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Localized modes in defect-free dodecagonal quasiperiodic photonic crystals
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The transmission property and localization of electromagnetic waves in defect free dodecagonal quasiperi-
odic photonic crystal$QPCs are studied. The simulation of total energy flow and the density of states show
that the dodecagonal QPC has a photonic gaprfdrpolarized electromagnetic waves. However, different
from the periodic photonic crystals, electromagnetic waves with certain frequencies are localized at some
special regions inside a perfect dodecagonal QPC. A corresponding experiment in the microwave region
confirms the phenomenon. It is believed that the occurrence of localized modes in QPCs can be attributed to
the competition between two spatial structural properties: self-similarity and nonperiodicity.
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Similar to the periodic potentials which have a great im- Two approaches are used to simulate the photonic prop-
pact on the movement of electrons in a semiconductor, perierty of the dodecagonal QPC, namely, the total energy flows
odically arranged dielectric materials have the effect ofand the density of state. In our calculation of the total energy
modulating the propagation of electromagnetic waves. Thiglows, a line-shaped source is placed within the sample. Ac-

kind of artificial material was named by Yablonovitch and Cording to the mu|tip|e scattering methoj&sthe Poynting
John as a photonic crystal in 1987 Since then, a great deal yector can be written as

of effort has been devoted to studying the properties of the

material®~'2 The primary property of a photonic crystal is A c

that it has photonic gaps. Light with frequencies located in S(p)=—<c——Im[u(p)Vu*(p)], @
the gaps cannot propagate in this material no matter what the 87ko

incident direction is. The applicatiolis” of photonic crys-  jore ko andc is the wave vector and velocity of electro-
tals are mainly based on this property.

: : ranagnetic wave in vacuum, respectivahyis the electric field

Various methods have been developed to simulate an t positionp. Integrating the Poynting vector along a close
measure the photonic band gaps and Progagation of electr: F;] p- h 9 9 y h 9 | %
magnetic waves in photonic crystd$218-2In most cases Path around the QPC, we obtain the total energy fléws
the photonic gap is determined by corresponding transmis-
sion and reflection spectra or the total energy flows around p= % &(p)-Adr )
the crystal. Low transmission regions in the transmission or L p '
total energy flow spectra are generally considered as gaps. As
we know, the low-transmission regions of perfect periodicMeanwhile, the density of stat€DOS) in the sample can
photonic crystals are smooth, and, when defects or disordefe written as
are introduced into them, some peaks will appear within their
gaps. The relation between the defect or disorder and the 1
defect modes?>~?%in periodic photonic crystals has been plo)=3 f j e(r)p(r,w)dx dy, )
quite clear. Several years ago, quasiperiodic photonic crys-
tals (QPC3 were proposed. The QPC is different in configu- where p(r,») = — 2w/ wc?Im[G(r I,w)] is local density of
ration from the periodic one; in particular it does not possesstates in the sampleG(r,ri,w) is the electromagnetic
translational symmetry. Since then the photonic characterigsreen’s function with a source at locatiopand observation
tics of QPCs have been studi€d3*and all the results show point atr.  is the angular frequency of the electromagnetic
that QPCs have photonic band gaps, which are independenave radiated by the line sourcgis the total area of three
of the incident direction. Essentially, a QPC, however, is abasic cells located near the center of the sample.
kind of disordered structure. It should present certain distinc- Figure 1 shows the structure of a dodecagonal QPC. It is
tive properties for the propagation of electromagnetic waveconstructed by placing dielectric cylinders with circular cross
Therefore, we systemically examine the transmission spectrgections in the sites of a two-dimensional dodecagonal Pen-
of different QPCs formed with dielectric cylinders and an airrose lattice. The dodecagonal Penrose pattern is tiled by three
background, namely, octagonal, decagonal, and dodecagorzdsic cells which are a square and two kinds of rhombi
guasiperiodic structures, both experimentally and theoretiwhose acute angles are 30° and 60°, respectively. The cylin-
cally. The results show that all studied structures mentioneders in the studied QPC have the dielectric constan8.5
above possess spectral gaps ToM polarized modes and, and the dielectric constant of their backgrounc:js=1.0.
furthermore, within the first gap of the defect free dodecagoThe side lengths of the square and the rhombi are both 11
nal QPC, there are some peaks. This indicates that defect freem and the volume fraction of dielectric cylinders is 25.8%.
dodecagonal quasiperiodic photonic crystals can suppofuch a structure has spectral gapsTitpolarized modes. It
some localized modes. should be noted that there is another kind of dodecagonal

