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Approximate ground state of a confined Coulomb anyon gas in an external magnetic field
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We derive an analytic, albeit approximate, expression for the ground state energy ofN Coulomb interacting
anyons with fractional statisticsn, 0<unu<1, confined in a two-dimensional well~with characteristic fre-
quencyv0) and subjected to an external magnetic field~with cyclotron frequencyvc). We apply a variational
principle combined with a regularization procedure which consists of fitting a cutoff parameter to existing
exact analytical results in the noninteracting case, and to numerical calculations for electrons in quantum dots
in the interacting case. The resulting expression depends upon parameters of the systemunu,N,v0 ,r 0 ,aB and
vc , wherer 0 represents a characteristic unit length andaB the Bohr radius. Validity of the result is critically
assessed by a comparison with exact, approximate, and numerical results from the literature.
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I. INTRODUCTION

The exchange statistics of particles whose orbital mot
is restricted to two space dimensions differs substanti
from the three-dimensional~3D! case. The topology of thei
~multiply connected! configuration space allows for frac
tional statistics,1 characterized by a continuous parameten
which labels the possible one-dimensional representation
the braid group. For particles in two dimensional,n may
attain values between 0~for bosons! and 1 ~for fermions!,
thus two dimensional~2D! particles are called anyons.2 The
concept of anyons has been used to describe quasipa
excitations in the fractional quantum Hall regime3–5 and in
high-Tc superconductors.6

A system of particular current interest is that of 2D ele
trons in a parabolic confinement potential, the so-cal
quantum dot or artificial atom.7 These systems, realized i
semiconductor nanostructures, are objects of fundame
studies of ground state properties of interactingN-particle
systems and have also a potential for applications in quan
information and computation.8 Exact closed-form solutions
of the problem are reduced to a few simple cases due t
intrinsic mathematical complexity.9,10 Typically, ground state
calculations make use of numerical simulations for in
vidual choices of the parameters of the system. It would
desirable to have an accurate, albeit approximate, analy
expression describing the ground state energy of such a
tem as a function of the parameters of the system~including
an external magnetic field applied perpendicular to the pl
of the dot!. In order to derive such a formula we make use
the anyon concept including the effect of the Coulomb int
action.

Anyons in a parabolic confining potential~with and with-
out an external magnetic field! has been the subject of se
eral investigations in the past. For theN52 case an exac
solution to the spectral problem exists.1–3,5 For the noninter-
acting case, its generalization toN53 ~without magnetic
field! is considered in~Ref. 11!. Numerical calculations have
been performed for the lower part of the energy spectrum
0163-1829/2003/68~16!/165105~9!/$20.00 68 1651
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N53 ~Ref. 12! and 4.13 Making use of the separation of th
center-of-mass and relative motion one finds in the tw
anyon case that the ground state energy for the relative
tion is a linear function ofn for 0<n<1. For N53 and
4,5,12,13 the ground state energy of the relative motion is
linear function ofn only near the bosonic limitn.0. The
ground state in the fermionic end (n51) is continuously
connected to an excited state of the bosonic spectrumn
50) and consequently — when adding the lowest energy
the center-of-mass motion~which does not depend onn) —
one finds forN53 and 4~and likely for all higherN14! a
nonlinearn dependence of the ground state energy. In
case of interacting anyons in no external magnetic field
energy spectrum for two anyons at some fixed values of
Coulomb interaction parameter was found analytically
Ref. 15 and approximately, for two and three anyons,
Ref. 16.

In the presence of an external magnetic field one
study the interplay between the statistical and physical m
netic fluxes. This has been done analytically for theN52
noninteracting anyon case with confinement,17 while the
cases withN.2 have been investigated preferentially wit
out confinement.18–20 The ground state for theN53 case
including confinement and magnetic field was calculated
Ref. 21. The case with the applied external magnetic fi
and Coulomb interaction for two anyons in a harmonic p
tential was considered in Ref. 22 and for two and thr
anyons in Ref. 23. Reference 5 provides a review of all th
studies.

