorticitf Eq. (14)].
07§ ® _m 0 ) IIl. QUANTIZATION OF HALL CONDUCTANCE
. ‘ The Hall conductancey of 2D electrons subjected to a
-a/24 ) x * B ‘ periodic potential is quantized in units ef/h as soon as the
_a’? 0 a2 Fermi energyEg lays in the energy gap. A nonmonotonic
dependence aofy on the position o in such systems has
©) .. K- . been obtained by many authdr$?1?227and it can be quali-
. ¥ . tatively explained for the quasi-1D case as done in the
':' TKNN paper® Let the electric field be applied in thedirec-
. @ . ' - -0 l tion. This field gives a _steady cha_ngek;fand,_ according to_
G Eqg. (12), a steady motion ok, which determines the posi-
. ) - . tion of the harmonic oscillator functiony(x—Xg) in the x
: ‘ . r— ‘ direction. So, the Hall current appears in thalirection.

However, the position ofiy(x) depends not only org but,
as it can be seen from E(L1), also onn. If at some poink,

FIG. 1. Probability distributions|yi|? (j=1,2,3,4) for the the dominating component, of an eigenvector in a particu-
|3:m;) hole envelope functions are shown in onephonover-  lar magnetic subband changes, say, frdgito dy,. wheres
lapped magnetic subbands split from the Landau l&vel2+ at IS an integer, the corresponding oscillator function in Eq.
p/q=5 and k,=k,=0 (a)-(d). Darker areas correspond to the (11) changes nonmonotonically its position in theirection
greater values of the probability. The positions of wave-functionby sqa/p. In a quasi-1D model studied by TKNNsuch a
zeros are marked by black circles with diameters proportional tachange is provided by the proximity of 1D energy dispersion
their degeneracy. The zeros which are located on the sides and gurves. As a result, various values of the Hall conductance in
the corners of the magnetic cell are marked by the semi-circle andach of the magnetic subbands are possible, and the depen-
quarter-circle areas, respectively. dence ofoy on the position o has a nonmonotic charac-

ter. The values o$ for the simple parabolic spectrum can be
where the integration contour is taken along the boundary ofletermined from Diophantine equatiéf), but it is not clear
the magnetic unit cell in the counterclockwise direction. Ithow to generalize this equation on the case of mixed hole
was mentioned above that conditi¢) is valid for every  |andau levels considered in our paper.
component of the vector of hole envelope functions. So, itis To calculate the Hall conductance of hole magnetic sub-
not surprising that vorticity(14) has to be equal for all hole bands, we shall generalize the topological approach devel-
components: oped by Kohmotband UsoV to the case of the complicated
. hole subband spectrum both at weak and at strong modula-
Tj==p. j=1234 19 ion amplitudes. Since the value of; is determined by the
However, we found that the position inside the magnetic cellsum of partial conductances of filled magnetic subbands, we
the degeneracy of each zero, and the total number of zerghall first study the Hall conductance of one fully occupied
can be different for each of thi);m;) components. This magnetic subband. In the absence of disorder and at zero
feature can be explained by examining the particular set ofemperature, its contribution to the Hall conductance is given
basic functions in Eq(11) for different|J;m;) components. b °
It should also be noted that the total number of zeros per
magnetic cell can be greater thamlue of the opposite signs N e? duy
of some vorticities, or that it can be smaller th@due to the ‘TH:E ™ 2k
appearance of multifold zeros. All of these results are shown Y
in Fig. 1, where the probability distributions in they() where ukzllkaky(r)e*ikr is the periodic part of the Bloch

plane of. all four hole envelope functions are plottedk;g\t_ function in theath subband. The generalization of E46)
=k,=0 in one ofp nonoverlapped magnetic subbands aris-to; the four-component hole staf€q. (10)] can easily be

ing from the hole Landau levél=2+ at the_ magnetic.ﬂux obtained by substituting wave-functidd0) into Eq. (16),
p/q=5. The zeros are shown as black circles of different, ich gives us the following expression for, :

sizes corresponding to their degenerésge the insét One

o -simplezero @ -twofoldzero () - threefold zero|

JUy 5
&_l(x> d-k, (16)

can see that different hole components have different num- 2 4 il

: - e AUy | Uy
bers and(in general a different degeneracy of zeros. Some ol=—r > f Im<— _> d2k, (17)
of the zeros are located on the sides and in the corners of a 2h =51 Ky | Ky