0163-1829/2003/686)/1651064)/$20.00 68 165106-1 ©2003 The American Physical Society



WANG, HU, XU, CHENG, AND ZHANG

80

PHYSICAL REVIEW B68, 165106 (2003

. 0.3
801 0© ) ooo 8o = o0
i) oq)d)ooog o gooo%(po 0.7000
20- o§§°88°°gg°%go 1.050
ol %o ooo °° ooo 0° 1:400
]l o X OB O 9 o
20{ RO,005500,00
] oco_00%; o0 00 9.7GHz
w] o Doo.ood o
d’o 0 oo g o© 0 o%
-604 °8009%°
R R R
80 .
FIG. 1. Two-dimensional dodecagonal quasiperiodic photonic b i
crystal. 60+ o0 3 ooo - .
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lattice which is built up on the random square-triangle tiling ooo °°o°o° o oooocb ooo
system and studied by Zoorah al?” and Zhanget al*® *1 0 9o 0REdoO o @ e
The total energy flow and the density of states for adefect o Sooo g{%}g 0002 20.00
free dodecagonal QPC with total 145 cylinders are presented ;] 08200888570 2 & oo
in Fig. 2. Both the density of states and the total energy flow e oo°o°o R o0 10.63GHz
spectrum exhibit that the first gap of the structure is located 7 P 000200 B
from 8.06 to 11.38 GHz. However, there is a quaint phenom- .o °8.°58°
enon. Within the gap, both spectra have three sharp peaks at -
the frequencies of 9.7, 10.53, and 10.87 GHz. It is quite 80 60 40 20 0 20 40 60 80
different from the results of perfect periodic photonic crys-
tals and defect free octagonal and decagonal QPCs where the
spectra are smooth inside the gaps. 80 0
To look for where the electromagnetic waves are localized 5 & & 15 50
in the sample, the distributions of electric field at frequencies 7 o?® 3°%°80 o
mentioned above are simulated. The results reveal that local- ~ «{ % (p°°°g o g°o°%o°o 25.00
izations of electromagnetic waves have indeed taken place , ] ©ooJoo ° 00 00
and, as shown in Fig. 3, in the central region of the QPC, the go 8o w 9 og 37.50
strength of electric field is much greater than any other °1 o©90®© 00 0 J 46100
places. Then it decays in a length scale of one or two basic 3] ©° 3 3 oo 7590 8 8 oo
cells. The localized electromagnetic modes are quite differ- 1 ° 220 L lp L | 10.87GHz
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FIG. 3. The distribution of electric field at three frequencies
which correspond to the peaks within the low-transmission region
of Fig. 2.

ent. For example, at 10.53 GHz the mode possesses a twelve-
fold symmetry, while at 10.87 GHz it is a dipole radiation
pattern. It is believed that the spatial structure is a dominant
factor to determine which mode can be localized.

In order to confirm the existence of localized modes in the
defect free dodecagonal QPC, the corresponding transmit-
tance is measured. We build a dodecagonal QPC where the
side length of the square and the rhombi is 12.1 mm. 229

FIG. 2. Total energy flowsolid line) and the density of states alumina ceramic cylinders are inserted in a polystyrene foam
(dashed lingof a dodecagonal QPC constructed with 145 cylinders.template. The radius of the cylinders is 3.0 mm and the di-
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FIG. 4. The measure(otted ling and calculatedsolid line)

transmittance of the defect-free dodecagonal quasiperiodic photonic FIG. 5. Two-dlr_nensmnal o_IecagonaI q_uasu_oerlodlc photonic
crystal crystal. The arrows indicate the identical regions in decagonal QPC.

In the case of electronic quasicrystals, two major struc-
electric constant of the cylinders and the template are 8.9 antiral characteristics have been mentioned, namely, nonperi-
1.04, respectively. The setup of the measurement is similar todicity and self-similarity’>~*' The self-similarity caused by
that described in Ref. 29. The results are presented in Fig. 4he long-range order makes the wave function of electrons
It is clear seen that within the low-transmission region of theextended, while the nonperiodicity may lead the wave func-
measured spectrum, three peaks appear at the frequenciestioh to be localized. Therefore, the existence of localized
9.5, 9.95, and 10.15 GHz, as pointed out by the arrows, anthodes depends on the competition of these two effects. It is
the measured result agrees very well with the calculated oneell known that the propagation of photons in photonic crys-
where the parameters are taken to be the same as the expeails is analogous to that of electrons in a typical crystal. We
ment. Therefore, the experiment proves that electromagnetity to understand qualitatively the localized modes in dode-
waves with such three frequencies are localized in theagonal photonic crystal in terms of the ideas in electronic
sample. crystal.