In our treatment of theN-anyon problem we make use o
the bosonic representation of anyons that works with a ga
vector potential to account for the fractional exchange sta
tics but allows to use a product ansatz for theN-body wave
function. We apply a variational principle by constructin
this wave function from single-particle Gaussians of varia
shape. It is well known from perturbative ground state c
culations for anyons in an oscillator potential that the expr
sion for the ground state energy has a logarithmic diverge
connected with a cutoff parameter for the interpartic
©2003 The American Physical Society05-1
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B. ABDULLAEV et al. PHYSICAL REVIEW B 68, 165105 ~2003!
distance.14,24–28We face the same problem in our variation
treatment. Making use of the physical argument~see Ref. 4!
that for nÞ0 this distance has to have some finite value,
regularize the formula obtained for the ground state ene
by an appropriate procedure that takes into account s
existing exact analytical results, in the case without Coulo
interaction, and numerical results for electrons in quant
dots, in the case with Coulomb interaction. Our formu
which is an approximate closed-form expression depend
upon n,N, v0 ~confinement parameter!, and r 0 /aB ~Cou-
lomb interaction parameter!, where r 05@\/(Mv0)#1/2 and
aB5\2/(Me2) ~in the presence of a magnetic field also
the parametervc /v0, and we need to replacen by unu), will
be compared to exact, approximate, and numerical result
quantum dots reported in the literature.

The paper is organized as follows: In Sec. II we descr
the system and motivate the ansatz for the variational tr
ment, in Sec. III we present the calculations without, and
Sec. IV with a homogeneous magnetic field for the ca
without Coulomb interaction. Calculations including Co
lomb interactions are presented in Secs. V and VI. Fina
Sec. VII summarizes the main conclusions.

We would like to note the existence of two seeming
unrelated notions of anyonic statistics in the literature: o
originally introduced in first quantization in the coordina
representation, and another derived within the framework
quantum field theory. In both cases the original motivation
introduce such particles was basically as an inherent po
bility in the kinematics of~211!-dimensional quantum me
chanics and clearly the concepts, if correctly implement
should be equivalent whether one uses first quantizatio
the coordinate representation or second quantization.29,30

Within the framework of quantum field theory fermions c
be kinematically transformed into hard-core bosons~through
statistical transmutation! but not into canonical ones, thu
preserving the exclusion statistics properties of the partic
More generically, the Hamiltonian spectra of particles sh
ing the same exclusion statistics can be connected throu
continuous mapping. The anyon notion used in the pres
paper is consistent with the one developed in the framew
of the bosonic representation in first quantization. Had
used the fermionic representation we would have ended u
an excited bosonic state.

II. INTERACTING ANYONS IN A 2D PARABOLIC WELL
IN THE PRESENCE OF AN EXTERNAL MAGNETIC

FIELD: GENERAL SETUP

The Hamiltonian ofN spinless anyons of massM and
chargee confined to a 2D parabolic well, interacting throug
Coulomb repulsions, and in the presence of an external
mogeneous magnetic field,HW 5HeW z @vc5ueHu/(Mc)#, is
given by

Ĥ5
1

2M (
k51

N

„$pW k2@AW n~rWk!1eAW ext~rWk!/c#%21M2v0
2ur k
W u2

…

1
1

2 (
k, j Þk

N
e2

urWk ju
. ~1!
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HererWk andpW k represent the position and momentum ope
tors of thekth anyon in two space dimensions:

AW n~rWk!5\n (
j Þk

N
eW z3rWk j

urWk ju2
~2!

is the anyon gauge vector potential,11,31 rWk j5rWk2rW j , andeW z
is the unit vector normal to the 2D plane. The factorn de-
termines the fractional statistics~or spin! of the anyon: it
varies betweenn50 ~bosons! andn51 ~fermions!.The ex-
ternal magnetic field enters by minimally coupling the vec
potentialAW ext(rWk)5HW 3rWk/2.

In order to find an analytic expression for the ground st
energy as a function ofn,N, v0 , r 0 /aB , andvc /v0 @in the
presence of a magnetic fieldn is replaced byunu ~see Sec. IV
below!# we employ a variational scheme by minimizing th
expression for the total energy,

E5

E CT* ~RW !ĤCT~RW !dRW

E CT* ~RW !CT~RW !dRW
~3!

with a trial wave functionCT(RW ) depending on the configu
ration RW 5$rW1 . . . .rWN% of the N anyons. To motivate the
choice ofCT(RW ) we invoke the mean-field approximation t
the gauge vector field

AW n~rW !5
1

2
BW n3rW ~4!

introduced by Fetter, Hanna, and Laughlin.32 This single-
particle vector potential can be understood as that of a
mogeneous ‘‘magnetic’’ fieldBW n52pr\neW z connected with
the carrier densityr and the anyonic factorn ~note:BW n van-
ishes in the bosonic limit!. By analogy to a physical mag
netic field one can introduce a ‘‘magnetic’’ lengthl n

5(\/Bn)1/2. The other characteristic length of the system
the mean distance between particlesr 051/Apr. Taking into
account only this mean gauge vector field~and not the exter-
nal parabolic confining potential! one obtains a Landau
spectrum33 and it is reasonable, in the bosonic representat
of anyons when the many-body wave function takes
product form

CT~RW !5)
k51

N

cT~rWk!, ~5!

to adopt the single-particle trial functionscT(rWk) in the form

cT~rWk!5CexpS 2~a81n!
~xk

21yk
2!