magnetic cell, which is reflected in Fig. 1 by the semi-circle j 0 ik 0 i )

and quarter-circle areas. Again we see that despite the diffel¥here u,="ii (rje ™ and Wi (r) is defined by Eq.
ent positions and the number of zeros for each of #hm;) (11). The double summation over tfi&m;) basis has been
components, the total vorticity per one magnetic ¢&ltj.  reduced in Eq(17) to an ordinary sum due to the orthogo-
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nality of the|J;m;) basis functions. In this section we shall d Red,
focus on the magnetic subbands originating from the lowest

subband of size quantization. Thus, we can ignore the second o

heavy-hole subband by omitting the last three vectors in Eq.

(13) containing C2(z), which will reduce the number of v
nonzero components in our case from 11 to 7. After substi-
tuting uj, into Eq. (16) and taking into account the orthogo-
nality and normalization of the basis functions in Egl),

one may express Hall conductan@) through the partial
derivatives of the components,nn(ky,ky) describing the
guantum state. For brevity, in the following we shall replace
the set of indices jwNn) by a single indexn=1, ..., %
which runs sequentially all the required values. We thus get I 0

Imd,

ELV

FIG. 2. Typical behaviors of the componemts andd, of the
d?k. (18 eigenvectord describing the hole quantum state for the magnetic
flux p/q=3/2[see Eq(11)] in the representation with red}, (the

2 .
e I
a=——| Im| s €5+
THT 2y f {2 H 21 3K, Ky
. . distribution for the third component is not showithe correspon-
It should be noted that the expression of the same kind as Edent Hal conductivity here is equal te 1 in units e?/h for the

(18) has been initially derived for the Hall conductance of Afollowing parameters: the superlattice perd 80 nm and the am-
magnetic subband split from a single electron Landau I%vel.p”tude of periodic potentiaV,=0.7 meV, which provides the non-
Our calculations show that E(L8) is also valid for the case overlapped magnetic subbands @lig=3/2. Darker areas corre-
of several interacting electron or hole levels as long as th@pond to the greater values of tdg, modulus, and the negative
spectrum is nondegenerate. The nondegeneracy means thapaits are shaded with lines. The contobis around the singulari-
any (ky,ky) pointin MBZ (1) and for any subbandg andg ties are shown together with the integration directions.

the relatione ,(ky ,ky) # & s(ky ,ky) holds for the energy dis- . ) ,
persions. The difference in E18) from the single-level ~@PPear to be singular points for the other compones;
problem is only in the size of the matrix equation for the =2:3. - - - \which means thafl;, j=2,3, ... does not have
coefficientsd,, which is now equal tN- p instead ofp, but & definite limit atk=kp." That is, if we writed; as d

- A - : . =|d:|exp(@), only |di(Ky)| is defined while the limit of
the orthogonality and normalization of the basis functions in | | ] I . .
Eq. (11) is of the same kind as for a single-level problem. 9;(k) depends on the direction approaching the plipt As

This feature allows us to expand directly the approach prof’.l result, ford, one_obtfauns a ph_ase n_1|smatch after_a c_:lrcula—
. . tion aroundk,, which is called(in units of 27r) a winding
posed by Usov for the case of several interacting levels. Sa

we use expressiofil8) for calculations of the Hall conduc- flumber . Detailed calculations show that the winding

tance for magnetic subbands originating from the hole Lan_rluzrn:;:)ers are e_c;uaklj for aﬂj.'f.J :IZ,’[3’ ) f ’ Itr? SJm:S.f(Tj" J th
dau levels which are coupled by the off-diagonal elements og aléuiétic;nNcg‘. thg wiEr31 dsi;rrl)ecr:&%bgrsu%f urFoerrtr?gr;?é irlar €
the Luttinger Hamiltonian even in the absence of the super: . K i indi gb bz' lculated 9
lattice potential, point k., its winding numberS;, can be calculated as an

It is evident from Eq.(18) that for a calculation of the algebraic sum of rotationgnodulo 2m) of the vector with

Hall conductance one should study first the analytical prop:[he components (Ri,Imdy). Typical behaviors ot, and

erties of coefficientsl, as the functions of quasimomentum. of both Red, and Imd, in a magnetic subband are shown in

