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Approximate ground state of a confined Coulomb anyon gas in an external magnetic field

B. Abdullaev! G. Ortiz2 U. Rossler’ M. MusakhanoV, and A. Nakamura
Theoretical Physics Dept., Uzbekistan National University, Tashkent 700174, Uzbekistan
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
“RIISE, Hiroshima University, Japan
(Received 30 September 2002; revised manuscript received 8 August 2003; published 24 October 2003

We derive an analytic, albeit approximate, expression for the ground state enéggaflomb interacting
anyons with fractional statistics, O<|v|<1, confined in a two-dimensional wefWith characteristic fre-
guencyw,) and subjected to an external magnetic figlith cyclotron frequency».). We apply a variational
principle combined with a regularization procedure which consists of fitting a cutoff parameter to existing
exact analytical results in the noninteracting case, and to numerical calculations for electrons in quantum dots
in the interacting case. The resulting expression depends upon parameters of the| slyétean ,r,ag and
w¢, Wherer, represents a characteristic unit length aacthe Bohr radius. Validity of the result is critically
assessed by a comparison with exact, approximate, and numerical results from the literature.
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. INTRODUCTION N=3 (Ref. 12 and 43 Making use of the separation of the
center-of-mass and relative motion one finds in the two-

The exchange statistics of particles whose orbital motioranyon case that the ground state energy for the relative mo-
is restricted to two space dimensions differs substantialljion is a linear function ofy for O<v<1. ForN=3 and
from the three-dimension&BD) case. The topology of their 4,>'**the ground state energy of the relative motion is a
(multiply connectedl configuration space allows for frac- linear function ofv only near the bosonic limiz=0. The
tional statistics, characterized by a continuous parameter ground state in the fermionic end€1) is continuously
which labels the possible one-dimensional representations eonnected to an excited state of the bosonic spectrum (
the braid group. For particles in two dimensionalmay  =0) and consequently — when adding the lowest energy of
attain values between @or boson$ and 1 (for fermiong, the center-of-mass motidmvhich does not depend ar) —
thus two dimensional2D) particles are called anyoRsThe  one finds forN=3 and 4(and likely for all higherN'%) a
concept of anyons has been used to describe quasipartia®nlinear» dependence of the ground state energy. In the
excitations in the fractional quantum Hall regifiéand in  case of interacting anyons in no external magnetic field the
high-T,. superconductor’. energy spectrum for two anyons at some fixed values of the

A system of particular current interest is that of 2D elec-Coulomb interaction parameter was found analytically in
trons in a parabolic confinement potential, the so-calledRef. 15 and approximately, for two and three anyons, in
quantum dot or artificial atorh.These systems, realized in Ref. 16.
semiconductor nanostructures, are objects of fundamental In the presence of an external magnetic field one can
studies of ground state properties of interactidgparticle  study the interplay between the statistical and physical mag-
systems and have also a potential for applications in quantumetic fluxes. This has been done analytically for te2
information and computatioh Exact closed-form solutions noninteracting anyon case with confinem&hiwhile the
of the problem are reduced to a few simple cases due to itsases withN>2 have been investigated preferentially with-
intrinsic mathematical complexify:° Typically, ground state out confinement®=2° The ground state for th&l=3 case
calculations make use of numerical simulations for indi-including confinement and magnetic field was calculated in
vidual choices of the parameters of the system. It would bd&Ref. 21. The case with the applied external magnetic field
desirable to have an accurate, albeit approximate, analyticand Coulomb interaction for two anyons in a harmonic po-
expression describing the ground state energy of such a sytential was considered in Ref. 22 and for two and three
tem as a function of the parameters of the systertiuding  anyons in Ref. 23. Reference 5 provides a review of all these
an external magnetic field applied perpendicular to the planstudies.
of the do}. In order to derive such a formula we make use of In our treatment of thé&-anyon problem we make use of
the anyon concept including the effect of the Coulomb interthe bosonic representation of anyons that works with a gauge
action. vector potential to account for the fractional exchange statis-

Anyons in a parabolic confining potenti@iith and with-  tics but allows to use a product ansatz for Ndody wave
out an external magnetic figldhas been the subject of sev- function. We apply a variational principle by constructing
eral investigations in the past. For the=2 case an exact this wave function from single-particle Gaussians of variable
solution to the spectral problem exists:® For the noninter-  shape. It is well known from perturbative ground state cal-
acting case, its generalization t%=3 (without magnetic culations for anyons in an oscillator potential that the expres-
field) is considered ifRef. 11). Numerical calculations have sion for the ground state energy has a logarithmic divergence
been performed for the lower part of the energy spectrum foconnected with a cutoff parameter for the interparticle

0163-1829/2003/686)/16510%9)/$20.00 68 165105-1 ©2003 The American Physical Society



B. ABDULLAEYV et al. PHYSICAL REVIEW B 68, 165105 (2003

- 4,24-28 - o - - .
dlStanCéL. We face the same prOblem in our variational Hererk and Py represent the position and momentum opera-

treatment. Making use of the physical argumesgte Ref. % tors of thekth anyon in two space dimensions:
that for v# 0 this distance has to have some finite value, we

regularize the formula obtained for the ground state energy N e XTL
. . > > z kj
by an appropriate procedure that takes into account some A,,(rk)=ﬁv2 - 2
existing exact analytical results, in the case without Coulomb 17k |rkj|
interaction, and numerical results for electrons in quantum 12 > > -
is the anyon gauge vector potentiaf rg=re—rj, ande,

dots, in the case with Coulomb interaction. Our formula,.