2r 0
2 D , ~6!

typical for the lowest Landau level. HereC is a normaliza-
tion constant anda8 a variational parameter. To include th
external confining potential we identifyr 0 with the charac-
teristic length (\/Mv0)1/2 of this harmonic oscillator. When
5-2
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APPROXIMATE GROUND STATE OF A CONFINED . . . PHYSICAL REVIEW B68, 165105 ~2003!
energies are expressed in units of\v0 and lengths in units of
r 0 the normalized trial wave function reads

CT~RW !5S a

p D N/2

)
k51

N

expS 2a
~xk

21yk
2!

2 D , ~7!

wherea5a81n.
In evaluating the expectation valueE @Eq. ~3!# it is con-

venient to consider the local energy EL(RW )
5CT

21(RW )ĤCT(RW ).34 In generalEL(RW ) is a complex func-
tion,

EL~RW !5ReEL~RW !1 i ImEL~RW !, ~8!

with

ImEL~RW !52a (
k51

N

@~AW n~rWk!1eAW ext~rWk!/c!•rWk#. ~9!

However, evaluation of the expectation valueE
5 * CT(RW )EL(RW )CT(RW )dRW immediately yields

E CT~RW ! ImEL~RW !CT~RW !dRW 50, ~10!

and, therefore, the only quantity to consider in the followi
is ReEL(RW ). Before proceeding, we would like to emphasi
that the absolute ground state of the anyon system is a
analytic function ofn. Our calculations will simply provide a
smooth interpolation.

III. NONINTERACTING CASE AND HÄ0

In the noninteracting case, in the absence of an exte
magnetic field, the local energy is

ReEL~RW !5 (
k51

N Fa1
xk

21yk
2

2
~12a2!1

n2

2
@AW n~rWk!#

2G .
~11!

The expectation value of ReEL(RW ) can be easily calculate
for the first two terms of Eq.~11!. The last term contributes
with integrals of the form

E CT~RW !
rWk j•rWkl

urWk ju2urWklu2
CT~RW !dRW ,

which fall into one class ofN(N21) integrals withj 5 l and
a second class ofN(N21)(N22) integrals withkÞ j ,kÞ l
and j Þ l . The first class of integrals can be evaluated usin35

E
0

`

Ei~ax!e2mxdx52
1

m
ln S m

a
21D ~12!

with a.0, Rem.0, andm.a. @Ei(y)52 *2y
` e2zdz/z is

the exponential integral withy,0.# The result is

E CT~RW !
1

urWk ju2
CT~RW !dR'W a ln S 1

2d D ~13!
16510
n-

al

which displays a logarithmic divergence with the cutoff p
rameterd tending to zero. The integrals of the second cla
yield

E CT~RW !
rWk j•rWkl

urWk ju2urWklu2
CT~RW !dRW 52aG ~14!

where G531/2 ln (4/3). Putting together all these differen
contributions one obtains

E5
N

2 S N a1
1

a D , ~15!

with

N511n2~N21!F ln S 1

2d D2G~N22!G , ~16!

which attains a minimum (dE/da50) for

a05N 21/2. ~17!

Thus, the resulting expression for the ground state energ

E05N N 1/2. ~18!

The logarithmic divergence displayed inE0 when d→0
has also been found in other approximate perturbative tr
ments of the problem and is widely discussed in the lite
ture. To remedy this problem, various solutions were int
duced: In Ref. 24 a hard-core centrifugal term and in Ref.
a pair correlation term were introduced in the trial wa
function, while in Ref. 26 both modifications ofcT(rW) were
used. An artificial repulsive deltalike potential was assum
in Refs. 14, 27 and 28 when the unperturbed ground s
wave function is a product of single particle~gaussian! wave
functions. Here we assume, as in Ref. 4, that the cutoff
rameterd cannot be zero forn.0, away from the bosonic
limit, since it corresponds to the square of the nearest
tance between the particles. Thus, for anyons in the parab
confining potentiald is definitely smaller than 1~in units of
r 0

2). In the following we determined by fitting to appropriate
results for special values of the parameters of the system

Wu11 has computed the ground state energy ofN anyons
in a 2D parabolic potential near the bosonic limitn.0 and
obtained

E'@N1N~N21!n/2#. ~19!

