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Localized modes in defect-free dodecagonal quasiperiodic photonic crystals
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The transmission property and localization of electromagnetic waves in defect free dodecagonal quasiperi-
odic photonic crystals~QPCs! are studied. The simulation of total energy flow and the density of states show
that the dodecagonal QPC has a photonic gap forTM polarized electromagnetic waves. However, different
from the periodic photonic crystals, electromagnetic waves with certain frequencies are localized at some
special regions inside a perfect dodecagonal QPC. A corresponding experiment in the microwave region
confirms the phenomenon. It is believed that the occurrence of localized modes in QPCs can be attributed to
the competition between two spatial structural properties: self-similarity and nonperiodicity.
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Similar to the periodic potentials which have a great i
pact on the movement of electrons in a semiconductor, p
odically arranged dielectric materials have the effect
modulating the propagation of electromagnetic waves. T
kind of artificial material was named by Yablonovitch an
John as a photonic crystal in 1987.1,2 Since then, a great dea
of effort has been devoted to studying the properties of
material.3–12 The primary property of a photonic crystal
that it has photonic gaps. Light with frequencies located
the gaps cannot propagate in this material no matter wha
incident direction is. The applications13–17 of photonic crys-
tals are mainly based on this property.

Various methods have been developed to simulate
measure the photonic band gaps and propagation of ele
magnetic waves in photonic crystals.3,4,9,18–20In most cases
the photonic gap is determined by corresponding transm
sion and reflection spectra or the total energy flows aro
the crystal. Low transmission regions in the transmission
total energy flow spectra are generally considered as gap
we know, the low-transmission regions of perfect perio
photonic crystals are smooth, and, when defects or disor
are introduced into them, some peaks will appear within th
gaps. The relation between the defect or disorder and
defect modes2,20–26 in periodic photonic crystals has bee
quite clear. Several years ago, quasiperiodic photonic c
tals ~QPCs! were proposed. The QPC is different in config
ration from the periodic one; in particular it does not poss
translational symmetry. Since then the photonic characte
tics of QPCs have been studied,27–34and all the results show
that QPCs have photonic band gaps, which are indepen
of the incident direction. Essentially, a QPC, however, i
kind of disordered structure. It should present certain disti
tive properties for the propagation of electromagnetic wa
Therefore, we systemically examine the transmission spe
of different QPCs formed with dielectric cylinders and an
background, namely, octagonal, decagonal, and dodecag
quasiperiodic structures, both experimentally and theor
cally. The results show that all studied structures mentio
above possess spectral gaps forTM polarized modes and
furthermore, within the first gap of the defect free dodeca
nal QPC, there are some peaks. This indicates that defect
dodecagonal quasiperiodic photonic crystals can sup
some localized modes.
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Two approaches are used to simulate the photonic p
erty of the dodecagonal QPC, namely, the total energy flo
and the density of state. In our calculation of the total ene
flows, a line-shaped source is placed within the sample.
cording to the multiple scattering methods,18 the Poynting
vector can be written as

SW ~rW !52
c

8pk0
Im@u~rW !¹u* ~rW !#, ~1!

wherek0 and c is the wave vector and velocity of electro
magnetic wave in vacuum, respectively.u is the electric field
at positionrW . Integrating the Poynting vector along a clo
path around the QPC, we obtain the total energy flowsP;

P5 R
L
SW ~rW !"nW dr. ~2!

Meanwhile, the density of states19 ~DOS! in the sample can
be written as

r~v!5
1

s E E «~r !r~r ,v!dx dy, ~3!

where r(r ,v)522v/pc2Im@G(r,rs,v)# is local density of
states in the sample.G(r ,r s ,v) is the electromagnetic
Green’s function with a source at locationr s and observation
point atr. v is the angular frequency of the electromagne
wave radiated by the line source.s is the total area of three
basic cells located near the center of the sample.

Figure 1 shows the structure of a dodecagonal QPC.
constructed by placing dielectric cylinders with circular cro
sections in the sites of a two-dimensional dodecagonal P
rose lattice. The dodecagonal Penrose pattern is tiled by t
basic cells which are a square and two kinds of rhom
whose acute angles are 30° and 60°, respectively. The c
ders in the studied QPC have the dielectric constant«58.5
and the dielectric constant of their background is«b51.0.
The side lengths of the square and the rhombi are both
mm and the volume fraction of dielectric cylinders is 25.8
Such a structure has spectral gaps forTM polarized modes. It
should be noted that there is another kind of dodecago
©2003 The American Physical Society06-1
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lattice which is built up on the random square-triangle tili
system and studied by Zoorobet al.27 and Zhanget al.28

The total energy flow and the density of states for a de
free dodecagonal QPC with total 145 cylinders are prese
in Fig. 2. Both the density of states and the total energy fl
spectrum exhibit that the first gap of the structure is loca
from 8.06 to 11.38 GHz. However, there is a quaint pheno
enon. Within the gap, both spectra have three sharp pea
the frequencies of 9.7, 10.53, and 10.87 GHz. It is qu
different from the results of perfect periodic photonic cry
tals and defect free octagonal and decagonal QPCs wher
spectra are smooth inside the gaps.

To look for where the electromagnetic waves are localiz
in the sample, the distributions of electric field at frequenc
mentioned above are simulated. The results reveal that lo
izations of electromagnetic waves have indeed taken p
and, as shown in Fig. 3, in the central region of the QPC,
strength of electric field is much greater than any ot
places. Then it decays in a length scale of one or two b
cells. The localized electromagnetic modes are quite dif

FIG. 1. Two-dimensional dodecagonal quasiperiodic photo
crystal.