I : . -—’is the unit vector normal to the 2D plane. The factode-
which is an approximate closed-form expression dependin ) . I ; o
) rmines the fractional statistiger spin of the anyon: it

upon »,N, wq (confinement parameterand ry/ag (Cou-

lomb interaction parameterwherer,=[%/(Mwg)]"? and varleT betwee_n/f=_ (I)d(bosonsband_v_=l lﬁfermlorﬂs.Thhe ex-
ag—#%/(Me?) (in the presence of a magnetic field also of ternal magnetic field enters by minimally coupling the vector

the parametew, /w,, and we need to replageby ||), will ~ POteNtialAe,(ry) =HXr /2. _
be compared to exact, approximate, and numerical results for !N order to find an analytic expression for the ground state
quantum dots reported in the literature. energy as a function of,N, wo, ro/ag, andwc/w, [in the

The paper is organized as follows: In Sec. Il we describé’résence of a magnetic fieidis replaced byw| (see Sec. IV
the system and motivate the ansatz for the variational treaf2€l0W] we employ a variational scheme by minimizing the
ment, in Sec. IIl we present the calculations without, and infXPression for the total energy,

Sec. IV with a homogeneous magnetic field for the case
without Coulomb interaction. Calculations including Cou- f VX (RIAV(R)dR
lomb interactions are presented in Secs. V and VI. Finally, E=

Sec. VIl summarizes the main conclusions.

We would like to note the existence of two seemingly
unrelated notions of anyonic statistics in the literature: one ~
originally introduced in first quantization in the coordinate with a trial wave functior’+(R) depending on the configu-
representation, and another derived within the framework ofation R={r, ....ry} of the N anyons. To motivate the
quantum field theory. In both cases the origina! motivation tOhoice of¥-(R) we invoke the mean-field approximation to
introduce such particles was basically as an inherent POSSif e gauge vector field
bility in the kinematics of(2+1)-dimensional quantum me-
chanics and clearly the concepts, if correctly implemented, - 1.
should be equivalent whether one uses first quantization in A, (r)==B, Xr 4
the coordinate representation or second quantiz&tich. 2

Within the framework of quantum field theory fermions canintroduced by Fetter, Hanna, and LaughffnThis single-
be kinematically transformed into hard-core bostthsough  particle vector potential can be understood as that of a ho-
statistical transmutationbut not into canonical ones, thus mogeneous “magnetic” field = 27 pfi v6, connected with
preserving the exclusion statistics properties of the particles i ‘

More generically, the Hamiltonian spectra of particles shar—the carrier density and the anyonic factor (note:B, van-

ing the same exclusion statistics can be connected through'%\heS in the bosonic I|r_n)|1 By analogzl to a phy,/,swal mag-
continuous mapping. The anyon notion used in the preserﬁetIC f'elsz one can mtroduce_ a magnetic” length, .
paper is consistent with the one developed in the framework_ (%1/B.) ._The other characterl_stlc length of th? sygtem IS
of the bosonic representation in first quantization. Had wehe mean distance between partialgs: 1/ymp. Taking into

used the fermionic representation we would have ended up igccount only this mean gauge vector figdahd not the exter-

= )
f Wi (R)¥(R)dR

an excited bosonic state. nal parabolic confining potentialone obtains a Landau
spectrum® and it is reasonable, in the bosonic representation
1I. INTERACTING ANYONS IN A 2D PARABOLIC WELL of anyons when the many-body wave function takes the
IN THE PRESENCE OF AN EXTERNAL MAGNETIC product form

FIELD: GENERAL SETUP

N
The Hamiltonian ofN spinless anyons of madd and ‘I’T(ﬁ)ZH Y1), ©)
chargee confined to a 2D parabolic well, interacting through k=1
Coulomb repulsions, and in the presence of an external h

R Ly % adopt the single-particle trial functiondsr(ﬂ() in the form
mogeneous magnetic fieldj=He, [w.=|eH|/(Mc)], is

given by R x2 42
1 lﬂT(rk)=CeXp(—(a’+v)%), (6)
A= o 2, (P [A(F)+ eAu(Folel}*+ M) | ° |
=1 typical for the lowest Landau level. Hef@ is a normaliza-
N 2 tion constant andr’ a variational parameter. To include the
+ 1 E f ] (1) external confining potential we identifiy, with the charac-
21057k |1y teristic length /M wg)/? of this harmonic oscillator. When
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energies are expressed in unitsies, and lengths in units of  which displays a logarithmic divergence with the cutoff pa-
ro the normalized trial wave function reads rameterd tending to zero. The integrals of the second class

i N yield
R (Xi +y)
\PT<R>=(% Hexp(—a 5 @ e
fxlf R) ———— V¥ (R)dR=—aG (14)

wherea=a'+v. IFigl?rial?