To regularize the expression forE0 we make use of this
result by expandingE0, @Eq. ~18!# for n→0 and identify the
leading term inn2 with the term linear inn of Eq. 19, with
the result

d5
1

2
expF2

11nG~N22!

n G . ~20!

With this value of the cutoff parameter the final analy
expression for the ground state energy is~also see Ref. 36!

E05N@11n~N21!#1/2. ~21!
5-3
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By construction, it is evident that this formula reproduc
the result of Wu11 in the bosonic limitn→0. Less trivial,
however, is the asymptotics in the fermionic end: For largN
it is consistent~up to a numerical factor! with the approxi-
mate expressionE'n1/2N3/2 of Chitra and Sen14 calculated
perturbatively from the bosonic end forn.1/N. These au-
thors also studied the fermionic endn.1 and found forN
@1 the expression E'(8N3)1/2/3. This formula is
asymptotic to the exact ground state energyE5Ncl(1
18Ncl)

1/2/3 for Ncl fermions filling the firstK closed shells5,
where Ncl5K(K11)/2. Note that Eq.~21! provides a
monotonically increasing function ofn while in the closed-
shell case the exact fermionic end has lower energy~by a
factor 81/2/3) than the one calculated from the bosonic en

In Fig. 1 we compare exact ground state energies~the sum
of occupied harmonic oscillator states!, for up toN572 fer-
mions (n51), with the results obtained from Eq.~21!. As it
turns out, the relative deviation does not exceed 6%. Fig

FIG. 1. Relative deviation~in percent! of the approximate
ground state energyE0 @Eq. ~21!#, from the exact ground state en
ergy, Eexact , for up to N572 noninteracting fermions (n51) in a
parabolic confining potential. The dash-dotted line indicates
asymptotic (N→`) value.

FIG. 2. Relative deviation~in percent! of the approximate
ground state energyE0, @Eq. ~21!#, from the exact ground stat
energy for two, three, and four anyons in a parabolic confinem
potential.
16510
s

.

re

2 shows the relative deviation for two, three, and four anyo
as a function ofn ~the exact ground state energies here
taken from Refs. 1, 2, 12 and 13!. In this figure we have
considered all the cases for which the exact ground s
energies are known. When the number of anyonsN in-
creases, the absolute ground state of the system is a
analytic function ofn because there is approximatelyN1/2

number of level crossings14. Since our formula forE0, @Eq.
~21!# has the same (N→`) asymptotics as the formula ob
tained by Chitra and Sen,14 one expects that, for 0,n,1,
this relative deviation will be bounded as the number of p
ticles is increased.

It should be noted, that due to our regularization pro
dure the ground state energy obtained, Eq.~21!, is not an
upper bound to the ground state as one would expect fro
variational principle. In fact, forN52 and n51 Eq. ~21!
yields a value below the exact ground state~see Fig. 1!. This
is a consequence of the fitting ofd to the result of Wu,11

which for N52 leads to a square root dependence inn,
while the exact result for this case gives a linear depende
On the other hand, Eq.~21! applies for the whole range o
parameters of the systemN,n, andv0.

IV. NONINTERACTING CASE AND HÅ0

In this section we include an external homogeneous m
netic field. In the presence of an external magnetic fieldHW
the statistical factor n may change sign becausen
5ef/2p\ is a fraction of the flux quantum carried by eac
anyon,f052p\c/ueu, and this flux can be antiparallel to th
magnetic field.4,19 The Hamiltonian is invariant under th
transformation (xk ,yk ,n,b)→(xk ,2yk ,2n,2b), whereb
5eH/ueHu, and thus the energy spectrum is invariant und
(n,b)→(2n,2b) ~see Ref. 19!. The spectrum only de-
pends onunu, nb and the cyclotron frequencyvc ~apart from
N andv0).