Fis, one can ranso he 2D gl (15 moa 1D 12 e e ot s e drocton o megrs
contour integral. In order to simplify the integration and to 9 : P

reduce it to the summation of the winding numbers over thépllowmg: the magnetic fluxp/q=3/2, the superlattice pe-

singularities(see the right side of5)), one has to introduce riod a=80 nm, and the amplitude of periodic potenti4)
the extended magnetic Brillouin zoEMBZ) which is de- =0.7 m'eV which corresponds to the case of non-overlapped
rived from the previously determined magnetic Brillouin magnetic subbands. It should be noted that surface superlat-

Lo : ; - . tices with a modulation depth of the order 0.6—-0.7 meV have
zone[Eq. (1)] by extending itp/q times in thek, direction: already been used at the temperatfire50 mK in the ex-
(19) periments with the electron subband spectfir.is evident

from Fig. 2 that while approaching the singular point where
Similar to the case of the electron spectrum described bgl;=0 which is marked by the black dot, both real and imagi-
UsoV? it can be shown that the integration along the “bound-nary parts ofd, have different limits depending on the direc-
aries” of EMBZ (19) gives no impact to the value afy tion in the (K ,k,) plane, and thus do not have a true limit in
which is explicitly determined only by the contour integrals this point. The impact of the componeditat a singular point
around the singularitiegefining the winding numbeyswe  k,, to the Hall conductance is proportional ljaﬂj|ZS'm
shall briefly repeat the outline of the derivation of this result= |dj|28m whereS,, is the winding number fok=k,. As a
(also see Ref. 280ne can choose a representation for whichresult, the summation over all componefts1,2, ... Np
one of the components of the vectd+(d,, ...dyp), say, gives the impact to the Hall conductance provided by a sin-
d, is real. The pointk,,, m=1,2... whered;(k,)=0  gular pointk,:

P ogd* ad,

—mlqask,sm/qa, —pw/gask,spn/qa.
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0 ! 2 3 FIG. 4. Quantized values of, (solid lineg in the energy gaps

between overlapped hole magnetic subbands are shown as a func-
FIG. 3. Quantized values efy (solid lineg as a function of the  tjon of the Fermi level position(Bottom inset Overlapped hole
Fermi level position in energy gaps. The enerdigsschematically  magnetic subbands originating from the same hole Landau levels as
show the centers of the magnetic subbands, and the dashed lingsrig. 3 but split by a stronger periodic potential with the ampli-
serve as a guide to the eye. The arrow indicates the deviation frofyde\/,=3 meV. The numbers label energy gaps.
the quantization sequence for the Hofstadter “butterfly” for the
electrons which appear whef. lies in the gap betweeRy; and | “toyr-component hole states have structures different with
E,. (Bottom inset Hole energy spectrum consisting of the non- those of electrons with a simple parabolic dispersisee
overlapped magnetic subbands originating from the four Uppermost ot 34 for details Another difference between the Hall pla-
ho.le Lan.dal.’ levels with 'nd'ceﬂ.: —1,0, and 2, and dom'nat.'ng teaus for the electron and hole subband spectra which can be
spin projections*. The magnetic fluxp/q=3/2, the superlattice . . . - | plateau width for
period a=80 nm, and the amplitude of periodic potentid} important in the exp_erlments is the unequai pia
—0.7 meV. hole subbands, which reflects the complicated structure of
the hole subband spectrufeee the bottom of Fig.)3The
latter is determined by the Luttinger Hamiltonié®) where
12qi — 12— the spin-orbit interaction and the Zeeman splitting in a mag-
; 1Sk Sm; 1= S, 20 netic field are included together with the heterojunction po-
tential, which is asymmetric in our case. It should also be
where we used the normalization of the vectal, noted that when the Fermi level is swept through a subband
=(dy, ...dnp). As soon as the winding numbers are calcu-centered aE,, the Hall conductivity interpolates smoothly
lated, the Hall conductance of a particular magnetic subbantdetween the adjacent quantized values. The interpolation is
is given by Eg.(5). By examining expressiofb), one can shown by the dashed lines in Figs. 3 and 4, while the quan-
mention that the first term in the square brackets is just théized values are marked by the solid lines.
contribution of one of the subbands to the Hall conductiv- If the amplitudeV, is increased, it was found that the
ity of a single Landau level while the remaining term in Eq. neighboring magnetic subbands arising from the different
(5) appears only in the presence of a periodic potential. As &ole Landau levels can touch each other at some point in the
result, the expression in brackets in E§) is always an MBZ. This touch means that a degeneracy of the spectrum
integer. It was shown by Kohmdtdhat this integer defines has occurred, and the application of expresgfris invalid.
the topological number, namely, the first Chern class of éHowever, one can use this approach at higher valueg,of
vector bundle associated with the current magnetic subbangvhen some of magnetic subbands overlap but the spectrum
The gquantized values afy as a function of the number of appears to be nondegenerate in the entire MBZ An ex-
filled magnetic subband®r, equivalently, of the position of ample of such a spectrum faf,=3 meV is shown in the
the Fermi level in the energy gapare shown in Figs. 3 and bottom inset of Fig. 4. One can see that the number and
4 both for non-overlapped and overlapped magnetic submaximum width of gaps in Fig. 4 have decreased with re-
bands. When the amplitudé, of the periodic potential7) is  spect to the system of nonoverlapped subbands in Fig. 3
smaller than the distanckE, between neighboring Landau which will reduce the number and the maximum width of
levels, none of the subbands are overlapfss the bottom Hall plateaus. For convenience, in Fig. 4 we label the re-
inset in Fig. 3 and the deviations in the values @f; from  maining gaps and the corresponding Hall plateaus by num-
the sequences obtained for the Hofstadter “butterfly” for bers. The calculation of-y in every gap in Fig. 4 has been
electrond?’ are caused by the specific character of hole Lanperformed by summarizing the impadiggs. (18)] of all
dau states compared to the electrons. As we have seen in Seabbands below this gap even if they are overlapped. It
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should be stressed that such an approach is possible as loally modulatedp-type heterojunction with a nonparabolic
as the spectrum is nondegenerate, which is true in our casgpectrum, which have been discussed in this paper, can be
Again the dashed line in Fig. 4 serves as a guide to the eyeletected in transport experiments.