In evaluating the expectation val@[Eq. (3)] it is con-  where G=3"2In (4/3). Putting together all these different
venient to consider the local energyE,(R) contributions one obtains
=¥ YR)AV(R).* In generalE, (R) is a complex func-

tion, E=E</\/'a+1 , (15
2 o
E.(R)=ReE (R)+ilmE,(R), ®  with
with
N N=1+71*(N-1) In( 1) G(N— 2)} (16)

IME_(R) = —agl [(ALr)+eAurlc) 1. (9

which attains a minimumdE/da=0) for
However, evaluation of the expectation valu& o= - 12

2 - - 1
= [ V(R)E, (R)¥+(R)dR immediately yields a7
Thus, the resulting expression for the ground state energy is
J W(R) IME (R)¥(R)dR=0, (10) Eo=N N2 (19)

and, therefore, the only quantity to consider in the following  The logarithmic divergence displayed &, when 6—0

is ReEL(Ii). Before proceeding, we would like to emphasize has also been found in otht_ar approximate pertu_rbative_treat-
that the absolute ground state of the anyon system is a nofents of the problem and is widely discussed in the litera-

analytic function ofv. Our calculations will simply provide a ture. To remedy this problem, various solutions were intro-

smooth interpolation. duced: In Ref. 24 a hard-core centrifugal term and in Ref. 25
a pair correlation term were introduced in the trial wave
I1l. NONINTERACTING CASE AND H=0 function, while in Ref. 26 both modifications rme(F) were

used. An artificial repulsive deltalike potential was assumed
In the noninteracting case, in the absence of an externgh Refs. 14, 27 and 28 when the unperturbed ground state

magnetic field, the local energy is wave function is a product of single partigigaussianwave
N 5 o ) functions. Here we assume, as in Ref. 4, that the cutoff pa-
ReE (R) = 2 yk(l—a2)+ V_[A (F) T2 rameterd cannot be zero for>0, away from the bosonic
L =1 vk limit, since it corresponds to the square of the nearest dis-

(11  tance between the particles. Thus, for anyons in the parabolic
. R ) confining potentiald is definitely smaller than {in units of
The expectation value of Bg(R) can be easily calculated 2y |, the following we determiné by fitting to appropriate
for the first two terms of Eq(11). The last term contributes oqts for special values of the parameters of the system.
with integrals of the form Wu'! has computed the ground state energyNadnyons
- - in a 2D parabolic potential near the bosonic limi=0 and

f \I'T(R) Fki T(R)dR obtained

|rk1| |rkl|
which fall into one class o(N—1) integrals withj=1 and

a second class dfi(N—1)(N—2) integrals withk# j,k#| To regularize the expression f&, we make use of this

andj #1. The first class of integrals can be evaluated uSing result by expanding,, [Eq. (18)] for »—0 and identify the
leading term inv? with the term linear inv of Eq. 19, with

E~[N+N(N—1)»/2]. (19

© 1 (u the result
f Ei(ax)e  **dx=——In|——-1 (12
0 H 1 1+ vG(N-2)
. N T R , S=sexp ——m8M8M8M8|. (20)
with a>0, Reu>0, andu>a. [Ei(y)=— JZ e “dZzis 2 v
the exponential integral witi<<0.] The result is _ . i )
With this value of the cutoff parameter the final analytic
1 expression for the ground state energyakso see Ref. 36
\I’T(R) V¥ (R)dR~aIn (—) (13)
f kJ|2 20 Eo=N[1+»(N—1)]2 (21)
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8 2 shows the relative deviation for two, three, and four anyons
as a function ofv (the exact ground state energies here are
taken from Refs. 1, 2, 12 and 113n this figure we have

= considered all the cases for which the exact ground state
i . .

% energies are known. When the number of anydhsn-

~ creases, the absolute ground state of the system is a non-
§ 8 analytic function ofv because there is approximatei{#?
=l g number of level crossing$ Since our formula foE,, [Eq.
Léj"m (21)] has the sameN— ) asymptotics as the formula ob-

tained by Chitra and Selff,one expects that, for9v<1,
this relative deviation will be bounded as the number of par-
ticles is increased.
(] 20 40 60 80 It should be noted, that due to our regularization proce-
N dure the ground state energy obtained, Eil), is not an
) o . upper bound to the ground state as one would expect from a
FIG. 1. Relative deviation(in percent of the approximate variational principle. In fact, foN=2 and »=1 Eq. (21)
grounéi statefenerg?ol\[lE_q%z(Zl)],_frtom ”:.e e>f<act grounijlstgte en- yields a value below the exact ground stegee Fig. 1 This
ergy, Eexant, for up toN=72 noninteracting fermionsi=1) in a = is 5 consequence of the fitting @ to the result of Wi
parabolic confining potential. The dash-dotted line indicates the , . _ .
. which for N=2 leads to a square root dependencevijn
asymptotic N— ) value. . . . .
while the exact result for this case gives a linear dependence.

