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Ab initio calculation of the exchange-correlation kernel in extended systems
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We develop a method to calculate the polarizability of a many-electron system within Green’s function
theory in a similar way as within time-dependent density functional theory and apply it to Si and GaAs. The
method joins the computational simplicity of the latter with the accuracy of the former approach. The resulting
exchange-correlation many-body kernelf xc

FQP and optical spectra are in good agreement with those obtained by
the solution of the Bethe-Salpeter equation.

DOI: 10.1103/PhysRevB.68.165108 PACS number~s!: 71.10.2w, 71.35.2y, 78.20.Bh
e

ec
nt

re
om

th

io
p
.
e-

y-

.
of

ha
-
po

ut

n
n
n
t
d

be
th
nt

o
, a

ith

ry;

the

ron-

his
nd
the

ula-
ion,
er-

tur-
ty

se

-

e of
y

a-
us
fre-
tive
It has been well known for two decades, after the pione
ing work by Hanke and Sham,1 that the inclusion of the
electron-hole interaction is crucial to obtain absorption sp
tra of semiconductors in good agreement with experime
However, the inclusion of this interaction inab initio calcu-
lations is computationally so cumbersome that only very
cently it could be considered for a number of systems, fr
small atomic clusters2 to bulk crystals3–5 to simple surfaces.6

The difficulties arise from the fact that one has to solve
Bethe-Salpeter equation for the two-particle~electron and
hole! Green’s function, rather than a single-particle equat
as in band theory. It would be highly desirable to develo
simpler method to deal with the electron-hole interaction

A hint about how to reach this goal comes from tim
dependent density functional theory~TDDFT!,7 where all
many-body ~MB! effects are embodied in the frequenc
dependent exchange-correlation kernelf xc(r1 ,r2 ;v), which
accounts for exchange-correlation~xc! in the linear response
Once it is known, the calculation of the polarizability and
the dielectric function proceeds in the Kohn-Sham~KS!
scheme8 as for independent electrons. The problem is t
f xc(r1 ,r2 ;v) of TDDFT is not known and any approxima
tion based on the homogeneous electron gas will miss im
tant features of semiconductors and insulators.9 In particular,
it has been recently shown thatf xc(r1 ,r2 ;v) has a long
range component, of the forma(v)/ur12r2u, which cannot
be derived from the homogeneous electron gas kernel b
essential to determine accurate optical spectra.10,11

In Ref. 10 a many-body xc kernelf xc
FQP(v) similar to that

of TDDFT, was defined to be used with the independe
quasiparticle polarizability obtained within Green’s functio
theory.12 Its long-range component, which is very importa
to calculate optical properties, has been determined from
results of Bethe-Salpeter calculations of the macroscopic
electric function of silicon and diamond and shown to
characterized by a frequency dependence much simpler
that of f xc(v). This approach, although yielding importa
information on the properties off xc

FQP(v), does not allow a
quick calculation of optical spectra, since it relies anyway
the solution of the Bethe-Salpeter equation. Very recently
exchange-only calculation of the TDDFT kernelf x has been
carried out, which yields optical spectra agreeing well w
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experiments only after anad hoctruncation of the kernel in
reciprocal space to account for correlation.13,14 To summa-
rize, the present situation is promising but not satisfacto
what is needed is a method for the direct~ ab initio, without
ad hoc adjustments and not based on the solution of
Bethe-Salpeter equation! calculation of the exchange–
correlation kernel. This is the very purpose of this paper.

We present a suitable approximation forf xc
FQP(v), based

on a first-order expansion in terms of the screened elect
hole interactionW, which allows its calculationab initio
without solving the Bethe-Salpeter equation. We apply t
formulation to the optical spectra of Si and GaAs and fi
very good agreement with experiments. Moreover, in
case of Si we show that the calculatedf xc

FQP(v) is in good
agreement with that extracted from Bethe-Salpeter calc
tions. These results show that the present formulat
though approximate, account well for the electron-hole int
action in semiconductors.

The charge density induced by a time-dependent per
bation is described by the irreducible polarizabili
P(r1 ,r2 ;t2t8). Within TDDFT, its time Fourier transform
P(r1 ,r2 ;v) is given by

P~r1 ,r2 ;v!5xKS
(0)~r1 ,r2 ;v!

1E E dr3 dr4xKS
(0)~r1 ,r3 ;v! f xc~r3 ,r4 ;v!