Why are there localized modes in a defect free dodecago- Similar to the usual electronic quasicrystals, two dimen-
nal QPC? A quite direct cause may be the higher dielectrisional QPCs constructed on the Penrose lattice also possess
density in the central dodecagon. Because the average reframenperiodicity and self-similarity. This can be clear seen in
tion index in the surrounding area is relatively low, as shownthe decagonal QPC, as shown in Fig. 5. The nonperiodicity
in Fig. 1, the central zone may behave as a defect. Howeveproperty may have a tendency to localize the electromagnetic
if this is a dominant factor for the existence of localizedwaves in a higher dielectric area, for example, the central
modes, octagonal and decagonal quasicrystals should hadedecagon in a dodecagonal QPC and the decagons in a
similar localized modes in the central zone. We calculate thelecagonal QPC. According to the theorem for Penrose lat-
variation of the density of states as a function of dielectrictices, if the distance between a selected configuration and the
fraction for the decagonal quasicrystals and find that even ibrigin is D, we can always find the identical configuration
the dielectric fraction reaches the maximum value 40%, i.e.within a distance of B. This can be clear seen in decagonal
the cylinders at the vertices of the center decagon conta@PCs. As shown by the arrows in Fig. 5, apart from the
each other, and there is not any localized mode to be obeentral decagon, there are many identical decagons in the
served in the decagonal quasicrystal. In addition, for thesample. Therefore, when a localized mode exists in a se-
dodecagonal quasicrystal, the existence of the localizetected configuration, an identical mode should be found
modes does not depend on the dielectric fraction. When theithin a distance of B. If the nonperiodicity of the QPC is
dielectric fraction changes, only the frequencies of the localweaker, the localization lengths of the localized modes are so
ized modes and the values of the corresponding DOS areng that the fields of adjacent localized modes overlap with
altered. When the dielectric fraction changes from its maxi-each other. Then, the neighboring localized modes will ex-
mum, 27%, to a very small value, 4.74%, the frequencies o€hange their energy. It looks like that the electromagnetic
the three visible peaks are changed from 9.53, 10.4, andiaves propagate freely in the QPC, i.e., the electromagnetic
10.55 GHz to 14.46, 15.05, and 15.33 GHz, respectivelywave cannot be localized. Otherwise, the electromagnetic
These facts mean that higher dielectric density in the centrabaves with certain frequencies will be localized. Therefore,
zone may be one of the reasons for the existence of localizede can understand why the localized modes emerge in a
modes but not the only one. Therefore, a further considereefect free dodecagonal QPC and do not appear in QPCs
ation on the specific structural property of the dodecagonalvith lower order rotational symmetry. In a decagonal QPC,
guasicrystals is necessary. as shown in Fig. 5, the dielectric density in the center zone is
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lower compared with that of dodecagonal one. If localizednonperiodic photonic materials. If the effect of disorder re-
modes exist in this zone, the localization length of them willsulting from the nonperiodicity is dominant, the electromag-
be longer. On the other hand, owing to self-similarity, othernetic waves with some frequencies can be localized, as in
localized modes appear within a shorter distance. All thedodecagonal QPC. Inversely, in the case of octagonal and
localized modes may couple together. However, in defeclecagonal QPCs, the disorder of the spatial structure is weak
free dodecagonal QPC, the disorder resulted from nonperand, therefore, no localized mode can appear. In general, the
odicity is intense. The localization length of the localized @ccurrence of localized modes in QPCs is determined by the
modes will be short. In addition, the distance between self€0mpetition between the nonperiodicity and self-similarity.

similar dodecagons is so far that the localized modes have no This work was supported by the Chinese National Key
chance to escape from the central region of the sample. Basic Research Special Fuf@rant No. 2001CB6104and

Based on the above analysis, the reason for the localizahe National Natural Science Foundation of China. The
tion in QPCs is clear. It may be useful for deeply understandsupport of the CSTNET for computer time is also
ing the propagation property of electromagnetic waves iracknowledged.
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