On the other hand, Ed21) applies for the whole range of
By construction, it is evident that this formula reproducesparameters of the systel, », and w,.

the result of Wi in the bosonic limityv—0. Less trivial,
however, is the asymptotics in the fermionic end: For la¥ige
it is consistent(up to a numerical factprwith the approxi-
mate expressiof~ vHIN32 of Chitra and Seff calculated In this section we include an external homogeneous mag-
perturbatively from the bosonic end for>1/N. These au-  neic field. In the presence of an external magnetic fiéld
thors also studied the fermionic ene=1 and found forN 1o statistical factor v may change sign because

O B (aN3) 12 : : : _ :
>1 the expressionE~(8N")™/3. This formula is  _guor4 is a fraction of the flux quantum carried by each
asympt(l)/tzlc to the exact ground state eneBy-Nc(l  gnyon 4o=2mfic/|e], and this flux can be antiparallel to the
+8N,) Y43 for N, fermions filling the firsK closed _shel% magnetic field:!® The Hamiltonian is invariant under the
where N9|=K(_K+1)/2. Note _that Eq._(21_) provides @  tansformation X Vi v, B) — (X, — Vi, — v, — B), whereg
monotonically increasing function aof while in the closed- —eH/|eH|, and thus the energy spectrum is invariant under
shell case the exact fermionic end has lower endlyya (v,8)—(—v,— B) (see Ref. 19 The spectrum only de-

12 f
factor 81 13) than the one calculated from the bosonic e”d-pends onlv|, »B and the cyclotron frequenay, (apart from
In Fig. 1 we compare exact ground state energigssum  \ ang o).

of occupied harmonic oscillator stajefor up toN=72 fer- The real part of the local energy is given by
mions (v=1), with the results obtained from E(R1). As it
turns out, the relative deviation does not exceed 6%. Figure

-8

IV. NONINTERACTING CASE AND H=#0

2, .2
X+ Yic

2
w
1—a’+ c2

N > -
|V|2 rkj'rk]

a+

N
ReE (R)= gl

S vBw,
+—[A(r) ]+ =
7 A 5 e

(22

We need to compute the contribution coming from the last
term in Re&, . To this end, we have to solve the integral

> Fk]'Fk > >
\PT(R)W‘PT(R)dR
Kj

0 0.25 0.5 0.75 1
(N(N—1) integrals of this form contribute to the energy

With the help of the integraf
FIG. 2. Relative deviation(in percent of the approximate

ground state energf,, [Eqg. (21)], from the exact ground state ‘ 12 2

. . ) % 2.2 T 210.2 b
energy for two, three, and four anyons in a parabolic confinement f e ¥ (bx)dx= — b8ty | (23
potential. 0 2a 2\ 8a?
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where Re>—1, Ra?>0 [I,(x) is the modified Bessel number of particled\. For the sake of clarity let us consider
function], and® some special values ™. The cases with one and two fer-
mions are not affected by crossings. Fo+= 3 we have one

crossing atzp,=z=1/3 and two expressions for the ground

* b
fo e *sinh(bx)dx= 2—p2’ (24 state energyE/P=5 andE/P=6—23z. This crossing point
coincides with the one considered in Refs. 5 and 21 for three
with a>b=0, one gets anyons. The case witN=5 has two crossings,=1/3 and
N - - N(N—1) z=3/5 and three expressions for energE/P=11
= Nej- Tk T - —2z, E/P=12—-5z and E/P=15-10z in the intervals O
f V(R) k%k IF 2 V(R dR= 2 - (29 <7<z, z,;<7<z andz=<z<1, respectively. On the basis
J of these special cases one can make the following generali-
The averaged real part of the local energy is zations.
5 (i) There areN¢ —K crossing pointz=z,,2,,z3, .. .Z
E— E N at i( 14 We ) _ VB N(N—1) for N¢, fermions in K closed shells. Therefore, there are
2 a 4w3 2wg 2 ' N¢ — K+ 1 expressions for the ground state energy of fermi-
(26) ons and ground state spectra of anyons for this number of
. . particles.
and takes its minimum value for (i) One can write the expressiap=1/(2K—1) for K
2\ 12 closed shells. The last crossing point does not depenid, on
ao=| 1+ @e N2 27) itis a function ofN, z;=(N—2)/N, and, thus, it is applicable
4wj for any numben.

(i) One can write the expression for the ground state
energy in the interval & z<z, (we choose the smallegt,
for all particles filling the given sheéllor 0< w < wy/[K(K
—1)]¥2 for K=2.

The resulting energy minimum is given l§for now we re-
turn to standard units of energy and length

2
_c

4

1/2

. NY2— N(N—1).