The real part of the local energy is given by

ReEL~RW !5 (
k51

N Fa1
xk

21yk
2

2 S 12a21
vc

2

4v0
2D

1
unu2

2
@AW n~rWk!#

21
nbvc

2v0
(
j Þk

N
rW k j•rWk

urWk ju2
G .

~22!

We need to compute the contribution coming from the l
term in ReEL . To this end, we have to solve the integral

E CT~RW !
rWk j•rWk

urWk ju2
CT~RW !dRW

(N(N21) integrals of this form contribute to the energy!.
With the help of the integral37

E
0

`

e2a2x2
I n~bx!dx5

p1/2

2a
eb2/8a2

I n
2S b2

8a2D , ~23!
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APPROXIMATE GROUND STATE OF A CONFINED . . . PHYSICAL REVIEW B68, 165105 ~2003!
where Ren.21, Rea2.0 @ I n(x) is the modified Besse
function#, and38

E
0

`

e2ax sinh~bx!dx5
b

a22b2
, ~24!

with a.b>0, one gets

E CT~RW ! (
k, j Þk

N
rW k j•rWk

urWk ju2
CT~RW !dRW 5

2N~N21!

2
. ~25!

The averaged real part of the local energy is

E5
N

2 FN a1
1

a S 11
vc

2

4v0
2D G2

nbvc

2v0

N~N21!

2
,

~26!

and takes its minimum value for

a05S 11
vc

2

4v0
2D 1/2

N 21/2. ~27!

The resulting energy minimum is given by~for now we re-
turn to standard units of energy and length!

E05N\S v0
21

vc
2

4 D 1/2

, N 1/22
nb\vc

4
N~N21!.

~28!

As in Sec. III this expression diverges logarithmically in t
limit of a vanishing cutoff parameterd. Following the line of
arguments of the Sec. III, the cutoff parameter — repres
ing the squared minimum particle distance — should not
zero except for the bosonic limitn50. Having this in mind
we determined by fitting to known exact results for th
ground state energy.

To establish these results we calculate the fermion gro
state energy from the single-particle spectrum of the 2D h
monic oscillator in an external magnetic field perpendicu
to the 2D plane~Fock-Darwin spectrum39! ~also see Ref. 33!:

En,m5\Av0
21

vc
2

4
~2n1umu11!1m

\vc

2
. ~29!

In Eq. ~29! n and m are the radial and angular momentu
quantum numbers, respectively. The ground state energ
N spinless fermionic particles is the sum of theN lowest
single-particle energies~Pauli exclusion principle!. Follow-
ing Ref. 5 we introduce a parameterz5R/P, where R
5\vc/2 and P5\(v0

21vc
2/4)1/2 and express the groun

state energy in units ofP. The parameterz changes between
0 and 1 when the external magnetic field is changed betw
0 and infinity. The Fock-Darwin spectrum is characterized
level crossings. These crossings, occurring atz
5zb ,z2 ,z3 , . . .zl , have to be considered in evaluating t
ground state energy, their number therefore depending u
N. Every interval between level crossings is characterized
its own expression for the ground state energy. Howe
only for the intervals 0<z<zb and zl<z<1 can one write
down the expressions for the energy as a function of
16510
t-
e

d
r-
r

of

en
y

on
y
r,

e

number of particlesN. For the sake of clarity let us conside
some special values ofN. The cases with one and two fe
mions are not affected by crossings. ForN53 we have one
crossing atzb5zl51/3 and two expressions for the groun
state energy:E/P55 andE/P5623z. This crossing point
coincides with the one considered in Refs. 5 and 21 for th
anyons. The case withN55 has two crossingszb51/3 and
zl53/5 and three expressions for energy:E/P511
22z, E/P51225z and E/P515210z in the intervals 0
<z<zb , zb<z<zl andzl<z<1, respectively. On the basi
of these special cases one can make the following gene
zations.

~i! There areNcl2K crossing pointsz5zb ,z2 ,z3 , . . .zl
for Ncl fermions in K closed shells. Therefore, there a
Ncl2K11 expressions for the ground state energy of ferm
ons and ground state spectra of anyons for this numbe
particles.

~ii ! One can write the expressionzb51/(2K21) for K
closed shells. The last crossing point does not depend oK,
it is a function ofN, zl5(N22)/N, and, thus, it is applicable
for any numberN.

~iii ! One can write the expression for the ground st
energy in the interval 0<z<zb ~we choose the smallestzb
for all particles filling the given shell! or 0<vc<v0/@K(K
21)#1/2 for K>2.

E/P'N3/21zS. ~30!