We note also that in a real experiment a nhonmonotonic be-

havior of o, can be seen between the gaps 1 and 2, or 2 and IV. SUMMARY

3 in Fig. 4, which yviII refle(;t the existence of several over-  \we calculated the Hall conductance in a 2D hole gas af-
lapped subbands in these intervals. Also note that the quafected by a lateral periodic potential of a surface quantum dot
tized sequence fosry; shown in Fig. 4 differs both from the (antidoy superlattice. Our method is a generalization of the
case of a nonoverlapped subband specttsee Fig. 3and  approach derived by Kohmdtand UsoV on the case of a
from the case of coupled electron Landau leveBy exam-  system where the charged particle is described by a four-
ining the structure of Figs. 3 and 4 we find that in our casecomponent eigenfunction of the Luttinger Hamiltonian. This
the differences between the quantization agf shown in  generalization allowed us to study the QHE in a laterally
Figs. 3 and 4 are provided by only two changesoif for quula;et_:i system where_thg effects of spin-orbit ir!teraction,
subbandsy=4 and 8(see Fig. 3 Detailed calculations have SPin splitting in a magnetic field, and an asymmetric hetero-
shown that these two subbands are degenerated at some i§0ction potential are present. We found a specific behavior
termediate values o, which are greater than in Fig. 3 but of the Hall conductance as a function of the Fermi energy for
lower than in Fig. 4. According to the topological point of N°l€ subbands compared to the well-known dependence for
view21%the subband touches have caused an exchange of tﬂg}e Hofstadter bu'tterfly.. The quantization law for the Hall
Chern classes\c=+q between these subbands where co_nductance was investigated both at Weak_ and strong mo_du-
=2 in our examples. It can be easily seen that such an e)lgtlon depth_s. In the latter case the magnetic subband mixing
change (2 for subband 4 and- 2 for subband Bexactly was taken into account, which Iegds to the exchangg:- of the
transforms the quantization shown in Fig. 3 to the depen:Chern nhumbers between magnetic subbands, changing their
dence in Fig. 4. One should also mention that for the mixedMPact to the Hall conductance.

hole subbands shown in Fig. 4 a negative valuergfexists
which corresponds to the Hall current directed opposite to
the classical drift velocity. Such a behavior of the Hall con- We thank D. Weiss, R. R. Gerhardts and D. Pfannkuche
ductance in a complicated subband energy spectrum was alor useful discussions. This work was supported by the ISTC
obtained in several earlier papef$?! for simple electron (Grant No. 2293 by the RFBR(Grant No. 03-02-17054
spectra. We hope that the qualitatively novel effects in theand by the Ministry of Education RKGrant No. UR
guantization of the Hall conductance in a high-quality later-0101.020.