(29 E/P~N®%?+2zS (30)

As in Sec. Il this expression diverges logarithmically in the
limit of a vanishing cutoff parametef. Following the line of ~ This expression is approximaf® within 6% accuracysee
arguments of the Sec. Ill, the cutoff parameter — representSec. Ill)] for N#N,, where S= EN;ONFl (—Ng+2j), Ng

ing the squared minimum particle distance — should not bgg the integer part of —1+(1+8N)¥?]/2 and N,;=Ng(N,
zero except for the bosonic limit=0. Having thisinmind 4+ 1)2  and becomes exact in the formE/P

we determines by fitting to known exact results for the =N (1+8N,)/3 for closed shells, i.eN=N,,.

ground state energy. _ (iv)The expression for the ground state energy in the in-
To establish these results we calculate the fermion groungh g 7<z<1 or w.=wo(N—2)/(N—1)2 determined by

state energy from the single-particle spectrum of the 2D harge |owest levels from each shell in agreement with the
monic oscillator in an external magnetic field perpendiculargyck-Darwin formuld Eq. (29)], is
to the 2D planéFock-Darwin spectrui) (also see Ref. 33

Eo=N#| wi+

vBhw
4

w? # E/P=N[(N+1)—z(N—1)]/2. 31
Enm=" w§+7°(2n+|m|+1)+m ;)° (29) A )~ )] S

In Eq. (29) n and m are the radial and angular momentum  Having discussed the case of fermions|&1) we now
quantum numbers, respectively. The ground state energy éfetermine the approximate expressions of the ground state
N spinless fermionic particles is the sum of thelowest €energy ofN noninteracting anyons for the two interesting
single-particle energie€Pauli exclusion principle Follow- — ranges of weak & w.<wo/[K(K—1)]*? and strongw,

ing Ref. 5 we introduce a parameterR/P, where R =wo(N—2)/(N—1)"? magnetic fields. In the weak mag-
=hw2 and P=%(wi+ w2/4)¥? and express the ground nhetic field regime it is

state energy in units d?. The parameter changes between

0 and 1 when the external magnetic field is changed between
0 and infinity. The Fock-Darwin spectrum is characterized by
level crossings. These crossings, occurring —at
=2,,2,,23, - . .2, have to be considered in evaluating the for closed shells and
ground state energy, their number therefore depending upon
N. Every interval between level crossings is characterized by
its own expression for the ground state energy. However,
only for the intervals 6<z<z, andz<z<1 can one write
down the expressions for the energy as a function of th@therwise. Note that these expressions coincide with L.

Eo=PNa[1+][v|(Ng—1)]*? (32)

Eo=PN[1+|v|(N—1)]¥*+ vBRS (33

165105-5
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in the absence of an external magnetic field, ue+=0. We V. COULOMB-INTERACTING CASE AND H=0
find the cutoff parameters by equating these expressions to

Eq. (28). The result for closed shells is We now include the effect of the Coulomb repulsions be-

tween anyons

1 1
6= —exp{ — —| 14| 7|[(Ngyg—1)(G+Z%/14)— G]
2 7] 2aBk%k |rkJ|
vpz -
+ %[1+|V|(NC|—1)]U2”I’3, (34 in the expression for the real part of local energyERER),

[Eg. 11], but in a vanishing external magnetic field. Here, as
in Sec. Ill, we assume that=|v|.
The Coulomb interaction part contributes wit{N—1)

integrals of the form W(R)(1/ry;|)¥+(R)dR. These in-

while for open shells it is

6= Eex;{— i 1+|v|G(N-2) tegrals can be evaluated using Eq. 23%nd
2 v
o) bV
ZVBZ | | 2T2 f e—aXI bX dX: , 39
RN L PN =D e o 0 RN~ TP e L

(35) where Re>—1 and Re>|Reb|. The result is

whereN=2 andT=(N—1)/2+ S/N. .1 . . (ma\Y?
In the high magnetic field regiméor for weak confine- f lI’T(R)W‘I’T(R)dR: o (40)
men) the Fock-Darwin single-particle energies tend toward "

Landau levels, the lowest energy state having the quantumihe averagedreal part of the local energy is
numbersn=0 and m=<0 and energyR. In this limit the

for X=1/a¥?. Two complex and two real solutions of this
equation can be found by the Descartes-Euler methdtie
Using this choice in the general formulgg. (28)] we arrive ~ minimum energy is given by the expression

at the closed analytic expression for the approximate ground

state energy £ NN 2 2M
=5 5 +Xot |
“2ix2 T Xo

ground state energy dfl particles isNR, independent of N 1
|v].13205This exact result can be reproduced with =5 | Nat+—+2M al/z), (41)
NYP=1+1B(N-1)/2, (36)  with
which gives the cutoff parameter |7 7\ PN-1 To
M= (42
2] 2 ag’
5= Eex;{ - %{4,,/8” v|+|v|[[N(4G+1) The extremum conditiodE/da=0 leads to the equation
2 4
-N=0 (43
—(86+1)1}}ré. (37)

(44)

Eo=PN[1+vB(N—1)/2]— vBRN(N—1)/2. (398
and it is achieved at the point

Besides the high magnetic fiel@r weak confinement
limit used here to fix the cut-off parametéy the expression
obtained fork, reproduces the exact ground state energy of
noninteracting fermiongthe sum of theN lowest Fock- \where
Darwin energiesin the whole magnetic field range beyond
the last crossing of th&lth level withn=0m=—(N—-1), A={M?/128+[(N12)3+ (M ?/128)2]Y2 13,
which defines the so-callethaximum density droplétFi-
nally, approximate expressions E¢82),(33) and (38) give B={M 2/128-[(NI12)3+ (M 2/128)2]¥213  (46)
the ground state enerdy,=PN of N bosons ¢=0) in a
magnetic field and harmonic confining potential. The sepaAgain, the ground state ener@g [Eq. (44)] has a logarith-
rate discussion provided here for small and large magnetimic divergence in the limity—0. Assuming that\" can be
fields is in correspondence with the treatment of ke 3 regularized, one can recognize two limits of interest: one
case discussed in Refs. 21 and 5. corresponding to weak correlationg,/ag<<1,