3P~r4 ,r2 ;v!, ~1!

where xKS
(0)(r1 ,r2 ;v) is the independent-particle respon

function obtained within the KS scheme.
Equation~1! is relatively easy for numerical implementa

tion, since it is a product of matrices whose indices aresingle
space variables. The main obstacle is the poor knowledg
the xc kernelf xc(r1 ,r2 ;v) of real systems. The most widel
used approximation is the adiabatic local-density approxim
tion ~LDA !,15 where the static xc kernel of the homogeneo
electron gas with the local density is used at nonzero
quencies. Such an approximation fails to give a quantita
description of the optical properties of solids~see, in particu-
lar, Ref. 9 for Si!.
©2003 The American Physical Society08-1



i
ns
te
e
t-

te

ng

ty

-
n

-

io
a

s
er
al
ct

B
a

ar

el

T,

e

su-

n
the
but

GIANNI ADRAGNA, RODOLFO DEL SOLE, AND ANDREA MARINI PHYSICAL REVIEW B 68, 165108 ~2003!
A good quantitative description of the spectra of solids
instead obtained within MB theory, although at the expe
of a huge computational effort. According to it, the KS sta
are dressed solving the Dyson equation containing a s
energy operatorSxc(1,2). Consequently the independen
quasiparticle~independent-QP! polarizability is given by16

x (0)~1,2!52 iG~1,2!G~2,1!. ~2!

HereG(1,2) is the one-particle Green’s function, 1~as well
as 2, 3, etc! indicates space, time and spin coordina
r1 ,t1 ,s1 altogether. The irreducible polarizabilityP(1,2)
differs fromx (0)(1,2) for the presence of interactions amo
QP’s

P~1,2!52 i E E d34G~1,3!G~4,1!G~3,4;2!

ªx (0)~1,2!1dP~1,2!, ~3!

wheredP(1,2) is the change in the irreducible polarizabili
due to the excitonic effects andG(1,2;3) is the irreducible
vertex function. It is determined, following the Baym
Kadanoff scheme,17 by solving the Bethe-Salpeter equatio
~BSE!

G~1,2;3!5d~1,2!d~1,3!1E d~4567!
dSxc~1,2!

dG~4,5!

3G~4,6!G~7,5!G~6,7;3!. ~4!

The self-energy operatorSxc(1,2) is usually evaluated ac
cording to theGW approximation18 anddSxc /dG is calcu-
lated by neglecting terms of second order inW. As a conse-
quence, it is given by the screened Coulomb interact
W(1,2). An additional approximation is to neglect dynamic
effects both in the self-energy and inW, which cancel each
other to a good extent in semiconductors.19 Calculations car-
ried out in the past years by a few groups along these line2–6

have yielded spectra in quantitative agreement with exp
ments for many systems. However, they are computation
very demanding because one has to diagonalize an effe
two-particle~electron-hole! Hamiltonian.3

In order to avoid this bottleneck, we have cast the M
linear-response theory in a form similar to the TDDFT line
response10

P̂~q,v!5x̂ (0)~q,v!1d P̂~q,v!

ªx̂ (0)~q,v!1x̂ (0)~q,v! f̂ xc
FQP~q,v!P̂~q,v!. ~5!

Here q is the transferred momentum and all quantities
matrices in the reciprocal space. Equation~5! defines the MB
analog, f̂ xc

FQP(q,v), of the DFT xc kernelf̂ xc(q,v). f̂ xc
FQP

can be found in terms ofd P̂ from Eq. ~5!, by invertingx̂ (0)

and P̂:

f̂ xc
FQP~q,v!5@ x̂ (0)~q,v!#21d P̂~q,v!P̂21~q,v!. ~6!
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This is the very definition of the MB analog of the xc kern
of TDDFT. By expressingd P̂ as P̂2x̂ (0), Eq. ~6! is easily
seen to be equivalent to the form

f̂ xc
FQP~q,v!5@ x̂ (0)~q,v!#212 P̂21~q,v!. ~7!

Similar work has been carried out by Streitenberger20 for the
homogeneous electron gas. The use off̂ xc

FQP allows one to
calculate the polarization similarly to the case of TDDF
according to

P̂~q,v!5~12x̂KS
(0)~q,v! f̂ xc~q,v!!21x̂KS

(0)~q,v!