ACKNOWLEDGMENTS

*Electronic address: demi@phys.unn.ru 19p, sfieda, J. Phys. @5, L717 (1982; 15, L1299 (1982.
1J. Zak, Phys. Rev. A36, A776 (1964; 136, A1647 (1964). 20B. Huckestein and R.N. Bhatt, Surf. S805, 438(1997.
2E.M. Lifshitz and L.P. PitaevskiiStatistical Physic§Pergamon, 21G. Montambaux and M. Kohmoto, Phys. Rev. A, 11417
New York, 1980, Pt. 2. (1990.
3D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs, ?M. Kohmoto, B.I. Halperin, and Y. Wu, Phys. Rev.45, 13 488
Phys. Rev. Lett49, 405(1982. (1992.
4H. Silberbauer, J. Phys.: Condens. Ma#tei7355(1992. 23M. Koshino, H. Aoki, K. Kuroki, S. Kagoshima, and T. Osada,
5p. Springsguth, R. Ketzmerick, and T. Geisel, Phys. Re%6B Phys. Rev. Lett86, 1062(2001.
2036(1997). 24D, Weiss, P. Grambow, K. von Klitzing, A. Menschig, and G.
6\.Ya. Demikhovskii and A.A. Perov, Phys. Low-Dimens. Semi- Weimann, Appl. Phys. Let68, 2960(1991.
cond. Struct7/8, 135(1998. 253, Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R.
"R.E. Peierls, Z. Phys80, 763(1933. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Phys. Rev.
8M. Kohmoto,,Ann. Phys(N.Y.) 160, 343(1985. B 59, R7829(1999.
9N. Usov, Zh. Esp. Teor. Fiz94, 305(1988 [Sov. Phys. JETB7,  2°T. Schiwmser, K. Ensslin, J. Kotthaus, and M. Holland, Semicond.
2565(1988)]. Sci. Technol. 11, 1582 (1996; Europhys. Lett. 33, 683
105.P. Novikov, Dokl. Akad. Nauk SSSR57, 538 (1981) [Dok. (1996.
Math. 23 (2), 538 (1981)]. 27C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky,
113. Avron, R. Seiler, and B. Simon, Phys. Rev. Leit, 51 and H. Schweizer, Phys. Rev. Le®6, 147 (2001).
(1983. 28D, Pfannkuche and R.R. Gerhardts, Phys. Rev4@® 12606
2B, Simon, Phys. Rev. Letbl, 2167(1983. (1992.
BM.V. Berry, Proc. R. Soc. London, Ser.392, 45 (1984). 2D A. Broido and L.J. Sham, Phys. Rev.3, 888(1985.
M. Kohmoto, J. Phys. Soc. Jpf2, 659 (1993. 300.V. Volkov, V.E. Zhitomirskii, I.V. Kukushkin, W. Dietsche, K.
15M.-C. Chang and Q. Niu, Phys. Rev. 58, 7010(1996. von Kilitzing, A. Fischer, and K. Eberl, Phys. Rev. 35, 7541
183, Goryo and M. Kohmoto, Phys. Rev. @5, 085118(2002. (1997).
17H. Aoki and T. Ando, Phys. Rev. Let§7, 3093(1986. 3IM. Kubisa, L. Bryja, K. Ryczko, J. Misiewicz, C. Bardot, M.
Q. Niu, D.J. Thouless, and Y.-S. Wu, Phys. Rev.3B 3372 Potemski, G. Ortner, M. Bayer, A. Forchel, and C.Br&wen,
(1985. Phys. Rev. B67, 035305(2003.

165301-8



QUANTUM HALL EFFECT IN A p-TYPE . .. PHYSICAL REVIEW B 68, 165301 (2003

32D, Weiss, inThe 15" International Conference on High Magnetic tional Conference on High Magnetic Fields in Semiconductor

Fields in Semiconductor Physics, Oxford, UK, 20@&ok of Physics, Oxford, UK, 2002Ref. 32, p. 63.
Abstracts(Institute of Physics, Portsmouth, 2009. 7. 34\/Ya. Demikhovskii and D.V. Khomitsky, Phys. Rev. B7,
33\.Ya. Demikhovskii and D.V. Khomitskiy, ifThe 15" Interna- 035321(2003.

165301-9