Xo=(A+B)Y2+[—(A+B)+2(A?~AB+B?)17'2,
(45)
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150 Following steps similar to previous sections we obtain the
140 / 1 ground state energ§n standard units
: N 2\ g
. -~ w vVow
5 — Eo=fwo| = +X3| 1+ —— | — —(N—=1)+ —|,
£ =g T2 a0f) 2w :
5§ N=71] | (50)
wherefo is formally the same expression as E45) after
replacing N—AN;=M[1+02/(40?)] and M—M;
= MI[1+ w?/(4w?)] in Eq. (46). The asymptotic expres-
‘ sions are
6 7
To/ap
My wg | vBo (N-1)
; ; Eg~N#% Ny — )l —= |- —=
FIG. 3. Coulomb interaction parametgy/ag dependence of the 0 ®o 1 1/4 2 2 2
- N 4o g
ground state energy for 7 — 10 electrons calculated by variational 1 0 51)
(Ref. 4 and fixed-node quantum Monte Carlo methdBef. 42
(dashed curvedresults of both calculations are indistinguishable in
these curvesand by formula(44) (solid curves. and
M 3Nﬁ0)0 Nl w2
Eo~ N( NV24 —) 47 Eo~ ( M+ 1+
1/4 0 1
N 2 3m3® 4o}
and another for strong correlationg,/ag>1, vBws (N—1)
- (52)
3(1)0 2
3N N
EO%T M2/3+ ik (48
3M for very small and very large values of/ag, respectively.

We regularize the logarithmic divergence by fittingy to
known numerical results for the ground state energy of quan-
tum dots in external magnetic fields.

In order to determine the cutoff parametgrand due to the
lack of analytic results, we need to fit to known numerical
results for the ground state energy at special values of the 'y compare our results with the ground state calculations
paramgtenro/aB. ) of Ref. 45 for GaAs dots in an external magnetic field. The
In Fig. 3 we compare the ground state energies calculatefhg,iis of these calculations are very close to the results of
for 7-10 elecirons using .EGWP’ with the noninteracting  pets 46 and 47 computed by exact diagonalization and
N=1+»(N-1), to variational" and fixed-node quantum quantum Monte Carlo methods, respectively. For GaAs

'V'Ogte CaErIo c:tlculat(;ojg (?lflo seehRef.h4)3 ibuti ¢ guantum dotsM* =0.06™, and the dielectric constant is
rom Eqs.(47) and (48) follows that the contribution of = .4 4 Therefore, the effective Bohr radiusg

e sasicsdpndarc e e round s snry 250 LS 00 S o ey o
b ’ gig 9 effective Hartree [H*=M*e*(e?4%)] — is H*

correlationsry/ag . For large values ofy/ag one can com- .
o B g 0’8 =11.86 meV. The cyclotron frequency is,=eH/(M*c)

pare the dependence of the ground state en¢kgy, (48)], RSO :
with the estimate given in Ref. 44. The asymptotic behavior[iﬁils'glj;;'tyér:g I—:ZS|HF|)avr\}hi(l)g ;)ucrorvrvggl( c\évr?]b?:z:tlijcr)];eof

of the ground state energy witk derived from our expres- the signs of these quantities is given in EGS0)- (52)].

ion isEy,~N5? (as in Ref. 44. ; :

ston 15Eo @si * Thus, the energy quanta for this frequencyiis,=1.7269
-H- (meV/T). Here we took into account thatw,

we consider the case of a confined Cou|omb=eﬁ/(2Mc)=O.05785 meV/T, and the magnetic figitis

Finally, g . . )
anyon gas in an external magnetic field. The resulting exneasured in Tesldl) magnetic units. The Coulomb interac-

pression for the averaged local energy is tion parameterry/ag in our case is equal torg/ag

= JH*/(fhwg).
2 To compare with the results of Ref. 45 for spin polarized
E= E N a+ i 1+ Le +2M a2 electrons, we calculated the ground state energy using Eq.
2 % w3 (50) with the expressiodV=N (i.e., noninteracting/\’ with

v=1), for three and four particles as a function of the mag-
vBwc N(N—1) (49) Metic field strengthH. As in Ref. 45 we considered.wg
2wg 2 ' =3.37 meV. Comparison of these results is displayed in
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70 800

60

50 |-

Ep[meV]

40

30 |---.

20 0

H|Tesla) t

FIG. 5. Ground state enerdsy=(Eq— Nz w)/ (% wg) for 16—40
electrons calculated using the expression EsQ) for ry/ag
=1.911, applying the expression faf Eq. (53) with |v|=1 (solid
curves, and energy for classical electro(Ref. 48 (dashed lines
Herew= (wg-i- w§/4)1/2 andt=w./wq.