This expression is approximate@to within 6% accuracy~see
Sec. III!# for NÞNcl , whereS5 ( j 50

N2Nl21 (2Ns12 j ), Ns

is the integer part of@211(118N)1/2#/2 and Nl5Ns(Ns
11)/2, and becomes exact in the formE/P
5NclA(118Ncl)/3 for closed shells, i.e.,N5Ncl .

~iv!The expression for the ground state energy in the
tervalzl<z<1 or vc>v0(N22)/(N21)1/2, determined by
the lowest levels from each shell in agreement with
Fock-Darwin formula@Eq. ~29!#, is

E/P5N@~N11!2z~N21!#/2. ~31!

Having discussed the case of fermions (unu51) we now
determine the approximate expressions of the ground s
energy ofN noninteracting anyons for the two interestin
ranges of weak 0<vc<v0 /@K(K21)#1/2 and strongvc
>v0(N22)/(N21)1/2 magnetic fields. In the weak mag
netic field regime it is

E05PNcl@11unu~Ncl21!#1/2 ~32!

for closed shells and

E05PN@11unu~N21!#1/21nbRS ~33!

otherwise. Note that these expressions coincide with Eq.~21!
5-5
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B. ABDULLAEV et al. PHYSICAL REVIEW B 68, 165105 ~2003!
in the absence of an external magnetic field, i.e.,vc50. We
find the cutoff parameters by equating these expression
Eq. ~28!. The result for closed shells is

d5
1

2
expF2

1

unu S 11unu@~Ncl21!~G1z2/4!2G#

1
nbz

unu @11unu~Ncl21!#1/2D G r 0
2 , ~34!

while for open shells it is

d5
1

2
expF2

1

unu S 11unuG~N22!

1
2nbzT

unu~N21!
@11unu~N21!#1/21

unuz2T2

~N21! D G r 0
2,

~35!

whereN>2 andT5(N21)/21S/N.
In the high magnetic field regime~or for weak confine-

ment! the Fock-Darwin single-particle energies tend towa
Landau levels, the lowest energy state having the quan
numbersn50 and m<0 and energyR. In this limit the
ground state energy ofN particles isNR, independent of
unu.13,20,5This exact result can be reproduced with

N 1/2511nb~N21!/2, ~36!

which gives the cutoff parameter

d5
1

2
expF2

1

4unu $4nb/unu1unu@N~4G11!

2~8G11!#%G r 0
2 . ~37!

Using this choice in the general formula@Eq. ~28!# we arrive
at the closed analytic expression for the approximate gro
state energy

E05PN@11nb~N21!/2#2nbRN~N21!/2. ~38!

Besides the high magnetic field~or weak confinement!
limit used here to fix the cut-off parameterd, the expression
obtained forE0 reproduces the exact ground state energy
noninteracting fermions~the sum of theN lowest Fock-
Darwin energies! in the whole magnetic field range beyon
the last crossing of theNth level with n50,m52(N21),
which defines the so-calledmaximum density droplet.7 Fi-
nally, approximate expressions Eqs.~32!,~33! and ~38! give
the ground state energyE05PN of N bosons (n50) in a
magnetic field and harmonic confining potential. The se
rate discussion provided here for small and large magn
fields is in correspondence with the treatment of theN53
case discussed in Refs. 21 and 5.
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V. COULOMB-INTERACTING CASE AND HÄ0

We now include the effect of the Coulomb repulsions b
tween anyons

r 0

2aB
(

k, j Þk

N
1

urWk ju

in the expression for the real part of local energy ReEL(RW ),
@Eq. 11#, but in a vanishing external magnetic field. Here,
in Sec. III, we assume thatn[unu.

The Coulomb interaction part contributes withN(N21)
integrals of the form* CT(RW )(1/urWk ju)CT(RW )dRW . These in-
tegrals can be evaluated using Eq. 23 and35

E
0

`

e2axI n~bx!dx5
bn

Aa22b2~a1Aa22b2!n
, ~39!

where Ren.21 and Rea.uRebu. The result is

E CT~RW !
1

urW i j u
CT~RW !dRW 5S pa

2 D 1/2

. ~40!

The averaged~real part of the! local energy is

E5
N

2 S Na1
1

a
12M a1/2D , ~41!

with

M5S p

2 D 1/2N21

2

r 0

aB
. ~42!