5~12x̂ (0)~q,v! f̂ xc
FQP~q,v!!21x̂ (0)~q,v!, ~8!

where the first equality is derived within TDDFT and th
second within MB theory.

The problem is thatf̂ xc
FQP itself is defined in Eq.~6! in

terms of the~unknown! polarization P̂. However, Eq.~6!

allows us to make approximations onf̂ xc
FQP . This is the TD-

DFT counterpart of the Bethe-Salpeter kernel, which is u
ally approximated to first order inW(1,2). In the same spirit,
we can approximatef̂ xc

FQP , as given by Eq.~6!, to the same

order. Asd P̂ is of first order inW @see Eqs.~3! and~4!# it is
sufficient to approximateP̂(21)'@x̂ (0)# (21) in Eq. ~6!, yield-
ing

f̂ xc
FQP~q,v!'@x̂ (0)~q,v!#21P̂(1)~q,v!@x̂ (0)~q,v!#21,

~9!

whereP̂(1) is the expansion ofd P̂ to first order inW

P(1)~1,2!5E d~34!G~1,3!G~4,1!W~3,4!G~3,2!G~2,4!.

~10!

As a resultf̂ xc
FQP can be calculated by avoiding the solutio

of the BSE, the most computationally demanding part of
excitonic calculations. Indeed, after cumbersome,
straightforward algebra, we find

PG1G2

(1) ~q,v!

52 (
cc8vv8

FBcv~2q2G1!

v2Ecv1 id

3S Bc8v8~q1G2!

v1Ec8v82 id
Wvv8c8c2

Bv8c8~q1G2!

v2Ec8v81 id
Wvc8v8cD

1
Bvc~2q2G1!

v1Ecv2 id S Bv8c8~q1G2!

v2Ec8v81 id

3Wcc8v8v2
Bc8v8~q1G2!

v1Ec8v82 id
Wcv8c8vD G , ~11!
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where q is restricted to the first Brillouin Zone,v and v8
label filled states, whilec and c8 label empty states (v, c,
etc. include a band indexn and wave vectork). We have
defined

Wvv8c8cªV21E E dr1dr2cv* ~r1!cv8
* ~r2!

3W~r1 ,r2!cc8~r1!cc~r2! ~12!

and

Bcv~k!ªE drcc* ~r !eik•rcv~r !, ~13!

whereW(r1 ,r2) is the statically screened Coulomb intera
tion andV is the crystal volume. Equation~12! can be evalu-
ated using the LDA wave functions, which well approxima
QP ones.21 P̂(1)(q,v), f̂ xc

FQP(q,v) and x̂ (0)(q,v) are matri-
ces indexed byG and G8, whose products and inversion
can be easily evaluated numerically.

The approximated expression forf̂ xc
FQP given in Eq. ~9!

can be improved in a systematic way, by inserting high
order terms both ind P̂ and P̂ in Eq. ~6!.22 We will show
below that the first term, Eq.~9!, already yields spectra in
good agreement with experiments. It should be borne
mind that this approximation, although made in the spirit
the Bethe-Salpeter equation approach, is not fully equiva
to it; Eqation ~6! is equivalent to the BSE approach, whi
Eq. ~9! contains an additional expansion to first order inW.

Equation~9! is the most important result of this paper.
allows one to calculate the irreducible polarizability acco
ing to the second line of Eq.~8!. This must be contraste
with the result obtained by simply expanding the irreduci
polarizability to first order inW

P̂~q,v!5x̂ (0)~q,v!1 P̂(1)~q,v!. ~14!

FIG. 1. Long-range component of the exchange-correlation
nel @ f xc

FQP(q,v)#00 for q→0 of Si. Dotted line: extracted from the
Bethe-Salpeter equation approach, from Ref. 10. Full line: pre
work, Eq. ~9!.
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The two methods coincide to first order inW, but are differ-
ent when higher-order terms are considered. Which of th
is a better approximation can be decided only by compar
their results with experiments; however, it may be notic
soon that the former method may describe the formation
bound exciton states~and indeed it does22!, corresponding to
the vanishing of the denominator in the second line of E
~8!, while the latter method, Eq.~14!, cannot. We show be
low that the former method yields a good description of o
tical spectra of semiconductors, while Eq.~14! yields worse
results, very close to those obtained within t
independent-QP approximation.

Although similar equations forf xc can be found in the
literature,23 we stress that Eq.~9! is for a different quantity,
f xc

FQP , which allows an efficient calculation of optical spect
in semiconductors and insulators.