FIG. 4. Magnetic fieldH dependence of the ground state energy
for N=3 andN =4 spin-polarized electrons in a harmonic potential
calculated in Ref. 4%the dashed curv@gsand using Eq(50) (the
solid curves. As in Ref. 45 we usedhiwy=3.37 meV (y/ag
=JH*/(hwy), where the effective Hartreel* is equal toH*

=11.86 meV).
Fjg. 4.. The devia_tion of our results with respect to the ones Q= Z @e 2[1+|,,|(N_ D]l (58)
given in Ref. 45 is no more than 10%. |v[*wo(N—1)

It turns out that this expression fa¢ with v=1 is appro-
priate for the description of a small number of electroNs ( _
—3,4,5,6) and not large magnetic fields. For large number ofor N=2. Here we took into account thaf depends weakly
particles and a wide range of magnetic fields one can writ®n the Coulomb parametep/ag (the results indicated in
the approximate expression fav (here we return to the Fig. 3 have been calculated witi not having this parameter

original signs ofr, e, andH), dependence
In Fig. 5 we compare the ground state energy calculated

with the expression Eq(50), [using Eg.(53) for A with

|v|=1] for 16<N=<40 and G<w./wy<20 (ry/ag

12 1212 =1.911), with the calculations for a classical system of elec-

L VPoc(N—1) _(Vﬂch /) /} (53  trons of Ref. 48. The deviation is maximéo more than
4w wo ’ 15%) in the range IK(K—1)]*’<w./wo=<(N—2)/(N

—1)2, whereK is the number of closed shells. This range

of magnetic fields corresponds to the crossings of Fock-

N=F|[1+|v|(N=1)]*2

and thus ford,

1 F Darwin levels(see Ref. 39 and Sec. J\and, therefore, the
5=§ex _|7|(1+|V|G(N_2) single particle ground state energy of electrons changes
many times asv. increases. One can suppose that the Cou-
2 lomb interaction shifts the levels but the qualitative structure
[v]ocD v _ 2 (54  Of the many particle ground state is still complex. Thus, in

4w(2) 2|v|wg 0’ this range of parametan./w, the expression fo/V is not

, uniquely defined. We could not find a more appropriate ex-

with pression for\ than Eq.(53), for the magnetic fields indi-

1 cated in Fig. 5.
F Pl , (55
1+ VIIl. CONCLUSION
@q

) We have used the anyon concept combined with a varia-
N“—2N-3 tional calculation to obtain an analytic closed-form expres-

— 2
D= 4(N—1) +v*G(N-2), (56) sion for the approximate ground state energyNafioninter-
acting and Coulomb-interacting particles in a 2D harmonic
172 s vBw N2\ 12 confining potential, with and without an external magnetic
C=N=1 +[1+[|v[(N=1)]"= (w—) , (57)  field. The crucial point of this approach is the appearance of
0 a logarithmic divergence connected with a cut-off parameter,
and when evaluating the contribution of the gauge field vector

165105-8



APPROXIMATE GROUND STATE OF A CONFINED . .. PHYSICAL REVIEW B8, 165105 (2003

potential. Following arguments from the literature, according ACKNOWLEDGMENTS

to which the cutoff parameter cannot be zéescept for the

bosonic limiy, we used it to fit our results to exact and nu-  One of the authoréB.A.) acknowledges support from the

merical ground state energies known for special values of thBDAAD organization of the Government of Germany. He also
system parameters. In doing so we provided closed analytithanks the Los Alamos National Laboratory and RIISE, Hi-
expressions for the approximate ground state energy dependishima University of Japan, for their kind hospitality and
ing upon|v|,N,wq,rg/ag and w./ wg. financial support.

1J. M. Leinaas and J. Myrheim, Nuovo Cimento Soc. Ital. Fis., B?*C. Chou, Phys. Rev. B4, 2533(1991); ibid. 45, 1433(1992; C.

37,1 (1977).

2F. Wilczek, Phys. Rev. Let48, 1144(1982.

3S. Forte, Rev. Mod. Phy$4, 193(1992; R. lengo and K. Lech-
ner, Phys. Re213 179(1992; Quantum Hall Effegtedited by
M. Stone(World Scientific, Singapore, 1992

4A. Lerda, Anyons(Springer-Verlag, Berlin, 1992

SA. Khare, Fractional Statistics and Quantum Theafvorld Sci-
entific, Singapore, 1997

F. Wilczek, Fractional Statistics and Anyon Superconductivity
(World Scientific, Singapore, 1990

L. Jacak, P. Hawrylak, and A. Wojuantum Dots(Springer-
Verlag, Berlin, 1997.

8G. Burkard, D. Loss, and D. P. Di Vincenzo, Phys. Revs®
2070(1999.

°M. G. Taut, cond-mat/0002067.

1ON. F. Johnson and L. Quiroga, Phys. Rev. L&, 4277(1995.

Ly, -S. Wu, Phys. Rev. Lett53, 111 (1984, ibid. 53, 1028E)
(1984).