The extremum conditiondE/da50 leads to the equation

X42MX2N50 ~43!

for X51/a1/2. Two complex and two real solutions of thi
equation can be found by the Descartes-Euler method.40 The
minimum energy is given by the expression

E05
N

2 F N
X0

2
1X0

21
2M
X0

G , ~44!

and it is achieved at the point

X05~A1B!1/21@2~A1B!12~A22AB1B2!1/2#1/2,
~45!

where

A5$M 2/1281@~N/12!31~M 2/128!2#1/2%1/3,

B5$M 2/1282@~N/12!31~M 2/128!2#1/2%1/3. ~46!

Again, the ground state energyE0 @Eq. ~44!# has a logarith-
mic divergence in the limitd→0. Assuming thatN can be
regularized, one can recognize two limits of interest: o
corresponding to weak correlations,r 0 /aB!1,
5-6
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E0'NS N 1/21
M

N 1/4D ~47!

and another for strong correlations,r 0 /aB@1,

E0'
3N

2 S M 2/31
N

3M 2/3D . ~48!

In order to determine the cutoff parameterd, and due to the
lack of analytic results, we need to fit to known numeric
results for the ground state energy at special values of
parameterr 0 /aB .

In Fig. 3 we compare the ground state energies calcula
for 7–10 electrons using Eq.~44!, with the noninteracting
N511n(N21), to variational41 and fixed-node quantum
Monte Carlo calculations42 ~also see Ref. 43!.

From Eqs.~47! and ~48! follows that the contribution of
the statistics~dependence uponn) in the ground state energ
is important for weak, and negligible for strong, Coulom
correlationsr 0 /aB . For large values ofr 0 /aB one can com-
pare the dependence of the ground state energy,@Eq. ~48!#,
with the estimate given in Ref. 44. The asymptotic behav
of the ground state energy withN derived from our expres
sion isE0;N5/3 ~as in Ref. 44!.

VI. COULOMB-INTERACTING CASE AND HÅ0

Finally, we consider the case of a confined Coulom
anyon gas in an external magnetic field. The resulting
pression for the averaged local energy is

E5
N

2 FN a1
1

a S 11
vc

2

4v0
2D 12M a1/2G

2
nbvc

2v0

N~N21!

2
. ~49!

FIG. 3. Coulomb interaction parameterr 0 /aB dependence of the
ground state energy for 7 – 10 electrons calculated by variatio
~Ref. 41! and fixed-node quantum Monte Carlo methods~Ref. 42!
~dashed curves! ~results of both calculations are indistinguishable
these curves! and by formula~44! ~solid curves!.
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Following steps similar to previous sections we obtain
ground state energy~in standard units!

E05
N

2
\v0F N

X̄0
2

1X̄0
2S 11

vc
2

4v0
2D 2

nbvc

2v0
~N21!1

2M
X̄0

G ,

~50!

whereX̄0 is formally the same expression as Eq.~45! after
replacing N→N15N/@11vc

2/(4v0
2)# and M→M1

5M/@11vc
2/(4v0

2)# in Eq. ~46!. The asymptotic expres
sions are

E0'N\v0F S N 1
1/21

M1

N 1
1/4D S 11

vc
2

4v0
2D 2

nbvc

2v0

~N21!

2 G
~51!

and

E0'
3N\v0

2 F S M 1
2/31

N1

3M 1
2/3D S 11

vc
2

4v0
2D

2
nbvc

3v0

~N21!

2 G ~52!

for very small and very large values ofr 0 /aB , respectively.
We regularize the logarithmic divergence by fittingd to
known numerical results for the ground state energy of qu
tum dots in external magnetic fields.

We compare our results with the ground state calculati
of Ref. 45 for GaAs dots in an external magnetic field. T
results of these calculations are very close to the result
Refs. 46 and 47 computed by exact diagonalization a
quantum Monte Carlo methods, respectively. For Ga
quantum dotsM* 50.067M , and the dielectric constant i
e512.4. Therefore, the effective Bohr radiusaB*
5\2e/M* e2 is aB* .97.90 Å and the unit of energy – th
effective Hartree @H* 5M* e4/(e2\2)# — is H*
.11.86 meV. The cyclotron frequency isvc5eH/(M* c)
@for simplicity, in this part of our work we assumen
[unu, e[ueu, and H[uHu while a correct combination o
the signs of these quantities is given in Eqs.~50!– ~52!#.
Thus, the energy quanta for this frequency is\vc51.7269
•H• (meV/T). Here we took into account that\vc
5\eH/(M* c)52MmBH/M* , the Bohr magneton ismB
5e\/(2Mc)50.05785 meV/T, and the magnetic fieldH is
measured in Tesla~T! magnetic units. The Coulomb interac
tion parameter r 0 /aB in our case is equal tor 0 /aB