We have first calculated the LDA-RPA~random phase ap
proximation! absorption spectrum of Si and GaAs using se
eral sets ofk points including up to 2048 specialk points in
the whole Brillouin Zone and performing additional Mon
Carlo integrations on 15 000 randomk points to account for

r-

nt

FIG. 2. Imaginary part of the dielectric function of Si~upper
frame! and GaAs ~lower frame!. Long dashes: independen
quasiparticle spectrum. Full line: present work. For Si, dots: f
BSE calculation, from Ref. 3. For GaAs, dots: experiment, fro
Ref. 26.
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the rapidly varying quantity (v2Ecv)21. Self-energy cor-
rections were included in the spectrum, for the sake of s
plicity, in the form of a rigid upward shift~of 0.7 eV for Si
and of 0.8 eV for GaAs! of the conduction bands@this is
known to be a very good approximation in Si and Ga
~Ref. 24!#. To be consistent we used the same set ofk points
to calculate the quantityP̂(1)(q,v). Fifty bands were used
for the RPA spectrum, while eight bands were seen to
sufficient to achieve a well convergedP̂(1)(q,v) in the op-
tical range. Local-field effects were included bringing t
size of the dielectric matrix to 89389. For more details, se
Ref. 25.

It has already been shown10,11 that only the long-range
component off xc

FQP , i.e., with G,G850 and q tending to
zero, which diverges as 1/q2, is important to determine op
tical properties in the frequency range of band-to-band tr
sitions. This is shown in Fig. 1 as calculated for Si accord
to Eq. ~9!, and compared to that extracted from the Beth
Salpeter approach in Ref. 10. In spite of the different
proximations made in the two approaches, the agreeme
very good up to 4.5 eV. The spectrum, calculated as in R
10 by taking into account only the long-range componen
the kernel, is compared in Fig. 2~upper frame! with that
obtained by solving the Bethe-Salpeter equation, and
agreement is very good. The approximate character of
present approach shows up only in a slight underestima
of the transfer of oscillator strength to low frequencies w
respect to the Bethe-Salpeter approach. Even better re
are obtained for the optical spectrum of GaAs, shown in F
2 ~lower frame!. Optical spectra calculated for both materia
according to a naive expansion of the irreducible polariza
ity to first order inW, Eq.~14!, are much worse, very close t
those obtained within the independent-quasiparticle appr
mation.

It is worth comparing the present results with those
Ref. 11. Ourab initio calculations confirm that the long
range component off̂ xc

FQP is indeed frequency dependent,
agreement with the findings of Ref. 10, and at variance w
the approach of Ref. 11. The static kernel of the latter w
is recovered as a frequency-averaged value in the rang
ni

ev

e
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strong optical absorption. Finally, we compare our findin
with the exchange-only approach of Refs. 13 and 14. Our
~11! is equivalent to Eqs.~15! and ~16! of Ref. 14, after
substituting the bare with the screened Coulomb interact
The other terms in Ref. 14 come from the QP corrections
are already embodied in our independent–QP polarizabi
Although both approaches yield good optical spectra,
stress that ours is completelyab initio, while that of Refs. 13
and 14 has to use anad hoccutoff of the kernel in reciproca
space to account for correlation.

In conclusion, we propose a method for calculatingab
initio the exchange correlation kernel of TDDFT, based
its expansion to first order inW, the screened electron-hol
interaction. A similar method could be used to calculatef xc

of TDDFT, provided the true exchange-correlation poten
is known. The calculation of optical spectra including ex
tonic and local-field effects according to the present meth
retains the computational simplicity of TDDFT. Calculation
carried out for Si and GaAs yield very good agreement w
experimental spectra. The kernel itself, as calculated for
compares very well with that extracted from the solution
the BSE, although the two approaches rely on different
proximations. The present method is well promising to yie
good optical spectra of complex systems, like surfaces
large clusters, where the Bethe-Salpeter approach is ha
applicable.

At the final stage of this work, we became aware of
apparently different approach,27 based on the assumption o
the equality of the four-point polarizabilities calculate
within TDDFT and within the BSE approch, which yields th
same result as ours@Eqs.~8!, ~9! and ~11!# for optical spec-
tra. While the convergence of both approaches to a comm
result is surely encouraging, the deep reason for it is still
understood.
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