Chou, L. Hua, and G. Amelino-Camelia, Phys. Lett286 329
(1992; G. Amelino-Cameliajbid. 299 83 (1992.

25A. Comtet, J. McCabe, and S. Ouvry, Phys. Lett.2B0, 372
(1992); J. McCabe and S. Ouvrihid. 260, 113(1991); A. Das-
nieres de Veigy and S. Ouvnjid. 291, 130(1992; Nucl. Phys.
B 388 715(1992.

26G. Amelino-Camelia, Phys. Lett. B86, 97 (1992.

27D, Sen, Nucl. Phys. B60, 397 (1991); D. Sen and R. Chitra,
Phys. Rev. B45, 881(1991).

28G. Amelino-Camelia, Phys. Lett. B26, 282 (1994).

29C. D. Batista and G. Ortiz, cond-mat/02071@publishedl

30B. Abdullaev, C. D. Batista, and G. Ort{mnpublished

31R. B. Laughlin, Phys. Rev. Let60, 2677(1988.

32A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Phys. Re\3®
9679(1989.

33\, M. Galicki, B. M. Karnakov and V. |. KoganProblems in
Quantum Mechanicén Russian (Nauka, Moscow, 1981

34D. M. Ceperley and M. H. Kalos, iMonte Carlo Methods in

12M. sporre, J. J. M. Verbaarschot, and I. Zahed, Phys. Rev. Lett. Statistical Physicsedited by K. BindekSpringer-Verlag, Berlin,

67, 1813(1991; M. V. N. Murthy, J. Law, M. Brack, and R. K.
Bhaduri,ibid. 67, 1817(1991).

M. Sporre, J. J. M. Verbaarschot, and |. Zahed, Phys. Rei6,B
5738(1992.

1R, Chitra and D. Sen, Phys. Rev.48, 10 923(1992.

I5A. Vercin, Phys. Lett. B260, 120 (1997).

163, Myrheim, E. Halrorsen, and A. Vercin, Phys. Lett2B8 171
(1992; A. Gonsales, J. Phys.: Condens. MafieA643(1997);
A. Gonsales, R. Perez, and P. Filevidad. 9, 8465(1997.

17A. Comtet, Y. Georglin, and S. Ouvry, J. Phys22 3917(1989:
M. D. Johnson and C. S. Canright, Phys. Rev.4B 6870
(1990.

18A. P. Polychronakos, Phys. Lett. 4, 362 (1991); J. Grunberg,
T. H. Hansson, A. Karlhede, and E. Westerberg, Phys. Rév, B
8373(199)); G. Dunne, A. Lerda, S. Sciuto, and C. A. Trugen-
berger, Nucl. Phys. B70, 601(1992; K. H. Cho and C. Rim,
Ann. Phys.(N.Y.) 213 295(1992.

19A. Dasnieres de Veigy and S. Ouvry, Phys. Rev. L&g. 600
(1994.

20F, [luminati, F. Ravndal, and J. Aa. Ruud, Phys. Lettl{, 323
(1992; J. Aa. Ruud and F. Ravndal, Phys. Lett.2B1, 137
(1992.

21A. Khare, J. McCabe, and S. Ouvry, Phys. Rev.4b, 2714
(1992.

22B. Roy, P. Roy, and Y. P. Varshni, Mod. Phys. Lett.83 159
(1994.

23R. Perez and A. Gonsales, Phys. Rev6® 7412(1998.

1979.

35 s, Gradshteyn and I. M. RyzhiKable of Integrals, Series, and
Products(Academic Press, London, 1980

%B. Abdullaev, M. Musakhanov, and A.
cond-mat/0012428unpublishegl

3"Handbook of Mathematical Functionsdited by M. Abramowitz
and I. A. Stegur(Dover, New York, 1972

38H. B. Dwight, Tables of Integrals and other Mathematical Data
(Macmillan, New York, 1961

39V, Fock, Z. PhysA47, 446(1928; C. G. Darwin, Cambridge Phi-
los. Soc.27, 86 (1931).

40G. A. Korn and T. M. Korn,Mathematical Handbook for Scien-
tists and Engineer$McGraw-Hill, New York, 1968.

41F. Bolton, Phys. Rev. Letf73, 158 (1994).

42F, Bolton, Solid State Electro7, 1159(1994.

43A. Harju, V. A. Sverdlov, R. M. Nieminen, and V. Halonen, Phys.
Rev. B 59, 5622 (1999; F. Pederiva, C. J. Umrigar, and E.
Lipparini, ibid. 62, 8120(2000; M. Eto, cond-mat/010134&in-
published.

4E. R. E. Yang, A. H. MacDonald, and M. D. Johnson, Phys. Rev.
Lett. 71, 3194(1993.

45K. Varga, P. Navratil, J. Usukura, and Y. Suzuki, Phys. Re63B
205308(2001).

46p. Hawrylak and D. Pfannkuche, Phys. Rev. L&, 485(1993.

4TF. Bolton, Phys. Rev. B4, 4780(1996.

483, Kainz, S. A. Mikhailov, A. Wensauer, and U. §aber, Phys.
Rev. B65, 115305(2002.

Nakamura,

165105-9