5AH* /(\v0).
To compare with the results of Ref. 45 for spin polariz

electrons, we calculated the ground state energy using
~50! with the expressionN5N ~i.e., noninteractingN with
n51), for three and four particles as a function of the ma
netic field strengthH. As in Ref. 45 we considered\v0
53.37 meV. Comparison of these results is displayed

al
5-7
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Fig. 4. The deviation of our results with respect to the on
given in Ref. 45 is no more than 10%.

It turns out that this expression forN with n51 is appro-
priate for the description of a small number of electronsN
53,4,5,6) and not large magnetic fields. For large numbe
particles and a wide range of magnetic fields one can w
the approximate expression forN ~here we return to the
original signs ofn, e, andH),

N5FF @11unu~N21!#1/2

1
nbvc~N21!

4v0
2S nbvcN

1/2

v0
D 1/2G2

, ~53!

and thus ford,

d5
1

2
expF2

F

unu S 11unuG~N22!

1
unuvc

2D

4v0
2

1
nbvcC

2unuv0
2QD G r 0

2 , ~54!

with

F5
1

11
unu2vc

2

4v0
2

, ~55!

D5
N222N23

4~N21!
1unu2G~N22!, ~56!

C5
2N1/2

N21
1@11unu~N21!#1/22S nbvcN

1/2

v0
D 1/2

, ~57!

and

FIG. 4. Magnetic fieldH dependence of the ground state ener
for N53 andN54 spin-polarized electrons in a harmonic potent
calculated in Ref. 45~the dashed curves!, and using Eq.~50! ~the
solid curves!. As in Ref. 45 we used\v053.37 meV (r 0 /aB

5AH* /(\v0), where the effective HartreeH* is equal toH*
.11.86 meV).
16510
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Q52F nbvcN
1/2

unu2v0~N21!2
@11unu~N21!#G 1/2

, ~58!

for N>2. Here we took into account thatN depends weakly
on the Coulomb parameterr 0 /aB ~the results indicated in
Fig. 3 have been calculated withN not having this paramete
dependence!.

In Fig. 5 we compare the ground state energy calcula
with the expression Eq.~50!, @using Eq. ~53! for N with
unu51] for 16<N<40 and 0<vc /v0<20 (r 0 /aB

51.911), with the calculations for a classical system of el
trons of Ref. 48. The deviation is maximal~no more than
15%) in the range 1/@K(K21)#1/2<vc /v0<(N22)/(N
21)1/2, whereK is the number of closed shells. This rang
of magnetic fields corresponds to the crossings of Fo
Darwin levels~see Ref. 39 and Sec. IV! and, therefore, the
single particle ground state energy of electrons chan
many times asvc increases. One can suppose that the C
lomb interaction shifts the levels but the qualitative structu
of the many particle ground state is still complex. Thus,
this range of parametervc /v0 the expression forN is not
uniquely defined. We could not find a more appropriate
pression forN than Eq.~53!, for the magnetic fields indi-
cated in Fig. 5.

VII. CONCLUSION

We have used the anyon concept combined with a va
tional calculation to obtain an analytic closed-form expre
sion for the approximate ground state energy ofN noninter-
acting and Coulomb-interacting particles in a 2D harmo
confining potential, with and without an external magne
field. The crucial point of this approach is the appearance
a logarithmic divergence connected with a cut-off parame
when evaluating the contribution of the gauge field vec

l

FIG. 5. Ground state energyEN5(E02N\v)/(\v0) for 16–40
electrons calculated using the expression Eq.~50! for r 0 /aB

51.911, applying the expression forN Eq. ~53! with unu51 ~solid
curves!, and energy for classical electrons~Ref. 48! ~dashed lines!.
Herev5(v0

21vc
2/4)1/2 and t5vc /v0.
5-8
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potential. Following arguments from the literature, accord
to which the cutoff parameter cannot be zero~except for the
bosonic limit!, we used it to fit our results to exact and n
merical ground state energies known for special values of
system parameters. In doing so we provided closed ana
expressions for the approximate ground state energy dep
ing uponunu,N,v0 ,r 0 /aB andvc /v0.
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