FIG. 2. Total energy flow~solid line! and the density of state
~dashed line! of a dodecagonal QPC constructed with 145 cylinde
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ent. For example, at 10.53 GHz the mode possesses a tw
fold symmetry, while at 10.87 GHz it is a dipole radiatio
pattern. It is believed that the spatial structure is a domin
factor to determine which mode can be localized.

In order to confirm the existence of localized modes in
defect free dodecagonal QPC, the corresponding trans
tance is measured. We build a dodecagonal QPC where
side length of the square and the rhombi is 12.1 mm. 2
alumina ceramic cylinders are inserted in a polystyrene fo
template. The radius of the cylinders is 3.0 mm and the

c

.

FIG. 3. The distribution of electric field at three frequenci
which correspond to the peaks within the low-transmission reg
of Fig. 2.
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electric constant of the cylinders and the template are 8.9
1.04, respectively. The setup of the measurement is simila
that described in Ref. 29. The results are presented in Fi
It is clear seen that within the low-transmission region of
measured spectrum, three peaks appear at the frequenc
9.5, 9.95, and 10.15 GHz, as pointed out by the arrows,
the measured result agrees very well with the calculated
where the parameters are taken to be the same as the e
ment. Therefore, the experiment proves that electromagn
waves with such three frequencies are localized in
sample.

Why are there localized modes in a defect free dodeca
nal QPC? A quite direct cause may be the higher dielec
density in the central dodecagon. Because the average re
tion index in the surrounding area is relatively low, as sho
in Fig. 1, the central zone may behave as a defect. Howe
if this is a dominant factor for the existence of localiz
modes, octagonal and decagonal quasicrystals should
similar localized modes in the central zone. We calculate
variation of the density of states as a function of dielec
fraction for the decagonal quasicrystals and find that eve
the dielectric fraction reaches the maximum value 40%,
the cylinders at the vertices of the center decagon con
each other, and there is not any localized mode to be
served in the decagonal quasicrystal. In addition, for
dodecagonal quasicrystal, the existence of the locali
modes does not depend on the dielectric fraction. When
dielectric fraction changes, only the frequencies of the loc
ized modes and the values of the corresponding DOS
altered. When the dielectric fraction changes from its ma
mum, 27%, to a very small value, 4.74%, the frequencies
the three visible peaks are changed from 9.53, 10.4,
10.55 GHz to 14.46, 15.05, and 15.33 GHz, respectiv
These facts mean that higher dielectric density in the cen
zone may be one of the reasons for the existence of local
modes but not the only one. Therefore, a further consid
ation on the specific structural property of the dodecago
quasicrystals is necessary.

FIG. 4. The measured~dotted line! and calculated~solid line!
transmittance of the defect-free dodecagonal quasiperiodic pho
crystal.
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In the case of electronic quasicrystals, two major str
tural characteristics have been mentioned, namely, nonp
odicity and self-similarity.35–41The self-similarity caused by
the long-range order makes the wave function of electr
extended, while the nonperiodicity may lead the wave fu
tion to be localized. Therefore, the existence of localiz
modes depends on the competition of these two effects.
well known that the propagation of photons in photonic cry
tals is analogous to that of electrons in a typical crystal.
try to understand qualitatively the localized modes in do
cagonal photonic crystal in terms of the ideas in electro
crystal.

Similar to the usual electronic quasicrystals, two dime
sional QPCs constructed on the Penrose lattice also pos
nonperiodicity and self-similarity. This can be clear seen
the decagonal QPC, as shown in Fig. 5. The nonperiodi
property may have a tendency to localize the electromagn
waves in a higher dielectric area, for example, the cen
dodecagon in a dodecagonal QPC and the decagons
decagonal QPC. According to the theorem for Penrose
tices, if the distance between a selected configuration and
origin is D, we can always find the identical configuratio
within a distance of 2D. This can be clear seen in decagon
QPCs. As shown by the arrows in Fig. 5, apart from t
central decagon, there are many identical decagons in
sample. Therefore, when a localized mode exists in a
lected configuration, an identical mode should be fou
within a distance of 2D. If the nonperiodicity of the QPC is
weaker, the localization lengths of the localized modes are
long that the fields of adjacent localized modes overlap w
each other. Then, the neighboring localized modes will
change their energy. It looks like that the electromagne
waves propagate freely in the QPC, i.e., the electromagn
wave cannot be localized. Otherwise, the electromagn
waves with certain frequencies will be localized. Therefo
we can understand why the localized modes emerge
defect free dodecagonal QPC and do not appear in Q
with lower order rotational symmetry. In a decagonal QP
as shown in Fig. 5, the dielectric density in the center zon

ic FIG. 5. Two-dimensional decagonal quasiperiodic photo
crystal. The arrows indicate the identical regions in decagonal Q
6-3
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lower compared with that of dodecagonal one. If localiz
modes exist in this zone, the localization length of them w
be longer. On the other hand, owing to self-similarity, oth
localized modes appear within a shorter distance. All
localized modes may couple together. However, in de
free dodecagonal QPC, the disorder resulted from nonp
odicity is intense. The localization length of the localiz
modes will be short. In addition, the distance between s
similar dodecagons is so far that the localized modes hav
chance to escape from the central region of the sample.

Based on the above analysis, the reason for the loca
tion in QPCs is clear. It may be useful for deeply understa
ing the propagation property of electromagnetic waves
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nonperiodic photonic materials. If the effect of disorder r
sulting from the nonperiodicity is dominant, the electroma
netic waves with some frequencies can be localized, a
dodecagonal QPC. Inversely, in the case of octagonal
decagonal QPCs, the disorder of the spatial structure is w
and, therefore, no localized mode can appear. In general
occurrence of localized modes in QPCs is determined by
competition between the nonperiodicity and self-similarity
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